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Abstract. We develop a self-consistent automatic procedure to restore informations from astronomical observa-
tions. It relies on both a new deconvolution algorithm called LBCA (Lower Bound Constraint Algorithm) and the
use of the Wiener filter. In order to explore its scientific potential for strong and weak gravitational lensing, we
process a CFHT image of the galaxies cluster Abell 370 which exhibits spectacular strong gravitational lensing
effects. A high quality restoration is here of particular interest to map the dark matter within the cluster. We
show that the LBCA turns out specially efficient to reduce ringing effects introduced by classical deconvolution
algorithms in images with a high background. The method allows us to make a blind detection of the radial arc
and to recover morphological properties similar to those observed from HST data. We also show that the Wiener
filter is suitable to stop the iterative process before noise amplification, using only the unrestored data .

Key words. Galaxy: Individual: cluster Abell 370, Cosmology: gravitational lensing, dark matter, Methods: data
analysis, Techniques: image processing.

1. Introduction

Despite its oustanding image quality, the small field of
view of the Hubble Space Telescope (HST) still ham-
pers its use for deep surveys covering angular size be-
yond a degree scale. Wide field surveys, like those used
for gathering large sample of lensing clusters or for cosmic
shear, are therefore a specific territory for panoramic CCD
cameras, like Megacam at CFHT [Boulade et al. 2000] or
Omegacam at ESO [Valentijn et al. 2001]. However, the
intrinsic limitation of ground-based telescopes produced
by atmospheric seeing puts severe bounds on the detec-
tion limits of these surveys and on the lowest gravita-

Send offprint requests to: Roche M.
? Based on observations obtained at the Canada-France-

Hawäı Telescope (CFHT) which is operated by the National
Research Council of Canada (NRCC), the Institut des Sciences
de l’Univers (INSU) of the Centre National de la Recherche
Scientifique (CNRS) and the University of Hawäı (UH), and
on observations made with the NASA/ESA Hubble Space
Telescope, obtained at the Space Telescope Science Institute,
which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-
26555.

tional distortion amplitude one can measure with these
cameras. Image degradation dilutes the light from small
faint galaxies below the limiting threshold, blurs image
details and increases the uncertainties on shape measure-
ment of lensed galaxies. Both arc detection and cosmic
shear signal are therefore altered by the seeing.
Improving image quality from ground based telescopes is
therefore an important technical goal that may have a sig-
nificant scientific impact when surveys are pushed to the
limits. In principle, image deconvolution can both improve
the image quality and enhance the flux emitted by low sur-
face brightness galaxies. Unfortunately, because deconvo-
lution is a slow process and often produces unwanted ar-
tifacts, like ringing, it cannot be easily used on wide field
ground based images. Furthermore, in the case of very
large data sets from panoramic cameras, objective conver-
gence criteria must be defined and applied automatically
to images. These technical limitations turn out to be chal-
lenging if one envisions a massive image deconvolution of
surveys.
Although it is not yet applicable to large ground based
data sets, we explore new image deconvolution techniques
that could be used in the future. More precisely, we com-
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pare the performances of the Richardson-Lucy (RL) al-
gorithm with a modified version called the Lower Bound
Constraint Algorithm (LBCA) that has been developped
in [Lantéri et al. 2001]. This algorithm, as well as the RL
algorithm, shows noise amplification when the iteration
number increases too much. A procedure to control au-
tomatically the iteration has then been implemented and
validated on real data. It uses a HST image as a reference
to stop the deconvolution process when a given distance
between the HST image and the restored image is mini-
mum. We choose to minimize an Euclidean distance crite-
rion. This minimization technique also enables us to check
the quality of the restoration.
Although the comparison with HST data turns out to be
a successful way to test the method, it is unpractical for
most images. Operating cosmological surveys will provide
a huge amount of data that must be automatically pro-
cessed, without any reference images. So, we generalized
our empirical convergence criterion using the HST images
to develop a systematic procedure to stop the deconvo-
lution algorithm. This technique is based on the Wiener
filtering and relies on the information contained in the
data only.
In this first paper, we applied the deconvolution on CFHT
images of the famous giant arc in Abell 370 and compare
the result to HST data. Both the CFHT and the HST im-
ages are described in section 2. We determine the Point
Spread Function (PSF) in the CFHT image in section 3
and apply the deconvolution techniques in section 4. We
show that the LBCA must be preferred to the standard
RL algorithm. In section 5, we use the technique based on
the Wiener filter to stop the LBCA iterations without the
need of any reference image. We show that the quality of
the restored image then obtained with this independent
procedure is satisfactory. We sum up our conclusions in
section 6.

2. The data

Abell 370 is the most distant cluster of galaxies
in the Abell catalogue, at a redshift z = 0.374
[Sarazin et al. 1982]. The cluster structure is dominated
by two giant elliptical galaxies, identified as #20
and #35 from the notations in [Soucail et al. 1987 b)]1.
The image of Abell 370 exhibits a giant arc extend-
ing over 60 arc-second wide discovered by Soucail et
al. [Soucail et al. 1987 a)] and [Lynds & Petrosian 1986].
This arc has been identified as an extremely dis-
torted image of a background galaxy at z=0.724
[Soucail et al. 1988], thus bringing the evidence of a cos-
mological gravitational lensing effect. The arc is split into
five distinct regions #b, #c, #g, #37 and #62 (see Fig.
6. in the present paper) and shows an intensity break-
ing between the galaxies #37 and #62. The galaxies #37

1 We use thereafter the notations of the
[Soucail et al. 1987 b)] and [Mellier et al. 1998] to refer
to the details in our images

(z#37 = 0.37), #b (z#b = 0.363) and #c (z#c = 0.373)
are superimposed to the arc. On the contrary, the ob-
ject #62 belongs to it. The detection of a weak radial
arclet in a HST/WFPC1 image (noted R) has been re-
ported in [Smail et al. 1996]. Its existence was confirmed
in [Bézecourt et al. 1999] who argued its redshift should
be about 1.3. The detection of arclets, as well as the deter-
mination of sub-structures in the giant arc, are important
to constrain the mass profile of Abell 370 as well as to
scale its absolute mass.

2.1. CFHT observations of A370

The A370 image was obtained at the 3.60m telescope of
the CFHT (Canada France Hawäı Telescope) observatory
in November 1991 (see [Kneib et al. 1993] for details). The
FOCAM (Faint Object CAMera) imager installed on the
prime focus of the telescope uses the filter #1808 cen-
tered on 832 nm with a width of 196 nm. This image is
integrated over 1800 seconds and corrected with standard
CCD frame packages. The field extends over about 6x6
arc-minutes (’), with a sampling of 0.206 arc-second per
pixel. The objects of specific interest correspond to the
strong lensing effects observed close to the central galaxy
(# 35 on Fig. 1 a). Thus we extract a sub-image extend-
ing over 0.6’ × 0.6’ approximately centered on this galaxy
(image 196×196 pixels).

2.2. HST observations of A370

We also have an A370 image with 622 seconds of integra-
tion time obtained with the HST in a wavelength domain
close to the CFHT observations (F675W filter centered on
λ=673,5 nm and width of 88,9 nm). The WFPC2 (Wide
Field Planetary Camera 2) gives a wide field about 150
× 150 arcsec (”). We have extracted a region of about 34
× 34 ” (0,1”/pixel) containing the region of the giant arc.
The high spatial resolution of the HST allows to observe
details invisible in the CFHT image as sharp breakings
in the giant arc and the presence of the radial arc R. We
make the assumption that the HST image can be used as
a reference for comparison with the restored image, i.e. we
neglect any alteration induced from the HST instrument.
We cannot exclude differences between the two original as-
tronomical fields, because they are seen through different
filters, but these differences are probably negligible for the
study undergone here. This assumption is also supported
by a mere visual inspection of the two images.

2.3. Comparison between HST and CFHT observations

The direct comparison between CFHT and HST images
requires a linear transformation of the HST image since
both orientation and spatial sampling are different. Let
(x′, y′) and (x, y) be the spatial coordinates of a star pho-
tocenter in the HST and CFHT images respectively. The
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linear transformation between (x′, y′) and (x, y) may be
written as:
{

x′ = a.x + b.y + c

y′ = d.x + e.y + f
(1)

where a, b, c, d, e and f are unknown scalars. We then
compute the linear transformation of the HST image
with a bilinear interpolation. Solving the system (1) for
a set of stars both identified in the CFHT and the HST
196×196 sub-images, allows an accurate determination of
the scalars a, b, c, d, e and f . The comparison between the
CFHT image and the transformed HST one is presented
in Fig. 1.
The transformation (1) may be interpreted as a combina-
tion of a 110◦ rotation followed by a 2.07 pixels dilatation
from the center of the galaxy #35 and a translation.

3. The Point Spread Function (PSF)

Ground-based observations suffer degradations due to the
transmission of light by the atmosphere and the optics.
The images obtained are then blurred by the system
atmosphere-instrumentation. The field of the CFHT im-
age extends over a few arc-minutes and corresponds to a
long exposure time. In these conditions we can make the
assumption that the degradation due to the atmosphere
is space invariant in the image plane. Such an assumption
is also safe for the instrumental distortions. The relation
between the noiseless image ỹ(r) and the object x(α) is
then a convolution one:

ỹ(r) =

∫ +∞

−∞

h(r − α)x(α)dα = h(r) ¯ x(r) (2)

where r is the spatial coordinates at the telescope focus
and h the kernel of the integral equation (2) is the PSF of
the system atmosphere-telescope.
The discretization of equation (2) leads to the matrix re-
lation:

ỹ = Hx (3)

where ỹ is a vector corresponding to the noiseless image,
x a vector corresponding to the object and H a matrix
representing the convolution effects of the PSF. In real
cases, the observations y are a noise corrupted version of
ỹ. In all what follows, we assume a Poisson noise process.
The restoration technique we propose in this paper are
then based on the deconvolution of the noisy image y by
an estimated PSF in order to reconstruct the object x in
the best conditions.

The first step consists in estimating the PSF from the
stars (unresolved objects) in the full CFHT image.

3.1. Stars selection

We first identify the stars by using SExtractor
[Bertin & Arnouts 1996]. This software extracts the ob-
jects in the field and gives characteristic parameters such
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Fig. 1. a) Extraction of a sub-image (196× 196 pixels) of
Abell 370 observed with the CFHT. The circle represents
the region where the radial arc R must be located.
The rectangular box (20 × 28 pixels) represents the mask
used for the comparison of the two images in the case of
the arc reconstruction.
b) Extraction of a sub-image (196 × 196 pixels) of Abell
370 image obtained by applying the linear transformation
(1) on the HST image. The circle identifies the radial arc
R.

as the centröıd position, the Full Width at Half Maximum
(FWHM) in the light distribution and the magnitude of
the object. An object is defined as a number of connected
pixels (fixed by the user) above a given threshold (1.5 σ in
our study, where σ corresponds to the standard deviation
of the image background assuming a Gaussian distribu-
tion). The star identification is then achieved by repre-
senting on a diagram the magnitude of each object versus
the FWHM. The stars gather in a region with a FWHM
approximatively constant (between 0.6” and 0,68”) inde-
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pendently of the magnitude. A refined selection is car-
ried out by only preserving the stars whose magnitude is
greater than a lower bound to avoid saturated stars images
and smaller than a higher one to avoid galaxy contami-
nation. Each star image is extracted over a 32 ×32 pixels
frame. After dropping images exhibiting neighbors we are
left with a sample of 23 individual stars images.

3.2. Estimation of the PSF

The second step consists in adding the 23 stars to syn-
thesize the PSF. The summation of these objects imposes
the perfect superposition of the photo-center of each star
up to a fraction of pixel. This could not be done directly
as the light centröıd is not located on an full pixel. We
have to estimate the vector shift between each star fi(x, y)
where (x, y) are the spatial coordinates and a reference
one f∗(x, y) chosen arbitrarily. This is achieved by deter-
mining the argument of the inter-spectrum between each
couple of images. We first compute the Fourier Transform
(FT) for each star image noted f̂i(u, v) and f̂∗(u, v) for
the reference, where (u, v) are the spatial frequencies. Let
us denote ξi,1 and ξi,2 the unknown shifts between fi(x, y)
and f∗(x, y) along the x and y axes respectively. The argu-

ment ϕi(u, v) of the inter-spectrum between f̂i(u, v) and

f̂∗(u, v) is:

ϕi(u, v) = −2π(uξi,1 + vξi,2) (4)

We fit ϕi(u, v) by a plane in the low frequencies range
(where the Signal to Noise Ratio (SNR) is better) to ob-
tain ξi,1 and ξi,2. This leads to an accurate determination
of the shift vector in the direct space. Each star is then
translated in this latter space to the position of the ref-
erence by using a bilinear interpolation. Since the back-
ground, noted back, changes slightly in the field, we sub-
stract its mean specific value in each star image. We finally
compute a SNR for each image, defined as:

SNR =
(Max∗)

2

Max∗ + back
(5)

where (Max∗) represents the maximum intensity of the
star. The images are then weighted by their SNR and
summed up. The result is normalized to yield the PSF
in the field. This PSF shows a rather axial symmetry with
a slight anisotropy (Figure 2). The PSF is then put into a
196×196 frame as the deconvolution process requires. We
denote by H the matrix corresponding to the effects of the
PSF.

4. Deconvolution of the A370 CFHT image

4.1. Limitation of the standard Richardson-Lucy
algorithm: ringing effects

We first deconvolve the A370 image with the classical
Richardson-Lucy algorithm [Lucy 1974, Richardson 1972]
and the PSF previously estimated:

x(k+1) = x(k).HT y

Hx(k)
(6)
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Fig. 2. Normalized PSF of the A370 image.
a) Contours Plot. The contours represent successively 100,
80, 60, 40, 20, 10, 5, 3.5, 2.5, 1.5, 0.8, 0.5, 0.2, 0.1 % of
the image maximum.
b) 3D Representation.

where x(k) represents the reconstructed object at the
iteration k, y is the observation, H is the PSF matrix
and HT its transposed.

To stop the iterations of the algorithm we define an
error criterion between the image reconstructed at itera-
tion k (denoted x(k)) and a reference image. In this section
we use the HST image (denoted xHST ) as the reference.
We then minimize a criterion Rk based upon a relative
Euclidean distance between x(k) and xHST :

Rk =
‖ xHST − x(k) ‖

‖ xHST ‖
(7)

where ‖ . ‖ represents the Euclidean distance.
The objects in the field are rather different (giant arc,
galaxies, stars...) and would not require exactly the same
iteration number to be reconstructed at the best. The
criterion Rk must then be computed preferably over the
area to be preferentially restored. We focus here on the
region of the giant gravitational arc and thus minimize
Rk (see Figure 3) within the rectangular box indicated in
Figure 1. The best reconstructed image obtained at iter-
ation k = 50 is represented in Figure 4. Its background
shows a granular structure typically of the size of the PSF.
An early ringing effect [Cao et al. 1999, Lucy 1994 a),
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Fig. 3. Relative error curve Rk between the CFHT re-
constructed image and the HST one as a function of the
iteration number for RL. The images used are those of the
figure 1, the PSF is the one of figure 2 and the mask used
correspond to the rectangular box (20 × 28 pixels).
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150

Fig. 4. Abell 370 reconstructed image by RL at the 50th
iteration. The image used is the one of figure 1 a), the
PSF is the one of figure 2 and the mask used correspond
to the rectangular box (20 × 28 pixels).

Lagendijk & Biemond 1991] appears around the bright-
est point-like objects. It is both caused by the important
background in the CFHT image and the discontinuities
in the FT due to bright point-like objects [White 1993].
These phenomena prevent any accurate measurement on
the restored image and render necessary the use of a mod-
ified version of the algorithm to remove the oscillations.
It is achieved by taking into account the background in
the image and by introducing it as a lower bound con-
straint in the deconvolution algorithm itself. Hence, the
reconstruction is not allowed to take values less than the
background.

4.2. Amelioration: Lower Bound Constraint Algorithm
(LBCA)

The LBCA is developed from a method proposed in
[Lantéri et al. 2001] and studied in detail in [Roche 2001,
Lantéri et al. 2002]. The method is based on the mini-
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0.65

Fig. 5. Relative error curve Rk between the CFHT re-
constructed image and the HST one as a function of the
iteration number for LBA. The images used are those of
the figure 1, the PSF is the one of figure 2 and the mask
used correspond to the rectangular box (20 × 28 pixels).

mization of a convex function under lower bound con-
straint (denoted m). It consists in writing that at the opti-
mum, the Kuhn-Tucker conditions [Kuhn & Tucker 1951]
are fulfilled. We then write the algorithm under a modified
gradient form using the successive substitution method
[Hildebrand 1974]. After simple algebra, this leads in the
non-relaxed case to the following multiplicative expression
of the LBCA:

x
(k+1)
i = mi + (x

(k)
i − mi)

[
HT y

(Hx(k))

]

i

(8)

where i is the current pixel in the image. A similar algo-
rithm has been proposed by [Snyder et al. 1993] and by
[Nunez & Llacer 1993] with however a slightly different
formulation. A comparison between the two approaches is
given in the Appendix. Note that when m = 0 whatever
the iteration, the RL algorithm is recovered.
The lower bound m can be constant or variable over the
image. The algorithm implementation is just as simple
in both cases. The difficulty consists in obtaining an
accurate background map specially in the region of bright
structures. This estimation is out of the scope of this
paper. We have then chosen to take for m a constant value
overall the image estimated as the mean background in
the global normalized CFHT image.

We still stop the LBCA by minimizing the Rk criterion
(7). We evaluate Rk within the rectangular box of Figure
1 as in the previous section. The corresponding Rk curve
is represented on Figure 5. The best restoration for this
region of the giant arc is obtained for the iteration 269
(Figure 6). We see from Figure 5 that a range of about 50
iterations around this value would yield reconstructions of
similar quality.

The reconstructed image with the LBCA shows an im-
portant reduction of both granularity and ringing effects.
We use a criterion derived from Rk to measure the amelio-
ration brought by the deconvolution. We compute a quan-
tity D defined by:

D = 100 ×
Ry − Ropt

Ry

(9)
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Fig. 6. Best reconstructed image with LBCA using the
HST reference image at the iteration 269.

where Ry and Ropt are defined as:

Ry =
‖ xHST − y ‖

‖ xHST ‖
, Ropt =

‖ xHST − x(kopt) ‖

‖ xHST ‖
(10)

Ry and Ropt measure the relative Euclidean distances
between the HST reference xHST and the CFHT im-
age before deconvolution y, and between xHST and
the optimal restoration x(kopt). D gives the averaged
amelioration in percent with respect to the Euclidean
measure. It raises up to 53% for the giant arc. We have
also carried the minimization of Rk for the full 196×196
image and obtained a 47% amelioration with respect to
the D criterion. This means that the image obtained
after deconvolution with the LBCA is closer to the
HST image by roughly a factor 2 than the image before
deconvolution. No significant amelioration is brought by
the RL algorithm with this criterion.

This study shows a great amelioration carried out by
the simple introduction of the lower bound constraint.
The deconvolution allows in particular to restore severals
structures in the giant arc (#b, #c, #g, #37, #62), and
the breaking between #37 and #62. Moreover, the recon-
structed image evidences a radial gravitational arc (circle
in Figure 6 and 7.c). This arc is clearly visible in the HST
image (Figure 7.a) but does not appear in the raw CFHT
data (Figure 7.b).
Ringing residuals, while attenuated, are still present
around high intensities objects. These drawbacks are due
to an incorrect estimation of the background in these re-
gions. The reconstruction can be improved by estimating
a variable background.

We emphasize that the LBCA process takes the same
computation time as the RL algorithm.

c

b

a

Fig. 7. Zoom on the radial arc R. HST image (a), raw
CFHT image (b) and deconvolved CFHT image (c).

5. Wiener filtering for stopping iterations

We have used in the previous section a HST image to stop
the iterations of the deconvolution. Usually, such a refer-
ence image is not available. Further, the objective is pre-
cisely to restore information from the sole ground-based
observations without any external help. So it is necessary
to develop a self-consistent method relying on the ground-
based data only.
The technique we used is the one proposed by Lantéri et
al. [Lantéri et al. 1999]. It makes use of a comparison of
the modulus of the Fourier transform of the deconvolved
image at the iteration k with the modulus of the Fourier
transform given by a Wiener filtering. For clarity, let us
briefly recall some well-known results on Wiener filtering.
The Wiener filter W (u, v) is a zero-phase filter that pre-
vents the amplification of the noise if a raw inverse filter
technique is used. Denoting r the angular coordinates and
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u and v the 2D spatial frequencies, ŷ(u, v) and ĥ(u, v) the
FT of the observation y(r) and the PSF h(r), the inverse
Wiener filtered image transform x̂w(u, v) may be written
as [Brault & White 1971]:

x̂w(u, v) =
ŷ(u, v)

ĥ(u, v)
W (u, v) (11)

where W (u, v) is defined as:

W (u, v) =
PHx(u, v)

PHx(u, v) + Pn(u, v)
(12)

The quantities PHx(u, v) and Pn(u, v) are the power spec-
tra of the noiseless image and of the noise itself respec-
tively. Estimating these quantities is the main difficulty
in the implementation of a Wiener filter. Only approxi-
mated expressions can be worked out. Assuming that the
signal and noise are statistically independent, Pn(u, v) can
be taken as a constant. Its value may be estimated in
the very high frequencies of ŷ(u, v), where no astronom-
ical signal is expected. Estimating PHx(u, v) is more dif-
ficult since it implies an a priori knowledge of the object
FT. In the present work, we have assumed that PHx(u, v)
could be approximated by Ph(u, v), the power spectrum
of the telescope-atmosphere PSF. This tends to overesti-
mate W (u, v). So, after this procedure, equations 11 and
12 permit to have an estimate of x̂w(u, v). Following the
work of Lantéri et al. [Lantéri et al. 1999], we use only its
modulus Abs[x̂w(u, v)] to define a stopping criterion for
the LBC algorithm. At each iteration k, we compute the
euclidean distance Ew(k) of the form:

Ew(k) =
‖ Abs[x̂(k)(u, v)] − Abs[x̂w(u, v)] ‖

‖ Abs[x̂w(u, v)] ‖
(13)

The raw application of this criterion fails to give a satis-
factory iteration stop. A much better solution was found
in using only in this comparison a range of intermediate
frequencies. Indeed it was found necessary to suppress the
very low frequencies that have a too important weight in
the calculus. The comparison must also exclude the high-
est spatial frequencies that are suppressed by the Wiener
filter used. The overall effect is to apply an annular mask
in the frequencies plane.
Both Abs[x̂(k)(u, v)] and Abs[x̂w(u, v)] are normalized in-
side this mask for comparison. The distance Ew(k) is rep-
resented as a function of the iteration number k on Figure
8. The best reconstruction is obtained for the iteration k
= 129 (Figure 9). The amelioration brought by the decon-
volution estimated from the D criterion (9) reaches 48%.
It is close to the 53% amelioration obtained in section 4.2
using the HST reference. It shows that independently of
a reference HST image, a rather satisfying approximate
solution may be found by using a stopping criterion based
on the data themselves. This procedure can be fully and
easily automated.
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Fig. 8. Relative error curve Ew(k) between the modu-
lus of the FT of the reconstructed image at iteration k

(Abs[x̂(k)(u, v)]) and the FT of the Wiener reconstructed
image (Abs[x̂w(u, v)]).
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Fig. 9. Best reconstructed image with LBCA using a cri-
terion based on the Wiener filter at the 129th iteration.

6. Conclusion

We have used a modified version of the RL algorithm,
called LBCA, to deconvolve a CFHT image of Abell 370.
The LBCA introduces a lower-bound constraint which
prevents the reconstructed image to take values below this
bound. It allows to reduce considerably the ringing effect
that appears around bright objects when classical algo-
rithm are used (in particular RL). In the present paper,
the lower bound is taken equal to an estimation of the
mean sky background over the whole CFHT 196×196 im-
age.
We have used at first an HST image of A370 as a reference
to stop the iteration of the algorithm and to evaluate the
amelioration brought by the deconvolution. An Euclidean
distance criterion is then minimized between the recon-
structed image at a given iteration and the HST reference
to yield the best reconstruction. The LBCA reconstruc-
tion of A370 is twice as close to the HST image than the
raw CFHT data, while no amelioration is brought by us-
ing the RL algorithm. Remarkably, our iterative process
has permitted to detect blindly the radial arc evidenced
earlier on HST image of A370 and to recover its morpho-



8 Roche.M et al.: Ringing effects reduction...

logical properties. This is an encouraging demonstration
of its efficiency, and an interesting example of practical
application. It also emphasizes the interest of the LBCA
to restore images with a high background.
In a more general case where no HST image is available,
the convergence and stopping rules of the algorithm must
rely on the information contained in the data themselves.
We have thus developed a technique using the Wiener fil-
ter. It proceeds from an estimation of the noise in the
CFHT image and the evaluation of the Power spectrum
of the PSF. This method is based on the minimization
of an Euclidean distance between the FT modulus of the
LBCA reconstruction and the reconstructed image by the
inverse Wiener filter. The best reconstructed image is close
to the former one obtained with the HST as a reference.

The present study evidences two important results.
First, it allows to improve the quality of an image with
a high background, using a new algorithm as simple and
as fast as the RL one: the LBCA. Finally, the overall
data processing involving the LBCA together with the
Wiener filtering may be fully automated. Hence, it could
be fruitfully used for the processing of huge amount
of ground-based observations and particularly in the
perspective of current or forthcoming wide field surveys.

Appendix A:

We show in this appendix, the similarities between
the algorithm used in the present paper and the algo-
rithm previously proposed by [Snyder et al. 1993] and by
[Nunez & Llacer 1993], to take into account the effect of
the background.

In our algorithm written in the form 8:

x
(k+1)
i = mi + (x

(k)
i − mi)

[
HT y

(Hx(k))

]

i

(A.1)

x is clearly the overall value of the solution, and we must
have:

xi ≥ mi ∀i (A.2)

Therefore, x includes the background (the background m

is in the object space). The model used is ỹ = Hx and the
actual data y is Poisson with mean Hx. Now, introducing
u = x − m in this algorithm, we obtain immediately:

u
(k+1)
i = u

(k)
i

[
HT y

(H(u(k) + m)

]

i

(A.3)

This the form previously proposed by [Snyder et al. 1993]
and by [Nunez & Llacer 1993].
Here the model used is ỹ = H(u+m), u is the part of the
signal over the background m, and ui ≥ 0 ∀i. The back-
ground is again in the object space and the actual data y

is Poisson with mean H(u + m).
Except these small conceptual differences, both algorithms
are similar and leads to the same results, however another

important point must be underlined. Because of the con-
volution, the mean H(u+m) can also be written Hu+m

so the background m appears in the data space). However
it does not mean that we can subtract the background m

from the data y for obtaining modified data y′ = y − m;
indeed if y is Poisson with mean Hu + m , then y′ is not
Poisson of mean Hu (y′ might also be negative).
Then, whatever the form of the algorithm, the estimated
background is used in the algorithm [Hanisch 1993], but
the data y must left unchanged.
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