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Abstract

We give a simple proof of the finite presentation of Sela’s limit groups by using free

actions on R
n-trees. We first prove that Sela’s limit groups do have a free action on an

R
n-tree. We then prove that a finitely generated group having a free action on an R

n-

tree can be obtained from free abelian groups and surface groups by a finite sequence

of free products and amalgamations over cyclic groups. As a corollary, such a group

is finitely presented, has a finite classifying space, its abelian subgroups are finitely

generated and contains only finitely many conjugacy classes of non-cyclic maximal

abelian subgroups.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Marked groups and limit groups . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Λ-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Killing infinitesimals and extension of scalars . . . . . . . . . . . . . . . . . 6
2.4 Subtrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Elementary properties of groups acting freely on Λ-trees . . . . . . . . . . . 8

3 A limit group acts freely on an Rn-tree 8

4 Gluing Λ-trees 11
4.1 Gluing Λ-trees along points . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Gluing two trees along a closed subtree . . . . . . . . . . . . . . . . . . . . . 12
4.3 Equivariant gluing: graphs of actions on Λ-trees. . . . . . . . . . . . . . . . 12
4.4 Gluing free actions into free actions . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Nice coverings and graph of actions on R-trees . . . . . . . . . . . . . . . . 14

5 The action modulo infinitesimals, abelian dévissage 15
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1 Introduction

Limit groups have been introduced by Z. Sela in the first paper of his solution of Tarski’s
problem [Sel01]. These groups appeared to coincide with the long-studied class of finitely
generated fully residually free groups (see [Bau67], [Bau62], [KM98a, KM98b], [Chi95] and
references).

A limit group is a limit of free groups in the space of marked groups. More precisely, if
n is a fixed integer, a marked group is a group together with an ordered generating family
S = (s1, . . . , sn). Two marked groups (Γ, S) and (Γ′, S′) are close to each other in this
topology if for some large R, (Γ, S) and (Γ′, S′) have exactly the same relations of length
at most R (see section 2.1).

Limit groups have several equivalent characterizations: a finitely generated group G
is a limit group if and only if it is fully residually free, if and only if it has the same
universal theory as a free group, if and only if it is a subgroup of a non-standard free
group ([Rem89, CG]).

One of the main results about limit groups is a structure theorem due to Kharlampovich-
Myasnikov, Pfander and Sela ([KM98a, Pfa97, Sel01]). This theorem claims that a limit
group can be inductively obtained from free abelian groups and surface groups by taking
free products and amalgamations over Z (see Th.7.1 below). This structure theorem im-
plies that a limit group is finitely presented, and that its abelian subgroups are finitely
generated. The goal of the paper is to give a simpler proof of this result in the broader
context of groups acting freely on Rn-trees.

Let’s recall briefly the definition of a Λ-tree. Given a totally ordered abelian group Λ,
there is a natural notion of Λ-metric space where the distance function takes its values in
Λ. If Λ is archimedean, then Λ is isomorphic to a subgroup of R and we have a metric
in the usual sense. When Λ is not archimedean, there are elements which are infinitely
small compared to other elements. A typical example is when Λ = Rn endowed with the
lexicographic ordering.

A Λ-tree may be defined as a geodesic 0-hyperbolic Λ-metric space. Roughly speaking,
an Rn-tree may be thought of as a kind of bundle over an R-tree where the fibers are
(infinitesimal) Rn−1-trees.

In his list of research problems, Sela conjectures that a finitely generated group is a
limit group if and only if it acts freely on an Rn-tree ([Sel]). However, it is known that the
fundamental group Γ = 〈a, b, c | a2b2c2 = 1〉 of the non-orientable surface Σ of Euler char-
acteristic −1 is not a limit group since three elements in a free group satisfying a2b2c2 = 1
must commute ([Lyn59],[Chi01, p.249]). But this group acts freely on a Z2-tree: Σ can be
obtained by gluing together the two boundary components of a twice punctured projective
plane, so Γ can be written as an HNN extension F2∗Z. The Z2-tree can be roughly de-
scribed as the Bass-Serre tree of this HNN extension, but where one blows up each vertex
into an infinitesimal tree corresponding to a Cayley graph of F2 (see [Chi01, p.237] for
details).

In this paper, we start by giving a proof that every limit group acts freely on an Rn-
tree. This is an adaptation a theorem by Remeslennikov saying that a fully residually free
groups act freely on a Λ-tree where Λ has finite Q-rank, i. e. Λ ⊗ Q is finite dimensional
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([Rem92], see also [Chi01, th. 5.10]). However, Remeslennikov claims that Λ can be chosen
finitely generated, but this relies on a misquoted result about valuations (see section 3).

We actually prove that there is a closed subspace of the space of marked groups con-
sisting of groups acting freely on Rn-trees. In the following statement, an action of a group
Γ on a Bruhat-Tits tree is the action on the Bruhat-Tits tree of SL2(K) induced by a
morphism j : Γ → SL2(K) where K is a valuation field. Note that K may vary with Γ.

Theorem 3.3 (Acting freely on Bruhat-Tits trees is closed, see also [Rem92]).
Let BT ⊂ Gn be the set of marked groups (Γ, S) having a free action on a Bruhat-Tits tree.

Then BT is closed in Gn, and BT consists in groups acting freely on Λ-trees where
Λ ⊗ Q has dimension at most 3n + 1 over Q. In particular, BT consists in groups acting
freely on R3n+1-trees where R3n+1 has the lexicographic ordering.

Corollary 3.4 ([Rem92]). A limit group has a free action on an Rn-tree.

The main result of the paper is the following stucture theorem for groups acting freely
on Rn-trees (see theorem 7.2 for a more detailed version). In view of the previous corollary,
this theorem applies to limit groups.

Theorem 7.1 (Dévissage theorem, simple version). Consider a finitely generated,
freely indecomposable group Γ having a free action on an Rn-tree. Then Γ can be written
as the fundamental group of a finite graph of groups with cyclic edge groups and where
each vertex group is finitely generated and has a free action on an Rn−1-tree.

For n = 1, Rips theorem says that Γ (which is supposed to be freely indecomposable) is
either a free abelian group, or a surface group (see [GLP94, BF95]). Hence, a limit group
can be obtained from abelian and surface groups by a finite sequence of free products and
amalgamations over Z. It is therefore easy to deduce the following result:

Corollary 7.3. Let Γ be a finitely generated group having a free action on an Rn-tree.
Then

• Γ is finitely presented;
• if Γ is not cyclic, then its first Betti number is at least 2;
• there are finitely many conjugacy classes of non-cyclic maximal abelian subgroups

in Γ, and abelian subgroups of Γ are finitely generated. More precisely, one has the
following bound on the ranks of maximal abelian subgroups:

∑

A

(Rk A − 1) ≤ b1(Γ) − 1

where the sum is taken over the set of conjugacy classes of non-cyclic maximal abelian
subgroups of Γ, and where b1(Γ) denotes the first Betti number of Γ;

• Γ has a finite classifying space, and the cohomological dimension of Γ is at most
max(2, r) where r is the maximal rank of an abelian subgroup of Γ.

Remark. A combination theorem by Dahmani also shows that Γ is hyperbolic relative to
its non-cyclic abelian subgroups.

Corollary ([Sel01, KM98a, KM98b, Pfa97]). A limit group is finitely presented, its
abelian subgroups are finitely generated, it has only finitely many conjugacy classes of
maximal non-cyclic abelian subgroups, and it has a finite classifying space.
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Finally, we can also easily derive from the dévissage theorem the existence of a principal
splitting, a major step in Sela’s proof of the finite presentation of limit groups (see corollary
7.4 and [Sel01, Th.3.2]).

Unlike Sela’s proof, the proof we give doesn’t need any JSJ theory, and does not use
the shortening argument. The proof is also much shorter than the one by Kharlampovich-
Myasnikov in [KM98a, KM98b] using algebraic geometry over groups, and the study of
equations in free groups.

The paper is organized as follows: after some premilinaries in section 2, section 3
is devoted to the proof of the fact that limit groups act freely on Rn-trees. Section 4
sets up some preliminary work on graph of actions on Λ-trees, which encode how to glue
equivariantly some Λ-trees to get a new Λ-tree. In section 5, starting with a free action of
a group Γ on an Rn-tree T , we study the action on the R-tree T obtained by identifying
points at infinitesimal distance, and we deduce a weaker version of the dévissage Theorem
where we obtain a graph of groups over (maybe non-finitely generated) abelian groups.
Section 6 contains the core of the argument: starting with a free action of Γ on an Rn-tree
T , we build a free action on an Rn-tree T ′ such that the R-tree T ′ has cyclic arc stabilizers.
The dévissage theorem and its corollaries will then follow immediately, as shown in section
7.

After completing this work, the author learnt about the unpublished thesis of Shalom
Gross, a student of Z. Sela, proving the finite presentation of finitely generated groups
having a free action on an Rn-tree. However, Shalom does not state a dévissage theorem
over cyclic groups, but over finitely generated abelian groups.

2 Preliminaries

2.1 Marked groups and limit groups

Sela introduced limit groups in [Sel01]. For background about Sela’s limit groups, see also
[CG] or [Pau].

A marked group (G, S) is a finitely generated group G together with a finite ordered
generating family S = (s1, . . . , sn). Note that repetitions may occur in S, and some
generators si may be the trivial element of G. Consider two groups G and G′ together
with some markings of the same cardinality S = (s1, . . . , sn) and S′ = (s′1, . . . , s

′
n). A

morphism of marked groups h : (G, S) → (G′, S′) is a homomorphism h : G → G′ sending
si on s′i for all i ∈ {1, . . . , n}. Note that there is at most one morphism between two
marked groups, and that all morphisms are epimorphisms.

A relation in (G, S) is an element of the kernel of the natural morphism Fn → G
sending ai to si where Fn is the free group with basis (a1, . . . , an). Note that two marked
group are isomorphic if and only if they have the same set of relations.

Given any fixed n, we define Gn to be the set of isomorphism classes of marked groups.
It is naturally endowed with the topology such that the sets NR(G, S) defined below form
a neighbourhood basis of (G, S). For each (G, S) ∈ Gn and each R > 0, NR(G, S) is
the set of marked groups (G′, S′) ∈ Gn such that (G, S) and (G′, S′) have exactly the
same relations of length at most R. For this topology, Gn is a Hausdorff, compact, totally
disconnected space.

Definition 2.1. A limit group (G, S) ∈ Gn is a marked group which is a limit of markings
of free groups in Gn.
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Actually, being a limit group does not depend on the choice of the generating set.
Moreover, limit groups have several equivalent characterizations: a finitely generated group
is a limit group if and only if it is fully residually free, if and only if it has the same
universal theory as a free group, if and only if it is a subgroup of a non-standard free
group ([Rem89, CG]). We won’t need those characterizations in this paper.

2.2 Λ-trees

For background on Λ-trees, see [Bas91, Chi01].

Totally ordered abelian groups A totally ordered abelian group Λ is an abelian group
with a total ordering such that for all x, y, z ∈ Λ, x ≤ y ⇒ x + z ≤ y + z. Our favorite
example will be Rn, with the lexicographic ordering. In all this paper, Rn will always
be endowed with its lexicographic ordering. To fix notations, we use the little endian
convention: the leftmost factor will have the greatest weight. More precisely, if Λ1 and
Λ2 are totally ordered abelian groups, the lexicographic ordering on Λ1 ⊕Λ2 is defined by
(x1, x2) ≤ (y1, y2) if x1 < y1 or (x1 = y1 and x2 ≤ y2).

A morphism ϕ : Λ → Λ′ between two totally-ordered abelian groups is a non-decreasing
group morphism. Given a, b ∈ Λ, the subset [a, b] = {x ∈ Λ | a ≤ x ≤ b} is called the
segment between a and b. A subset E ⊂ Λ is convex if for all a, b ∈ E, [a, b] ⊂ E. The
kernel of a morphism is a convex subgroup, and if Λ0 ⊂ Λ is a convex subgroup, then Λ/Λ0

has a natural structure of totally ordered abelian group. By proper convex subgroup of
Λ, we mean a convex subgroup strictly contained in Λ.

The set of convex subgroups of Λ is totally ordered by inclusion. The height of Λ is
the (maybe infinite) number of proper convex subgroups of Λ. Thus, the height of Rn is n.
Λ is archimedean if its height is at most 1. It is well known that a totally ordered abelian
group is archimedean if and only if it is isomorphic to a subgroup of R (see for instance
[Chi01, Th.1.1.2])

If Λ0 ⊂ Λ is a convex subgroup, then any element λ0 ∈ Λ0 may be thought as infinitely
small compared to an element λ ∈ Λ \ Λ0 since for all n ∈ N, nλ0 ≤ λ. Therefore, we will
say that an element in Rn is infinitesimal if it lies in the maximal proper convex subgroup
of Rn, which we casually denote by Rn−1. Similarly, for p ≤ n, we will identify Rp with
the corresponding convex subgroup of Rn. The magnitude of an element λ ∈ Rn is the
smallest p such that λ ∈ Rp. Thus λ ∈ Rn is infinitesimal if and only if its magnitude is
at most n − 1.

Given a totally ordered abelian group Λ, Λ ⊗ Q has a natural structure of a totally
ordered abelian group by letting λ

n ≤ λ′

n′ if and only if n′λ ≤ nλ′.

Λ-metric spaces and Λ-trees A Λ-metric space (E, d) is a set E endowed with a map
d : E ×E → Λ≥0 satisfying the three usual axioms of a metric: separation, symmetry and
triangle inequality. The set Λ itself is a Λ-metric space for the metric d(a, b) = |a − b| =
max(a − b, b − a) ∈ Λ. A geodesic segment in E is an isometric map from a segment
[a, b] ⊂ Λ to a subset of E. A Λ-metric space is geodesic if any two points are joined by
a geodesic segment. We will denote by [x, y] a geodesic segment between two points in E
(which, in this generality, might be non-unique).

Note that even in a set Λ like Rn, the upper bound is not always defined so one cannot
easily define a Λ-valued diameter (see however [Chi01, p.99] for a notion of diameter as
a interval in Λ). Nevertheless, we will say that a subset F of a Rn-metric space E is
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infinitesimal if the distance between any two points of F is infinitesimal. Similarly, we
define the magnitude of F as the smallest p ≤ n such that the distance between any two
points of F has magnitude at most p.

We give two equivalent definitions of a Λ-tree. The equivalence is proved for instance
in [Chi01, lem. 2.4.3, p. 71].

Definition 2.2. A Λ-tree T is a geodesic Λ-metric space such that

• T is 0-hyperbolic in the following sense:

∀x, y, u, v ∈ T, d(x, y) + d(u, v) ≤ max{d(x, u) + d(y, v), d(x, v) + d(y, u)}

• ∀x, y, z ∈ T, d(x, y) + d(y, z) − d(x, z) ∈ 2Λ

Equivalently, a geodesic Λ-metric space is a Λ-tree if

• the intersection of any two geodesic segments sharing a common endpoint is a geodesic
segment

• if two geodesic segments intersect in a single point, then their union is a geodesic
segment.

Remark. In the first definition, the second condition is automatic if 2Λ = Λ, which is the
case for Λ = Rn.

It follows from the definition that there is a unique geodesic joining a given pair of
points in a Λ-tree.

Clearly, Λ itself is Λ-tree. Another simple example of a Λ-tree is the vertex set V (S)
of a simplicial tree S: V (S) endowed with the combinatorial distance is a Z-tree.

2.3 Killing infinitesimals and extension of scalars

The following two operations are usually known as the base change functor.

Killing infinitesimals. Consider Λ0 ⊂ Λ a convex subgroup (a set of infinitesimals),
and let Λ = Λ/Λ0. If Λ = Rn, we will usually take Λ0 = Rn−1, so that Λ ' R. Consider a
Λ-metric space E. Then the relation ∼ defined by x ∼ y ⇔ d(x, y) ∈ Λ0 is an equivalence
relation on E, and the Λ-metric on E provides a natural Λ-metric on E/ ∼. We say that
E = E/ ∼ is obtained from E by killing infinitesimals. Clearly, if T is a Λ-tree, then T is
a Λ-tree. Thus, killing infinitesimals in an Rn-tree T provides an R-tree T . By extension,
we will often denote R-trees with a bar.

Extension of scalars Consider a Λ-tree T , and an embedding Λ ↪→ Λ̃ (for example,
one may think of Z ⊂ R). Then T may be viewed as a Λ̃-metric space, but it is not a
Λ̃-tree if Λ is not convex in Λ̃: as a matter of fact, T is not geodesic as a Λ̃-metric space
(there are holes in the geodesics). However, there is a natural way to fill the holes:

Proposition 2.3 (Extension of scalars, see [Chi01, Th. 4.7,p. 75]). There exists a
Λ̃-tree T̃ and an isometric embedding T ↪→ T̃ which is canonical in the following sense:
if T ′ is another Λ̃-tree with an isometric embedding T ↪→ T ′, then there is a unique Λ̃-
isometric embedding T̃ → T ′ commuting with the embeddings of T in T̃ and T ′.
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For example, take T to be the Z-tree corresponding corresponding to the set of vertices
of a simplicial tree S. Then the embedding Z ⊂ R gives an R-tree T̃ which is isometric to
the geometric realization of S.

Remark. The proposition also holds if one only assumes that T is 0-hyperbolic. In this
case, taking Λ̃ = Λ, one gets a natural Λ-tree containing T .

2.4 Subtrees

A subtree Y of a Λ-tree T is a convex subset of T , i. e. such that for all x, y ∈ Y , [x, y] ⊂ Y .
A subtree is non-degenerate if it contains at least two points. One could think of endowing
Λ, and T , with the order topology. However, this is usually not adapted. For instance:
Rn is not connected with respect to this topology for n > 1. This is why we need a special
definition of a closed subtree. The definition coincides with the topological definition for
R-trees.

Definition 2.4 (closed subtree). A subtree Y ⊂ T is a closed subtree if the intersec-
tion of Y with a segment of T is either empty or a segment of T .

There is a natural projection on a closed subtree. Consider a base point y0 ∈ Y . Then
for any point x ∈ T , there is a unique point p ∈ Y such that [y0, x] ∩ Y = [y0, p]. One
easily checks that p does not depend on the choice of the base point y0 ([p, x] is the bridge
between x and Y , see [Chi01]). The point p is called the projection of x on Y .

Remark. The existence of a projection is actually equivalent to the fact that the subtree
Y is closed. Be aware that a non-trivial proper convex subgroup of Λ is never closed in Λ.
In particular, the intersection of infinitely many closed subtrees may fail to be closed.

A linear subtree of T is a subtree in which any three points are contained in a segment.
It is an easy exercise to prove that a maximal linear subtree of T is closed in T . Finally,
any linear subtree L ⊂ T is isometric to a convex subset of Λ and any two isometries
L → Λ differ by an isometry of Λ.

2.5 Isometries

An isometry g of a Λ-tree T can be of one of the following exclusive types:

• elliptic: g has a fix point in T
• inversion: g has no fix point, but g2 does
• hyperbolic: otherwise.

In all cases, the set Ag = {x ∈ T | [g−1x, x] ∩ [x, g.x] = {x} is called the characteristic set
of g.

If g is elliptic, Ag is the set of fix points of g which is a closed subtree of T . Moreover,
for all x ∈ T , the midpoint of [x, g.x] exists and lies in Ag.

If g is an inversion, then Ag = ∅. Actually, for any x ∈ T , d(x, g.x) /∈ 2Λ so [x, g.x]
has no midpoint in T . In particular, if 2Λ = Λ (which occurs for instance if Λ = Rn),
inversions don’t exist. Moreover, one can perform the analog of barycentric subdivision
for simplicial trees to get rid of inversions: consider Λ̃ = 1

2Λ, and let T̃ be the Λ̃-tree

obtained by the extension of scalars Λ ⊂ Λ̃. Then the natural extension of g to T̃ fixes a
unique point in T̃ (in particular, g is elliptic in T̃ ). If g is elliptic or is an inversion, its
translation length lT (g) is defined to be 0.
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If g is hyperbolic, then the set Ag is non-empty, and is a maximal linear subtree of T ,
and is thus closed in T . It is called the axis of g. Moreover, the restriction of g to Ag is
conjugate to the action of a translation τ : a 7→ a + lT (g) on a τ -invariant convex subset
of Λ for some positive lT (g) ∈ Λ. The translation length of g is the element lT (g) ∈ Λ>0.
If p is the projection of x on Ag, then for k 6= 0, d(x, gk.x) = 2d(x, p) + |k|lT (g).

Note that it may happen that Ag is not isometric to Λ. For instance, if Λ = R2, the
axis of an element g with infinitesimal translation length can be of the form I × R where
I is any non-empty interval in R which can be open, semi-open or closed.

If g is hyperbolic, then for all x ∈ T , the projection of x on Ag is the projection of x
on [g−1.x, g.x]. In particular, if the midpoint of [x, g.x] exists, then it lies in Ag. It also
follows that if g is hyperbolic and if g−1.x, x, g.x are aligned (in any order) then they lie
on the axis of g.

If an abelian group A acts by isometries on Λ-tree T and contains a hyperbolic element
g, then all the hyperbolic elements of A have the same axis l, A contains no inversion, and
all elliptic elements fix l. We say that l is the axis of the abelian group A. The axis of
A can be characterized as the only closed A-invariant linear subtree of T , or as the only
maximal A-invariant linear subtree of T .

2.6 Elementary properties of groups acting freely on Λ-trees

We now recall some elementary properties of groups acting freely (without inversion) on
Λ-trees. They are proved for instance in [Chi01].

Lemma 2.5. Let Γ be a group acting freely without inversion on a Λ-tree. Then

1. Γ is torsion free;
2. two elements g, h ∈ Γ commute if and only if they have the same axis. If they don’t

commute, the intersection of their axes is either empty or a segment ([Chi01], proof
of lem. 5.1.2 p.218 and Rk p.111)

3. maximal abelian subgroups of Γ are malnormal (property CSA) and Γ is commutative
transitive: the relation of commutation on Γ \ {1} is transitive ([Chi01, lem. 5.1.2
p.218])

Remark. Property CSA implies that Γ is commutative transitive.
A result known as Harrison Theorem, proved by Harrison for R-trees and by Chiswell

and Urbanski-Zamboni for general Λ-trees, says that a 2-generated group acting freely
without inversion on a Λ-tree is either a free group or a free abelian group. (see [Chi94,
UZ93, Har72]). We won’t use this result in this paper.

3 A limit group acts freely on an R
n-tree

The goal of this section is to prove that limit groups act freely on Rn-trees. This is
an adaptation of an argument by Remeslennikov concerning fully residually free groups
([Rem92], see also [Chi01, th. 5.5.10 p. 246]). Note that it is claimed in [Rem92] that
finitely generated fully residually free groups act freely on a Λ-tree where Λ is a finitely
generated ordered abelian group. However, the proof is not completely correct since it
relies on a misquoted result about valuations (Th.3 in [Rem92]) to which there are known
counterexamples (for any subgroup Λ ⊂ Q, there is valuation on Q(X, Y ), extending the
trivial valuation on Q, whose value group is Λ [ZS75, ch.VI,§15, ex.3,4] or [Kuh, Th 1.1]).
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Nevertheless, Remeslennikov’s argument proves the following weaker statement: a finitely
generated fully residually free group acts freely on a Λ-tree where Λ has finite Q-rank, i. e.
Λ ⊗ Q is finite dimensional over Q.

The fact that a limit group acts freely on an Rn tree will be deduced from a more
general result about group acting freely on Bruhat-Tits trees. But we first state a simpler
result in this spirit (see also [GS94, GS93]). Remember that Gn denotes the space of groups
marked by a generating family of cardinality n.

Proposition 3.1 (Acting freely on Λ-trees is closed). Let Tn ⊂ Gn be the set of marked
groups having a free action without inversion on some Λ-tree (Λ may vary with the group).

Then Tn is closed in Gn.

We won’t give the proof of this result since this proposition is not sufficient for us as it
does not give any control over Λ. This is why we rather prove the following more technical
result.1

For general information of the action of SL2(K) on its Bruhat-Tits Λ-tree BTK where
K a field, and v : K → Λ ∪ {∞} is a valuation, see for instance [Chi01, §4.3,p.144].
Essentially, we will only use the existence of the Bruhat-Tits Λ-tree and the formula for
the translation length of a matrix m ∈ SL2(K): lBTK

(m) = max{−2v(Tr(m)), 0}. Also
note that the action of SL2(K) on its Bruhat-Tits tree has no inversion (however, there
may be inversions in GL2(K)).

Definition 3.2 (Action on a Bruhat-Tits tree.). By an action of Γ on a Bruhat-Tits
tree, we mean an action of Γ on the Bruhat-Tits Λ-tree for SL2(K) induced by a morphism
j : Γ → SL2(K) where K is a valuated field with values in Λ.

Theorem 3.3 (Acting freely on Bruhat-Tits trees is closed, see also [Rem92]).
Let BT ⊂ Gn be the set of marked groups (Γ, S) having a free action on a Bruhat-Tits tree.

Then BT is closed in Gn, and BT consists in groups acting freely on Λ-trees where
Λ ⊗ Q has dimension at most 3n + 1 over Q. In particular, BT consists in groups acting
freely on R3n+1-trees where R3n+1 has the lexicographic ordering.

Corollary 3.4 ([Rem92]). A limit group has a free action on an Rn-tree.

Proof of the corollary. This follows from the theorem above since a free group acts freely
on a Bruhat-Tits tree.

Proof of the Theorem. We first prove that BT is closed. Let (Γi, Si) ∈ BT be a sequence
of marked groups converging to (Γ, S). For each index i, consider a field Ki and a valuation
vi : Ki → Λi and an embedding ji : Γ → SL2(Ki) such that ji(Γi) acts freely without
inversions on the corresponding Bruhat-Tits tree BTi.

Consider ω an ultrafilter on N, i. e. a finitely additive measure of total mass 1 (a mean),
defined on all subsets of N, and with values in {0, 1}, and assume that this ultrafilter is
non-principal, i. e. that the mass of finite subsets is zero. Say that a property P (k)
depending on k ∈ N is true ω-almost everywhere if ω({k ∈ N|P (k)}) = 1. Note that a

1The proof is actually very similar to the proof of the more technical result: instead of taking ultra-
products of valuated fields, take an ultraproduct of trees to get a free action without inversion on a Λ∗-tree
(see also [Chi01, p.239] where the behavior Λ-trees under ultrapowers is studied in terms of Lyndon length
functions).
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property which is not true almost everywhere is false almost everywhere. Given a sequence
of sets (Ei)i∈N, the ultraproduct E∗ of (Ei) is the quotient (

∏

i∈N
Ei)/∼ω where ∼ω is the

natural equivalence relation on
∏

i∈N
Ei defined by equality ω-almost everywhere.

Consider K∗ the ultraproduct of the fields Ki, Γ∗ the ultraproduct of the groups Γi,
and Λ∗ the ultraproduct of the totally ordered abelian groups Λi. As a warmup, we prove
the easy fact that the natural ring structure on K∗ makes it a field: if k∗ = (ki)i∈N 6= 0
in K∗, then for almost all i ∈ N, ki 6= 0, and 1/ki is defined for almost every index i, and
defines an inverse (1/ki)i∈N for k∗ in K∗.

Similarly, Γ∗ is a group, and Λ∗ a totally ordered abelian group (for the total order
(xi)i∈N ≤ (yi)i∈N if and only if xi ≤ yi almost everywhere). Now consider the map
v∗ : K∗ → Λ∗ ∪∞ defined by v∗((ki)i∈N) = (vi(ki))i∈N, and the map j∗ : Γ∗ → SL2(K

∗)
defined by j∗((gi)i∈N) = (ji(gi))i∈N. Then v∗ is a valuation on K∗, and j∗ a monomorphism
of groups. We denote by BT ∗ the Bruhat-Tits tree of SL2(K

∗).(2)
Now, given a field K with a valuation v : K → Λ ∪ {∞}, a subgroup H ⊂ SL2(K)

acts freely without inversions on the corresponding Bruhat-Tits tree BT if and only if the
translation length of any element h ∈ H \ {1} is non-zero. But the translation length of a
matrix m ∈ SL2(K) can be computed in terms of the valuation of its trace by the formula
lBT (m) = max{0,−2v(Tr(m))}, so the freeness (without inversion) of the action translates
into v(Tr(h)) < 0 for all h ∈ H \ {1} ([Chi01, lem.4.3.5 p.148]). Therefore, since for all
i and all gi ∈ Γi \ {1}, Tr(ji(gi)) has negative valuation, all the elements g∗ ∈ Γ∗ \ {1}
satisfy v∗(Tr(j∗(g∗))) < 0, which means that Γ∗ acts freely without inversion on BT ∗.

Finally, there remains to check that the marked group (Γ, S) embeds into Γ∗ (see for

instance [CG]). We use the notation S = (s1, . . . , sn) and Si = (s
(i)
1 , . . . , s

(i)
n ). Consider

the family S∗ = (s∗1, . . . , s
∗
n) of elements of Γ∗ defined by s∗1 = (s

(i)
1 )i∈N, . . . , s∗n = (s

(i)
n )i∈N.

The definition of the convergence of marked groups says that if an S-word represents the
trivial element (resp. a non-trivial element) in Γ, then for i sufficiently large, the corre-
sponding Si-word is trivial (resp. non-trivial) in Γi. Since ω is non-principal, this implies
that the corresponding S∗-word is trivial (resp. non-trivial). This means that the map
sending (s1, . . . , sn) to (s∗1, . . . , s

∗
n) extends to an isomorphism between Γ and 〈S∗〉 ⊂ Γ∗.

Therefore, (Γ, S) ∈ BT , so BT is closed.

We now prove the fact that any group (Γ, S) in BT acts freely on a Λ-tree where Λ⊗Q
has dimension at most 3n + 1. So consider an embedding j : Γ → SL2(K) where K has
a valuation v : K → Λ ∪ {∞} such that the induced action of Γ on the Bruhat-Tits tree
for SL2(K) is free without inversion. Consider the subfield L ⊂ K generated by the 4n
coefficient of the matrices j(s1), . . . , j(sn). Since the matrices have determinant 1, L can
be written as L = k0(x1, . . . , x3n) where k0 is the prime subfield of K. Let ΛL = v(L\{0})
be the value group of L. Since Γ embeds in SL2(L), Γ acts freely on the corresponding
Bruhat-Tits ΛL-tree. We now quote a result about valuations which implies that ΛL has
finite Q-rank.

Theorem 3.5 ([Bou64, cor 1 in VI.10.3]). Let L = L0(x1, . . . , xp) be a finitely gen-
erated extension of L0, and v : L → Λ ∪ {∞} a valuation. Denote by ΛL = v(L \ {0})
(resp. Λ0 = v(L0 \ {0})) the corresponding value group. Then the Q-vector space (ΛL ⊗
Q)/(Λ0 ⊗ Q) has dimension at most p.

Taking L0 = k0, one gets that ΛL has Q-rank at most 3n + 1 since Λ0 is either trivial

2It may also be checked that BT
∗ is actually the ultraproduct of the Λi-trees BTi.

10



or isomorphic to Z.

Using the extension of scalars (base change functor), there remains to prove that if a
totally ordered group Λ has finite Q-rank, then it is isomorphic to a subgroup of Rn.

Lemma 3.6. Consider Λ a totally ordered of Q-rank p. Then Λ is isomorphic (as an
ordered group) to subgroup of Rp with its lexicographic ordering.

Remark. However, Λ ⊗ Q is usually not isomorphic to Qp with its lexicographic ordering
as shows an embedding of Q2 into R.

Proof. We first check that the height of Λ is at most p (see [Bou64, prop 3 in VI.10.2]).
First, Λ embeds into Λ ⊗ Q, so we may replace Λ by Λ ⊗ Q and assume that Λ is a
totally ordered Q-vector space of dimension p. Any convex subgroup Λ0 ⊂ Λ is a Q vector
subspace in Λ since if 0 ≤ x ∈ Λ0, for all k ∈ N \ {0}, 1

kx ∈ Λ0 since 0 ≤ 1
kx ≤ x. Now the

height of Λ is at most p since a chain of convex subgroups Λ0 $ Λ1 $ · · · $ Λi is a chain
of vector subspaces.

We now prove by induction that a totally ordered group Λ of finite height q embeds as
an ordered subgroup of Rq with its lexicographic ordering. Once again, one can replace Λ
by Λ⊗Q without loss of generality. We argue by induction on the height. If Λ has height
1, i. e. if Λ is archimedean, then Λ embeds in R (see for instance [Chi01, Th.1.1.2]). Now
consider Λ0 ⊂ Λ the maximal proper convex subgroup of Λ, and let Λ = Λ/Λ0. Since
Λ, Λ0 and Λ are Q vector spaces, one has algebraically Λ = Λ ⊕ Λ0.

The fact that Λ0 is convex in Λ implies that the ordering on Λ corresponds to the
lexicographic ordering on Λ ⊕ Λ0 ([Bou64, lemma 2 in VI.10.2]). Indeed, one first easily
checks that any section j : Λ → Λ is increasing. Now let’s prove that the isomorphism
f : Λ×Λ0 → Λ defined by f(x, x0) = j(x)+x0 is increasing for the lexicographic ordering
on Λ × Λ0. So assume that (x, x0) ≥ 0. If x = 0, then f(x, x0) = x0 ≥ 0. If x > 0, then
f(x, x0) = j(x)+x0 > 0 since otherwise, one would have 0 ≤ j(x) ≤ −x0, hence j(x) ∈ Λ0

by convexity, a contradiction.
Finally, by induction hypothesis, Λ0 embeds as an ordered subgroup of Rq−1 and Λ

embeds as an ordered subgroup of R, so Λ embeds as an ordered subgroup of Rq.

4 Gluing Λ-trees

The goal of this section is to define graph of actions on Λ-trees which show how to glue
actions on Λ-trees along closed subtrees to get another action on a Λ-tree, and to give a
criterion for the resulting action to be free. We will finally study more specifically gluings
of R-trees along points, and show that a decomposition of an R-tree T into a graph of
actions on R-trees above points correspond to a nice covering of T by closed subtrees.

4.1 Gluing Λ-trees along points

Here, we recall that one can glue Λ trees together along a point to get a new Λ-tree (see
[Chi01, Lem. 2.1.13]).

Lemma 4.1 ([Chi01, Lemma 2.1.13]). Let (Y, d) be a Λ-tree, and (Yi, di)i∈I be a fam-
ily of Λ-trees. Assume that Yi ∩ Y = {xi} and that for all i, j ∈ I, Yi ∩ Yj = {xi} ∩ {xj}.
Let X = (

⋃

i∈I Yi) ∪ Y and let d : X × X → Λ defined by: d|Y ×Y = d; d|Yi×Yi
= di; for
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x ∈ Yi, y ∈ Y d(x, y) = d(x, xi)+d(xi, y); for x ∈ Yi, y ∈ Yj d(x, y) = d(x, xi)+d(xi, xj)+
d(xj , y).

Then (X, d) is a Λ-tree.

4.2 Gluing two trees along a closed subtree

The following gluing construction will be used for gluing trees along maximal linear sub-
trees.

Assume that we are given two Λ-trees (Y1, d1), (Y2, d2), two closed subtrees δ1 ⊂ Y1

and δ2 ⊂ Y2, and an isometric map ϕ : λ1 ³ λ2. By definition of a closed subtree, we
have two orthogonal projections pλi

: Yi → λi for i ∈ {1, 2}.
Let X = Y1tY2, and let ∼ be the equivalence relation on X generated by x ∼ ϕ(x) for

all x ∈ λ1. The set (Y1 ∪ϕ Y2) := X/ ∼ is now endowed with the following metric which
extends di on Yi: if x ∈ Y1 and y ∈ Y2, we set

d(x, y) := d1(x, pλ1
(x)) + d2(ϕ(pλ1

(x)), pλ2
(y)) + d2(y, pλ2

(y)) (1)

= d1(x, pλ1
(x)) + d2(ϕ(pλ1

(x)), y)

= min{d1(x, x1) + d2(ϕ(x1), y) | x1 ∈ λ1} (2)

To prove the last equality, introduce z1 = pλ1
(x); then for any x1 ∈ λ1,

d1(x, x1) + d2(ϕ(x1), y) = d1(x, z1) + d1(z1, x1) + d2(ϕ(x1), y)

= d1(x, z1) + d1(ϕ(z1), ϕ(x1)) + d2(ϕ(x1), y)

≥ d1(x, z1) + d1(ϕ(z1), y)

= d(x, y)

Lemma 4.2. With the definitions above, (Y1 ∪ϕ Y2, d) is a Λ-tree. Moreover, any closed
subtree of Yi is closed in (Y1 ∪ϕ Y2, d).

Proof. Let T = Y1∪ϕY2. Then T can be viewed as the tree L = λ1 = λ2 on which are glued
some subtrees of Y1, Y2 at some points. More precisely, for x ∈ λ1, let Ax = (pλ1

)−1(x),
and similarly, for x ∈ λ2, let Bx = (pλ2

)−1(x). Then, because of the formula (1) for the
metric, T is isometric to the Λ-tree obtained by gluing the trees Ax and Bx on L along
the point x as in lemma 4.1. Therefore, by lemma 4.1, (T, d) is an Λ-tree.

Now let Z ⊂ Y1 be a closed subtree. Let’s prove that Z is closed in T . Consider
z ∈ Z, y ∈ T , and let’s prove that there exists z0 ∈ Z such that [z, y] ∩ Z = [z, z0]. If
y ∈ Y1, then one can take z0 to be the projection of y on Z by hypothesis. If y ∈ Y2,
let y0 be the projection of y on λ2, and z0 be the projection of ϕ−1(y0) on Z. Of course,
[y, z0] ⊂ Z. Now [y0, y] \ {y0} does not meet Z since it is contained in T \ Y1, and neither
does [z0, y0] \ {z0}. Thus [z, y] ∩ Z = [z, z0] and Z is closed in T .

4.3 Equivariant gluing: graphs of actions on Λ-trees.

The combinatorics of the gluing will be given by a simplicial tree S, endowed with an
action without inversion of a group Γ. We denote by V (S) and E(S) the set of vertices
and (oriented) edges of S, by t(e) and o(e) the origin and terminus of an (oriented) edge
e, and by e the edge with opposite orientation as e.

A graph of actions on trees is usually defined as a graph of groups with some additional
data like vertex trees. Here, we rather use an equivariant definition at the level of the
Bass-Serre tree.
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Definition 4.3 (Graph of actions on Λ-trees.). Given a group Γ, a Γ-equivariant graph
of actions on Λ-trees is a triple (S, (Yv)v∈V (S), (ϕe)e∈E(S)) where

• S is a simplicial tree,
• for each vertex v ∈ V (S), Yv is a Λ-tree (called vertex tree),
• for each edge e ∈ E(S), ϕe : λe ³ λe is an isometry between closed subtrees λe ⊂

Yo(e) and λe ⊂ Yt(e) such that ϕe = ϕ−1
e . We call the subtrees λe the edge subtrees.

This data is assumed to be Γ-equivariant in the following sense:

• Γ acts on S without inversion,
• Γ acts on X = tv∈V (S)Yv so that the restriction of each element of Γ to a vertex tree

is an isometry,
• the natural projection π : X → V (S) (sending a point in Yv to v) is equivariant
• the family of gluing maps is equivariant: for all g ∈ Γ, λg.e = g.λe, and ϕg.e =

g ◦ ϕe ◦ g−1.

The Λ-tree dual to a graph of actions Given G a Γ-equivariant graph of actions on
Λ-trees, we consider the smallest equivalence relation ∼ on X = tv∈V (S)Yv such that for
all edge e ∈ E(S) and x ∈ λe, x ∼ ϕe(x). The Λ-tree dual to G is the quotient space
TG = X/∼. To define the metric on TG , one can alternatively say that TG is obtained by
gluing successively the vertex trees along the edge trees according to lemma 4.2 in previous
section. Formula (2) in previous section shows that the metric does not depend on the
order in which the gluing are performed. Indeed, an induction shows that the distance
between x ∈ Yu and y ∈ Yv can be computed as follows: let e1, . . . , en the edges of the
path from u to v in S, and v0 = u, v1, . . . , vn = v the corresponding vertices then

d(x, y) = min{dYu
(x, x1) + dYv1

(ϕe1
(x1), x2) + · · · + dYvn

(ϕen
(xn), y)

where the minimum is taken over all xi ∈ λei
. By finitely many applications of lemma 4.2,

one gets that the gluings corresponding to finite subtrees of S are Λ-trees. Now apply the
fact that an increasing union of Λ-trees is a Λ-tree to get that T is a Λ-tree (see [Chi01,
Lem. 2.1.14]). We thus get the following lemma:

Definition 4.4 (Tree dual to a graph of actions on Λ-trees.). Consider G = (S, (Yv), (ϕe))
a Γ-equivariant graph of actions on Λ-trees. The dual tree TG is the set X/∼ endowed with
the metric d defined above. It is a Λ-tree on which Γ acts by isometries.

We say that a Λ-tree T splits as a graph of actions G if there is an equivariant isometry
between T and TG.

Remark. Consider an increasing union of trees Ti such that Y ⊂ T0 is a closed subtree
of each Ti. Then Y is closed in ∪iTi. Therefore, using lemma 4.2, one gets that a closed
subtree of a vertex tree is closed in TG . In particular, vertex trees themselves are closed
in TG .

4.4 Gluing free actions into free actions

We next give a general criterion saying that an action obtained by gluing is free. It is stated
in terms of the equivalence relation ∼ on X = tv∈V (S)Yv defined above. Each equivalence
class has a natural structure of a connected graph: elements of the equivalence class are
vertices, put an oriented edge between two vertices x and y if y = ϕe(x) for some edge
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e ∈ E(S). This graph embeds into S via the map π : X → S, so this graph is a simplicial
tree.

Lemma 4.5 (Criterion for a graph of free actions to be free). Consider G = (S, Yv, ϕe)
a Γ-equivariant graph of action on Λ-trees. For each vertex v ∈ V (S), denote by Γv its
stabilizer, and assume that the action of Γv on Yv is free. Assume furthermore that each
equivalence class of ∼ has finite diameter.

Then the action of Γ on TG is free.

Proof. If an element g ∈ Γ fixes a point in TG , then g globally preserves the corresponding
equivalence class in X. Since this equivalence class has the structure of a tree with finite
diameter, g must fix a vertex in this equivalence class (there are no inversions because the
action on S has no inversion). Hence g fixes a point of X, which means that g fixes a
point in a vertex tree.

4.5 Nice coverings and graph of actions on R-trees

In this section, we restrict to the case of a graph of actions on R-trees along points. We
prove that an action on an R-tree splits as such a graph of actions if and only if it has a
certain kind of covering by subtrees. The argument could in fact be generalized to graph
of actions on Λ-trees along points but we won’t need it.

Definition 4.6 (Nice covering). Let T be an R-tree, and (Yu)u∈U be a family of non-
degenerate closed subtrees of T . We say that (Yu)u∈U is a nice covering of T if

• nice intersection: whenever Yu ∩ Yv contains more than one point, Yu = Yv;
• finiteness condition: every arc of T is covered by finitely many Yu’s.

Lemma 4.7. Consider an action of a group Γ on an R-tree T . If T splits as a graph of
actions on R-trees along points G, then the image in T of non-degenerate vertex trees of
G gives a nice covering of T .

Conversely, if T has a Γ-invariant nice covering, then there is a natural graph of actions
G whose non-degenerate vertex trees correspond to the subtrees of the nice covering and
such that T ' TG.

Proof. We first check that the family of vertex trees of a graph of actions G = (S, (Yv), (ϕe))
forms a nice covering of TG . We have already noted that vertex trees are closed in TG .
The nice intersection condition follows from the fact that edge trees are points. To prove
the finiteness condition, consider x ∈ Yu and y ∈ Yv and note that [x, y] is covered by the
trees Yw for w ∈ [u, v].

To prove the converse, we need to define the simplicial tree S encoding the combina-
torics of the gluing.

Definition 4.8 (Skeleton of a nice covering). Consider a nice covering (Yu)u∈U of T .
The skeleton of this nice covering is the bipartite simplicial tree S defined as follows:

• V (S) = V0(S)∪ V1(S) where V1(S) = {Yu | u ∈ U}, and V0(S) is the set of points of
T which belong to a least two distinct trees Yu 6= Yv

• there is an edge between x ∈ V0(S) and Y ∈ V1(S) if and only if x ∈ Y .
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The connectedness of S follows from the finiteness condition (using the fact that the
subtrees Yu are closed in T ). Now let’s prove the simple connectedness. Consider a path
p = x0, Y0, x1, . . . , xn−1, Yn−1, xn in S, and let p̃ = [x0, x1].[x1, x2] . . . [xn−1, xn] be the
corresponding path in T . If p does not backtrack, then Yi ∩ Yi+1 = {xi+1} so p̃ does not
backtrack. Therefore, x0 6= xn and p is not a closed path.

Now there is a natural graph of actions G corresponding to S: for x ∈ V0(S), the
corresponding vertex tree is the point {x}, for Y ∈ V1(S), the corresponding vertex tree is
Y , and the gluing maps ϕe : {x} → Y are given by inclusion. Finally, consider the natural
map Ψ : TG → T given by the inclusion of vertex trees. This application is an isometry in
restriction to vertex trees, and if [a, b], [a, c] are two arcs in TG lying in two distinct vertex
trees Y1, Y2 of TG , then Ψ([a, b]) ∩Ψ([a, c]) ⊂ Ψ(Y1) ∩Ψ(Y2) is reduced to one point. This
implies that Ψ is an isometry in restriction to each segment, and hence an isometry.

Remark. We will often prefer using a nice covering (or the graph of actions corresponding
to such a covering) to a general graph of actions because of the following acylindricity
property of the dual graph of actions G = (S, (Yv)v∈V (S), (ϕe)e∈E(S)): if two points x ∈ Yv,
and x′ ∈ Yv′ have the same image in TG , then v, v′ are at distance at most 2 in S.

It is also worth noticing the following simple minimality result:

Lemma 4.9. Consider an R-tree T endowed with a minimal action of Γ. Consider
(Yu)u∈U an equivariant nice covering of T , and let S be the skeleton of the nice cover-
ing.

Then the action of Γ on S is minimal.

Proof. Assume that S′ ⊂ S is an invariant subtree. Let T ′ ⊂ T be the union of vertex
trees of S′. One easily checks that T ′ is connected using the connectedness of S′. Thus,
by minimality of T , one has T ′ = T . Using the acylindricity remark above, S is contained
in the 2-neighbourhood of S′. In particular, if S′ 6= S, then S contains a terminal vertex
v. By definition, every vertex in V0(S) has at least two neighbours, so v ∈ V1(S). We thus
get a contradiction since Yv is contained in T ′, contradicting the nice intersection property
of the nice covering.

5 The action modulo infinitesimals, abelian dévissage

In this section, we prove a weaker version of the cyclic dévissage theorem, where (maybe
non-finitely generated) abelian groups may appear in place of cyclic groups (see prop. 5.5).

Start with a finitely generated group Γ acting freely on an Rn-tree T with n ≥ 2,
and assume that Γ is freely indecomposable. Denote by Rn−1 the maximal proper convex
subgroup of Rn, and consider elements of Rn−1 as infinitesimals. Now consider the R-tree
T obtained from T by identifying points at infinitesimal distance (this is often called the
base change functor in the literature, see for instance [Chi92], [JZ95], [Bas91], see also
[Chi01, Th.2.4.7]). Note that the canonical projection f : T → T preserves alignment,
and that the preimage of a convex set is convex. The preimage in T of a point of T is thus
an infinitesimal subtree of T . Of course, the action of Γ on T induces an isometric action
of Γ on T .

However, this action generally fails to be free. It may even happen that Γ fixes a point
x in T , but in this case, the dévissage theorem holds trivially since Γ acts freely on the
Rn−1-tree f−1(x). Therefore, we assume that Γ acts non-trivially on T , and, up to taking

15



a subtree of T and its preimage in T , we can assume that the action on T is minimal, i. e.
that there is no non-empty proper invariant subtree.

We first analyze how far from free this action can be.

Fact 5.1. If a group Γ acts freely on an Rn-tree T , then the action of Γ on T satisfies the
following:

• tripod fixators are trivial (a tripod is the convex hull of 3 points which are not
aligned)

• for every pair of commuting, elliptic elements g, h ∈ Γ \ {1}, FixT g = FixT h; in
particular, FixT g = FixT gk for k 6= 0;

• arc fixators are abelian; the global stabilizer of a line is maximal abelian if it is
non-trivial;

• the action is superstable: for every non-degenerate arc I ⊂ T with non-trivial fixator,
for every non degenerate sub-arc J ⊂ I, one has Stab I = StabJ .

Remark. This fact does not use the fact that we have an Rn-tree rather than a more
general Λ-tree. The statement holds for every Λ-tree T with a free action of Γ without
inversion and every Λ/Λ0-tree T obtained from T by killing a convex subgroup Λ0 of
infinitesimals.

Proof of the fact. We start with the proof of the two first items. Consider g ∈ Γ\{1}, and
consider FixT g its set of fix points in T . The preimage of FixT g is the set of points in T
moved by an infinitesimal amount. This set is either empty if lT (g) is not infinitesimal,
or, it is the set of points whose distance to the axis Ag of g is infinitesimal. Therefore, if
FixT g is not empty, then it is the image of Ag in T which contains no tripod since the
quotient map preserves alignment. Moreover, for any element h ∈ Γ commuting with g,
h globally preserves the axis of g, so Ah = Ag. Therefore, if h is elliptic in T then it has
the same set of fixed points as g.

Now we prove superstability and that arc fixators are abelian. Consider some non-
degenerate arcs J ⊂ I ⊂ T , two elements g, h ∈ Γ \ {1} fixing pointwise I and J re-
spectively. We want to prove that h fixes I and commutes with g. By hypothesis, the
translation length of g and h are infinitesimal in T , their axes Ag and Ah must intersect
in a subset of non-infinitesimal diameter.

Now since the diameter of Ag ∩ Ah is much (infinitely) larger than lT (g) + lT (h),
ghg−1h−1 is elliptic in T (see for instance [Chi01, Rk. p.111]). Since the action is free, this
means that g and h commute and in particular, the fixator of I is abelian. This implies
that h(Ag) = Ag, thus Ah ⊃ Ag since Ah is the maximal h-invariant linear subtree of T ,
and Ah = Ag by symmetry of the argument. Therefore, FixT h = FixT g and in particular,
h fixes I.

Let’s prove that the global stabilizer Γl of a line l ⊂ T is abelian. Since Fix g = Fix g2

for all g ∈ Γ, Γl acts on l by translations. If the fixator Nl of l is trivial, then we are
done. Otherwise, Nl is a normal abelian subgroup of Γl, and let l̃ be its axis in T . Since
Γl normalizes Nl, Γl preserves l̃, so Γl acts freely by translations on l̃, so Γl is abelian.
Finally, any element normalizing Γl must preserve l, so Γl is maximal abelian.

Therefore, one can apply Sela’s theorem which claims that superstable actions on R-
trees are obtained by gluing equivariantly some simpler R-trees along points (see definition
4.4). In this statement a simplicial arc in T is an arc [a, b] which contains no branch point
of T except maybe at a or b.
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Theorem 5.2 (Structure theorem [Sel97],see also [Gui]). Let (T , Γ) be a minimal
action of a finitely generated group on an R-tree. Assume that Γ is freely indecompos-
able, that tripod fixators are trivial, and that the action is super-stable. Then T can be
decomposed into a graph of actions on R-trees along points, each vertex tree being either

1. a point;
2. a simplicial arc, which is fixed pointwise by its global stabilizer;
3. a line l together with an action Γl

©

l having dense orbits, such that the image of Γl

in Isom(l) is finitely generated;
4. or an action on an R-tree dual to an arational3 measured foliation on a 2-orbifold

(with boundary).

Remark. In [Gui], simplicial arcs are incorporated in the skeleton of the decomposition of
the action (as edges of positive length) and hence do not appear in the statement of the
theorem.

Since Γ is torsion-free, the orbifold groups occuring in the structure theorem are actu-
ally surface groups.

Agglutination of simplicial arcs We now make the decomposition given in the struc-
ture theorem nicer with respect to abelian groups. In particular, we want to gather
simplicial arcs having the same fixator into bigger vertex subtrees. This will imply that
the stabilizer of the new corresponding vertex trees are maximal abelian. The goal is to
reformulate the Structure Theorem as follows:

Theorem 5.3 (Reformulation of Structure Theorem). There is a Γ-invariant nice
covering of T by a family (Yu)u∈U of non-degenerate closed subtrees such that, denoting
by Γu be the global stabilizer of Yu, one of the following holds:

• abelian-type: Yu is an arc or a line, the image Γu of Γu in Isom(Yu) is finitely
generated, and Γu is maximal abelian in Γ; moreover for any two abelian-type subtrees
Yu 6= Yv, Γu and Γv don’t commute;

• surface-type: or the action Γu

©

Yu is dual to an arational measured foliation on a
surface with boundary.

Proof. Consider the nice covering of T by the non-degenerate vertex subtrees (Yu)u∈U of
the decomposition given by the structure theorem 5.2 (lemma 4.7). Consider the equiva-
lence relation on U generated by u ∼ u′ if Yu and Yu′ are simplicial arcs and the fixator
of Yu and Yu′ commute (note that the fixator of these arcs are non-trivial since Γ is freely
indecomposable). The commutation of the fixators implies that those fixators coincide
since commuting elliptic elements have the same set of fix points (fact 5.1).

For any equivalence class [u], let Z [u] =
⋃

u∈[u] Yu. We prove that (Z [u])u∈U/∼ is the

wanted nice covering. For u such that Yu is a simplicial arc, let N[u] be the common fixator

of the simplicial arcs Yu for u ∈ [u]. One has FixNu = Z [u]. As a matter of fact, Nu

cannot fix an arc in a surface type vertex tree since the fixator of an arc in a surface-type
vertex tree is trivial, and Nu cannot fix an arc in a line-type vertex tree because tripod
fixators are trivial. This implies that Z [u] is closed and connected, and is a linear subtree

3a measured foliation on a surface with boundary is arational if any non simply-connected leaf (or gener-
alized leaf) actually has a cyclic fundamental group and contains a boundary component of Σ. Equivalently,
F is arational if every simple closed curve having zero intersection with the measured foliation is boundary
parallel.
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of T since tripod fixators are trivial. Since the case of a semiline is easy to rule out, Z [u] is

either an arc of a line. In particular, the family of subtrees (Z [u])[u]∈U/∼ is a nice covering

of T .
The global stabilizer Γ[u] of Z [u] is maximal abelian in Γ: this was already noted in

the case where Z [u] is a line; if Z [u] is an arc, then Γ[u] coincides with its fixator Nu since
there can be no reflection (because Fix g = Fix g2) so in particular, Γ[u] is abelian. Now

any element g commuting with the elements of Nu must globally preserve Z [u], so g ∈ Γ[u].
Therefore, Γ[u] is maximal abelian. If u, v are such that Γ[u] and Γ[v] commute, then Nu

and Nv commute, so Nu = Nv and [u] = [v].

We now focus on the skeleton S of this nice covering, and we analyze the corresponding
splitting of Γ. We prove that this splitting satisfies the abelian dévissage. We give a simple
version before giving a more detailed statement.

Proposition 5.4 (Abelian dévissage, simple version). If a finitely generated freely
indecomposable group Γ acts freely on an Rn-tree (n ≥ 2), then Γ can be written as the
fundamental group of a finite graph of groups where

• each edge group is abelian; more precisely, an edge group is either cyclic or fixes an
arc in T ;

• each vertex group acts freely on an Rn−1-tree;

Proposition 5.5 (Abelian dévissage, detailed version). If a finitely generated freely
indecomposable group Γ acts freely on an Rn-tree, then Γ can be written as the fundamental
group of a finite graph of groups with 3 types of vertices named abelian, surface and
infinitesimal, and such that the following holds:

• each edge is incident to exactly one infinitesimal vertex;
• for each abelian vertex v, Γv is abelian maximal in Γ, Γv = Γv ⊕ Nv where Γv

is a finitely generated (maybe trivial) free abelian group, Nv is an arc fixator, and
the image in Γv of all incident edges coincide with the (maybe infinitely generated)
abelian group Nv; moreover, if v 6= v′ are distinct abelian vertices, then Γv does not
commute with any conjugate of Γv′;

• for each surface vertex v, Γv is the fundamental group of a surface Σ with boundary
holding an arational measured foliation; there is one edge for each boundary com-
ponent of Σ, and the image of its edge group in Γv is conjugate to the fundamental
group of the corresponding boundary component of Σ;

• for each infinitesimal vertex v, Γv acts freely on an Rn−1-tree; moreover, any element
g ∈ Γ\{1} commuting with an element of Γv\{1} either belongs to Γv, or is conjugate
into Γw where w is an abelian vertex neighbouring v.

Finally, G is 4-acylindrical and any non-cyclic abelian subgroup of Γ is conjugate into a
vertex group.

Remark. A surface with empty boundary could occur in this graph of groups, but in this
case, the graph of groups contains no edge, and Γ is a surface group.

Note that the edge and vertex groups could a priori be non-finitely generated in the
abelian dévissage. On the other hand, if one knew somehow4 that abelian subgroups

4Note that the claim of Remeslennikov that limit groups act freely on a Λ-tree with Λ finitely generated
would imply that abelian subgroup are finitely generated since they are isomorphic to subgroups of Λ since
an abelian subgroup of Γ acts freely by translation on its axis, and is thus isomorphic to a subgroup of Λ.
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of Γ were finitely generated, then the finite presentation of Γ would follow easily: finite
generation of edge groups would imply the finite generation of vertex groups (since Γ
is finitely generated), and thus vertex groups would be finitely presented by induction
hypothesis.

If one knows that arc fixators of T are cyclic, then it is immediate to deduce the con-
clusion of the cyclic dévissage theorem from the abelian dévissage theorem. The strategy
for the proof of the Cyclic Dévissage Theorem will thus consist in finding an Rn-tree T ′

such that arc fixators of T ′ are cyclic (see next section).

Proof of the simple version from the detailed version. The claim about edge groups fol-
lows from the fact that each edge is either incident on a surface vertex or on an abelian
vertex. The claim about vertex groups follows from the fact that countable torsion free
abelian groups and surface groups holding an arational measured foliation (which are free
groups in the case where the surface have non-empty boundary) have a free action on an
R-tree.

Proof of the detailed version. Let S be the skeleton of the nice covering given by the re-
formulation of the structure theorem (Th. 5.3). We prove that the graph of groups
decomposition Γ = π1(G) induced by the action of Γ on S satisfies the abelian dévissage
theorem.

Remember that S is bipartite, with V (S) = V0(S) t V1(S) where V1(S) is the set of
non-degenerate subtrees in the nice covering, and V0(S) is the set of points of T which
belong to at least two distinct subtrees of the nice covering. The set V0(S) will be the
set of our infinitesimal vertices. Since the stabilizer of such a vertex fixes a point in T ,
it acts freely on an Rn−1-tree. By the reformulation of the Structure Theorem, V1(S)
is a disjoint union of abelian-type and surface type vertices V1(S) = Vab t Vsurf , where
Vab is the set of vertices corresponding to abelian-type subtrees and Vsurf to surface-type
subtrees (excluding tori). The fact that S is bipartite means that each edge of G is incident
on exactly one infinitesimal vertex.

Let’s first consider an abelian vertex v, and let Nv be the fixator of the linear subtree
Yv, and Γv the image of Nv in Isom(Yv). The direct sum follows from the fact that Γv is
abelian and that Γv is a free abelian group. The only thing to check is that the image of
all edge groups incident on v coincide with Nv. This follows from the fact that an edge
e ∈ E(S) is a pair (x, Yv) where x ∈ Yv, so the fixator of e is the stabilizer of x in Γv,
which is Nv.

The acylindricity follows from the fact that if two edges (x, Yv) (x′, Yv′) have commut-
ing fixators Γe, Γe′ , then Γe and Γe′ have the same (non-empty) set of fix points in T which
is either a point, or an abelian subtree. In the first case, one has x = x′ so the two edges
have a common endpoint at an infinitesimal vertex. In the second case, the endpoints x
and x′ of the two edges are at distance at most 2 in S. The acylindricity implies that any
non-cyclic abelian group A is conjugate into a vertex group since otherwise, a non-trivial
subgroup of A would fix its axis in S, contradicting acylindricity.

Let’s turn to a surface vertex v. We know that its stabilizer Γv is the fundamental
group of a surface with boundary holding an arational measured foliation. Moreover,
since Γ is freely indecomposable, edge stabilizers are non-trivial. The stabilizer of an
edge e = (x, Yv) is non-trivial and fixes a point in Yv. Since Yv is dual to an arational
measured foliation on a surface Σ, the elliptic elements of Γv are exactly those which can
be conjugate into the fundamental group of a boundary component of Σ, and an elliptic
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element fixes exactly one point. Thus, Γe is conjugate to a boundary component be of
Σ (and not to a proper subgroup since Γe is the whole stabilizer of x in Γv). Moreover,
if two edges e = (x, Yv), e

′ = (x′, Yv) of S correspond to the same boundary component
be = Be′ of Σ, then Γe and gΓe′g

−1 for some g ∈ Γv, which implies that x′ = g.x since Γe

fixes exactly one point in Yv, so e′ = g.e. This proves that two distinct edges of G incident
on a surface vertex of G correspond to distinct boundary components of the surface. If a
boundary component of Σ does not correspond to any incident edge, it is easy to check
that Γ has a nontrivial free splitting, contradicting the hypothesis.

There remains to check the last affirmation about elements commuting with an element
stabilizing an infinitesimal vertex. So let v ∈ V0(S), g ∈ Γv \ {1} and h ∈ Γ commuting
with g. If h is elliptic, then h ∈ Γv since two commuting elliptic elements have the same
fixed points. If h is hyperbolic, then g must fix pointwise its axis Ah. Since surface-type
subtrees have trivial arc fixators, Ah cannot meet any surface-type subtree in more than
a point. So Ah is contained in a union of abelian subtrees. But since g fixes Ah, Ah is a
single abelian subtree. Now x ∈ Ah since g fixes no tripod and the last claim follows.

6 Obtaining cyclic arc stabilizers

To prove the cyclic dévissage theorem, we will find an Rn-tree T ′ such that arc fixators of
the R-tree T ′ are cyclic. The cyclic dévissage theorem will then follow from the abelian
dévissage theorem.

Theorem 6.1. Assume that a freely indecomposable finitely generated group Γ acts freely
on an Rn-tree T . Then Γ has a free action on an Rn-tree T ′ such that the action on the
R-tree T ′ obtained by killing infinitesimals has cyclic arc fixators.

This is why we define flawless actions on Rn-trees as follows:

Definition 6.2 (Flawless and defective Rn-trees). Let T be a Rn-tree endowed with
an action of Γ, and let T be the R-tree obtained by killing infinitesimals. One says that T
is flawless if T has cyclic arc fixators. Otherwise, one says that T is defective.

By extension, we will also say that the R-tree T is flawless or defective accordingly.
We will construct the flawless Rn-tree T ′ as follows: the Structure Theorem for super-

stable actions on R-trees gives a decomposition of T into a graph of actions on R-trees
along points. The preimage Yv in T of any vertex tree Yv ⊂ T is an Rn-tree with a free
action of Γv. The only defective vertex trees Yv are abelian subtrees (which are lines or
arcs). We are going to change the preimage of those defective trees into (flawless) infinites-
imal lines, and then, we will glue equivariantly the new Rn-trees along some infinitesimal
lines to get a flawless action on an Rn-tree.

6.1 Gluing flawless trees along infinitesimals is flawless

Lemma 6.3 (Gluing flawless trees is flawless). Consider a graph of flawless actions
on Rn-trees above infinitesimal subtrees.

Then the Rn-tree dual to this graph of actions is flawless.

Proof. Let S be the skeleton of the graph of actions, and denote by Yv the vertex Rn-trees
and by ϕe : λe → λe the gluing isometries between infinitesimal closed subtrees of the
corresponding vertex trees. Let T be the Rn tree dual to this graph of actions, and let T
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be the R-tree obtained by killing infinitesimals. The image Yv of the vertex trees in T gives
a nice covering of T because the gluing occurs along infinitesimal trees. Now consider an
arc I ⊂ T . Using the finiteness condition of the nice covering, up to making I smaller, one
can assume that I is contained in a non-degenerate subtree Yv of the nice covering. Any
element fixing I must preserve Yv by the nice intersection property. Since Yv is flawless,
this implies that the fixator of I is cyclic, which means that T is flawless.

6.2 Definition of the graph of actions

The goal of this section is to define a graph of action G = (S′, T ′
v, ϕe) on Rn-trees whose

dual tree T ′ will be the desired flawless Rn-tree in Theorem 6.1. The idea is to replace
defective trees by copies of Rn−1, with a suitable action of the vertex group.

We start with the nice covering (Yu)u∈U of T given by the reformulation of the Structure
Theorem (Th. 5.3). Remember that either Yu is dual to an arational measured foliation
on a surface, or Yu is a line or a segment. In particular, Yu is defective if and only if
Yu is an arc or a line whose fixator Nu is non-cyclic (actions dual to arational measured
foliations on surfaces have trivial arc fixators).

We first simplify our nice covering by agglutinating flawless vertex trees so that flawless
subtrees have empty intersection.

Lemma 6.4 (Agglutination of flawless subtrees). There is a nice covering of the R-
tree T by closed subtrees (Ỹv)v∈V such that

• flawless trees: if Ỹu and Ỹv are distinct flawless trees, then Ỹu ∩ Ỹv = ∅.
• defective subtrees: if Ỹu 6= Ỹv are two defective subtrees, then their fixators Nu, Nv

don’t commute. In particular, Nu ∩ Nv = {1}.

Proof. Start with the nice covering of T by the family of non-degenerate subtrees (Yu)u∈U

given by the reformulation of the structure Theorem above. The second point holds in
our original nice covering, and won’t be affected by the agglutination of flawless subtrees.

Partition U into flawless and defective indices U = UF t UD: UF consists of indices u
such that Yu has cyclic arc fixators, and UD = U \ UF .

Consider the equivalence relation ∼ on UF generated by u ∼ u′ if Yu ∩ Yu′ 6= ∅, and
denote by [u] the class of U in UF / ∼. Take

Ỹ[u] =
⋃

u′∈[u]

Yu.

Clearly, if [u] 6= [u′], Ỹ[u] ∩ Ỹ[u′] = ∅.

Because of the finiteness property of the nice covering (Yu), Ỹu is closed in T and is
flawless. Finally, the family (Ỹ[u])u∈U/∼ is a nice covering since the finiteness condition is

a consequence of the finiteness condition for (Yu)u∈U .

We are going to define the skeleton S′ of the desired graph of actions by a slight
modification of the skeleton S of the nice covering (Ỹu)u∈U given by the agglutination
lemma above. Remember that S is a bipartite tree for the following partition of V (S) (see
section 4.5): V1(S) is the set of non-degenerate subtrees {Ỹu | u ∈ U}, and V0(S) is the
set of points of T contained in at least two distinct subtrees Ỹu 6= Ỹv. Then, V1(S) is itself
partitioned into flawless and defective vertices. The edges of S are the pairs (x, Ỹu) where
x ∈ V0(S), Ỹu ∈ V1(S), and x ∈ Ỹu.
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We define S′ as the simplicial tree obtained from S by collapsing each edge incident
on some flawless vertex. Since flawless vertex subtrees don’t intersect, one gets V (S′) =
VF (S′) t VD(S′) t V0(S

′) where VF (S′) correspond to flawless subtrees Ỹv (v ∈ V1(S)),
VD(S′) correspond to defective subtrees Ỹv (v ∈ V1(S)), and V0(S

′) correspond to vertices
v ∈ V0(S) whose neighbours are all defective; in other words, V0(S

′) correspond to points
of T lying in no flawless subtree but in several defective subtrees.

We gather some simple properties about S′:

Lemma 6.5. 1. V (S′) = V0(S
′) t VF (S′) t VD(S′) and this partition is equivariant;

2. any edge e of S′ is incident on exactly one defective vertex in VD(S), and its other
endpoint lies in VF (S′) ∪ V0(S

′);
3. edge fixators are abelian and non-cyclic; and if two edge fixators commute, then those

two edges are incident on a common defective vertex.
4. Let v ∈ VD(S′). Then Γv = Γv ⊕ Nv where Nv coincides with the fixator of all

incident edges.

Proof. The first statement is clear and statement 2 follows from the fact that S was
bipartite. For statement 3, consider an edge e, and let v ∈ VD(S′) be its defective endpoint.
Then its fixator Γe is abelian and non-cyclic since it coincides with the stabilizer Nv of a
point in Ỹv. If the fixators of two edges e and e′ commute, then Γv commutes with Γv′

which implies v = v′. Statement 4 follows from the abelian dévissage Theorem.

6.2.1 The vertex Rn-trees

We are now going to define the vertex Rn-trees (T ′
v)v∈V (S′) of our graph of actions. We

would like to take as vertex trees the preimages in T of Ỹv, except when this preimage is
defective in which case we want to replace it by a copy of Rn−1. For each edge e ∈ E(S′),
denote by le the axis of Γe in Ỹo(e) (resp. le = Rn−1 if t(e) is defective). We would next
like to glue le on le for each edge e. Unfortunately, this might not be possible as it might
happen that le is not isometric to le.

However, for every vertex v ∈ V0(S
′)∪VF (S′) (i. e. for v non defective), and any edge e

incident on v, le has magnitude at most n−1 (i. e. any two points in le are at infinitesimal
distance). Indeed, the non-cyclic group Γe is elliptic in T , but since Ỹv is not defective,
Γe fixes only one point in Ỹv, which means that le has magnitude at most n − 1. As
a remedy, we are first are going enlarge the vertex trees so that all axes of edge groups
become isometric to Rn−1.

In what follows, we call line in an Rn-tree T a maximal linear subtree of T .

Fact 6.6 (End completion, [Bas91, Appendix E].). If (Z,Γ) is an action on Rn-
tree, and (le) is an invariant family of lines in Z with magnitude at most n − 1, then
there is a natural enlargement Ẑ of Z (endowed with an action of Γ) such that each le is
contained in a unique maximal line l̂e of Ẑ, and l̂e is isometric to Rn−1.

Proof. This fact follows for instance from [Bas91, Appendix E]: take Ẑ to be the Rn−1-
neighbourhood of Z in the Rn-fulfillment of Z. We give an alternative simple sketch of
proof for completeness, under the assumption that any two distinct lines of the family
intersect in a segment (and not a semi-line for example). This assumption is satisfied in
our setting.

Fix a line le, choose an embedding je of le into Rn−1, and glue Z to Rn−1 along
the maximal line le using je. There is actually no choice for doing this since any two
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embeddings of le into Rn−1 differ by an isometry of Rn−1. It is easily seen that the glued
tree Z ∪je

Rn−1 is an Rn-tree (although je(le) is generally not closed in Rn−1 in the sense
of Λ-trees). The additional assumption we made says that any other line le′ is a maximal
linear subtree in the extended tree. Therefore, we can iterate this construction, and the
obtained tree does not depend on the order chosen to extend the lines. Since an increasing
union of Rn-trees is an Rn-tree, the fact is proven.

Definition. For v defective in V (S′), we take our vertex tree T ′
v to be a copy of Rn−1.

For v ∈ V (S′) which is not defective, we take T ′
v = Ẑv to be the end completion of Zv

given by the fact above, where Zv is the preimage of Ỹv in T , and (le) is the family of axes
in Zv of the groups Γe for e ranging in the set of edges incident on v.

We denote by λe the axis of Γe in T ′
v.

Note that λe is the unique maximal linear subtree containing le in T ′
v. The end comple-

tion being canonical, the group Γ acts naturally on the disjoint union tv∈V0(S′)∪VF (S′)T
′
v,

but we still have to define an action on tv∈VD(S)T
′
v (the set of copies of Rn−1). To

achieve this, we just need to define an action of Γv on T ′
v for one vertex v of each orbit in

VD(S′)/Γ, and then extend this action equivariantly. Now remember that for v ∈ VD(S′),
Γv = Nv ⊕ Γv, and Nv comes with a natural action on its axis in T (and this action is
infinitesimal), so we take an action of Nv on T ′

v having the same translation length as in
T . The action of Γv on T ′

v will be chosen in a generic set, which will be made explicit in
section 6.2.3 using the branching locus of axes.

6.2.2 Branching locus of axes

To be able to keep some control over the freeness of the action dual to our graph of action,
we will need to take care of how axes are glued together.

Definition 6.7 (Branching locus of axes.). Let v ∈ V0(S
′) ∪ VF (S′). For each edge e

incident on v, let λe be the axis of Γe in T ′
v. The branching locus of axes in T ′

v is the set

Bv =
⋃

e, e′ ∈ E(S′) incident on v

[

λe ∩ λe′
]

.

We are now going to prove that the branching locus is small in the following sense: the
branching locus of axes is a countable union of sets of magnitude at most n− 2. This is a
consequence of the following fact with p = n − 1. This is where the use of non-cyclicness
of arc fixators shows up.

Fact 6.8 (Infinitesimal intersection of axes of non-cyclic groups). Let Γ

©

Y be a
free action of a group on an Rn-tree. Let H, H ′ be two non-commuting abelian subgroups
of Γ. Assume that for some p ≤ n, the subgroups of H and H ′ consisting of elements
whose translation length is of magnitude at most p are both non-cyclic.

Then the intersection of the axes of H and H ′ has magnitude at most p − 1.

Remark. If the subgroups of H and H ′ are only supposed to be nontrivial (maybe cyclic),
then one can get that the magnitude of the intersection of the axes is at most p.

Proof of the fact. This is just a consequence of the fact that if the axes of two hyperbolic
elements g, h intersect in a segment whose diameter is larger than the sum of the translation
lengths of g and h, then the commutator [g, h] fixes a point, so that g and h commute.
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Up to taking subgroups, one can assume that every element of H and H ′ have trans-
lation length of magnitude at most p. We just need to prove that for any positive
ε ∈ Rp \ Rp−1, H (resp. H ′) contain non-trivial elements of translation length at most
ε. This clearly holds if some element of H \ {1} has a translation length of magnitude
at most p − 1. Otherwise, consider a morphism ρ : H → Rp having the same translation
length function. Composing ρ by the collapse of infinitesimals in Rp, we get an embedding
of H as a subgroup of R. This subgroup has to be dense since H is not cyclic.

6.2.3 Action on former defective trees and gluing maps

Now consider a defective vertex v ∈ VD(S′). We are now going to define the action of Γv

on T ′
v ' Rn−1. For all w ∈ V0(S

′) ∪ VF (S′), let Dw = {d(x, x′) | (x, y) ∈ Bw} ⊂ Rn be the
set of mutual distances between points in the branching locus, and let D =

⋃

{Dw|w ∈
V0(S

′) ∪ VF (S′)}. The previous section shows that D is a countable union of sets of
magnitude at most n − 2 in Rn. We choose the action of Γv on T ′

v ' Rn−1 so that the
translation length of any non-trivial element of Γv lies in Rn−1 \ D.

We define ϕe inductively in a generic set as follows. First, up to changing e to e, we can
assume that t(e) ∈ VD(S′) while o(e) ∈ V0(S

′) t VF (S′) (Lemma 6.5). For the first orbit
of edges, we choose any Γe-equivariant gluing isometry ϕe : λe → λe, and we extend this
choice equivariantly (remember that λe and λe are the axes of Γe in T ′

t(e) and T ′
o(e)). Then,

if some choices of gluing maps are already made for some other edges incident on v, we
choose ϕe so that ϕe(Bo(e)) does not meet ϕe′(Bo(e′)) for any edge e′ such that t(e′) = t(e)
and on which ϕe′ was already defined. This is possible since one can compose ϕe by any
translation in Rn−1, and there are only countably many classes of translations mod Rn−2

which are prohibited. Then, we extend this choice equivariantly on the orbit of e.
To sum up, our generic choices with respect to the branching locus of axes ensure that

the following holds:

Lemma 6.9. • For any defective vertex v ∈ VD(S′), the translation length of any
element of Γv \ Nv in T ′

v does not lie in D.

• given two edges e, e′ incident on a common defective vertex v ∈ VD(S′) such that
ϕ−1

e Bo(e) ∩ ϕ−1
e′ Bo(e′) 6= ∅; then e and e′ are in the same orbit.

6.3 The dual action is free

In last section, we have completed the definition of our graph of actions on Rn-trees
G = (S′, (T ′

v), (ϕe)). Let T ′ be the Rn-tree dual to G. Since this is a graph of flawless
actions over infinitesimal lines, T ′ is flawless (Lemma 6.3). Thus, Theorem 6.1 will be
proved as soon as we prove that the action of Γ on T ′ is free.

Lemma 6.10. Consider T ′ the Rn-tree dual to the graph of actions (S′, (T ′
v), (ϕe)) defined

above. Then the action of Γ on T ′ is free.

Proof. Remember that the glued Rn-tree is obtained by quotienting X = tv∈V (S)T
′
v by the

equivalence relation ∼ generated by x ∼ ϕe(x), and that each equivalence class inherits
a structure of a simplicial tree by putting an edge between x and ϕe(x). In view of our
criterion to get a free action after gluing, we have to prove that the diameter of any
equivalence class is finite (lemma 4.5).
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Let’s first consider a point x ∈ T ′
v where v is not a defective vertex. We note that if x

is not a terminal vertex in its equivalence class, then there are two edges e 6= e′ incident
on v such that x ∈ λe ∩ λe′ . So x lies in the branching locus of axes Bv.

Assume that the diameter of some equivalence class is at least 6 and argue towards a
contradiction. Consider a path p of length 6 in an equivalence class. Since every edge of
S′ joins a defective vertex to a vertex in V0(S

′) t VF (S′), there is a sub-path (x1, y, x2) of
p such that x1 ∈ T ′

v1
, y ∈ T ′

w, x2 ∈ T ′
v2

with v1, v2 ∈ V0 t VF (S′), w ∈ VD(S), and where
x1 and x2 are not terminal in the equivalence class. Thus for both i = 1, 2, xi ∈ Bvi

.
By the second item of lemma 6.9, the edges e1 = [v1, w] and e2 = [v2, w] are in the same
orbit. So let g ∈ Γ sending e1 on e2. Note that g ∈ Γw since w and vi are not in the
same orbit. Since Nw fixes all the edges incident on w (Lemma 6.5), g ∈ Γw \ Nw. Now,
since x1 ∈ Bv1

, g.x1 ∈ Bv2
, and d(g.x1, x2) ∈ Dv2

. Let y = ϕe1
(x1), so g.y = ϕe2

(g.x1) so
d(y, g.y) = d(x2, g.x1) ∈ D, a contradiction with the first item of lemma 6.9.

7 Dévissage theorem and corollaries

Theorem 7.1 (Dévissage theorem, simple version). Consider a finitely generated,
freely indecomposable group Γ having a free action on an Rn-tree. Then Γ can be written
as the fundamental group of a finite graph of groups with cyclic edge groups and where
each vertex group is finitely generated and has a free action on an Rn−1-tree.

This is a consequence of the following detailed version.

Theorem 7.2 (Dévissage theorem, detailed version). If a finitely generated freely
indecomposable group Γ acts freely on an Rn-tree, then Γ can be written as the fundamen-
tal group of a finite graph of groups G with cyclic edge groups, finitely generated vertex
groups, with 3 types of vertices named abelian, surface and infinitesimal, and such that
the following holds:

• each edge is incident to exactly one infinitesimal vertex;
• for each abelian vertex v, Γv is abelian maximal in Γ, Γv = Γv ⊕ Nv where Γv is

a finitely generated (maybe trivial) free abelian group, Nv is maximal cyclic in G,
and the image in Γv of all incident edges coincide with Nv; moreover, if v 6= v′ are
distinct abelian vertices, then Γv does not commute with any conjugate of Γv′;

• for each surface vertex v, Γv is the fundamental group of a surface Σ with boundary
holding an arational measured foliation; there is one edge for each boundary com-
ponent of Σ, and the image of its edge group in Γv is conjugate to the fundamental
group of the corresponding boundary component of Σ;

• for each infinitesimal vertex v, Γv acts freely on an Rn−1-tree; moreover, any element
g ∈ Γ\{1} commuting with an element of Γv\{1} either belongs to Γv, or is conjugate
into Γw where w is an abelian vertex neighbouring v.

Finally, G is 4-acylindrical and any non-cyclic abelian subgroup of Γ is conjugate into a
vertex group.

Proof. Using Theorem 6.1, consider a free action Γ

©

T ′ such that the action on the R-
tree T ′ obtained by killing infinitesimals has cyclic arc fixators. The Theorem is then a
direct consequence of the abelian dévissage (Proposition 5.5): the fact that Γ and the edge
groups of G are finitely generated implies that vertex groups are finitely generated.
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Remark. The dévissage theorem does not claim that the splitting is non-trivial. This
occurs if Γ is abelian, if Γ is the fundamental group of a surface with empty boundary, or
if Γ acts freely on some Rn−1-tree.

It follows from the commutative transitivity of Γ that any non-cyclic maximal abelian
subgroup of an infinitesimal vertex group is maximal abelian in Γ. However, some edge
groups may fail to be maximal cyclic in Γ for some edges incident on surface vertices.

The following corollary is due to Sela and Kharlampovich-Myasnikov for limit groups
([Sel01, KM98a]).

Corollary 7.3. Let Γ be a finitely generated group having a free action on an Rn-tree.
Then

• Γ is finitely presented;
• if Γ is not cyclic, then its first Betti number is at least 2;
• there are finitely many conjugacy classes of non-cyclic maximal abelian subgroups

in Γ, and abelian subgroups of Γ are finitely generated. More precisely, one has the
following bound on the ranks of maximal abelian subgroups:

∑

A

(Rk A − 1) ≤ b1(Γ) − 1

where the sum is taken over the set of conjugacy classes of non-cyclic maximal abelian
subgroups of Γ, and where b1(Γ) denotes the first Betti number of Γ;

• Γ has a finite classifying space, and the cohomological dimension of Γ is at most
max(2, r) where r is the maximal rank of an abelian subgroup of Γ.

Proof. For n = 1, all the statements of the corollary follow from Rips theorem which claims
that Γ is a free product of finitely generated abelian groups and fundamental groups of
closed surfaces (see [GLP94, BF95]).

For n > 1, we argue by induction and assume that the corollary holds for smaller
values of n. The conclusion of the corollary is stable under free product since any non-
cyclic abelian subgroup of a free product is conjugate into a vertex group. Thus one can
assume that Γ is freely indecomposable. Then the dévissage theorem says that Γ is the
fundamental group of a finite graph of groups G with cyclic edge groups, and vertex groups
satisfy the corollary by induction hypothesis. If this splitting of Γ is trivial, then Γ is a
vertex group and we are done.

The finite presentation of vertex groups implies that Γ is finitely presented. Moreover,
induction hypothesis shows that Γ has a finite classifying space, and the cohomological
dimension of X is clearly at most max(2, r) (see for instance [Bro82, prop.VIII.2.4 and ex
8b in VIII.6]).

We have the following bound about Betti numbers:

b1(Γ) ≥
∑

v∈V (G)

b1(Γv) + b1(G) − #E(G)

where b1(G) denotes the first Betti number of the graph underlying G. Indeed, consider
the graph of groups G0 obtained from G by replacing edge group by a trivial group so
that π1G0 is a free product of the vertex groups and of a free group of rank b1(G). Since
edge groups of G are cyclic, one obtains Γ from π1G0 by adding one relation for each edge
of G, and the inequality follows. Now since b1(G) − 1 = #E(G) − #V (G), one gets that
b1(Γ) − 1 ≥

∑

v∈V (G)(b1(Γv) − 1).
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By induction hypothesis, each term in the sum is non-negative. In particular, b1(Γ) ≥
b1(Γv) for all v ∈ V (G). Thus if some vertex group is non-cyclic then b1(Γ) ≥ 2; but all
vertex groups cannot be cyclic because of acylindricity.

The dévissage theorem claims that a non-cyclic abelian subgroup A fixes a vertex v in
the Bass-Serre tree S of G. Let’s prove that there are finitely many conjugacy classes of
non-cyclic maximal abelian subgroups. Since edge stabilizers are cyclic, such a subgroup A
fixes exactly one point in S. Since there are only finitely many orbits of vertices in S, there
remains to prove that for any vertex v ∈ V (S), there are only finitely many Γ-conjugacy
classes of abelian subgroups A which fix v. The induction hypothesis says that there are
at most finitely many such subgroups up to conjugacy in Γv, and therefore in Γ.

Denote by Ab(Γ) the set of conjugacy classes of abelian subgroups of Γ. The argument
above shows that the natural map tv∈V (G)Ab(Γv) → Ab(Γ) is onto. Therefore,

∑

A∈Ab(Γ)

(Rk A − 1) ≤
∑

v∈V (G)

∑

A∈Ab(Γv)

(Rk A − 1)

≤
∑

v∈V (G)

(b1(Γv) − 1)

≤ b1(Γ) − 1.

This terminates the proof of the corollary.

Corollary 7.4. Consider a freely indecomposable, non-abelian, finitely generated group
having a free action on an Rn-tree. Then Γ has a non-trivial splitting which is principal
in the following sense: either Γ = A ∗C B or Γ = A∗C where C is maximal abelian in Γ,
or Γ = A ∗C (C ⊕ Zk).

Proof. We argue by induction on n. The statement is clear for n = 1. Otherwise, consider
the graph of groups given by the dévissage theorem. If G contains a surface-type vertex,
then cutting along an essential curve provides a splitting over a cyclic subgroup which is
maximal abelian. If G contains an abelian-type vertex v, write Gv = Nv ⊕ Γv. If Γv is
trivial, then Nv = Gv is maximal abelian, so each of the edges of G incident on v provides
a principal splitting of Γ. If Γv is non-trivial, then Γ = A ∗Nv

(Nv ⊕ Γv) where A is the
fundamental group of the graph of groups G′ obtained from G by replacing the vertex
group Γv = Nv ⊕Γv by the cyclic group Nv. If G has no abelian-type and no surface-type
vertex, then G consists in a single infinitesimal vertex. This means that Γ acts freely on
an Rn−1-tree.
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