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Abstract. The cloud of cold atoms obtained from a magneto-optical trap is known to exhibit two types of
instabilities in the regime of high atomic densities: stochastic instabilities and deterministic instabilities.
In the present paper, the experimentally observed deterministic dynamics is described extensively. Three
different behaviors are distinguished. All are cyclic, but not necessarily periodic. Indeed, some instabilities
exhibit a cyclic behavior with an erratic return time. A one-dimensional stochastic model taking into ac-
count the shadow effect is shown to be able to reproduce the experimental behavior, linking the instabilities
to a several bifurcations. Erraticity of some of the regimes is shown to be induced by noise.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 05.45.-a Nonlinear dynamics and nonlinear dynam-
ical systems – 05.40.Ca Noise

1 Introduction

Experimental quantum physics knows since several years
spectacular results, thanks to a simplification to produce
quantum objects with long coherence times or macroscopic
dimensions. Let us cite the achievement of the Bose-Einstein
condensates[1], the characterization of quantum chaos [2],
the improvement of atomic clocks[3], the designs of quan-
tum computers and quantum communication systems[4],
or also the accurate understanding of quantum decoherence[5].
One of the basic tools used to obtain most of these re-
sults is the Magneto-Optical Trap (MOT), which performs
the cooling of atoms at temperatures of the order of the
µK: this is the first step before reaching lower tempera-
tures where the quantum properties of atoms dominate.
Although it is a key device in the new atomic physics,
the basic mechanisms determining the properties of the
cloud of cold atoms in a MOT have been poorly studied,
and the collective dynamics of these still “classical” atoms
have been almost ignored, even though the existence of
instabilities in the MOT is known since the first realiza-
tions. On the contrary, some simple empirical rules are
used to avoid these inconveniences. Nevertheless, an accu-
rate knowledge of the individual and collective behaviors
of the cold atoms in the cloud could help in understanding
the limitations of the process, and above all, to enhance
it through the control of the dynamics, as it was done in
many other systems, in physics and other fields of science.

However, a necessary preamble to such applications is
the identification of the nature of the dynamics observed
in MOTs. Indeed, complex behaviors may be subdivided

in two groups: stochastic and deterministic behaviors. For
the former, the dynamics originate in noise, i.e. in dynam-
ical components, usually with a large number of degrees
of freedom, considered as external to the system. This is
usually experimental technical noise, and requires to add
in the model a random component. Such a complex dy-
namics is meaningless from the physical point of view,
because it cannot give any new informations about the
MOT mechanisms. On the contrary, deterministic dynam-
ics are intrinsic to the system, and do not require to add
anything to the model: periodic instabilities can appear
with two degrees of freedom, while chaos needs at least
three degrees of freedom. This last case opens many per-
spectives: for example, it is possible to reach new working
points by the methods of control of chaos, or to measure
parameters which are usually inaccessible[6].

Recent studies have shown that the collective behav-
ior of the atomic cloud produced by a MOT exhibit both
stochastic instabilities[7,9] and deterministic instabilities[8].
The former has been extensively described in [9]. A model
demonstrates that the different stochastic behaviors ob-
served in the experiments are well explained if the absorp-
tion of light by the atoms is taken into account, through
the so-called shadow effect [12]. It is also shown that these
stochastic instabilities are not “instabilities” in the usual
meaning, as they result from an amplification of noise,
due, from a dynamical point of view, to the folded struc-
ture of the stationary solutions. The same model was also
predicting, for slighly different values of the parameters,
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deterministic instabilities which, in turn, has been ob-
served experimentally[8].

In the present paper, we report an extensive study of
these deterministic instabilities. We detail and complete
the experimental results given in [8], and analyze accu-
rately the mechanisms leading to the different determinis-
tic regimes through the model introduced in [8]. We show
in particular that the model is able to reproduce each
type of dynamics, and predicts deterministic chaos. We
show also the main role that noise is still playing in the
dynamics.

The paper is organized as follows. After this introduc-
tion, section 2 describes briefly the experimental setup,
and section 3 gives a detailed analysis of the experimental
observations. Section 4 is devoted to a short description
of the model, already detailed in [9]. In section 5, the sta-
tionary solutions of the model are discussed, and in section
6, the deterministic dynamical behavior predicted by the
model is described, and compared with the experiment
results. Finally, in section 7, the effect of noise on the dy-
namics is studied.

2 Experimental set-up

The experimental set-up has already been described in
detail elsewhere[9], and thus the description here is sim-
plified. The Cesium-atom MOT is in the usual σ+ − σ−

configuration, with three arms of two counter-propagating
beams obtained from the same laser diode. The waist
wT of the trap beams may be varied from typically 3 to
10 mm. We use a configuration where counter-propagating
beams result from the reflection of the three forward beams.
This simplifies the detection of the dynamics, as compared
to a six independent beams configuration. Indeed, because
of the shadow effect, a center-of-mass motion is generated.
However, as the nonlinearities involved in both cases are
the same, we expect that the dynamics will be fundamen-
tally of the same nature in the two configurations.

The dynamics of the atomic cloud consists in a defor-
mation of the spatial atomic distribution, leading to fluc-
tuations of the shape of the cloud, as illustrated in Fig.
1. Therefore, the relevant dynamical variables allowing us
to describe instabilities, could be the shape of the cloud
(i.e. for example the local velocities and atomic densities
in the cloud). This type of description corresponds to a
high dimensional model, associated with partial differen-
tial equations. Here, for the sake of simplicity, we choose
to limit our description to the center of mass (CM) lo-
cation r, and the total number of atoms n in the atomic
cloud. This allows us to model the system with ordinary
differential equations, and reduces the dimension to seven,
and even three in a 1D model. As it is shown in the fol-
lowing, the use of this description appears to be sufficient
to understand the main mechanisms of the instabilities.

A 4-quadrant photodiode (4QP) is used to detect the
fluorescence of the cloud. The differential signal of the 4QP
allows us to measure the motion of the CM through one of
its component r, while the total signal gives us the number
n of atoms inside the cloud. A second 4QP, perpendicular

Fig. 1. Sequence of snapshots showing the time evolution
of the unstable atomic cloud. Snapshots are presented in the
chronological order, each one being separated by 40 ms. This
sequence corresponds to the fast stage of a CP cycle (see sec-
tion 3).

to the first one, prevents the measure from line-of-sight ef-
fects due to the optical thickness of the cloud. We checked
that whatever the type of dynamical behavior, the signal
recorded by both 4QP have the same properties and are
qualitatively identical.

Parameters acting on the dynamics have been exten-
sively discussed in [9]. The detuning ∆0 of the MOT, the
magnetic field gradient G, the MOT beam intensity I1

and the repumper laser intensity Irep may be considered
as control parameters, because they can be easily changed
in the experiment. On the contrary, the alignment of the
MOT beams, the vapor pressure in the cell and the MOT
beam waist, which also play a crucial role in the dynamics,
cannot be considered as control parameters, either because
they cannot be changed easily, or because they cannot
be measured with accuracy. Therefore, these parameters
have not been varied in the experiments. The parameter
ranges explored in the present experiment are summarized
in Tab. 1.

Table 1. Range of the parameters used in the present exper-
iment. G is the magnetic field gradient, I+ is the intensity of
the forward beam and δ is the detuning. Is is the saturation
intensity ( Is = 1.1 mW) and Γ is the natural width of the tran-
sition. The last column indicates the default parameter values
used to obtain the results reported in the present paper.

range default set

G G ≤ 14 Gcm−1 14 Gcm−1

I+ = I/Is 4 ≤ I+ ≤ 20 10
∆ = δ/Γ ∆ ≤ −0.5 -

3 Experimental results

In [9], it has been shown that the atomic cloud exhibits two
types of instabilities, depending on the parameters of the
MOT, in particular the trap laser beam intensity I1. When
I1 is small, typically less than 10IS (IS = 1.1 mW/cm2 is
the saturation intensity), instabilities are essentially stochas-
tic. Depending on the other parameters, as the detuning,
several types of stochastic instabilities occur. In the SL

behavior, instabilities are characterized by a unique slow
time scale, and no component larger than 2 Hz appears
neither in the motion of the trap, nor in its population.
On the contrary, in the SH behavior, a second time scale,
at higher frequency (typically from 20 to 100 Hz) appear
in the trap motion, but not in the population[9].
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When I1 is increased, S instabilities are progressively
replaced by C instabilities (C stands for cyclic). These in-
stabilities have already been described in [8] for a given set
of parameters. In the following, we extend this description
for the whole range of parameters where such instabilities
appear. We also discuss in more details than in [9], the
connections between S and C instabilities, in particular
through their respective domain of appearance.

All C behaviors that we observed in the experiments
have in common to have a large amplitude, and to be
cyclic, i.e. their trajectory in the phase space follows a
close cycle. In the time domain, the signal exhibits the
same pattern, which is repeated indefinitely. However, the
cadence of the signal is not necessarily periodic, but can
be erratic. Thus different types of C instabilities may be
distinguished, and we arbitrarily classified them into three
groups, that we call CP , C1 and CS instabilities.

Among all types of instabilities observed in the MOT,
CP instabilities are the most typical deterministic behav-
ior (Fig. 2). Indeed, they are characterized by periodic
oscillations, with a frequency of the order of 1 Hz and a
large motion amplitude of the order of 100 µm to 1 mm,
while the population variations are typically 10 %. The
main feature of the cycle is its asymmetry, which can be
described by the succession of two stages with different
durations. During the long stage, r and n behave in the
same way, increasing slowly on a significant amplitude,
which represents about 30% of the full r amplitude, and
100% of the full n amplitude. During the short stage, r
and n change rapidly: n decreases to come back to the
initial value of the long stage, while r makes a fast oscilla-
tion, with an amplitude much larger than during the long
stage. This means that the two stages are not only dif-
ferent by their duration, but also by the dynamical time
scales, much faster during the short stage. In fact, the
characteristic time of the dynamics during the short stage
is more than one order of magnitude smaller than that in
the long stage.

C1 instabilities, illustrated in Fig. 3, corresponds to a
motion of the cloud very similar to that of CP instabili-
ties. Indeed, r exhibits the same behavior along the same
type of cycle, covered with two different time scales sep-
arated by one order of magnitude. The main difference
comes from the erraticity of the motion, which is no more
periodic: indeed, although the basic pattern of the mo-
tion remains the same cycle, the duration of each cycle
fluctuates. From the dynamical point of view, it is con-
venient use the return time between two cycles, which, in
chaotic dynamics, is known to be a relevant variable of
the system[10]. The r return time is constant in periodic
motions (CP instabilities), while it is fluctuating in C1

instabilities. The n return time is also varying in C1 in-
stabilities, but other differences as compared to CP regime
appear. In particular, the ratio between the fast and slow
stages of the dynamics fluctuates, so that for some peri-
ods, the two stages occur with a comparable time scale.
In short, C1 instabilities appears as CP instabilities, in
which noisy fluctuations appear, essentially on the return
time.
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Fig. 2. Experimental record of the time evolution of the cloud
when CP instabilities occur. In (a), CM motion r; in (b) pop-
ulation n. ∆0 = −1.40, I1 = 10 and Irep = 1.2 mW/cm2.
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Fig. 3. Experimental record of the time evolution of the cloud
when C1 instabilities occur. In (a), CM motion r; in (b) pop-
ulation n. ∆0 = −0.85, I1 = 10 and Irep = 1.2 mW/cm2.
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With CS instabilities (Fig. 4), any periodicity has dis-
appeared from the behavior of both r and n. Not only the
return time is fluctuating, but also the amplitude of the
cycles changes with time. In fact, speaking of cyclic behav-
ior in the present case is excessive, except that the basic
pattern of the motion keeps similarities with the cycle of
CP instabilities, in particular the two stages with different
time scales. However, even the motion cycle is irregular,
with secondary fast oscillations appearing during the slow
stage, while the amplitude of the n cycle can fluctuate in
a ratio of 1:5.
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Fig. 4. Experimental record of the time evolution of the cloud
when CS instabilities occur. In (a), CM motion r; in (b) pop-
ulation n. ∆0 = −0.75, I1 = 10 and Irep = 1.2 mW/cm2.

The differences between the three C behaviors are par-
ticularly well illustrated by the power spectrum of r, as
shown in Fig. 5. The spectrum of CP instabilities exhibits
a first large and narrow peak, at about 1 Hz, correspond-
ing to the main period of the signal, followed by a series
of harmonics (Fig. 5a). These harmonics are a signature
of the second time scale, much faster than the basic pe-
riod, which appears in the fast oscillation of r. For C1

instabilities (Fig. 5b), the first peak remains, demonstrat-
ing that the signal remains essentially periodic. However,
the regularly spaced harmonics have disappeared, but high
frequency components remain. They are distributed errat-
ically, but have globally a larger weight than in CP insta-
bilities. Finally, for CS instabilities, the main frequency
component has decreased drastically, and the spectrum
may rather be considered as a wide spectrum, as those
observed in chaotic or stochastic signals. Unfortunately, it
is impossible to distinguish between these two possibilities

through the spectrum analysis of the behavior. To do so,
it is necessary to turn to more powerful techniques, such
as the reconstruction of the attractor of the dynamics.
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Fig. 5. Spectra of the CM location time evolution in case of
C instabilities. Figures (a), (b) and (c) correspond respectively
to Fig. 2a, Fig. 3a and Fig. 4a.

Indeed, the MOT is a dissipative system, and any de-
terministic behavior lies in the phase space on an attrac-
tor. In the case of deterministic chaos, this attractor is
complex, but has usually a structured shape, easily rec-
ognizable. On the contrary, if the behavior is dominated
by noise, there is no attractor, and the trajectories fill the
whole phase space. The reconstruction of the attractor of
a system from experimental time series is a well mastered
operation. It can be performed following several methods
(delays, derivatives), and needs usually additional steps,
as the plot of the Poincaré section. In the present case,
the use of return times is particularly well adapted, as
it appears as one of the main properties of the behav-
ior. The return time diagram, which is equivalent to a
Poincaré section, consists in plotting the return time be-
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tween cycles n and n + 1, as a function of the return time
between the cycles n − 1 and n[11]. The Poincaré section
is a cross-section of the attractor, and has a dimension
decreased of one unit as compared to the attractor. Thus,
first return time diagrams of CP instabilities give just a
point, as expected from a cyclic behavior. Fig. 6 shows the
first return time diagram in the case of C1 instabilities. It
is a good illustration of all the return times diagram we
have obtained for C1 and CS instabilities: points appear to
be distributed randomly in the phase space, without any
structure. Thus we can conclude that the behavior is ei-
ther high-dimensional deterministic chaos, or a stochastic
dynamics. From the point of view of the model discussed
below, these two hypotheses are equivalent, as the model
includes only three degrees of freedom.
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Fig. 6. Typical first return time diagram, obtained from a
time series of 200 s with ∆0 = −1, I1 = 16 and Irep = 7.5
mW/cm2.

The links between the different C regimes appear clearly
when one looks at the dependence of the behavior ver-
sus the different control parameters, and in particular I1

and ∆0. It was already shown in [9] that for small trap
beam intensity I1 (typically I1 ≤ 3), the atomic cloud
exhibits only S instabilities. When I1 is increased, S in-
stabilities still exist, but they are progressively superseded
by C instabilities. The appearance of C instabilities occurs
progressively, at the cost of S instabilities. For intermedi-
ate values of I1, both types of instabilities exist. Their
typical distribution versus ∆0 is illustrated in Fig. 7: far
from resonance, the cloud is stable; as the resonance is ap-
proached, S instabilities appear for a detuning ∆0 = ∆1.
Then C instabilities appear in ∆2 > ∆1. If the detuning
is still increased, C instabilities disappear in ∆3 at the
benefit of a stable behavior. Finally, the cloud vanishes in
∆4. As I1 is increased, the interval δ23 = ∆3 − ∆2 where
C instabilities occur, increases at the cost of the width
δ12 = ∆2 − ∆1 where S instabilities occur, while the to-

tal unstable interval δ13 = ∆3 − ∆1 remains more or less
constant. When C instabilities merge for I1 = 4IS , they
appear on a narrow interval δ23 & 0 (Fig. 8). This inter-
val increases rapidly until I1 = 7.5IS and δ23 = 0.8. For
I1 > 7.5IS , δ23 increases more slowly, to reach the value
of δ23 = 1 in I1 = 20IS . The value of δ23 depends also
on the other parameters of the system. Fig. 8b illustrates,
as an example, how it depends on the repumper intensity
Irep, at given I1: δ23 varies from 0 for Irep ' 0.4 mW/cm2

to 1 for Irep > 1 mW/cm2.

Fig. 7. This figure illustrates the evolution of the behavior as a
function of the detuning for I1 = 6.8 and Irep = 1.5 mW/cm2;
The full line reports the population, while the dashed lines
separate the domain of different behaviors: st. stands for stable,
S (C) for S (C) instabilities.
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Fig. 8. Width δ23 of the C instabilities area as a function of
(a) the MOT intensity I1 and (b) the repumper intensity Irep.
In (a), Irep = 1.5 mW/cm2, and in (b), I1 = 18
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Between ∆2 and ∆3, the different types of C instabil-
ities appear, following a constant scenario. In ∆2, when
they merge abruply from a stable or S behavior, they are
CP instabilities, and as ∆0 is increased, they transform
successively in C1 , then CS instabilities in ∆3. The evo-
lution is continuous, without abrupt changes, and the C1

and CS instabilities appear rather as two different levels of
deterioration of CP instabilities by noise. From this point
of view, C1 instabilities appear as an intermediate stage
between CP and CS instabilities where noise destroys only
the periodicity, without affecting the cycle itself.

The amplitude of the oscillations, of the order of 100
µm in ∆2, is much larger than that of the S instabilities
they merge from, which is typically 30 µm. This is an
interesting result, because in the most usual bifurcations
between stable and cyclic behaviors, as the Hopf bifurca-
tion, the cycle merges progressively from a zero amplitude.
Such an atypical behavior can be considered as a signa-
ture of the present system, and must be retrieve in the
behavior predicted by the model.

When ∆0 is increased from ∆2, this amplitude still in-
creases, such that the oscillations reach a 100% contrast in
z and an amplitude of 40% in n (Fig. 4). Simultaneously,
the instabilities frequency remains almost constant, as il-
lustrated on Fig. 9 for different values of the intensity I1.
The frequency reported here is the main frequency com-
ponent for CP and C1 instabilities, and the inverse of a
mean return time for CS instabilities. It appears clearly
that at given I1, the main frequency does not change be-
tween ∆2 and ∆3. This is another interesting result, also
very untypical in dynamical systems, where the nonlin-
ear resonance frequencies usually depend stricly on the
parameters.

To conclude this section, let us summarize the main
characteristics of the C instabilities. Three types of be-
haviors have been identified, depending on their degrees
of stochasticity: the CP instabilities are strictly periodic,
the C1 instabilities remain cyclic, but are no more pe-
riodic, while finally, the CS are neither cyclic, nor peri-
odic. However, this last regime differs drastically from S
instabilities described in [9], by their amplitude, and by
a residue of the cycles they merge from. C behaviors ap-
pear abruptly, with a non-zero amplitude, and their main
frequency appears to be independent from the detuning.

4 Model

To determine the origin and the exact nature of the in-
stabilities observed in the experiments, we need to build
a model able to reproduce also the complex stochastic dy-
namics observed in [9]. Thus it is logical to use the model
introduced in [8] and described in details in [9]. It is a 1D
model based on the shadow effect induced by the inten-
sity gradients produced by the absorption of the trapping
laser beams in the cloud [12,13]. The aim of this model
is not to reproduce as finely as possible the experimental
system, but on the contrary to be as simple as possible,
enlighting the fundamental mechanisms leading to the in-
stabilities. In its final form, the model reduces to a set of

Fig. 9. Experimental evolution of the angular frequency of the
instabilities as a function of the detuning for different values
of the beam internsity: in (a), I1 = 4.1; in (b), I1 = 6.8; in (c),
I1 = 10; in (d), I1 = 13.6; in (e), I1 = 18. Irep = 1.5 mW/cm2

in all cases.

three autonomous equations, i.e. three equations not de-
pending explicitely on time. This is important, as it is the
minimum number of degrees of freedom necessary to gen-
erate complex dynamics, in particular deterministic chaos.
The model writes:

dZ

dt
= V

vr

z0

(1a)

dV

dt
=

1

Mvr

FT (1b)

dN

dt
= B

(

1 − Z2 − N
)

(1c)

where Z = z/z0, V = v/vr and N = n/n0 are the reduced
variables of the MOT. z and v is the location and the ve-
locity of the center of mass of the cloud along the unique
axis z of the system, while n is the number of atoms in-
side the cloud. z0 is a phenomenological size introduced to
take into account the transverse distribution of the trap
laser beams, vr is the recoil velocity (vr = ~k/m), and n0

is the equilibrium population of atoms in the cloud. The
origin of z coincides with the “trap center”, that is, the
zero of the magnetic field. B is the population relaxation
rate, M the mass of the cloud and FT the global force ex-
erted on the atoms by the two counterpropagating beams.
To evaluate FT , we assume a multiple scattering regime,
i.e. a constant atomic density ρ in the cloud. Then FT is
deduced from the equations of propagation of the beams
inside the cloud[9].

Most of the theoretical parameters are the exact coun-
terpart of the experimental parameters, as e.g. the mag-
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netic field gradient or the beam intensities. In this case, we
used in the model the same values as those of Table 1. It is
not the case for all parameters, either because of the sim-
plicity of the model or because they cannot be measured
easily in the experiment. In particular, n0 and ρ cannot
be accurately evaluated in the experiments. Thus in the
simulations, they are fixed at experimental averaged val-
ues, and they have been varied on a wide range to check
their value is not critical. Finally, to perform the com-
parison between the experiments and the present model,
we sometimes need to study the behavior of the system
when noise is added. This has been done in the same way
as in [9], by adding gaussian white noise on I1. Tab. 2
summarizes the parameters used in the following.

Table 2. Parameters used in the numerical simulations. The
range corresponds to the interval explored numerically, while
the other sets refer to most of the results presented in this
paper.

range set #1 set #2

G (Gcm−1) 14 14 14
B (s−1) 3 ≤ B ≤ 30 3 3

I1 2 ≤ I1 ≤ 30 25 30
ρ (cm−3) 1010

≤ ρ ≤ 3 × 1010 2 × 1010 2 × 1010

S (m2) 10−6
≤ S ≤ 3 × 10−6 10−6 10−6

z0 (m) 10−2
≤ z0 ≤ 3 × 10−1 3 × 10−2 3 × 10−2

n0 107
≤ n0 ≤ 109 108 6 × 108

∆0 5 ≤ ∆0 ≤ −0.5 −1.5 −1.5

5 Stationary solutions

The model obtained above is described by a set of three
autonomous equations, and thus could exhibit complex
behaviors, including periodic and chaotic oscillations, able
to explain the dynamics observed experimentally. To know
if such a complex dynamics occurs effectively with our
parameters, we need first to evaluate the stability of the
stationary solutions, and thus to calculate the stationary
solutions themselves. This work has already been partially
presented in [9], for stable stationary solutions, while we
are interested here by unstable stationary solutions. How-
ever, for sake of clarity, we recall here some of the general
results given in [9], before to start the analysis of the un-
stable stationary solutions.

The three stationary solutions Zs, Vs and Ns are given
by Eq.1, when the left sides are put to zero. As discussed
in [9], Vs and Ns can be deduced easily from Zs, and thus
the discussion is reduced to that of Zs, the equation of
which can be resolved numerically. The global shape of Zs

is illustrated in Fig. 10, where it is plotted as a function
of ∆0 and n0. The basic characteristic of this diagram is
the fold in the stationary solutions, due to several abrupt
slope changes. The shape of the fold depends on the pa-
rameters, in particular on n0. Fig. 11 shows four examples
corresponding to a situation leading to basically different

atomic dynamics. For n0 = 0.5 × 108 (fig. 11a), Zs in-
creases smoothly with ∆0 (i.e. Ns decreases slowly). For
∆0 ' 0.1 (and thus outside the graph), the cloud vanishes
through a narrow bistable cycle, where Zs jumps abruptly
from a value of the order of 0.2 to a value close to 1. As n0

increases, this bistable cycle appears for smaller Zs (and
thus larger Ns), and becomes physically significant. Fig.
11b shows Zs for n0 = 2.5 × 108 and a bistable cycle for
−0.3 . ∆0 . −0.25. If n0 is further increased, the bistable
cycle disappears, but it remains a fold corresponding to
two abrupt slope changes of Zs versus ∆0 (fig. 11c, n0

= 3.4× 108). If n0 is still increased, the fold remains, but
it becomes smoother (Fig. 11d for n0 = 4 × 108).

Fig. 10. Stationary solutions of equations 1 versus n0 and
∆0. The figure represents Zs. Other parameters correspond
to the set #1 given in table 2. N, F, SN and SF zones (each
corresponding to different level of greys) describes the nature of
the fixed point associated with the stationary solution: stable
Node, stable Focus, Saddle Node and Saddle Focus.

The results of the linear stability analysis have been
detailed in [9]. It was shown that the stability and nature
of the stationary solutions evolve along the fold. In par-
ticular, the solutions are unstable not only on the central
branch of the bistable cycle, as it is usual, but also on the
upper branch of the bistable cycle, and even when there
is no bistability. This is illustrated in Fig. 11, where the
unstable solutions are plotted in a dashed line. As we deal
here with deterministic instabilities, the interesting situa-
tion corresponds to Fig. 11c, where the unique stationary
solution is unstable on the fold. Note the difference with
the cases studied in [9], where the stationary solution is
also unique, but stable. In the present case, as no stable
solution exists, the system exhibits necessarily determin-
istic instabilities.

Fig. 12 details the changes in the eigenvalues in this
situation. Outside the fold (i.e. ∆0 < ∆1 or ∆0 > ∆4),
ZS is stable, with one real eigenvalue λr and two complex
conjugate eigenvalues λ ± iω: the fixed point associated
to the stationary solution in the phase space is a stable
focus (F zone in Fig. 10). The real numbers −λr and −λ
are the damping rates of the stationary solution, and ω its
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Fig. 11. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations 1. The full (resp. dashed)
line corresponds to a stable (resp. unstable) solution. In (a),
n0 = 0.5× 108; in (b) n0 = 2.5× 108; in (c), n0 = 3.4× 108; in
(d), n0 = 4 × 108 Other parameters correspond to the set #1
of Table 2

eigenfrequency. The transition from stable focus solution
to unstable saddle focus solution occurs in ∆1 and ∆4,
through a Hopf bifurcation, where λ = 0 and ω 6= 0. As it
is usual for such a bifurcation, we expect to observe, on the
unstable side, a cloud moving on a limit cycle with a fre-
quency ω, i.e. in the present case of the order of 200 s−1 (30
Hz) for both Hopf bifurcations. Another transition, from
a saddle focus solution to a saddle node solution, occurs
in ∆2 and ∆3, when ω vanishes. The behavior here cannot
be deduced from the stationary solutions, and numerical
simulations are necessary. Deterministic instabilities are
expected to occur between ∆1 and ∆4. In all other areas,
the stationary solutions are stable, and therefore, deter-
ministic instabilities cannot occur[9]. In the next section,
we detail the results of numerical simulations performed
in the unstable area.

Fig. 12. Evolution as a function of the detuning of the sta-
tionary solution ZS and its eigenvalues, for the parameters of
Fig. 11c. The stationary solution is given through the full (sta-
ble) and dashed (unstable) bold lines. The dashed line noted
ω represents the imaginary part of the complex eigenvalues,
while the full lines correspond to the real part of the three
eigenvalues. The full line remaining negative corresponds to
the eigenvalue which is real everywhere.

However, before to discuss in detail the dynamical be-
haviors predicted by the model in the different situations,
let us look at the influence of the other parameters on the
stationary solutions. As discussed in the previous section,
we must distinguish between theoretical parameters with
an exact experimental counterpart, as I1, for which the
comparison with experiments is direct, from those without
an exact experimental counterpart, for which the analysis
is more delicate. It is in particular the case for n0 and
ρ, which are both linked to Irep and the vapour pressure.
Finally, the influence of B and z0 should be checked, as
their experimental determination is unprecise.

Fig. 13 illustrates the role of the I1 value on the be-
havior of the cloud: it represents the stationary solution
ZS versus the detuning, for different values of the inten-
sity. The figure shows that I1 acts as n0 on ZS : an in-
crease of I1 makes the fold steeper, and eventually leads
to bistability. However, some more subtle changes occur,
as illustrated by Fig. 14, where ZS have been plotted as
a function of ∆0 for different values of n0, as in Fig. 11,
but for a smaller intensity. In these new conditions, the
intermediate area between the stable fold and bistability,
where the stationary solution is unique and unstable, has
almost disappear. This result may be generalized: in the
simulations, we observed that the area corresponding to
an unstable unique solution disappears for small intensi-
ties (typically I1 < 10). This result is in agreement with
the experimental observation that C instabilities exist only
for large intensities.
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Z
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∆ 0
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(b) (c) (d)
(e)

(f)

Fig. 13. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations 1 for different values of the
intensity I1. The full (resp. dashed) line corresponds to a sta-
ble (resp. unstable) solution. In (a), I = 10; in (b) I = 15;
in (c), I = 20; in (d), I = 25; in (e), I = 30; in (d), I = 35.
Other parameters correspond to the set #1 of Table 2, with
n0 = 2 × 108.

The atomic density value used in the present simula-
tion is ρ = 2 × 1010 cm−3, which represents an average of
the density we measured experimentally. To evaluate the
influence of this value on the predicted behavior, we have
plotted in Fig. 15 the evolution of ZS for different values
of ρ. As for n0 and I1, the ZS curve evolves from an almost
flat dependence for large ρ, towards bistability for small ρ,
with an intermediate SF zone. This can appear as surpris-
ing, because it seems to mean that nonlinear behaviors,
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Fig. 14. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations 1 for different values of n0

and a smaller intensity than in Fig. 11. The full (resp. dashed)
line corresponds to a stable (resp. unstable) solution. In (a),
n0 = 0.25 × 108; in (b) n0 = 0.5 × 108; in (c), n0 = 0.7 × 108;
in (d), n0 = 1 × 108; in (e), n0 = 2 × 108. Other parameters
correspond to the set #1 of Table 2, with I1 = 15.

corresponding to the bistable cycle, need a small atomic
density. In fact, this reasoning is false, because it does not
take into account the role of the other parameters, in par-
ticular n0, which is able to compensate for the variation
of ρ. For example, fig. 16 shows the (∆0, n0) diagram for a
smaller ρ value than in Fig. 11: it has the same properties
as that in fig. 11, except that the population are much
larger. However, one remarks slight differences, in partic-
ular a small decreasing of the Z values, and first of all
a small decreasing of the SF zone width. This is another
general result: in the simulations, when the atomic den-
sity is decreased, the Zs curves globally flatten, so that
the fold becomes less steep. Thus all instabilities disap-
pear for very small densities. This is in agreement with
the experimental results illustrated in Fig. 8b, where the
unstable interval width is reported as a function of Irep:
the instabilities disappear for small Irep, i.e. when the ef-
ficiency of the repumper – and thus the atomic density –
decreases.

As detailed in [9], the value of z0 = 3 cm used in the
experiments has been evaluated from the trap beam waist,
taking into account the beam intensity as compared to
the saturation intensity. As for ρ, we want to evaluate
how critical is this choice by plotting ZS versus ∆0 for
different values of z0 (Fig. 17). It appears clearly that a
decreasing of z0 corresponds to a shift of the fold and
the bistable cycle towards resonance. Thus, for z0 values
smaller than 3 cm, the discrepancy between simulations
and experiments increases quantitatively, as instabilities
will appear at smaller detuning. For values smaller than 1
cm, the change is drastic, as the SF and bistable zones, and
thus instabilities, disappear. On the contrary, for larger z0,
the bistable cycle widens and shifts off resonance.

The last parameter to be considered is B. This param-
eter appears to be not critical at all, and in particular, a
change from e.g. B = 5 s−1 to B = 1 s−1 does not change
in a noticeable way the values of ZS . The main change
concerns the smaller real eigenvalue, which takes typically
the value of −B. However, this eigenvalue plays a minor
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∆ 0
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Fig. 15. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations 1 for different values of the
atomic density. The full (resp. dashed) line corresponds to a
stable (resp. unstable) solution. In (a), ρ = 1 × 1010 cm−3; in
(b), ρ = 1.5 × 1010 cm−3; in (c), ρ = 2 × 1010 cm−3; in (d),
ρ = 2.5× 1010 cm−3; in (e), ρ = 3× 1010 cm−3. Other param-
eters correspond to the set #1 of Table 2, with n0 = 2 × 108

and I1 = 25.
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Fig. 16. Evolution as a function of the detuning of the station-
ary solution Zs of equations 1 for different values of n0 and a
smaller atomic density than in Fig. 11. The full (resp. dashed)
line corresponds to a stable (resp. unstable) solution. In (a),
n0 = 2 × 108; in (b) n0 = 4 × 108; in (c), n0 = 6 × 108; in (d),
n0 = 8×108; in (e), n0 = 1×109; in (f), n0 = 1.2×109; in (g),
n0 = 1.4 × 109. Other parameters correspond to the set #1 of
Table 2, with ρ = 1 × 1010 cm−3.

role in the dynamics, as it remains always real negative,
and thus this change has a negligible effect on the dynam-
ics.

It appears from the above analysis that the existence
of the unstable area does not depend critically on the val-
ues of n0, I1, ρ, z0 and B. In particular, the relative poor
accuracy in the knowledge of the experimental values of
some parameters, as n0, ρ or z0, does not appear as a limi-
tation in the above study, because a change of some tens of
percents around the default values used in the simulations
does not alter the results. The numerous approximations
at the origin of the model lead probably to larger errors.

6 The unstable fold: deterministic instabilities

As shown in the previous section, it exists a range of pa-
rameters where the stationary solution is unique and un-
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Fig. 17. Evolution as a function of the detuning of the station-
ary solution Zs of equations 1 for different values of z0. The
full (resp. dashed) line corresponds to a stable (resp. unstable)
solution. In (a), z0 = 1 cm; in (b), z0 = 1.1 cm; in (c), z0 = 1.5
cm; in (d), z0 = 2 cm; in (e), z0 = 3 cm. Other parameters
correspond to the set #1 of Table 2, with n0 = 2 × 108 and
I1 = 25.

stable. Such a situation leads inevitably to determinis-
tic instabilities, with shape and characteristics obtained
through numerical simulations of the model for the cor-
responding sets of parameters. In the present section, we
discuss the behavior obtained by such simulations, in a
situation similar to Figs 11c and 12, but for a slightly dif-
ferent set of parameters (set #2 of Tab. 2). Fig. 18 shows
for these conditions the evolution of the eigenvalues as
a function of the detuning. The sequence is identical to
that followed in Fig. 12, but the unstable zone is wider.
Starting off resonance, a Hopf bifurcation occurs in ∆1.
In ∆2, the eigenvalues become real, and thus the eigen-
frequency disappears, until ∆3, where two eigenvalues are
again complex. Finally, a second Hopf bifurcation occurs
in ∆4, and the stationary solutions become stable again.

Fig. 18. Evolution as a function of the detuning of the eigen-
values of the stationary solutions. The full line, which is a
plot of the real part λ of the eigenvalues when they are pos-
itive, put in evidence two bifurcations, in ∆1 = −0.4024 and
∆4 = −0.3566. The dashed line represents the corresponding
imaginary part ω (i.e. the eigenfrequencies). The eigenvalues
are real between ∆2 = −0.3981 and ∆3 = −0.3760. Parameters
corresponds to the set #2 of Tab. 2.

6.1 The behavior in the vicinity of the Hopf bifurcation

To understand the origin of the C instabilities, we have
studied in detail the behavior of the model in the close
vicinity of the H1 Hopf bifurcation, by varying ∆0 slightly
above ∆1. The expected scenario has been extensively de-
scribed in the litterature[10]. On the left of H1, the sta-
tionary solution is stable, and thus the behavior is sta-
tionary. In H1, the solution becomes unstable, but a limit
cycle merges from the unstable fixed point: the behav-
ior becomes periodic, with a zero amplitude in H1, and
a frequency corresponding to the relaxation frequency of
the unstable solution. On the right of the bifurcation, the
amplitude of the oscillations grows, while the frequency
remains the same as the eigenfrequency in the vicinity
of H1. Usually, when the control parameter is increased
from H1, the cycle shape changes progressively, while the
interval between the oscillation and relaxation frequencies
becomes larger. This standard scenario is absolutely not
followed by the present model. On the contrary, several
abrupt changes in the behavior occur in a very narrow in-
terval of ∆0, leading from a classic regular limit cycle to
the CP instabilities.

In H1 appears, as expected, a limit cycle. Figs. 19 and
20 show the evolution of this limit cycle on the unstable
side of the bifurcation between ∆1 and ∆′

1 = −0.4010.
Note that the explored interval is so narrow (1.3 × 10−3)
that an experimental observation of the described phe-
nomena cannot be considered. Following the Z coordinate,
the cycle amplitude grows rapidly to reach a value of typ-
ically 10% of ZS , while the amplitude on N remains very
small (0.1% of NS). The cycle remains relatively well cen-
tered on ZS , but is shifted compared to NS , such that NS

is well outside the cycle. This is not an exceptional situa-
tion, as it simply means that the basin of attraction of the
cycle is curved in the vicinity of the unstable fixed point.
Another characteristics of the limit cycle is its frequency,
which remains of the order of magnitude of the eigenfre-
quency. For example, for ∆0 = −0.4015 (Fig. 19c), the
behavior frequency is 30 Hz, for an eigenvalue of 27 Hz.
Thus the global behavior in the interval (∆1,∆

′

1) appears
to be the usual one in the vicinity of a Hopf bifurcation.

However, for ∆ ≥ ∆′

1, the limit cycle becomes unsta-
ble and is replaced by another periodic orbit, with a much
more complex shape (Fig. 21) and a much longer period.
The amplitude is almost 5 times larger for Z and more
than 10 times for N . The trajectory consists in several dif-
ferent stages: a diverging spiral off the fixed point, followed
by a large loop and a convergent spiral until the fixed
point. The frequencies of the two oscillating stages are dif-
ferent: this is not surprising, as the diverging one is clearly
linked to the fixed point, and thus to its eigenfrequency,
contrary to the convergent one. One finds effectively a fre-
quency of 24.4 Hz for the diverging spiral, corresponding
exactly to the eigenfrequency (ω = 2π×23.5Hz), while the
frequency of the converging spiral is 77 Hz. However, the
main frequency of the behavior is 2.6 Hz, i.e. one order of
magnitude slower than that of the Hopf cycle. The prop-
erties of the trajectories, in particular the tangency to the
unstable point and the large loop in the phase space, are
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Fig. 19. Time evolution of the atomic cloud location Z in
the close vicinity of the ∆1 bifurcation, on the unstable side.
The dashed line represents the value of the unstable stationary
solution ZS . In (a), ∆0 = −0.4023; in (b), ∆0 = −0.4020; in
(c), ∆0 = −0.4015; in (d), ∆0 = −0.4010. Other parameters
are those of set #2 of Tab. 2.

characteristic from a homoclinic behavior, when the sta-
ble and unstable manifolds of the fixed point are almost
connected. A accurate analysis of these manifolds would
be necessary to conclude about this point. Note that in
a very narrow interval around ∆′

1, generalized bistability
occurs between the Hopf cycle and the homoclinic one.

When ∆0 is increased from ∆′

1, the cloud exhibits pe-
riod doubling and chaos (Fig. 22). The trajectories keep
the same shape, in particular with the two spiraling episodes
and the large loop, but the periodicity is modified or is
lost. For example, when the period is double, variations
appear essentially on the amplitude of the loop together
with that of the diverging oscillations (Fig. 22b). In the
chaotic zone, the irregularities appear also on these am-
plitudes, but bursting events appear sometimes between
these two stages (Fig. 22c). We did not perform a precise
analysis of these behaviors, mainly because they appear
on a so narrow interval that there is no chance to ob-
serve them experimentally. Indeed, chaos disappears for
∆ > ∆′′

1 , with ∆′′

1 = −0.4005, and thus the homoclinic
behavior appears on an interval of 5 × 10−4. However, a
simple test can be done by reconstructing the attractor
of the dynamics (Fig. 23). A glance at the result shows a
definite structure, and not random distributed points, and
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Fig. 20. Time evolution of the atomic cloud population N in
the close vicinity of the ∆1 bifurcation, on the unstable side.
The dashed line represents the value of the unstable stationary
solution NS . Parameters are the same as in Fig 19.
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Fig. 21. Time evolution of the atomic cloud location Z in (a),
and population N in (b), for ∆0 = −0.4010. Other parameters
are the same as set #2 in Tab. 2.
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thus confirms that this behavior presents all the charac-
teristics of deterministic chaos.
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Fig. 22. Time evolution of the atomic cloud location Z in
the vicinity of the chaotic zone. In (a), for ∆0 = −0.4010, the
motion is periodic; in (b), for ∆0 = −0.4006, period doubling
appears; in (c), for ∆0 = −0.4005, the motion is chaotic. Other
parameters are the same as set #2 in Tab. 2.

6.2 CP instabilities

For ∆0 > ∆′′

1 , the homoclinic behavior disappears, and a
new type of periodic instabilities appear (Fig. 24). There
is no fundamental difference between the homoclinic in-
stabilities and the present behavior, except that the latter
has a physical meaning, as it appears in the simulations on
a significant ∆0 interval, about 0.04Γ for the present pa-
rameters. One observes in Fig. 24a the same three stages
as in Fig. 22, which means that the origin of this behav-
ior is the same as for the homoclinic instabilities. How-
ever, these three stages exist only in the close vicinity of
∆′′

1 : when ∆0 is increased, the diverging helix around the
fixed point disappears, and only the two stages indepen-
dent from the fixed point remain (Fig. 24b and c). This
means that in this new behavior, the trajectories never
approach the fixed point, and thus the dynamics does not
depend on the local properties of the fixed point.

Each period of the new behavior may be divided in two
stages with different durations. During the fast stage, Z
makes an oscillation, first growing then decreasing, while
N decreases; during the slow stage, Z and N grow. This
is similar to that observed in experiments with CP in-
stabilities, and thus it is interesting to check if the other
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Fig. 23. Chaotic trajectories of the cloud motion in the (Z, N)
phase space. ∆0 = −0.4005. Other parameters are the same as
in Tab. 2.
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Fig. 24. Time evolution of the atomic cloud location Z
(left) and population N (right) in the unstable zone. In (a),
∆0 = −0.4004; in (b), ∆0 = −0.39; in (c), ∆0 = −0.37. Other
parameters are the same as in Tab. 2.

properties of CP instabilities can be retrieve in the present
dynamics.

Two untypical properties were noticed in the CP in-
stabilities, concerning the non zero amplitude of the os-
cillations when they appear, and their almost constant
frequency along their interval of existence. The amplitude
of the oscillations as a function of ∆0 is plotted in fig. 25.
In ∆0 = −0.4, when the instabilities appear, their ampli-
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tude is already almost 0.3. In fact, because the Hopf limit
cycle exists on a very narrow interval, this is not strictly
true. But from a physical point of view, it is clear that
instabilities appear with a non zero amplitude, as in the
experiments. Concerning the frequency, its value tends to
zero in the vicinity of ∆′′

1 , but it increases rapidly to reach
a value of the order of 10 Hz, and remains between 10 Hz
and 13 Hz on most of the unstable interval, as shown in
Fig. 26 (the behavior for ∆0 > −0.36 is discussed below).
Finally, to complete the comparison with the experiments,
Fig. 27 shows the power spectra of Z. In the vicinity of
H1, it is very characteristic, with a main frequency and
large amplitude harmonics decreasing progressively (Fig.
27a), as in the experiments (Fig. 5). As the detuning is
increased, the amplitude of the harmonics decreases, and
several new frequencies appear in the spectrum, but each
component has individually an amplitude negligible com-
pared to the main frequency (Fig. 27b and c).
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Fig. 25. Amplitude of the dynamics versus detuning. The
squares, discs and triangles corresponds respectively to the
oscillation amplitude, the maximum value and the minimum
value reached by z. Parameters are those of Tab. 2.

Fig. 26. Evolution as a function of the detuning of the insta-
bilities frequency.

To summarize, we found that the periodic instabili-
ties in the vicinity of H1 have the same shape, spectrum,
amplitude evolution and frequency evolution as the CP
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Fig. 27. Power spectra of the atomic cloud location Z in the
unstable zone. Parameters are the same as in Fig.24.

instabilities observed in the experiments; all these points
confirm that the model reproduces here the CP instabili-
ties (Fig. 2 and 24).

However, several quantitative discrepancies appear be-
tween the present results and the experimental observa-
tions, as e.g. for the ∆0 values or the instabilities fre-
quency. These differences are relatively small, except for
the ∆0 interval where CP instabilities exist: it is typically
of the order of 1 in the experiments, while it is smaller than
0.1 in the simulations. This last value could be increased
by increasing the value of I1 in the simulations, reducing
the difference to less than a factor 10. Considering the
extreme simplicity of our model and its numerous approx-
imations, it is clear that it is able to reproduce strikingly
the CP instabilities, with a surprisingly good agreement.

6.3 C1 instabilities

In the experiments, CP instabilities are replaced, as the
detuning is changed, by C1 instabilities. The difference be-
tween the two regimes appears mainly on the n behavior,
and in particular in the shape of the signal, which loses its
regularity. The C1 behavior is not observed in the present
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model. However, as discussed in the experimental section,
the C1 instabilities do not appear as a new deterministic
regime, but rather as CP instabilities slightly altered by
noise. Thus, to test the ability of the present model to re-
produce this behavior, it is necessary to add noise in the
model. The results obtained in this case are discussed in
the next section.

6.4 CS instabilities

Fig. 25 shows that the amplitude of the oscillations in-
creases with ∆0, so that the maximum value explored by
z becomes larger and larger as ∆0 is increased. As a conse-
quence, the maximum value reached by z also increases, so
that finally, the most distant atoms from the trap center,
situated in z + ∆z/2, where ∆z is the size of the cloud,
reach the border of the trap, in z0. In the model, these
atoms are considered to be lost, and thus are subtracted
to the total number of atoms in the trap. Therefore, a
new process with a zero characteristic time appears in the
model through this instantaneous decreasing of n. This
new process leads to an immediate change of the dynam-
ics frequency. This is illustrated in fig. 26, where the tran-
sition occurs in ∆0 = −0.361. For these parameters, the
frequency is divided by more than a factor 3, decreasing
from 12 Hz to 3.7 Hz. The new dynamics is illustrated in
Fig. 28. Although the global shape seems to be similar to
the previous CP instabilities, a drastic difference appears
on the dynamics of N , in particular concerning its oscil-
lation amplitude. While the variations of N as a function
of time were small in the CP regime, they appear to be
much larger in the present regime: in fig. 28a, N varies
on half of the total interval of values that it can take,
and when ∆0 is still increased, this ratio reach 80%, with
an oscillation from 0 to 0.8 (Fig. 28a). In the latter, the
cloud empties completely every period, and then fill up
progressively. This explain the large period of the regime,
due to a longer time necessary to fill the cloud. This ap-
pears clearly when fig. 24 and fig. 28 are compared: the
increasing of the period does not correspond to a global
stretching of the dynamics, as the large oscillation of Z re-
mains on the same time scale, but rather is a consequence
of the increasing of the interval between two oscillations.

The spectrum confirms that the main frequency has
decreased (Fig. 29). However, this is coupled with the ap-
pearance of large amplitude harmonics, decreasing slowly,
so that components with higher frequency than in the CP

regime keep a significant weight.
This behavior has several common points with the CS

instabilities described in the experimental section. In both
cases, the regime is the continuation of the CP instabilities
when the resonance is approached, the amplitude of the z
oscillation has a 100% contrast, that of n are much larger
than in CP regime, the shapes are similar, and new fre-
quencies of higher value appear. But the regime obtained
in the simulations remains periodic, contrary to that ob-
served experimentally. However, as discussed in the exper-
imental section, the origin of the erraticity observed in the
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Fig. 28. Time evolution of the atomic cloud location Z (left)
and population N (right) in the unstable zone. In (a), ∆0 =
−0.36; in (b), ∆0 = −0.35.
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Fig. 29. Power spectra of the atomic cloud location Z in the
unstable zone. Parameters are the same as in Fig.24.

experiments could be stochastic, rather than determinis-
tic. Thus we can hope that the addition on noise in the
model will transform the dynamics to reproduce the ex-
perimental results. This influence of noise on the dynamics
is studied in the next section.



Andrea di Stefano, Philippe Verkerk and Daniel Hennequin: Deterministic instabilities in the magneto-optical trap 15

7 The effect of noise

Noise is known to be able to alter drastically the deter-
ministic behavior of the MOT: in [9], it has been shown
that a stationary behavior may be transformed, under the
influence of noise, in a behavior similar to instabilities.
Thus a complete study of the behaviors predicted by the
present model must consider the possible alterations in-
duced by noise on the dynamics. We present successively
in this section the results obtained on CP and CS insta-
bilities.

Fig. 30 illustrates the effect of noise on CP instabili-
ties, through the example of the regime plotted on Fig. 24c
with 2% of noise on I1. Although the behavior becomes
less regular, with fluctuating amplitudes and a ruffling of
the small secondary oscillations, the global behavior is un-
changed, with a still rather regular period and the same
global shape as without noise. Thus CP instabilities ap-
pear to be robust against noise. However, if the response
to noise is studied in more details, a slight increase of the
noise influence appears when the CS area is approached.
This global behavior allows us to interprete both the CP

and the C1 instabilities, which appear in fact to be the
same dynamics, affected differently by noise: between ∆2

and ∆3, i.e. far from the CS area, the CP instabilities are
very robust against noise, and the presence of technical
noise in the experiment does not alter neither their shape
nor their periodicity. As the CS area is approached, the
sensitivity of the CP behavior to noise slightly increases,
and, although the main characteristics of the CP instabil-
ities remain unchanged, the shape and periodicity of the
regime are affected enough to give the feeling of a new
regime, namely C1 instabilities. Thus C1 instabilities ap-
pear, as already suspected in the experimental section, as
a CP regime perturbed by noise
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Fig. 30. Time evolution of Z for the same parameters as in
Fig. 24c, but when noise is added on I1. The noise level is 2%.

Fig. 31 shows how noise alters the dynamics of CS in-
stabilities. Although the amount of noise is the same as
for CP instabilities, it is clear that here, the dynamics
is deeply transformed. Concerning the Z dynamics, the
shape of the oscillations remains almost unchanged, but
the periodicity is drastically altered: indeed, the return
time of the pulses varies randomly on a range larger than
100%. The explanation of these large fluctuations on the

return time of the Z pulses comes from the N dynam-
ics: here, the fluctuations appear on the amplitude of the
variable. As the return time is connected to the recon-
struction time of the cloud, it is logical that fluctuations
in the initial population lead to fluctuations in the return
time of Z. The strength of the effect is due, as for the
stochastic dynamics described in [9], to an effect of ampli-
fication of noise, but through a different mechanism than
that described in [9]. Indeed, in the vicinity of z0, noise
modifies the state of the cloud just before the brutal de-
creasing of the population: it will be able to slow down
the crossing of z0, or on the contrary to quicken it. The
consequence on the number of atoms lost in the process is
immediate, leading to the large fluctuations of N that can
be seen in Fig. 31. If the resulting dynamics is compared
with the experimental one illustrated in Fig. 4, the similar-
ities between both dynamics appear clearly: the common
points discussed in the previous section remain, and the
discrepancies disappear. In particular, the fluctuations in
the return time of the z pulses, together with those in
the amplitude of n, are now present: it is clear that we
reproduce here the CS instabilities.
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Fig. 31. Time evolution of the (a) atomic cloud location and
(b) population, for the same parameters as in Fig. 28, but when
noise is added on I1. The noise level is 2%.

This concludes the present study on the deterministic
instabilities of the MOT, as we have been able to retrieve
with our model all the behaviors observed experimentally.
In particular, the dynamics that appeared as erratic is
shown to be a deterministic periodic behavior perturbed
by noise. This allows us to do the link with the studies
reported in [9], as we show in this section that noise plays
once again a key role in the dynamics of the MOT, al-
though here the basis of the dynamics is deterministic.
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8 Conclusion

The behavior of the cloud of cold atoms produced by a
magneto-optical trap exhibits a rich variety of dynamics,
that are well reproduce by a simple 1D model described by
a set of three autonomous ordinary differential equations.
In [9] were described a set of noise-induced instabilities,
linked to the topology of the stationary solutions. Here we
show that experimentally, three different regimes of deter-
ministic instabilities may also be observed, depending on
the parameters of the MOT. Some of these regimes appear
to be purely deterministic (CP instabilities), some appear
to be a mixture of deterministic instabilities and effects
of noise (C1 and CS instabilities). Theoretically, the same
model as in [9] allows us to show that the existence of
these deterministic instabilities are a direct consequence
of the topological properties that induce for other param-
eters the stochastic instabilities studied in [9]. This model
shows that C1 instabilities are just CP instabilities per-
turbed by noise, while CS instabilities are a nother de-
terministic regime appearing when the border of the trap
beams are reached. This last regime is particularly sen-
sitive to noise, and the resulting behavior appears as a
deterministic instability highly perturbed by noise. Thus
the present study confirms that noise plays a crucial role
in the dynamics of the atomic cloud.

The present results have been obtained with a very
simple model. Although the agreement with the experi-
ments is surprisingly good, it is difficult to make qunati-
tative comparisons between such a 1D model and a 3D
experiment. Therefore the next theoretical step would be
to develop a 3D-model, where some of the parameters of
the present model, as e.g. the cloud volume, become a
function of the dynamics variables.

An interesting perspective of the present results is to
study the possibility to take advantage of the existence
of deterministic instabilities in the MOT. In particular,
if a set of parameters could be found to widen enough
the chaotic area, the techniques of control of chaos could
be apply to reach various states that are not accessible
otherwise, as e.g. denser or colder states. But even periodic
behaviors can give new interesting informations about the
MOT physics. Indeed, a complex dynamics covers a larger
part of its phase space, and in return makes possible the
determination of parameter values masked in stationary
behaviors. More generally, a complex behavior enables the
access to more information about its system, and appears
usually as a good starting point for a better understanding
of it.
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