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Ecole Normale Supérieure et CNRS,

UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05, France

(Dated: June 10, 2003)

Abstract

The quantum correlations between the beams generated by polariton pair scattering in a semi-

conductor microcavity above the parametric oscillation threshold are computed analytically. The

influence of various parameters like the cavity-exciton detuning, the intensity mismatch between

the signal and idler beams and the amount of spurious noise is analyzed. We show that very strong

quantum correlations between the signal and idler polaritons can be achieved. The quantum effects

on the outgoing light fields are strongly reduced due to the large mismatch in the coupling of the

signal and idler polaritons to the external photons.

PACS numbers: 71.35.Gg, 71.36.+c, 42.70.Nq, 42.50.-p
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INTRODUCTION

Exciton polaritons are the normal modes of the strong light-matter coupling in semi-

conductor microcavities [1]. These half-exciton, half-photon particles present large optical

nonlinearities coming from the Coulomb interactions between the exciton components. Un-

der resonant pumping, this leads to a parametric process where a pair of pump polaritons

scatter into nondegenerate signal and idler modes while conserving energy and momentum.

The scattering is particularly strong in microcavities because the unusual shape of the po-

lariton dispersion makes it possible for the pump, signal and idler to be on resonance at the

same time (see Fig. 1). Moreover, the relationship between the in-plane momentum of each

polariton mode and the direction of the external photon to which it couples [2] enables to

investigate the parametric scattering using measurements at different angles to access the

various modes.

The first demonstration of parametric processes in semiconductor microcavities was per-

formed by Savvidis et al. [3] using ultrafast pump-probe measurements. He observed para-

metric amplification, where the scattering is stimulated by excitation of the signal mode with

a weak probe field. Parametric oscillation, where there is no probe and a coherent population

in the signal and idler modes appears spontaneously, has since been observed by Stevenson

et al. [4] and Baumberg et al. [5] in cw experiments. The lower polariton was pumped

resonantly at the ”magic” angle of about 16◦. Above a threshold pump intensity, strong

signal and idler beams were observed at about 0◦ and 35◦, without any probe stimulation.

The coherence of these beams was demonstrated by a significant spectral narrowing.

The large optical nonlinearity of cavity polaritons makes them very attractive for quantum

optics. Noise reduction on the reflected light field has been predicted [6] and achieved

experimentally [7] for a resonant pumping of the lower polariton at 0◦. The parametric

fluorescence was recently shown to produce strongly correlated pairs of signal and idler

polaritons, yielding a two-mode squeezed state [8]. The parametric oscillation regime is

also very interesting in this respect [9]. It is well known that optical parametric oscillators

(OPO) can be used to generate twin beams, the fluctuations of which are correlated at the

quantum level. A noise reduction of 86% was obtained by substracting the intensities of the

signal and idler beams produced by a LiNbO3 OPO [10].

The purpose of this paper is to investigate the possibility of generating twin beams using

2



a semiconductor microcavity above the parametric oscillation threshold. The classical model

developed by Whittaker [11] is no longer sufficient to study the quantum noise properties

of the system. Thus we adapt the quantum model by Ciuti et al., previously used in

the context of parametric amplification [12] and parametric fluorescence [8, 13], to the

parametric oscillator configuration. Furthermore we compute the field fluctuations using

the input-output method [14, 15]. We also include the excess noise associated with the

excitonic relaxation, which had not been done in Refs. [8, 13].

MODEL

Hamiltonian

Following Ciuti et al. [12][13] we write the effective Hamiltonian for the coupled exciton-

photon system. The spin degree of freedom is neglected.

H = H0 + Hexc−exc + Hsat (1)

The first term is the linear Hamiltonian for excitons and cavity photons

H0 =
∑

k

Eexc(k)b†kbk +
∑

k

Ecav(k)a†
kak

+
∑

k

~ΩR

(
a†
kbk + b†kak

)
(2)

with b†k and a†
k the creation operators respectively for excitons and photons of in-plane

wave vector k, which satisfy boson commutation rules. Eexc(k) and Ecav(k) are the energy

dispersions for exciton and cavity mode. The last term represents the linear coupling between

exciton and cavity photon which causes the vacuum Rabi splitting 2~ΩR. The fermionic

nature of electrons and holes causes a deviation of the excitons from bosonic behavior, which

is accounted for through an effective exciton-exciton interaction and exciton saturation. The

exciton-exciton interaction term writes

Hexc−exc =
1

2

∑

k,k′,q

Vqb
†
k+qb

†
k′−qbkbk′ (3)
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where Vq ' V0 = 6e2aexc

ε0A
for qaexc ¿ 1, aexc being the two-dimensional exciton Bohr

radius, ε0 the dielectric constant of the quantum well and A the macroscopic quantization

area. The saturation term in the light-exciton coupling is

Hsat = −
∑

k,k′,q

Vsat

(
a†
k+qb

†
k′−qbkbk′ + ak+qbk′−qb

†
kb

†
k′

)
(4)

where Vsat = ~ΩR

nsatA
with nsat = 7/ (16πa2

exc) being the exciton saturation density. We

consider resonant or quasi-resonant excitation of the lower polariton branch by a quasi-

monochromatic laser field of frequency ωL = EL/~ and wave vector kL. If the pump intensity

is not too high the resonances (i.e. the polariton states) are not modified. Then it is much

more convenient to work directly in the polariton basis. It is possible to neglect nonlinear

contributions related to the upper branch and consider only the lower polariton states. The

polariton operators are obtained by a unitary transformation of the exciton and photon

operators:


 pk

qk


 =


 −Ck Xk

Xk Ck





 ak

bk


 (5)

where Xk et Ck are positive real numbers called the Hopfield coefficients, given by

X2
k =

δk +
√

δ2
k + Ω2

R

2
√

δ2
k + Ω2

R

(6)

C2
k =

Ω2
R

2
√

δ2
k + Ω2

R

(
δk +

√
δ2
k + Ω2

R

) (7)

X2
k and C2

k can be interpreted respectively as the exciton and photon fraction of the lower

polariton pk. In terms of the lower polariton operators, the Hamiltonian (1) reads

H = HP + Heff
PP (8)

HP is the free evolution term for the lower polariton:

HP =
∑

k

EP (k) p†kpk (9)

and Heff
PP is an effective polariton-polariton interaction:
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Heff
PP =

1

2

∑

k,k′,q

V PP
k,k′,qp

†
k+qp

†
k′−qpkpk′ (10)

where

V PP
k,k′,q =

{
V0X|k+q|Xk′ + 2Vsat (11)

×
(
C|k+q|Xk′ + Ck′X|k+q|

)}
X|k′−q|Xk

In the following we neglect the contribution of the saturation term, so that V PP
k,k′,q '

V0X|k+q|Xk′X|k′−q|Xk. We also neglect multiple diffusions i.e. interaction between modes

other than the pump mode. This approximation is valid only slightly above the parametric

oscillation threshold [28]. It comes to considering only the terms where the pump polariton

operator pkL
appears at least twice:

Heff
PP =

1

2
VkL,kL,0p

†
kL

p†kL
pkL

pkL

+
∑

k 6=kL

VkL,kL,kL−k

(
p†2kL−kp

†
kpkL

pkL
+ h.c.

)

+ 2
∑

k 6=kL

V PP
k,kL,0p

†
kL

p†kpkL
pk (12)

The first term is a Kerr-like term for the polaritons in the pump mode. The second term

is a ”fission” process, where two polaritons of wave vector kL are converted into a ”signal”

polariton of wave vector k and an ”idler” polariton of wave vector 2kL − k. The last term

corresponds to the interaction of the pump mode kL with all the other k states, which results

in a blueshift proportional to |pkL
|2.

Energy conservation

The energy conservation for the fission process {kL,kL} → {k,2kL − k} reads

ẼP (k) + ẼP (2kL − k) = 2ẼP (kL) (13)

where ẼP (q) is the energy of the polariton of wave vector q, renormalized by the inter-

action with the pump polaritons
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ẼP (q) = EP (q) + 2Vq,kL,0 |〈pkL
〉|2 (14)

Note that the factor of 2 disappears for q = kL. Equation (13) always has a trivial

solution k = kL. Non-trivial solutions exist provided the wave vector kL is above a critical

value, or equivalently if the angle of incidence is above the so-called ”magic angle” θc [3].

From now on we suppose that the microcavity is excited resonantly with an angle θc. Fig. 2

is a plot of the quantity |EP (k) + EP (2kL − k) − 2EP (kL)| as a function of k = {kx, ky},
kL being parallel to the x axis.

This shows that energy conservation can be satisfied for a wide range of wave vectors

{k, 2kL − k}. In recent experiments, parametric oscillation was observed in the normal

direction k = 0 [4, 16]. In this paper we consider only the parametric process {kL,kL} −→
{0, 2kL} assuming that the other ones remain below threshold. Then we can neglect the

effect of modes other than 0,kL, 2kL. The evolution of these three modes is given by a

closed set of equations.

HEISENBERG-LANGEVIN EQUATIONS

In order to study the quantum fluctuations we have to write the Heisenberg-Langevin

equations including the relaxation and fluctuation terms. The relaxation of the cavity mode

comes from the interaction with the external electromagnetic field through the Hamiltonian

HI = i~

∫
dω

2π
κ

(
a†
kAω − A†

ωak

)
(15)

The coupling constant is given by κ =
√

2γak where γak is the cavity linewidth (HWHM).

This leads to the following evolution equation for the cavity field:

dak

dt
(t) = −γakak(t) +

√
2γakA

in
k (t) (16)

where Ain
k (t) is the incoming external field. In this equation the normalization are not the

same for the cavity field as for the external field: nak
(t) =

〈
a†
k(t)ak(t)

〉
is the mean number

of cavity photons, while I in
k =

〈
Ain†

k (t)Ain
k (t)

〉
is the mean number of incident photons per

second.
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Exciton relaxation is a much more complex problem. The density is assumed to be low

enough to neglect the relaxation due to exciton-exciton interaction [17]. At low density

and low enough temperature the main relaxation mechanism is the interaction with acoustic

phonons. A given exciton mode bk is coupled to all the other exciton modes bk′ and to all the

phonon modes fulfilling the condition of energy and wavevector conservation [18]. Relaxation

in microcavities in the strong coupling regime has been studied in detail [19, 20]. However,

the derivation of the corresponding fluctuation terms requires additional hypotheses, under

which one can replace the exciton-phonon coupling Hamiltonian by a linear coupling to a

single reservoir [9]. Then, in the same way as for the photon field, the fluctuation-dissipation

part in the Langevin equation for the excitons writes

dbk(t)

dt
= −γbkbk(t) +

√
2γbkB

in
k (t) (17)

where γbk is the exciton linewidth (HWHM) and Bin
k (t) the input excitonic field, which

is a linear combination of the reservoir modes.

Using these results we can write the Heisenberg-Langevin equations for the cavity and

exciton modes of wave vectors 0,kL, 2kL and then for the three corresponding lower polariton

modes. We define the slowly varying operators

p̃kL
(t) = pkL

(t)eiELt/~

p̃0(t) = p0(t)e
iEp(0)t/~

p̃2kL
(t) = p2kL

(t)eiEp(2kL)t/~ (18)

which obey the following equations:

dp̃0

dt
= − i

~

(
2V0,kL,0p̃

†
kL

p̃kL
− iγ0

)
p̃0 (19)

− i

~
VkL,kL,kL

p̃†2kL
p̃2
kL

ei∆Et/~ + P in
0

dp̃2kL

dt
= − i

~

(
2V2kL,kL,0p̃

†
kL

p̃kL
− iγ2kL

)
p̃2kL

(20)

− i

~
VkL,kL,kL

p̃†0p̃
2
kL

ei∆Et/~ + P in
2kL

dp̃kL

dt
= − i

~

(
∆L + VkL,kL,0p̃

†
kL

p̃kL
− iγkL

)
p̃kL

(21)

−2i

~
VkL,kL,kL

p̃†kL
p̃0p̃2kL

e−i∆Et/~ + P in
kL
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where for any given wave vector q, P in
q = −Cq

√
2γaqA

in
q + Xq

√
2γbqB

in
q is the polariton

input field (which is a linear combination of the cavity and exciton input fields ; only the

driving laser field Ain
kL

has a nonzero mean value), γq = C2
q γaq + X2

q γbq is the polariton

linewitdth ; ∆L = Ep(kL) − EL is the laser detuning ; ∆E = Ep(2kL) + Ep(0) − 2EL is the

energy mismatch.

These equations extend the model developed by Ciuti et al. [13] above threshold. The

full treatment of the field fluctuations is included as well as the equation of motion of

the pumped mode accounting for the pump depletion. They are valid only slightly above

threshold, because far above threshold when we can no longer neglect multiple scattering

[21, 22].

This set of equations is similar to the evolution equations of a non-degenerate optical

parametric oscillator (OPO) [23]. The non-linearity is of type χ(3) while in most OPOs it is of

type χ(2). OPOs based on four-wave mixing have already been demonstrated [24]. However,

let us stress that here the parametric process involves the excitations of a semiconductor

material (i.e. polaritons) instead of photons. In the following we evaluate the potential

applications of this new type of OPO in quantum optics. The hybrid nature of polaritons

makes the treatment of quantum fluctuations more complicated, since we have to consider

additional sources of noise (i.e. the luminescence of excitons).

MEAN FIELDS ABOVE THRESHOLD

To start with we have to compute the stationary state of the system. This comes to the

calculation done by Whittaker in Ref. [11]. We neglect the renormalization effects due to

the interaction with the pump mode, which allows to get analytical expressions. Moreover,

we suppose that the angle of incidence is adjusted in order to satisfy the resonance condition

∆E = 0 and that the pump laser is perfectly resonant (∆L=0). Equations (19)-(21) now

write

dp̃0

dt
= −γ0p̃0 − iEintp̃

†
2kL

p̃2
kL

+ P in
0 (22)

dp̃2kL

dt
= −γ2kL

p̃2kL
− iEintp̃

†
0p̃

2
kL

+ P in
2kL

(23)

dp̃kL

dt
= −γkL

p̃kL
− 2iEintp̃

†
kL

p̃0p̃2kL
+ P in

kL
(24)
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where Eint = VkL,kL,kL
/~. Let us recall that among the polariton input fields, only the

photon part of P in
kL

corresponding to the pump laser field has a nonzero mean value. The

excitonic input fields Bin
q correspond to the luminescence of the exciton modes and are

incoherent fields with zero mean value. The stationary state is given by

− γkL
pkL

− 2iEintp
∗
kL

p0p2kL
= CkL

√
2γaA

in

kL
(25)

−γ0p0 − iEintp
∗
2kL

p2
kL

= 0 (26)

−γ2kL
p∗2kL

+ iEintp0p
∗2
kL

= 0 (27)

For a non trivial solution to exist, the determinant of the last two equations must be

zero:

E2
int

∣∣pkL

∣∣4 − γ0γ2kL
= 0 (28)

which gives the pump polariton population threshold

∣∣pkL

∣∣2 =

√
γ0γ2kL

Eint

(29)

and the pump intensity threshold

I in
kL,S =

∣∣∣Ain

kL,S

∣∣∣
2

=
γ2

kL
(γ0γ2kL

)1/2

2γaC2
kL

Eint

(30)

The signal and idler polariton populations are easily derived:

|p0|2 =
γkL

2Eint

√
γ2kL

γ0

(σ − 1) (31)

∣∣p2kL

∣∣2 =
γkL

2Eint

√
γ0

γ2kL

(σ − 1) (32)

where σ =
√

I in
kL

/I in
kL,S is the pump parameter. We finally get the intensities of the signal

and idler output light fields

Iout
0 = 2γaC

2
0 |p0|2 =

γaγkL
C2

0

Eint

√
γ2kL

γ0

(σ − 1) (33)

Iout
2kL

= 2γaC
2
2kL

∣∣p2kL

∣∣2 =
γaγkL

C2
2kL

Eint

√
γ0

γ2kL

(σ − 1)

9



Above threshold, all the polaritons created by the pump are transferred to the signal

and idler modes, so that the number of pump polaritons is clamped to a fixed value. This

phenomenon called pump depletion is well-known in triply resonant OPOs. The signal and

idler intensities grow like
√

I in
kL

. These results are in agreement with those of Ref. [11].

Finally we study the ratio of the signal and idler output intensities, which is an important

parameter in view of the analysis of the correlations between these two beams. It is given

by the simple equation

Iout
0

Iout
2kL

=
γ2kL

C2
0

γ0C2
2kL

(34)

We consider a typical III-V microcavity sample containing one quantum well, with a Rabi

splitting 2~ΩR= 2.8 meV. At zero cavity-exciton detuning, one finds kL=1.15 104 cm−1. The

photon fractions of the signal and idler modes are respectively C2
0=0.5 and C2

2kL
' 0.053.

Assuming that they have equal linewidths the signal beam power should be about ten times

that of the idler beam. It is possible to reduce this ratio a bit by increasing the cavity-

exciton detuning, as can be seen in Fig 3. However, the oscillation threshold goes up. In

the following, all the results will be given at zero detuning.

FLUCTUATIONS

Linearized evolution equations

For any operator O(t) we define a fluctuation operator δO(t) = O(t) − 〈O(t)〉. In order

to compute the fluctuations, we use the ”semiclassical” linear input-output method, which

consists in studying the transformation of the incident fluctuations by the system [15]. It has

been shown to be equivalent to a full quantum treatment. We linearize equations (22)-(24)

in the vicinity of the working point p0 computed in the previous section. We obtain the

following set of equations:

dδpkL

dt
= −γkL

δpkL
− 2iEint

(
p0p2kL

δp†kL
(35)

+p∗kL
p2kL

δp0 + p∗kL
p0δp2kL

)
+ δP in

kL

dδp0

dt
= −γ0δp0 − iEint

(
2p∗2kL

pkL
δpkL

(36)
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p2
kL

δp†2kL

)
+ δP in

0

dδp2kL

dt
= −γ2kL

δp2kL
− iEint

(
2p∗0pkL

δpkL
(37)

p2
kL

δp†0

)
+ δP in

2kL

We can now inject the mean values of the fields pkL
, p0 et p2kL

that we have computed

in the preceding section (equations (29), (31) and (32)).

First we have to choose the phases of the fields (this choice has no influence on the physics

of the problem). We set the phase of the pump field Ain
kL

to zero. Then pkL
is a positive real

number. The equations (26) and (27) impose the same relationship between the signal ϕ0

and idler ϕ2kL
phases:

ϕ0 + ϕ2kL
= −π

2
(38)

whereas the relative phase ϕ0 − ϕ2kL
is a free parameter. We set p0 to be a real positive

number (again, this choice is of no consequence regarding the physics of the problem). Then

p2kL
is a pure imaginary number. With these choices of phase, the evolution equations write

dδpkL

dt
= −γkL

(
δpkL

+ (σ − 1) δp†kL

)

−
√

2γkL
γ0 (σ − 1)δp0 (39)

−i
√

2γkL
γ2kL

(σ − 1)δp2kL
+ δP in

kL

dδp0

dt
= −γ0δp0 +

√
2γkL

γ0 (σ − 1)δpkL

−i
√

γ0γ2kL
δp†2kL

+ δP in
0 (40)

dδp2kL

dt
= −γ2kL

δp2kL
− i

√
2γkL

γ2kL
(σ − 1)δpkL

−i
√

γ0γ2kL
δp†0 + δP in

2kL
(41)

Thanks to these three equation and their conjugate equations we can calculate the output

fluctuations of the pump, signal and idler fields as a function of the input fluctuations.

Amplitude fluctuations

In this paper we are mostly interested in the amplitude correlations between signal and

idler. We will see that in the simple case where we neglect the renormalization effects it is
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enough to solve a system of three equations. We define the real and imaginary parts of the

polariton, photon and exciton fields

αq = δpq + δp†q

βq = −i
(
δpq − δp†q

)
(42)

αin(out)
q = δP in(out)

q + δP in(out)†
q

βin(out)
q = −i

(
δP in(out)

q − δP in(out)†
q

)

αA,in(out)
q = δAin(out)

q + δAin(out)†
q

βA,in(out)
q = −i

(
δAin(out)

q − δAin(out)†
q

)

αB,in(out)
q = δBin(out)

q + δBin(out)†
q

βB,in(out)
q = −i

(
δBin(out)

q − δBin(out)†
q

)

The mean fields pkL
and p0 are real positive numbers, therefore α corresponds to am-

plitude fluctuations and β to phase fluctuations. The mean field p2kL
is a pure imaginary

number, therefore −β corresponds to amplitude fluctuations and α to phase fluctuations.

The evolution equations for the amplitude fluctuations write

dαkL

dt
= −γkL

σαkL
−

√
2γkL

γ0 (σ − 1)α0

+
√

2γkL
γ2kL

(σ − 1)β2kL
+ αin

kL
(43)

dα0

dt
= −γ0α0 +

√
2γkL

γ0 (σ − 1)αkL

−√
γ0γ2kL

β2kL
+ αin

0 (44)

dβ2kL

dt
= −γ2kL

β2kL
−

√
2γkL

γ2kL
(σ − 1)αkL

−√
γ0γ2kL

α0 + βin
2kL

(45)

We get a set of three linear differential equations. Taking the Fourier transform we obtain

in matrix notation




γkL
σ − iΩ

√
2γkL

γ0 (σ − 1) −
√

2γkL
γ2kL

(σ − 1)

−
√

2γkL
γ0 (σ − 1) γ0 − iΩ

√
γ0γ2kL√

2γkL
γ2kL

(σ − 1)
√

γ0γ2kL
γ2kL

− iΩ


×




αkL
(Ω)

α0 (Ω)

β2kL
(Ω)


 =




αin
kL

αin
0

βin
2kL




(46)
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The inversion of the 3 × 3 matrix provides the amplitude fluctuations of the fields pkL
,

p0 et p2kL
as a function of the input fluctuations. It is easy to deduce the amplitude

fluctuations αA, out
q of the output light fields thanks to the input-output relationship for the

cavity mirror Aout
q =

√
2γaqaq −Ain

q and the relationship between the photon and polariton

fields aq = −Cqpq.

αA, out
q = −Cq

√
2γaqαq − αA, in

q (47)

Input fluctuations

In this paragraph we study the noise sources in our system. Ain
kL

is the coherent pump

laser field Ain
0 and both other input fields Ain

2kL
are equal to the vacuum field. Therefore,

the amplitude fluctuations of these three fields are equal to the vacuum fluctuations. The

treatment of excitonic fluctuation is more complex. The amplitude noise spectra (normalized

to the vacuum noise) of the three excitonic fields Bin
kL

, Bin
0 et Bin

2kL
are given by

SB, in
αq

(Ω) = 1 + 2nq for q = 0,kL , 2kL (48)

where nq is the mean number of excitations in the reservoir which depends on the temper-

ature and on the pump intensity. Since the reservoir is populated through phonon-assisted

relaxation from the pump mode it is a reasonable assumption to take the reservoir occupation

as proportional to the mean number of excitons in the pump mode:

nq = β|bq|2 = βX2
q |pq|2 (49)

where β is a dimensionless constant which characterizes the efficacy of the relaxation pro-

cess. This simple model accounts for the excess noise of the reflected light at low excitation

intensity in a satisfactory way [9].

Noise spectra

In fluctuation measurements the measured quantity is the noise spectrum. The noise

spectrum SO(Ω) of an operator O is defined as the Fourier transform of the autocorrelation

function CO (t, t′):
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SO(Ω) =

∫
CO(τ)eiΩτdτ (50)

with

CO (t, t′) = 〈O(t)O(t′)〉 − 〈O(t)〉〈O(t′)〉 = 〈δO(t)δO(t′)〉 (51)

The noise spectrum is related to the Fourier transform δO(Ω) of the fluctuations δO(t)

by the Wiener-Kinchine theorem:

〈δO(Ω)δO(Ω′)〉 = 2πδ(Ω + Ω′)SO(Ω) (52)

In the same way the correlation spectrum SO O′(Ω) of two operators O,O′ is defined as

the Fourier transform of the correlation function:

CO O′ (t, t′) = 〈O(t)O′(t′)〉 − 〈O(t)〉〈O′(t′)〉 (53)

The correlation spectrum is also related to the Fourier components of the fluctuations:

〈δO(Ω)δO′(Ω′)〉 = 2πδ(Ω + Ω′)SO O′(Ω) (54)

The relevant quantity is the normalized correlation spectrum

CO O′(Ω) =
SO O′(Ω)√

SO(Ω)SO′(Ω)
(55)

One has always |C| ≤ 1. A nonzero value of CO O′(Ω) indicates some level of correlation

between the two measurements.

RESULTS

Fluctuations of the intracavity polariton fields

First, in order to shed some light on the above-mentioned analogy with an OPO, we

assume that all three polariton modes have the same linewidths. This is the case if the

cavity and exciton linewidths are equal (γak = γbk) and do not depend on k. We set

γ = γkL
= γ0 = γ2kL

= γa = γb.
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After some straightforward algebra we get the amplitude fluctuations of the polariton

fields

αkL
(Ω) =

1

D (Ω)

(
−γ (Ω + 2iγ) αin

kL

−γ
√

2 (σ − 1) (2γ − iΩ) αin
0 (56)

+γ
√

2 (σ − 1) (2γ − iΩ) βin
2kL

)

α0 (Ω) =
1

D (Ω)

(
γ
√

2 (σ − 1) (2γ − iΩ) αin
kL

(57)

+(γ2 (3σ − 2) − Ω2 − iγΩ (σ + 1))αin
0

+γ (γ (σ − 2) + iΩ) βin
2kL

)

β2kL
(Ω) =

1

D (Ω)

(
−γ

√
2 (σ − 1) (2γ − iΩ) αin

kL

+γ (γ (σ − 2) + iΩ) αin
0 (58)

+(γ2 (3σ − 2) − Ω2 − iγΩ (σ + 1))βin
2kL

)

with

D (Ω) = γ
[
8γ2 (σ − 1) − Ω2 (σ + 2)

]
+ iΩ

[
γ2 (4 − 6σ) + Ω2

]
(59)

Twin polaritons

Let us now calculate the fluctuations of the difference of the signal and idler amplitudes.

Let r be the normalized quantity

r =
1√
2

(α0 + β2kL
) (60)

We find

r (Ω) =
(
4γ2 (σ − 1) − Ω2 − iΩγσ

)
rin (61)

avec rin =
1√
2

(
αin

0 + βin
2kL

)

It is important to notice that r does not depend on the pump fluctuations, which cancel

out when we make the difference. This property is at the origin of twin beams generation

in OPOs. We get perfect noise suppression for Ω = 0 and σ → 1.
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In a degenerate or quasi-degenerate OPO the symmetry between signal and idler is con-

served outside the cavity, because the two fields have the same frequency and are coupled

in the same way to the external field through the losses of the cavity mirrors. In such

systems the ”twinity” of the signal and idler fields can be shown directly by measuring the

fluctuations of the difference of the output signal and idler field intensities.

In our case the signal and idler polaritons do not have the same photon fraction and are

not coupled in the same way to the external field. Clearly, this should lead to a significant

reduction of the correlations between the signal and idler output light fields.

Fluctuations of the output light fields

Let us first comment on the relevant analysis frequency of the noise. The noise spectra

vary typically over a range of the order of the polariton linewidth. In noise measurements

the experimentalists have access to very small analysis frequencies (generally a few tens of

MHz, i.e. a fraction of µeV) with respect to the polariton linewidths (a few hundreds of

µeV). Therefore the noise at zero frequency is the relevant quantity.

The general expressions of the amplitude noises of the three modes and of the signal-idler

amplitude correlation can be found in the Appendix.

In expressions (57-59) we have taken equal linewidths for the pump, signal and idler

polaritons (γkL
= γ0 = γ2kL

). This assumption is not correct in most microcavity samples.

Indeed the energy of the polaritons of wave vector 2kL is close to the energy of the nonra-

diative excitons ; diffusion toward these states is enhanced by their large density of states.

Moreover, the idler energy is closer to the electron-hole continuum. As a result, the exci-

tonic linewidth of the idler γb2kL
is larger than that of the signal γb0 and pump γbkL

modes.

The assumption that the cavity linewidth γak does not depend on k is correct provided the

three wave vectors of interest are within the stop-band of the Bragg reflectors. In recent

experiments, the idler beam has been found to be about 50 times weaker than the signal

beam (see e.g. Ref. [5]), which is consistent with a linewidth ratio γ2kL
/γ0 = 5.

We will first give the results in the ideal case (with equal linewidths and an input noise

equal to the standard quantum noise), and then study the influence of the imbalance between

signal and idler and the input excitonic noise.
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Ideal case

The amplitude noises of the pump, signal and idler beams as well as the signal-idler am-

plitude correlation are drawn in Fig. 4 as a function of the pump parameter σ =
√

I in
kL

/I in
kL,S

in the case of equal linewidths (and no input excess noise. Although the curves go up to

σ=5 let us recall that the model is not correct too far above threshold where we can no

longer neglect multiple diffusions.

Let us first observe that the signal and idler noise spectra have exactly the same shape.

However the idler noise is drawn towards the standard quantum level due to its low photon

fraction which causes important losses at the output of the cavity. It is easy to show that

the ratio of the noise signals S − 1 is equal to the ratio of the photon fractions:

SA, out
α0

(Ω) − 1

SA, out
β2kL

(Ω) − 1
=

C2
0

C2
2kL

(62)

The signal and idler amplitude fluctuations diverge close to the threshold (for σ −→ 1+).

Noise reduction is obtained above σ = 1.55. It grows with the pump intensity and saturates

at a value .... The amplitudes of the signal and idler beams are very strongly correlated

slightly above threshold. The correlation tends to one in the vicinity of the threshold (σ →
1+) and vanishes rapidly when increasing the pump intensity. All these results are similar

to those obtained in nondegenerate OPOs [25].

Influence of the signal-idler imbalance

In this paragraphe we still suppose that there is no input excess noise (n0 = nkL
=

n2kL
= 0). Let us compare the results with different linewidths to those of the ”balanced”

case (γ = γkL
= γ0 = γ2kL

= γa = γb) in equations (70)-(74). It is easy to show that

the excess S − 1 noises of the pump, signal and idler beams are respectively multiplied by

γa/γkL
, γa/γ0 and γa/γ2kL

. The signal-idler correlation (without normalization) is multiplied

by γa/
√

γ0γ2kL
.

As an example the case γ0 = γkL
= γ2kL

/5 = γa is shown in Fig. 5. The amplitude

noises of the pump and signal beams have not been represented since they are unchanged.

The excess noise and the noise reduction are strongly reduced on the idler beam due to its

larger losses (Fig. 5 (a)). The signal-idler correlation remains strong close to threshold but
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decreases more rapidly with increasing pump intensity (Fig. 5 (b)).

Influence of input excess noise

We have assumed that the biggest source of noise for a given polariton mode is the

luminescence of an exciton reservoir which is populated by the polariton mode itself. The

input noise for a given mode is then proportional to the mean exciton number in this mode.

The efficacy of this process is given by the β coefficient introduced above ; here we will assume

that β has the same value for the three modes. Slightly above the oscillation threshold, the

pump mode is much more populated than the signal and idler population ; then the input

noise is much greater for the pump than for the signal and idler.

Fig. 6 shows an example in the ”balanced” case for a noise parameter β=5.10−5, evaluated

from noise measurements on the light reflected by a microcavity sample [9]. The input excess

noise cuts down the noise reduction. Its influence increases with the pump intensity since it

is proportional to the mean exciton population. However the correlation is actually enhanced

by the excess noise. It is due to the fact that the pump input noise is distributed equally

between signal and idler and contributes to the correlations.

The quantum domain

Our model predicts strong correlations between the signal and idler light fields. When

can we say that these beams are quantum correlated ? We will use two different criteria,

one of ”quantum twinity” and one associated with QND measurement.

Quantum twinity

In degenerate or quasi degenerate OPOs, the signal and idler output beams have the

same mean field values and the same noise properties. Quantum correlations between them

are evidenced by measuring the noise of the difference between signal and idler intensities

and comparing it to the standard quantum level. The idea behind this is to compare the

fields under consideration to a classical production of twin beams, which can be achieved by

using a 50% beamsplitter.
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In our case, one beam is much more intense than the other one (the ratio of the intensities

is of the order of 10 for equal signal and idler linewidths). What happens if the two light

fields A1 and A2 under consideration have different mean values and different noises S1

and S2? To produce classically twin beams of unequal intensities, one can use an unequal

beamsplitter. The field fluctuations at the output of such a beamsplitter write

δA1 = tδAin + rδAv (63)

δA2 = rδAin − tδAv (64)

with t 6= r, where Ain is the input field and δAv the vacuum fluctuations entering through

the other port of the beamsplitter. Now the difference δA− = δA1−δA2 is not helpful, since

it does not give a quantity which is independent of δAin. However, the correlation between

the two beams is independent of δAin:

〈δA1δA2〉2classicaltwins =
(
〈δA2

1〉 − 1
) (

〈δA2
2〉 − 1

)
(65)

which can also be written as:

(Cclassicaltwins)
2 =

(
1 − 1

S1

) (
1 − 1

S2

)
(66)

We can evaluate the ”twinity” of the beams by using the quantity

G =
1 − C

1 −
√(

1 − 1
S1

)(
1 − 1

S2

) (67)

which is a generalization of the usual squeezing factor on the intensity difference. G

smaller than 1 means that one has been able to produce two fields which are more identical

than the copies from a beamsplitter. Moreover, it is possible to show that this criterium

does not depend on the way by which the two classical twins are produced [27].

Experimentally, one can measure separately C, S1 and S2 and compute G from (67). One

can also amplify in a different way the two photocurrents in order to measure the quantity

δAa = aδA1 − δA2/a. When a2 =
√

S2/S1 then:

G =
〈δA2

a〉
2

1√
S1S2 −

√
(S1 − 1)(S2 − 1)

(68)
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G is proportional to the photocurrent fluctuations when the gains are adjusted so that

the noise levels are identical in the two channels. The denominator in (68) can be evaluated

from the excess noises of each field.

QND correlation

A further level of correlation is achieved when the information extracted from the mea-

surement of one field provides a QND measurement of the other, so that it is possible, using

the information on one field, to correct the other from a part of its quantum fluctuations

and transform it into a squeezed state. This criterium is widely used in the field of QND

measurement [26]. It can be expressed in terms of the conditional variance

V1|2 = S1(1 − C2) (69)

Note that when the two beams have different noises (S1 6= S2) one has two conditional

variances and therefore two possible criteria. This shows that the QND criterium evaluates

the correlation from the point of view of one beam, and is not an evaluation of the quantum

correlation between the two fields. One possibility is to state that the two fields are QND

correlated if one has V1|2 < 1 and V2|1 < 1. This criterium is stronger than the previous one

[27].

Discussion

We first investigate the ”QND criterium”. The conditional variances are shown in Fig. 7

in the case of equal linewidths and zero input excess noise. From the point of view of the

idler beam, the conditional variance is always lower than 1, if only by a few percent. From

the point of view of the signal beam, the quantum domain is very small: it begins at σ =

1.53, very close to the point where it begins to be squeezed. It is only between σ=1.53 and

σ=1.55 that we get ”QND correlations” between beams that individually have excess noise.

For σ > 1.55 the QND correlation criterium is satisfied, although the correlation is quite

small, because both beams are squeezed. In conclusion, no significant ”QND correlations”

can be observed on the signal and idler output beams.

We now investigate the behavior of the quantity G evaluating the ”twinity” of the signal

20



and idler beams. It is drawn in Fig. 8 as a function of the pump parameter in various cases.

In the case of equal linewidths and zero input excess noise, G goes down to 0.85 which

indicates the ”quantum twin” character of the two beams. If we take the nonradiative losses

of the idler polaritons into account (we set again γ2kL
= 5γ0) G only goes under 1 by a 7

percent. However the input excess noise (corresponding to the resonant luminescence of the

three polariton modes) has little effect on the quantum correlations. As explained above

this comes from the fact that the pump input noise (which is the strongest slightly above

threshold, when the pump polariton population is much larger than the signal and idler

populations) is equally distributed between the signal and idler modes and helps building

up correlations.

In conclusion, in present-day microcavity samples the ”quantum twinity” criterium is

overcome by only a few percent. This is due to the fact that only the polariton fields

are perfectly correlated, and we can only observe their photonic parts. A simple image is

the following: we observe the polariton system through a beamsplitter which amplitude

transmission coefficient is equal to the Hopfield coefficient C0, which leads to losses that

destroy the quantum effects. The correlations are further reduced by the imbalance between

signal and idler. The photonic part of the idler is very small (of the order of 0.05) which

corresponds to large losses.

CONCLUSION

We have presented a novel quantum model allowing to calculate the quantum fluctua-

tions of the beams produced by a semiconductor microcavity in the regime of parametric

oscillation. It extends the model developed by C. Ciuti et al. above threshold and includes

the noise coming from the exciton part of the polaritons.

We show that some quantum correlation exists between the signal and idler beams in the

vicinity of threshold. Taking the parameters of microcavity samples which have been shown

to work in the parametric oscillation regime, it can be seen that the correlation overcomes

the quantum limit by a few percent. The measurement of these correlations would be of

great interest, since quantum correlations between the output beams, however small, are an

indication of much bigger correlations between the intracavity polariton fields. For example,

in the ideal case at threshold (see Fig. ??), if we measure a gemellity G=0.91 this corresponds
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to perfect correlations inside the cavity.

In order to observe better quantum correlations between the output beams, it is very

important that the signal and idler linewidths should be made as equal as possible. A

simple solution would be to use a low finesse cavity. Then the nonradiative losses would

be less important with respect to the radiative losses and the ratio of the signal and idler

linewidths would be smaller. A compromise has to be found because the oscillation threshold

would also be higher.

We acknowledge fruitful discussions with C. Fabre, C. Ciuti, P. Schwendimann and A.

Quattropani.

APPENDIX : NOISE AND SIGNAL-IDLER CORRELATION

In this paragraph we give the general expressions for the amplitude noises of the sig-

nal, pump and idler output light fields at zero frequency (denoted by SA, out
α0

, SA, out
αkL

and

SA, out
β2kL

respectively), and the signal-idler amplitude correlation at zero frequency (denoted

by SA, out
α0 β2kL

).

SA, out
αkL

= 1 + C2
kL

γa

γkL

1

σ − 1
×

[
1 +

X2
0n0γb0γ2kL

+ X2
2kL

n2kL
γb2kL

γ0

γ0γ2kL

]
(70)

SA, out
α0

= 1 + C2
0

γa

γ0

1

8 (σ − 1)2 ×
[
−7σ2 + 16σ − 8 +

1

γkL
γ0γ2kL

×
(
8 (σ − 1) X2

kL
nkL

γbkL
γ0γ2kL

+ (3σ − 2)2 X2
0n0γb0γkL

γ2kL

+ (σ − 2)2 X2
2kL

n2kL
γb2kL

γkL
γ0

)]
(71)

SA, out
β2kL

= 1 + C2
2kL

γa

γ2kL

1

8 (σ − 1)2 ×
[
−7σ2 + 16σ − 8 +

1

γkL
γ0γ2kL

×
(
8 (σ − 1) X2

kL
nkL

γbkL
γ0γ2kL

+ (σ − 2)2 X2
0n0γb0γkL

γ2kL

+ (3σ − 2)2 X2
2kL

n2kL
γb2kL

γkL
γ0

)]
(72)

SA, out
α0 −β2kL

= C0C2kL

γa√
γ0γ2kL

1

8 (σ − 1)2 ×
[

σ2−

22



1

γkL
γ0γ2kL

×
[
(σ − 2) (3σ − 2)

(
X2

0n0γb0γkL
γ2kL

(73)

+X2
2kL

n2kL
γb2kL

γkL
γ0

)
− 8 (σ − 1) X2

kL
nkL

γbkL
γ0γ2kL

]]

where n0, nkL
and n2kL

are the input excitonic noises. From these expressions, it is

easy to calculate the normalized signal-idler correlation at zero frequency CA, out
α0 β2kL

(Ω), using

definition (55).
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FIG. 1: Energy dispersion of the two polariton branches for a microcavity sample having a Rabi

splitting of 2.8 meV, at zero cavity-exciton detuning. The arrows show the parametric conversion

of the pump polaritons (' 10◦) into signal (0◦) and idler (' 20◦) polaritons.
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FIG. 2: Plot of the quantity |EP (k) + EP (2kL − k) − 2EP (kL)| (in meV) as a function of kx and

ky (in cm−1), for the parameters of Fig. 1.
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FIG. 3: Ratio of the photonic fractions of the signal and idler polaritons as a function of the

cavity-exciton detuning δ. The Rabi splitting is 2.8 meV.
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FIG. 4: (a) through (c) : amplitude noises at zero frequency of the pump, signal and idler beams

respectively. (d) : signal-idler amplitude correlation at zero frequency. The three modes are

assumed to have the same linewidths, and the input noise is set as equal to the standard quantum

noise.
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as a function of pump intensity for γ2kL
= 5γ0. On both plots, the curve in dashed line is the

”balanced” case γ2kL
= γ0.
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FIG. 6: Noises at zero frequency in the case of equal linewidths, with an input excess noise given

by β=βc/2. The ideal case β=0 is represented on each curve as a dashed line. (a) pump beam

amplitude noise ; (b) signal beam amplitude noise ;(c) idler beam amplitude noise ; (d) signal-idler

amplitude correlation.
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FIG. 7: (Dash-dotted line : conditional variance of the signal intensity fluctuations, knowing those

of the idler ; solid line : conditional variance of the idler intensity fluctuations, knowing those of

the signal. The dashed line is the standard quantum level
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FIG. 8: Value of the ”gemellity” G as a function of the pump parameter, in three different cases.

(a) solid line : ideal case where all linewidths are equal and there is no excess noise. (b) dashed

line : different linewidths for the signal and idler modes γ2kL
= 5 γ0, and no excess noise. (c)

dashed-dotted line : all linewidths equal, and some excess noise given by β=βc/2.
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