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Abstract: We study a non-standard decoupling limit of the D1/D5-brane system, which

interpolates between the near-horizon geometry of the D1/D5 background and the near-

horizon limit of the pure D5-brane geometry. The S-dual description of this background

is actually an exactly solvable two-dimensional (worldsheet) conformal field theory: {null-

deformed SL(2, R)}·SU(2)·T 4 or K3. This model is free of strong-coupling singularities.

By a careful treatment of the SL(2, R), based on the better-understood SL(2, R)/U(1)

coset, we obtain the full partition function for superstrings on SL(2, R)· SU(2)· T 4/Z2.

This allows us to compute the partition functions for the J3J̄3 and J2J̄2 deformations, as

well as the full line of supersymmetric null deformations, which links the SL(2, R) conformal

field theory with linear-dilaton theory. The holographic interpretation of this setup is a

renormalization-group flow between the decoupled NS5-brane world-volume theory in the

ultraviolet (little string theory), and the low-energy dynamics of super Yang–Mills string-

like instantons in six dimensions.

∗Research partially supported by the EEC under the contracts HPRN-CT-2000-00122, HPRN-CT-2000-

00131, HPRN-CT-2000-00148.
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1. Introduction

So far only few exact, solvable string supersymmetric backgrounds with a neat brane

interpretation are known. The most popular is certainly the near-horizon limit of the

NS5-brane background [1], which is an exact worldsheet conformal field theory based on

SU(2)k·U(1)Q (a three-sphere plus a linear dilaton), and preserves 16 supercharges thanks

to the N = 4 superconformal algebra on the worldsheet [2]. This background includes a

strong-coupling region, that can be excised by distributing the five-branes either on a

circle [3] [4] or on a spherical shell [5].

Another well-known exact string vacuum is the near-horizon geometry of NS5-branes

wrapped on a four-torus (or on a K3 manifold) and fundamental strings [6] [7] [8] [9].

In type IIB string theory, one can use S-duality to map this solution to the D1/D5-brane

system. The supersymmetry of this background is enhanced from 8 to 16 supercharges in

the near-horizon limit. In this case the exact conformal field theory is SL(2, R)·SU(2)·
U(1)4. However, until recently, the SL(2, R) CFT [10] [11] was poorly understood (see [12]

and references therein). Substantial progress in the determination of the correct Hilbert

space of this theory was made in [13], [14] and [15]. The key ingredient, first used in [16],

was the observation that one must add all the representations obtained by the spectral flow

of the affine algebra ŜL(2, R)L · ŜL(2, R)R. This allows to reconcile the unitarity bound

on the spin of the SL(2, R) representations (0 < j ≤ k/2) with the requirement that the

operator product algebra be closed.

A partition function for bosonic strings on thermal AdS3 (i.e. H+
3 /Z) was proposed

in [14], by using the older result by [17]. In [18], the partition function for the axial coset

SL(2, R)/U(1)A – whose target-space interpretation is a Euclidian two-dimensional black

hole [19] – was analyzed in the same spirit; it allowed to extract the full spectrum in

agreement with previous semi-classical analysis. However, as a consequence of the non-

compact nature of the group, these partition functions are plagued with a divergence,

which should be handled with care in order to obtain sensible results. Finding a modular-

invariant partition function for SL(2, R) that reproduces the spectrum found in [13] is to

our knowledge still an open problem. One of the aims of the present paper is to fill this

gap, which is a first step towards the complete understanding of superstrings on SL(2, R)·
SU(2)·T 4 or K3 as well as deformations of this background. The structure of the partition

function will be understood from a different viewpoint, by using the orbifold language, and

the supersymmetrization will be discussed by considering the extended superconformal

algebra on the worldsheet.

The above two string backgrounds are in fact members of a family of conformal field

theories interpolating between them both in space–time and in moduli space. These theo-

ries can be viewed as exact marginal deformations of the SL(2, R) WZW model, driven by
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a left-right combination of null currents (i.e. currents generating null subgroups) [20]. The

endpoint of this deformation gives the linear dilaton and two light-cone free coordinates [21].

This geometry corresponds actually to a near-horizon limit for the NS5-branes only (such

a limit was also mentioned in [22]). We explain in this paper how this background can be

obtained by a particular decoupling limit of the NS5/F1 background, actually the little-

string-theory decoupling limit in the presence of macroscopic fundamental strings. In the

D-brane picture, this limit involves also the decompactification of the torus. An important

achievement of the present work is that this model can also be viewed as a regularization

of the strong-coupling region of the NS5-brane theory, which thus provides an alternative

to [5], with a better-controlled worldsheet conformal field theory.

This class of backgrounds clearly preserves a fraction of target-space supersymmetry,

which is generically one quarter, enhanced to one half on the endpoints of the deformation.

An interesting feature of this deformation is that it is completely fixed by the requirement

of N = 2 superconformal invariance on the worldsheet. We will show that it reduces to

an orthogonal rotation between the worldsheet bosons and fermions interpolating between

the N = 2 superconformal algebras of U(1)Q · R
1,1 · SU(2) and SL(2, R) · SU(2).

There has been in the last years a considerable renewal of interest for these theories

because, besides their intrinsic interest as exact string backgrounds, they enter in several

gauge/gravity dualities. The celebrated AdS/CFT correspondence [23] is a conjectured

equivalence between the near-horizon geometry of the D3- or D1/D5-brane background

(respectively AdS5 · S5 and AdS3 · S3 · T 4 ) and the extreme infra-red theory living

on their world-volume, a superconformal gauge theory with maximal supersymmetry. In

a similar fashion, a holographic duality between the decoupled NS5-brane world-volume

theory – the so-called little string theory (LST) – and the linear-dilaton background has

been conjectured in [24] [25].

The holographic interpretation of our setup is clear. The ultraviolet region of the holo-

graphic “gauge” dual corresponds to the asymptotic geometry, and is therefore the decou-

pled world-volume theory living on the NS5-branes. This theory is not a field theory, since

there is no ultraviolet field-theoretic fixed point, and contains string-like excitations [26],

hence the name “little string theory” [25]. In the type IIB case, this theory is described in

the infra-red by a gauge theory in six dimensions with U(N5) gauge group and N = (1, 1)

supersymmetry. The standard NS5 background corresponds to a renormalization-group

flow towards a free fixed point in the infra-red, whose dual picture is a strong-coupling

region in the gravitational background.

In the case of the null deformation of SL(2, R), the addition of fundamental strings in

the background corresponds in the dual theory to a configuration of string-like instantons

of the low-energy gauge theory. Therefore the physics near the infra-red fixed point is

governed by the dynamics of the moduli space of these instantons. The effective theory in

1+1 dimensions is superconformal, hence the dilaton stops running. This CFT has been

studied intensively in the last years, in particular in the context of black-hole quantum

mechanics (see [27] for references).

The paper is organized as follows. In Sec. 2 we present the precise decoupling limit

which leads to the background of interest, and explain why this background is an exact
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conformal theory. Section 3 is devoted to bosonic strings in AdS3, with special emphasis

to the derivation of a partition function for the SL(2, R), where the spectrum is read off

unambiguously at finite or infinite radius. Then we introduce the worldsheet fermions and

discuss in Sec. 4 the superstrings in the background AdS3 · S3 · T 4/Z2 with particular

attention to the construction of extended worldsheet superconformal algebras. In Sec. 5 we

give the partition functions for the J3J̄3 and J2J̄2 deformations of SL(2, R), and study in

detail its null deformation, which is the main motivation of this article. Null deformations

of the supersymmetric background AdS3 · S3 · T 4 are extensively discussed in Sec. 6,

with a particular attention to the requirement of preserving N = 2 superconformal algebra.

Section 7 gives a brief outlook of the holographic interpretation of this superstring vacuum.

2. A new decoupling limit for the D1/D5-brane system

In this section, we will present a decoupling limit for the D1/D5-brane system or conversely

the NS5/F1 dual configuration. In this limit, we obtain a line of exact conformal theories,

which turn out to be connected by a marginal deformation. Supersymmetry properties and

spectra will be analyzed later.

2.1 The supergravity solution and a partial near-horizon limit

We consider the D1/D5-brane system in type IIB string theory. The D5-branes extend

over the coordinates x, x6, . . . , x9, whereas the D1-branes are smeared along the four-torus

spanned by x6, . . . , x9. The volume of this torus is asymptotically V = (2̉)4˺′2v. With

these conventions, in the sigma-model frame, the supergravity solution at hand reads (met-

ric, dilaton and Ramond–Ramond field strength):

ds̃2 =
1√

H1H5

(
−dt2 + dx2

)
+

√
H1H5

(
dr2 + r2dΩ2

3

)
+

√
H1

H5

9∑

i=6

(dxi)2, (2.1)

e2 ˜̏
= g2

s

H1

H5
, (2.2)

F[3] = − 1

gs
dH−1

1 ∧ dt ∧ dx + 2˺′N5Ω3 (2.3)

(Ω3 is the volume form of the three-sphere) with

H1 = 1 +
gs˺

′N1

vr2
, H5 = 1 +

gs˺
′N5

r2
.

The four-torus can be replaced by a Calabi–Yau two-fold K3, provided that the charges

of the D1 and D5 branes are of the same sign. The near-horizon (r ջ 0) string coupling

constant and the ten-dimensional gravitational coupling constant are

g2
10 = g2

s

N1

vN5
, 2̃2

10 = (2̉)7e2〈 ˜̏〉˺′4.
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The standard decoupling limit of Maldacena, which leads to the AdS3/CFT2 corre-

spondence [23], is

˺′ ջ 0,

U ≡ r/˺′ fixed,

v fixed.

In this limit, the holographic description is a two-dimensional superconformal field theory

living on the boundary of AdS3 that corresponds to the world-volume theory of the D1/D5

system compactified on a T 4 whose volume is held fixed in Planck units [9] [28].

In order to reach a decoupling limit that corresponds to the near-horizon geometry for

the D5-branes only, one has to consider the limit:

˺′ ջ 0,

U = r/˺′ fixed,

gs˺
′ fixed,

˺′2v fixed.

(2.4)

The last condition is equivalent to keeping fixed the six-dimensional string coupling con-

stant:

g2
6 =

g2
s

v
.

Since the gravitational coupling constant vanishes in this limit, the world-volume theory

decouples from the bulk. The geometrical picture of the setup is the following: as v ջ ∞,

the torus decompactifies and the density of D-strings diluted in the world-volume of the

D5-branes goes to zero.

The string coupling remains finite in this near-horizon limit, while the asymptotic

region is strongly coupled. A perturbative description, valid everywhere is obtained by

S-duality. The supergravity solution (2.1), (2.2) in the S-dual frame reads:

ds2 = e−
˜̏
ds̃2 =

1

gs

{
1

H1

(
−dt2 + dx2

)
+ ˺′2H5

(
dU2 + U2dΩ2

3

)
+

9∑

i=6

(dxi)2

}
, (2.5)

e2̏ =
1

g2
s

H5

H1
(2.6)

with (in the limit (2.4) under consideration)

H1 = 1 +
gsN1

˺′vU2
, H5 =

gsN5

˺′U2
. (2.7)

The expression (2.3) for the antisymmetric tensor remains unchanged but it stands now

for a NS flux and we will trade F[3] for H[3].

We now introduce the new variables:

u =
1

U
, X� = X � T =

x � t

g6

√
N1N5

,

and the following mass scale:

M2 =
gsN1

˺′v
. (2.8)
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In these coordinates, the solution (2.5), (2.6) and (2.3), with (2.7), reads:

ds2

˺′ = N5

{
du2

u2
+

dX2 − dT 2

u2 + 1/M2
+ dΩ2

3

}
+

1

˺′gs

9∑

i=6

(dxi)2,

e2̏ =
1

g2
10

u2

u2 + 1/M2
, (2.9)

H[3]

˺′ = N5

{
2u

(u2 + 1/M2)2
du ∧ dT ∧ dX + 2Ω3

}
.

This is the geometry of a deformed AdS3 times an S3 · T 4. Asymptotically (u ջ 0), it

describes the near-horizon geometry of the NS5-brane background, U(1)Q·R
1,1·SU(2)·

T 4 in its weakly coupled region. In the u ջ ∞ limit, the background becomes that of

the NS5/F1 near-horizon: SL(2, R) · SU(2) · T 4, with a finite constant dilaton. In

some sense, we are regulating the strong-coupling region of the NS5-brane background by

adding an appropriate condensate of fundamental strings. As we already advertised, this

regularization is an alternative to the one proposed in [5]; it avoids the spherical target-

space wall of the latter, and replaces it by a smooth transition, driven by a marginal

worldsheet deformation, as will become clear in Sec. 2.2.

Before going into these issues, we would like to address the question of supersymmetry.

The configuration displayed in Eqs. (2.9) preserves by construction one quarter of super-

symmetry. Consider indeed IIB supergravity. The unbroken supersymmetries correspond

to the covariantly constant spinors for which the supersymmetry variations of the dilatino

and gravitino vanish:

˽̄ =

[
˼̅∂̅̏ ̌3 − 1

6
H̅̆̊˼

̅̆̊

] (
̀1

̀2

)
= 0, (2.10)

˽̑̅ =

[
∂̅ +

1

4

(
w ab

̅ − H ab
̅ ̌3

)
Γab

] (
̀1

̀2

)
= 0. (2.11)

where ̌3 is the third Pauli matrix. The two supersymmetry generators ̀1 and ̀2 have the

same chirality: Γ11̀1,2 = ̀1,2.

Let us for example concentrate on the dilatino variation, Eq. (2.10):

˽̄ =
[
Γ2 eu

2 ∂ȕ ̌3 − Huxt eu
1 ex

2 et
0 Γ1Γ2Γ0 + H̞́̐ é

3 e̞
4 e̐

5 Γ3Γ4Γ5
] (

̀1

̀2

)

=

[
1/M2

u2 + 1/M2
Γ2 ̌3 − u2

u2 + 1/M2
Γ1Γ2Γ0 + Γ3Γ4Γ5

] (
̀1

̀2

)
,

where Latin indices a, b, . . . refer to the tangent-space orthonormal bases, with {0, 1, 2} and

{3, 4, 5} corresponding to the AdS3 and S3 submanifolds. The two SO(9, 1) spinors are

decomposed into SO(1, 1) · SO(4) · SO(4)T :

16 ջ (+,2,2) + (+,2′,2′) + (−,2′,2) + (−,2,2′).

The first SO(4) is the isometry group of the transverse space (coordinates x2,...,5) and

SO(4)T corresponds to the four-torus.
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In the infinite-deformation limit, M2 ջ 0, this equation projects out the SO(4) spinors of

one chirality:
[
̌3 + Γ2Γ3Γ4Γ5

](
̀1

̀2

)
= 0.

The surviving supersymmetry generators, are, for ̀1, (+,2,2) and (−,2,2′), and for ̀2,

(+,2′,2′) and (−,2′,2).

In the opposite limit of undeformed AdS3, M2 ջ ∞, we have instead:

[
1 − Γ0Γ1Γ2Γ3Γ4Γ5

](
̀1

̀2

)
= 0,

which projects out the SO(5, 1) spinor (coordinates x0,1,6,...,9 of the five-brane world-

volume) of left chirality, i.e. keeps the representations (+,2′,2′) and (−,2,2′) for both

supersymmetry generators. For any finite value of the deformation, both projections must

be imposed:

[
1/M2

u2 + 1/M2

(
̌3 − Γ2Γ3Γ4Γ5

)
− u2

u2 + 1/M2

(
Γ0Γ1 + Γ2Γ3Γ4Γ5

)] (
̀1

̀2

)
= 0,

which breaks an additional half supersymmetry. The remaining supersymmetries are

(−,2,2′) for ̀1 and (+,2′,2′) for ̀2. The gravitino equation gives no further restrictions as

it should (it reduces to the Killing-spinor equation on S3 and deformed AdS3), and we are

eventually left with one quarter of supersymmetry. Supersymmetry enhancement occurs

only for the limiting backgrounds – AdS3 · S3 or three-sphere plus linear dilaton, which

preserve one half of the original supersymmetry.

2.2 Exact conformal-field-theory description: a null deformation of SL(2, R)

We will now show that the deformed-AdS3 factor in the background (2.9) is the target

space of an exactly conformal sigma-model.

The action for a WZW model is in general

S =
k

16̉

∫

∂B
Tr

(
g−1dg ∧ ∗g−1dg

)
+

ik

24̉

∫

B
Tr

(
g−1dg

)3
. (2.12)

In the case of SL(2, R), one can use the Gauss decomposition for the group elements:

g = g−g0g+ =

(
1 0

x− 1

)(
1/u 0

0 u

)(
1 x+

0 1

)
, (2.13)

which provides the Poincaré coordinate system (see Appendix A). With this choice, the

sigma-model action reads:

S =
k

2̉

∫
d2z

(
∂u∂̄u

u2
+

∂x+∂̄x−

u2

)
. (2.14)

As usual, the affine symmetry ŜL(2, R)L · ŜL(2, R)R is generated by weight-one cur-

rents. Since the group is non-compact, there are null directions, easily identified in the
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Poincaré coordinates. The corresponding Û(1)L · Û(1)R symmetries are linearly realized

and generated by the following null currents1:

J =
∂x+

u2
, J̄ =

∂̄x−

u2
. (2.15)

The (1, 1) operator J(z)J̄(z̄), is truly marginal and can be used to generate a line of CFT’s.

Along this line, i.e. for finite values of the deformation parameter 1/M2, the geometry

back-reaction must be taken into account. Integrating the corrections (much like in [29]

and [30] for compact cases) one obtains the following null-deformed SL(2, R)-sigma-model

action [20]:

S =
k

2̉

∫
d2z

(
∂u∂̄u

u2
+

∂x+∂̄x−

u2 + 1/M2

)
. (2.16)

The affine symmetry ŜL(2, R)L · ŜL(2, R)R is broken down to Û(1)L · Û(1)R and only

the two null currents survive, which now read:

J =
∂x+

u2 + 1/M2
, J̄ =

∂̄x−

u2 + 1/M2
. (2.17)

The deformed target-space geometry and antisymmetric tensor are read off directly

from Eq. (2.16), and turn out to coincide with the deformed-AdS3 factor in (2.9).

There is an alternative way to reach the same conclusion. As shown in [29], marginal

deformations of a WZW model correspond to O(d, d, R) transformations acting on the

Abelian isometries. In order to implement the latter in the case at hand, we rewrite the

SL(2, R)-WZW action as:

S =
k

2̉

∫
d2z

(
∂u∂̄u

u2
+ ∂

(
x+x−

)
⋅ E ⋅ ∂̄

(
x+

x−

))
(2.18)

with

E =

(
0 1/u2

0 0

)
.

Acting on the corresponding background with the following O(2, 2, R) element2 (see e.g. [31]

for a review):

g =

(
I 0

−Θ/M2
I

)
, with Θ =

(
0 1

−1 0

)
, (2.19)

we recover (2.18) with

E′ = g(E) =

(
0 1

u2+1/M2

0 0

)
,

which is precisely the null-deformed SL(2, R)-WZW action, Eq. (2.16).

1Strictly speaking, these are not Cartan generators. See Appendix A.
2The simplest setup for illustrating this transformation is flat background – compactified bosons: two

light-cone coordinates with a constant B-field. The original Lagrangian, 4̉L = ∂x+∂̄x−, transforms into

4̉L̃ = M2

1+M2 ∂x+∂̄x−; this amounts to a shift of radii.
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Notice finally that the deformed SL(2, R)-WZW model under consideration can also

be obtained as a coset by gauging a U(1) subgroup of SL(2, R) · U(1) [32]. We will come

back later to this CFT to compute the one-loop partition function, which demands a careful

treatment of global properties of the fields. The question of supersymmetry along these

deformations needs also to be recast in the present, exact CFT framework, and will be

discussed in Sec. 6.

3. Bosonic strings on AdS3

This section is devoted to the bosonic part of the AdS3 (i.e. SL(2, R)) component of

the previous backgrounds. Despite many efforts and achievements (a short summary is

given Appendix A), our understanding is not completely satisfactory. We show here how

to reach information about SL(2, R) starting from the better-understood SL(2, R)/U(1)A
axial gauging. This enables us to provide a partition function for the SL(2, R), which

carries full information about the spectrum. Under this form, the SL(2, R) WZW model

resembles a ZN freely acting orbifold of T 2 · S1 · S1 over U(1), at large N . Spectra and

partition functions of SL(2, R) deformations will be addressed in Sec. 5.

3.1 SL(2, R) from SL(2, R)/U(1)A

There is a tight link between the spectrum of string theory on AdS3 and the spectrum of the

axial-gauged coset SL(2, R)/U(1)A – non-compact parafermions. The states in the coset

are those of the SL(2, R) CFT with the restriction J3
n|state〉 = J̄3

n|state〉 = 0 for n > 0,

and the conditions on the zero modes J3
0 + J̄3

0 = −wk and J3
0 − J̄3

0 = n. It is therefore

possible to reconstruct the SL(2, R) starting from its axial gauging, much like in the case

of compact parafermions, where the SU(2)/U(1) gauging enables for reconstructing the

SU(2) WZW model [33]. In the non-compact case, however, the coset was shown to be

a unitary conformal field theory [34], whereas this holds for the SL(2, R) only if Virasoro

conditions are imposed [11] [35] [36] [37]. The physical states can be chosen, up to a

spurious state, to be annihilated by the positive modes of the time-like current J3
n>0, J̄3

n>0.

This is the same as for the coset, except for the zero modes.

Our aim is here to show how a partition function for the SL(2, R) can be reached

starting from the partition function of the SL(2, R)/U(1)A proposed in [18]. We start with

the WZW action (2.12) for g ∈ SL(2, R) parameterized with Euler angles (see Eq. (A.6)).

We will gauge the U(1) axial subgroup g ջ hgh with h = eī̌2/2. The action for the

gauged model is

S(g, A) = S(g) +
k

2̉

∫
d2zTr

(
A∂̄gg−1 + Āg−1∂g − AgĀg−1 − AĀ

)
.

The gauge field is Hodge-decomposed as:

A = ∂(˜̊+ ̊) +
i

̍2
(u1 ¯̍ − u2) , Ā = ∂̄(˜̊− ̊) − i

̍2
(u1̍ − u2).

After field redefinitions, the gauged-fixed action is given by an SL(2, R) times a compact

boson, with global constraints and a (b, c) ghost system. This theory is unitary and the

corresponding target space is Euclidean.
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The partition function has been computed by using path-integral techniques in [17]

and [18]. We would like to summarize the method and remind the final result. Following

[18] the model is transformed, for technical convenience, into a U(1)-gauging of the –

non-unitary – H+
3 = SL(2, C)/SU(2) CFT:

S =
k

2̉

∫
d2z

(
∂̏∂̄̏ + (∂v̄ + v̄∂̏)

(
∂̄v + v∂̄̏

))

+
k

2̉

∫
d2z∂̊∂̄̊ +

1

̉

∫
d2z

(
b∂̄c + b̃∂c̃

)
.

The first part of the action is indeed the H+
3 = SL(2, C)/SU(2) sigma-model. The various

fields acquire non-trivial holonomies from the gauge field, and can be decomposed as:

̏ = ˆ̏ +
1

4̍2
[(u1 ¯̍ − u2)z + (u1̍ − u2)z̄] ,

̊ = ˆ̊+
1

4̍2
[(u1 ¯̍ − u2)z + (u1̍ − u2)z̄] ,

v = v̂ exp− 1

4̍2
[(u1 ¯̍ − u2)z + (u1̍ − u2)z̄] .

The fields v and v̄ give the following contribution to the partition function:

det

∣∣∣∣∂ +
1

2̍2
(u1 ¯̍ − u2) + ∂ ˆ̏

∣∣∣∣
−2

= det

∣∣∣∣∂ +
1

2̍2
(u1 ¯̍ − u2)

∣∣∣∣
−2

exp
2

̉

∫
d2z∂ ˆ̏∂̄ ˆ̏

= 4̀ ¯̀
e

2̉
̍2

(Im(u1̍−u2))2

|̚1(u1̍ − u2|̍)|2
exp

2

̉

∫
d2z∂ ˆ̏∂̄ ˆ̏,

where ̚1(̆|̍) is an elliptic theta function (see Appendix D). The periodicity properties

of this determinant allows for breaking u1 and u2 into an integer and a compact real:

u1 = s1 + w, u2 = s2 + m, si ∈ [0, 1). Taking finally into account the contributions of the

free bosons ̏ and ̊ and that of the ghosts, leads to the result [18]:

ZSL(2,R)/U(1)A = 4
√

k(k − 2) ̀ ¯̀

∫
d2s

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
+∞∑

m,w=−∞
e
− k̉

̍2
|(s1+w)̍−(s2+m)|2

.

(3.1)

We can recast the latter in terms of the free-boson conformal blocks (B.1):

ZSL(2,R)/U(1)A = 4
√

(k − 2)̍2 ̀ ¯̀

∫
d2s

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
∑

m,w∈Z

˿

[
w + s1

m + s2

]
(k), (3.2)

which meets our intuition that there are one compact and one non-compact bosons in the

cigar geometry.

A few remarks are in order here. The integration over s1, s2 should be thought of as

a constraint on the Hilbert space, which defines the non-compact parafermionic Z charge.

The allowed parafermionic charges are m = n/2, m̄ = −n/2 for the unflowed sector,

and m̃ = (n − wk)/2 and ˜̄m = −(n + wk)/2 for the w-flowed sector. Another impor-

tant issue is the logarithmic divergence originating from s1 = s2 = 0, and due to the
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non-compact nature of the group. Baring this divergence, the partition function (3.1) is

modular-invariant, as can be easily checked by using the modular properties of Jacobi

functions. Its content in terms of non-compact-parafermion discrete and continuous se-

ries can be further investigated (see [18] for details). Moreover, in the large-k (flat-space)

limit, ZSL(2,R)/U(1)A ∼ k
(
̉
√

̍2̀ ¯̀
)−2

up to an infinite-volume factor3: we recover two free,

uncompactified bosons.

We will now show that it is possible to recover a partition function for the SL(2, R)

WZW model, starting from the above result for the coset SL(2, R)/U(1)A. In many respects

this is similar to what happens in the compact case: SU(2)k can be reconstructed as(
SU(2)k/U(1) · U(1)√2k

) /
Zk, where Zk is the compact-parafermionic symmetry of the

coset SU(2)k/U(1), and acts freely on the compact U(1)√2k. To some extent, however,

manipulations involving divergent expressions such as (3.1) can be quite formal, and require

to proceed with care.

As we already pointed out, the states in SL(2, R)/U(1)A are those of SL(2, R) that are

annihilated by the modes J3
n and J̄3

n n > 0, and have J3
0 and J̄3

0 eigenvalues (n−wk)/2 and

−(n + wk)/2. Therefore, in order to reconstruct the SL(2, R) partition function, we need

to couple the coset blocks with an appropriately chosen lattice for the Cartan generators

J3 and J̄3 corresponding to a free time-like boson. This coupling should mimic the Zk

free action that appears in the SU(2)k (see the discussion for the SU(2) in [38]), in a

non-compact parafermionic version, though. Since the non-compact parafermions have a Z

symmetry, we consider here a Z free action. By using the conformal blocks for free bosons

given in Appendix B (see Eq. (B.1)), we reach the following partition function for the

universal cover of SL(2, R), in the Lagrangian representation4:

ZSL(2,R) = 4
√

̍2(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

m,w,m′,w′∈Z

˿

[
w + s1 − t1
m + s2 − t2

]
(k) ˿

[
w′ + t1
m′ + t2

]
(−k) . (3.3)

Modular invariance is manifest in this expression, since it has the structure of a freely

acting orbifold (this can also be easily checked by using formulas of Appendices B and D).

The extra k − 2 factor comes along with the J3, J̄3 contribution; it ensures the correct

density scaling in the large-k limit, as explained in Appendix B about Eq. (B.3). We

perform a Poisson resummation5 on m and m′, which are trade for n and n′. We define

n� = n � n′ and w� = w � w′, and rewrite the partition function in the Hamiltonian

3This factor comes as
R +∞
−∞

dxdy

x2+y2 exp−̉(x2 + y2).
4To find the partition function for the N -th cover, one has to replace the Z orbifold by a ZNk orbifold:

t1 → ˼

Nk
, t2 → ˽

Nk
. Then the left and right spectral flow are wL,R

+ = w+ ± Nℓ.
5The resummation on m′ is of course performed by means of analytic continuation, as usual when dealing

with a time-like direction.
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representation:

ZSL(2,R) = 4
√

̍2(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
∑

n�,w�∈Z

e−ỉ(n−(s2−2t2)+n+s2) ·

· e−
̉̍2

k (n+n−+k2(w++s1)(w−+s1−2t1))+ỉ̍1(n−(w−+s1−2t1)+n+(w++s1)). (3.4)

Expression (3.4) becomes more transparent by introducing light-cone directions with

corresponding left and right lattice momenta:

P+
L,R =

n+

√
2k

�
√

k

2
w−, (3.5)

P−
L,R =

n−
√

2k
�

√
k

2
w+. (3.6)

In terms of these unshifted6 momenta the partition function at hand reads:

ZSL(2,R) = 4
√

̍2(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

n�,w�∈Z

e
−ỉ

q

k
2 ((P+

L +P+
R )s2+(P−

L +P−
R )(s2−2t2)) ·

· q
1
2

„

P+
L +

q

k
2
(s1−2t1)

«„

P−
L +

q

k
2
s1

«

q̄
1
2

„

P+
R −

q

k
2
(s1−2t1)

«„

P−
R −

q

k
2
s1

«

. (3.7)

3.2 Uncovering the spectrum

The latter expression is formally divergent. It is in fact a generalized function, which

contains all the information about the spectrum. The integral over t2 leads to the constraint

˽n−,0 and, due to the shift t1, the “winding” w− − 2t1 is continuous. The momenta P−
L,R

correspond therefore to a boson X+ “compactified” at zero radius. Conversely, the other

light-cone degree of freedom is compact. This light-cone compactification (for a related

discussion, see [39]) is not so surprising. Indeed, the quantum numbers of a given state

in the SL(2, R) CFT, j = j̄, m + m̄, m − m̄, w are respectively those of a Liouville

field, a non-compact coordinate, and a compact one. Since we consider the universal

cover of SL(2, R), such that the time is non-compact, the only possibility is that one of

the light-cone directions is compactified at radius
√

2k. Note also a particular feature of

a two-dimensional lattice for two light-cone coordinates : if the radius of one light-cone

coordinate shrinks to zero, the momenta and windings of the other light-cone coordinate

are exchanged. This fact explains why the energy, as it appears in the partition function

of SL(2, R), is actually a (shifted) winding mode.

6Due to the shifted-orbifold structure of the partition function the relevant quantities are actually the

shifted momenta:

P s+
L,R = P+

L,R ±

r
k

2
(s1 − 2t1) , P s−

L,R = P−
L,R ±

r
k

2
s1.
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We will now proceed and analyze further the partition function given in Eq. (3.7).

After integrating out t2 we obtain:

ZSL(2,R) = 4
√

̍2(k − 2)3/2

∫
d2s

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
∑

n+,w+∈Z

e−ỉn+(s2−̍1(w++s1)) ·

·
∫ 1

0
dt1

∑

w−∈Z

e−̉̍2k(w++s1)(w−+s1−2t1). (3.8)

It is straightforward to show that the large-k limit of this partition function is, up to the

usual infinite-volume factor, Z ∼ k3/2̉
(
̉
√

̍2̀ ¯̀
)−3

. This was somehow built-in when

writing (3.3) out of (3.2); it meets the expectations for ordinary flat-space spectrum.

It is possible to extract the spectrum of the theory at any finite k, and trace back its

origin in terms of SL(2, R) representations. We proceed along the lines of [14] and [18].

The precise derivation of the spectrum is given in Appendix C. Here we only collect the

results.

Discrete representations. The discrete representations appear in the range 1
2 < j < k−1

2 .

Their conformal weights are the following:

L0 = −j(j − 1)

k − 2
+ w+

(
−m̃ − k

4
w+

)
+ N,

L̄0 = −j(j − 1)

k − 2
+ w+

(
− ˜̄m − k

4
w+

)
+ N̄ ,

with m̃ + ˜̄m = −k(w − t1) and m̃ − ˜̄m = n.

Continuous representations. The continuous spectrum appears with the density of states:

̊(s) =
1

̉
log ǫ +

1

4̉i

d

ds
log

Γ
(

1
2 − is − m̃

)
Γ

(
1
2 − is + ˜̄m

)

Γ
(

1
2 + is − m̃

)
Γ

(
1
2 + is + ˜̄m

)

The weights of the continuous spectrum are

L0 =
s2 + 1/4

k − 2
+ w+

(
−m̃ − k

4
w+

)
+ N,

L̄0 =
s2 + 1/4

k − 2
+ w+

(
− ˜̄m − k

4
w+

)
+ N̄ ,

with m̃, ˜̄m as previously.

These results are in agreement with the unitary spectrum proposed in [13]. Here this

spectrum was extracted straightforwardly from a modular-invariant partition function,

constructed in the Lorentzian AdS3 .

Our aim is now to better understand the coupling between the oscillators and the

zero modes of the light-cone coordinates, as appearing in the partition function. To this

end, we write the algebra ŜL(2, R)L by using the free-field representation of non-compact
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parafermions [40] [41]. The currents read:

J� = −
(√

k

2
∂X � i

√
k − 2

2
∂̊

)
e
�i

q

2
k
(X−T )

, (3.9)

J3 = i

√
k

2
∂T, (3.10)

with the following stress tensor:

T =
1

2
(∂T )2 − 1

2
(∂X)2 − 1

2
(∂̊)2 +

1√
2(k − 2)

∂2̊. (3.11)

There is a linear dilaton with background charge Q =
√

2/(k − 2) along the coordinate ̊.

It contributes the central charge, which adds up to c = 3 + 6/(k − 2). The spectral flow

symmetry can be realized by adding w+ units of momentum along T :

J3 ջ J3 − k

2z
w+ , J�(z) ջ z∓w+J�(z).

The primary operators are those of a free-field theory with a peculiar zero-mode struc-

ture though, which is read off directly from the lattice component of the partition function,

Eq. (3.4)7:

exp

{√
2

k − 2
j̊ + i

√
2

k

[
k

4
w+X+ +

(
m̃ − k

4
w+

)
X− +

k

4
w+X̄− +

(
˜̄m − k

4
w+

)
X̄+

] }
.

One should stress, however, that even if the theory can be represented with free fields, the

descendants are constructed by acting with the modes of the affine currents: the oscillator

number and the zero modes are shifted simultaneously. We are therefore lead8 to use the

the Lagrange multipliers s1 and s2 in the partition function (3.4) to enforce this twisting.

3.3 About the structure of the partition function

Our approach has been to build a modular-invariant partition function for SL(2, R) start-

ing from that of the coset model SL(2, R)/U(1)A. We have reached expression (3.3) or

equivalently (3.7). These expressions are generalized functions which are formally diver-

gent, as was originally the partition function for the coset, Eq. (3.2). However, the presence

of a divergence is not an obstruction for uncovering the spectrum encoded in the partition

functions, as shown in [18] for the coset and here for the AdS3. In this section, we would

like to make contact with the – not fully satisfactory – expressions found in [12] and [13],

explain why the methods used previously failed, and clarify the underlying freely acting

orbifold structure.

We start with Eq. (3.8) that we regulate by shifting s1̍ − s2 ջ s1̍ − s2 + ́ in the

elliptic theta function. This breaks modular invariance unless, together with ̍ ջ −1/̍ , ́

7The fact that the roles of X+ and X− are reversed between the left-moving and the right-moving

sectors will be explained in the fifth section. For the moment note that the partition function is invariant

under: X̄� → X̄∓.
8This is close to the construction of gravitational waves, see [42].
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transforms into −́/̍ . Then, summation over w− and integration over t1 can be merged

into an integration over the light-cone energy E = k(w− − 2t1), which is performed after

analytic continuation. A Poisson resummation over n+ finally leads to the following result:

ZSL(2,R) = 4
(k − 2)3/2

k
√

̍2

∫
d2s

∑

m+,w+∈Z

˽ (w+ + s1) ˽ (m+ + s2)
e

2̉
̍2

(Im(s1̍−s2+́))2

|̚1(s1̍ − s2 + ́|̍)|2

= 4
(k − 2)3/2

k
√

̍2

e
2̉
̍2

(Iḿ)2

|̚1 (́|̍)|2
. (3.12)

This result is precisely that of [12] and [13], up to an overall normalization.

In unitary conformal field theories, the partition function is usually decomposed in

characters of the chiral holomorphic and anti-holomorphic algebras:

Zgenus−one(̍, ¯̍) =
∑

L,R

NL,R̐L(̍) ¯̐R(¯̍),

where the summation is performed over all left-right representations present in the spectrum

with multiplicities NL,R, and ̐(̍) are the corresponding characters:

̐(̍) = Trrepq
L0− c

24 .

This decomposition is very powerful for classifying models (i.e. multiplicities NL,R) by

following the requirements of modular invariance. From the path-integral point of view,

different modular-invariant combinations correspond to different choices for boundary con-

ditions on the fields. However, this decomposition relies on the very existence of the

characters. This holds for WZW models on compact groups. It does not apply to the case

of non-compact groups, unless the group is Abelian – free bosons. Then the zero-mode rep-

resentations are one-dimensional, the characters of the affine algebra are well-defined, and

the infinite-volume divergence decouples into an overall factor. For non-Abelian groups,

unitary9 representations of the zero-modes are infinite-dimensional, and the characters of

the affine algebra diverge. This degeneracy can be lifted by switching on a source coupled

to some Cartan generator:

̐(̍, ́) = Trrepq
L0− c

24 e2ỉ́J0 .

Such a regularization is not fully satisfactory because it alters modular-covariance and does

not allow to cure the characters of the continuous part of the spectrum. Moreover, the best

these generalized characters can do, is to lead (after formal manipulations) to expressions

like (3.12). The information carried by the latter is quite poor: it diverges at ́ ջ 0 and

the divergence cannot be isolated as a volume factor; the large-k limit is obscure; only

the discrete part of the spectrum seems to contribute. These caveats are avoided in the

integral representation we have presented here (Eqs. (3.3) or (3.7)), which is closer in spirit

9If we give up unitarity, finite-dimensional zero-mode representations do exist, but Virasoro conditions

do not eliminate all spurious states.
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with the work of [14] for the thermal AdS3. Although divergent, it is modular-invariant,

contains a nice spectral decomposition and has a well-defined large-k limit in agreement

with our expectations.

To close this chapter, we would like to comment on the freely acting orbifold structure

implemented in Eq. (3.3). We consider for illustration the ZN orbifold of a compact boson

of radius R times a two-torus, presented in Appendix B. The ZN acts as a twist on T 2

and as a shift on the orthogonal S1. The partition function for this model is given by Eq.

(B.12). Although it is not compatible with the symmetries of a two-dimensional lattice, we

take formally the large-N limit of this expression. The first term of (B.12) vanishes while

the sum over h, g in the second term becomes an integral over s1, s2 ∈ [0, 1]. We also drop

out the geometrical factor sin2 ̉Λ(h,g)
N which is meaningless here, and find:

lim
Nջ∞

ZZN

N
= 4

∫
d2s

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
∑

m,w∈Z

˿

[
w + s1

m + s2

] (
R2

)
. (3.13)

In order to make final contact with the partition function of the SL(2, R)/U(1)A (Eq.

(3.2)) we must identify R2 with k, and mod out a non-compact free boson, i.e. multiply

(3.13) by
√

̍2 ̀ ¯̀. We insist that we do not claim that the theory SL(2, R)/U(1)A is the

same as an freely acting orbifold of flat space, but only that the structure is very similar.

An important difference is that the oscillators of the field X of the free-field representation

(Eq. (3.9)) are twisted and its zero modes shifted simultaneously. This is not possible in

flat space.

One can similarly understand the orbifold structure underlying the full SL(2, R) model.

To this end we consider the ZN · ZN model given in Appendix B. In the formal large-N

limit, all but the last term vanish in the partition function (B.13); the sums over h1, g1 and

h2, g2 are trade for integrals over s1, s2 and t1, t2 ∈ [0, 1] · [0, 1]:

lim
Nջ∞

ZZN·ZN

N2
= 4

1

̀ ¯̀

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

m1,w1,m2,w2∈Z

˿

[
w1 + s1 − t1
m1 + s2 − t2

] (
R2

1

)
˿

[
w2 + t1
m2 + t2

] (
R2

2

)
. (3.14)

Comparison with the partition function of the SL(2, R) (Eq. (3.3)) is possible provided

we identify in (B.13), R2
1 with k, R2

2 with −k, and mod out a non-compact free boson, i.e.

multiply Eq. (3.14) by
√

̍2 ̀ ¯̀.

The function ̚1(0, ̍), which is identically zero, never appears in the orbifold since

its corresponds to the untwisted, unprojected sector and is replaced by the usual toroidal

partition sum:
Γ2,2(T, U)

̀4 ¯̀4
.

In the case of SL(2, R) (the N ջ ∞ limit), the sum on the sectors is replaced by an

integral over s1 and s2. The integration over the energy picks up precisely the untwisted,

unprojected sector, as it gives the constraint ˽(2)(s1̍ − s2). We can rewrite formally the
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integrated partition function in terms of the functional determinant for the twisted bosons:

Z =
(k − 2)3/2

k
√

̍2̀ ¯̀

∫
d2s ˽(2)(s1̍ − s2) det

∣∣∣∣∂ +
1

2̍2
(s1 ¯̍ − s2)

∣∣∣∣
−2

=
(k − 2)3/2

k
√

̍2̀ ¯̀
det |∂|−2 .

Thus we find that the partition function of SL(2, R) is the same as a linear dilaton and

two light-cone free coordinates 10.

4. Superstrings on AdS3 × S3
× T 4

We develop in this chapter the supersymmetry tools, which are needed for studying super-

strings on NS5- or NS5/F1-brane backgrounds, as well as on the deformed AdS3 geome-

tries interpolating between them. This includes explicit realizations of extended N = 2

and N = 4 supersymmetry algebras. In principle it is possible to construct a space–time

supersymmetric string background with SL(2, R) · SU(2) · M, where M is any N = 2

superconformal field theory with the correct central charge ĉ = 4. To make contact with

the NS5/F1 background, we can choose either T 4 or a CFT realization of K3. We finally

present the partition function of the model on AdS3 · S3 · K3.

4.1 Extended superconformal algebras

Since the AdS3 ·S3 ·T 4 background preserves one half of the supersymmetry, the world-

sheet theory should factorize into an N = 4 superconformal theory with ĉ = 4 and an

N = 2 free theory with ĉ = 2 [43]. An explicit realization of the relevant extended algebras

is necessary in order to prove that supersymmetry survives at the string level; it is also

important for the determination of the couplings between the bosonic and the fermionic

degrees of freedom. However, as we will see, the straightforward application of the rules

of N = 2 constructions is not the correct way to implement space–time supersymmetry in

SL(2, R) · SU(2).

4.1.1 NS5 background

We would like here to remind the construction of the “small” N = 4 superconformal algebra

for the wormhole background [46], which is the simplest case beyond flat space [44]; it is

also relevant for discussing the supersymmetric null deformation of SL(2, R).

The near-horizon geometry of the NS5-brane background is the target space of an

exactly conformal sigma-model based on SU(2)k · U(1)Q · U(1)6 [1]. Let us concentrate

on the SU(2)k · U(1)Q factor. The full algebra of this four-dimensional internal subspace

consists of the bosonic SU(2)k, the Liouville coordinate, and four free fermions:

J i(z)J j(0) ∼ k

2

˽ij

z2
+ i

3∑

ℓ=1

ǫijℓJ ℓ(0)

z
, i, j, ℓ = 1, 2, 3,

∂̊(z)∂̊(0) ∼ − 1

z2
,

̑a(z)̑b(0) ∼ ˽ab

z
, a, b = 1, . . . , 4.

10As already stressed, there is a central charge deficit coming for the other CFT’s defining the string

theory which corresponds to the lowest-weight of Liouville continuous representations [2].
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The “small” N = 4 algebra is generated by twisting the “large” N = 4 algebra [45] based

on the affine symmetry SU(2)k+1 · SU(2)1 · U(1). The generators of that algebra read:

T =
1

k + 2

3∑

i=1

J iJ i − 1

2
∂̊∂̊ − 1

2

4∑

a=1

̑a∂̑a,

Gi =

√
2

k + 2

⌈
⌊−J ȋ4 +

3∑

j,ℓ=1

ǫijℓ
(
J j − ̑4̑j

)
̑ℓ

⌉
⌋ + ȋi∂̊,

G4 =

√
2

k + 2

3∑

i=1

⌈
⌊J ȋi +

1

3

3∑

j,ℓ=1

ǫijℓ̑ȋj̑ℓ

⌉
⌋ + ȋ4∂̊, (4.1)

Si =
1

2


̑4̑i +

1

2

3∑

j,ℓ=1

ǫijℓ̑j̑ℓ


 ,

S̃i =
1

2


̑4̑i − 1

2

3∑

j,ℓ=1

ǫijℓ̑j̑ℓ


 + J i,

where ̊ is an ordinary bosonic coordinate.

The large N = 4 algebra is contracted to the required small N = 4, provided the ̊

coordinate is promoted to a Liouville field by adding a background charge Q (i.e. a linear

dilaton in the corresponding direction). The effect on the algebra (4.1) is the following:

T ջ T − Q∂2̊ , Ga ջ Ga − iQ∂̑a.

The background charge Q is such that we obtain a ĉ = 4 theory: Q =
√

2/(k + 2). The

linear dilaton background compensates the central charge deficit of the SU(2)k.

We bosonize the self-dual combination of fermions:

i
√

2∂H+ = ̑1̑2 + ̑4̑3.

It defines the R-symmetry SU(2) algebra at level one generated by the currents:

(S3, S�) =

(
i√
2
∂H+, e�i

√
2H+

)
. (4.2)

The resulting “small” (N = 4)-algebra generators are combined into two conjugate

SU(2) R-symmetry doublets:

G+, G̃− =
[
QJ−e

i√
2
H−

+ i
(
Q

(
J3 + i

√
2∂H−

)
− i∂̊

)
e

−i√
2
H−]

e
�i√

2
H+

, (4.3)

G̃+, G− =
[
QJ+e

−i√
2
H−

+ i
(
Q

(
J3 + i

√
2∂H−

)
+ i∂̊

)
e

i√
2
H−]

e
�i√

2
H+

. (4.4)

4.1.2 NS5/F1 background

We now move to the AdS3·S3·T 4 background, which describes the near-horizon geometry

of the NS5/F1-brane system. Our focus is the six-dimensional SL(2, R)· SU(2) subspace
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that we want to split into one ĉ = 4 system with N = 4 superconformal symmetry and one

with ĉ = 2 with N = 2. The total central charge of this factor is given by:

ĉ =
3kSL(2,R)

kSL(2,R) − 2
+

3kSU(2)

kSU(2) + 2
. (4.5)

Therefore to obtain a critical string background (ĉ = 6) for any level, we must choose

kSL(2,R) − 4 = kSU(2) = k. (4.6)

The N = 1 algebra of the theory is generated by

T =
1

k + 2
IiIj˽

ij +
1

k − 2
J˺J˻̀˺˻ − 1

2
̑i∂̑i − 1

2
̐˺∂̐˺, (4.7)

G =

√
2

k + 2

[
̑iI

i − i

3
ǫijℓ̑

ȋj̑ℓ + ̐˺J˺ − i

3
ǫ˺˻˼̐˺̐˻̐˼

]
, (4.8)

where Ii and J˺ denote respectively the bosonic currents of SU(2) and SL(2, R), ̑i and

̐˺ the corresponding fermions, and ̀˺˻ = (+, +,−)11.

The N = 2 algebras of SL(2, R)·SU(2). The various currents provided by the SU(2)

and SL(2, R) algebras and the associated fermions allow for extracting one N = 2, ĉ = 2

algebra generated by:

G�
2 =

1√
2(k + 2)

[(
I3 + ̑+̑−)

∓
(
J3 + ̐+̐−)] (

̑3 � ̐3
)
, (4.9)

J2 = ̑3̐3. (4.10)

We have combined the currents and the fermions as follows:

J� = J1 � iJ2 , I� = I1 � iI2 , ̑� =
̑1 � ȋ2

√
2

, ̐� =
̐1 � i̐2

√
2

.

The remaining generators form another N = 2 algebra decoupled from the first one [48]:

G�
4 =

1√
k + 2

[
I∓̑� − iJ∓̐�]

, (4.11)

S3 =
1

2(k + 2)

(
2J3 + (k + 4)̐+̐− − 2I3 + k̑+̑−)

. (4.12)

The various coefficients in S3 are such that: (i) S3 is regular with respect to G�
2 in order to

obtain two independent algebras, and (ii) S3(z)G�
4 (0) ∼ � G�

4 (0)/2z. The normalization

of S3 follows from S3(z)S3(0) ∼ 1/2z2. Therefore we rewrite it in terms of a free boson as

follows:

i√
2
∂H+ =

1

2

(
̑+̑− + ̐+̐−)

+
1

k + 2

(
J3 + ̐+̐− − I3 − ̑+̑−)

=
1

2

(
̑+̑− + ̐+̐−)

+
1

k + 2

(
J 3 − I3

)
. (4.13)

11Indices i, j, . . . and ˺, ˻, . . . run both over 1, 2, 3, and we raise them with ˽ij and ̀˺˻ .
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We have introduced the total currents, including the fermionic part:

J 3 = J3 + ̐+̐− and I3 = I3 + ̑+̑−, (4.14)

respectively for SL(2, R) and SU(2), both at level k + 2.

We would like to extend the superconformal symmetry to N = 4, as we expect from

the target-space supersymmetry. This is possible provided the R-symmetry current i∂H+

corresponds to a free boson compactified at the self-dual radius, which seems indeed the

case here since the total currents J 3 and I3 are correctly normalized in Eqs. (4.13), and

can both be bosonized at radius
√

2(k + 2). However, in order to form the superconformal

characters of SU(2) and SL(2, R), the characters of these currents are coupled to the N = 2

coset theories:

SU(2)

U(1)
· U(1)

R=
q

k
k+2

and
SL(2, R)

U(1)
· U(1)

R=
q

k+2
k

.

The coupling acts as a Zk+2 shift in the lattice of J 3 and I3; it is similar to the discussion

about the bosonic SL(2, R). Therefore, the charges of the current S3 are not those of a

boson at self-dual radius.

Space–time supersymmetry. For a worldsheet superconformal theory with accidental

N = 2 superconformal symmetry, the space–time supersymmetry charges are obtained by

spectral flow of the R-symmetry current [49]. However, this requires that the charges of all

the physical states with respect to this U(1) current are integral. As we have seen above, the

R-symmetry current of the ĉ = 4 block, whose expression is given in (4.13) does not fulfill

this requirement, because its charges depend on the eigenvalues of I3 and J 3. Moreover,

space–time supercharges based on the above N = 2 current lead to incompatibilities with

target-space symmetries [50]. These problems arise because, even in flat space, the space–

time supercharges are constructed with the fermion vertex operators at zero momentum.

In the present case, the space–time momentum enters directly in the N = 2 charges and

the SU(2) charges, though compact, cannot be considered as internal.

We will proceed as in [9]: we construct directly the space–time supercharges with the

spin fields of the free fermions, which are BRST invariant and mutually local. This seems

sensible, since the fermions in a critical string theory based on WZW models are free. The

N = 2 current of the theory:

J = J2 + 2S3 =
2

k + 2

(
J 3 − I3

)
+ ̑+̑− + ̐+̐− + ̑3̐3,

differs from the free-fermionic one by the “null” contribution
(
J 3 − I3

)
/(k + 2). We can

of course wonder whether a more appropriate choice of N = 2 structure exists. Another

choice of complex structure does exist, and is provided by decomposing the SL(2, R) as

SL(2, R)/O(1, 1) · U(1). It suffers, however, from the same problem.

The required projections in SL(2, R) · SU(2) · U(1)4. Here we come to the full

background AdS3 · S3 · T 4. The worldsheet fermions of the T 4 are bosonized as:

̄1̄2 = ∂H3 , ̄3̄4 = ∂H4,
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and those of SU(2) · SL(2, R) as:

̑+̑− = i∂H2 , ̐+̐− = i∂H1 , ̑3̐3 = i∂H0.

In the −1/2 picture, the spin fields are

Θ˾(z) = exp

{
−̞

2
+

i

2

4∑

ℓ=0

˾ℓHℓ

}
, (4.15)

where e−̞/2 is the bosonized superghost ground state in the Ramond sector [51].

The standard GSO projection keeps all spin fields satisfying

˾0˾1˾2˾3˾4 = 1, (4.16)

which is required by BRST invariance. In type IIB superstrings, the GSO projection is the

same on the spin fields from the right-moving sector, while for type IIA it is the opposite.

In the AdS3 · S3 · T 4 background, the fields (4.15) must obey the additional relation:

˾0˾1˾2 = 1. (4.17)

Equivalently, for type IIB, by using the GSO projection (4.16), the restriction on the

allowed spin fields can be imposed on the fermions of the four-torus:

˾3˾4 = 1. (4.18)

Relations (4.17) or (4.18) ensure the absence of 1/z
3
2 poles in the OPE of the spin fields

with the N = 1 supercurrent (4.8) that would otherwise appear as a consequence of the

torsion terms. Note also that in the superconformal algebra for the right-moving sector,

the torsion terms come with a negative sign in the supercurrent, but the projection remains

the same.

In order to preserve the N = 1 supercurrent, we must implement the projection (4.18)

as a Z2 orbifold on the coordinates of the four-torus. This is why we are effectively dealing

with the background AdS3 ·S3 ·K3. Then, from the S-dual viewpoint, the model we are

describing consists of D5-branes wrapped on a K3 manifold and D-strings. It is known [53]

that in this case there is an induced D-string charge which is the opposite of the total

D5-brane charge. Indeed, including gravitational corrections to the Wess–Zumino term of

the D5-brane action, generates the following D1-brane charge:

Qind
1 = N5

∫
c2(K3)

24
= −N5.

Therefore the net number of D1-branes accompanying the D5-branes is N1 + N5. This has

little effect on the S-dual model under consideration here, because the number of D-strings

affects the value of the string coupling but not the worldsheet CFT.

In conclusion, we have seen that, in order to obtain a supersymmetric spectrum con-

sistent with the BRST symmetry, we have to project out half of the space–time spinors

from the Ramond sector. By modular invariance, this projection must act as an orbifold
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on the fermionic characters and also on the bosonic part to be consistent with superconfor-

mal invariance. For simplicity we have chosen to act on the fermions associated with the

four-torus; therefore the background is now AdS3·S3·T 4/Z2. The T 4/Z2 orbifold can be

replaced by another realization of K3 in CFT, such as a Gepner model [49]. Another way

to realize the projection is to twist the fermionic characters associated with AdS3 ·S3. In

that case, we have to act nontrivially on the SL(2, R) and SU(2) bosonic characters. Then

the toroidal part of the background remains untwisted: the NS5-branes are wrapped on a

T 4 rather than on a K3.

4.2 The partition function for superstrings on AdS3 × S3
× K3

We are now in position to write the partition function for type IIB superstrings on AdS3 ·
S3 ·K3. We must combine the various conformal blocks in a modular-invariant way, and

impose the left and right GSO projections together with the additional projections dictated

by the presence of torsion.

The standard orbifold conformal blocks are given in Appendix B. The SU(2)k partition

function is chosen to be the diagonal modular-invariant combination [54] and the SL(2, R)

factor was discussed in Sec. 3. Putting everything together, including the conformal and

superconformal ghosts, we obtain:

ZIIB =
Im̍

̀2 ¯̀2
ZSU(2)ZSL(2,R)

1

2

1∑

h,g=0

Ztwisted
T 4/Z2

[
h

g

]

·1

2

1∑

a,b=0

(−)a+b ̚2

[
a

b

]
̚

[
a + h

b + g

]
̚

[
a − h

b − g

]

·1

2

1∑

ā,b̄=0

(−)ā+b̄ ¯̚2

[
ā

b̄

]
¯̚
[
ā + h

b̄ + g

]
¯̚
[
ā − h

b̄ − g

]
. (4.19)

We can read from the latter expression the spectrum of chiral primaries with respect

to the space–time superconformal algebra [9]. The vertex operators for such left-moving

states in the NS sector are given in the (−1) ghost picture by (see [57]):

VI
j = e−̞ ̄I Φ

SL(2,R)
j, m Φ

SU(2)
j−1, m′

W�
j = e−̞

[
̐ΦSL(2,R)

]
j�1, m

Φ
SU(2)
j−1, m′

X�
j = e−̞ Φ

SL(2,R)
j, m

[
̑ΦSU(2)

]
j−1�1, m′

where Φ
SU(2)
j′,m′ and Φ

SL(2,R)
j,m are respectively the bosonic primary fields of the holomorphic

current algebras SU(2)k and SL(2, R)k+4. They are combined with the worldsheet fermions

into representations of SU(2)k+2 and SL(2, R)k+2.

The above states live in the five-plus-one dimensional world-volume of the NS5-branes.

In order to obtain the closed string spectrum, we tensorize this left-moving spectrum with
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the right-moving one, and impose the Z2 projection on the torus. Additional states localized

in one-plus-one dimensions are constructed with the twisted sectors of the orbifold:

W̃�
j = e−̞ V tw

[
̑ΦSU(2)

]
j�1, m

Φ
SL(2,R)
j−1, m′ ,

X̃�
j = e−̞ V tw Φ

SU(2)
j, m

[
̐ΦSL(2,R)

]
j−1�1, m′

,

where V tw are the twist fields of the NS sector.

5. Marginal deformations of SL(2, R)

The SL(2, R) geometry in Euler (global) coordinates reads12:

ds2 = dr2 − cosh2 rdt2 + sinh2 rd̏2,

B = cosh2 rd̏ ∧ dt

and there is no dilaton. Strictly speaking the time coordinate t is 2̉-periodic for the

SL(2, R), but non-compact for its universal covering (AdS3); ̏ is 2̉-periodic and r > 0.

Conformal deformations of this background are generated by truly marginal operators

i.e. dimension-(1, 1) operators that survive their own perturbation. In the presence of

holomorphic and anti-holomorphic current algebras, marginal operators are constructed as

products J˺J̄˻ , not all being necessarily truly marginal. In the SU(2) WZW model, nine

marginal operators do exist. However, they are related by SU(2) · SU(2) symmetry to

one of them, say J3J̄3. Hence, only one line of continuous deformations appears.

The situation is different for SL(2, R), because here one cannot connect any two vec-

tors by an SL(2, R) transformation. This is intimately related to the existence of several

families of conjugacy classes: the elliptic and hyperbolic, which correspond to the two dif-

ferent choices of Cartan subalgebra, and the parabolic corresponding to the null subalge-

bra. Three different truly marginal left-right-symmetric deformations are possible, leading

therefore to three families of continuously connected conformal sigma models. Each of

them preserves a different U(1)L · U(1)R subalgebra of the undeformed WZW model.

The marginal deformations of SU(2) have been thoroughly investigated [29] [30] [56]

with respect to: (i) the identification with the
(
SU(2)k/U(1) · U(1)√2k˺

) /
Zk, where

SU(2)k/U(1) is the gauging of the SU(2)k WZW model, and ˺ is the deformation parame-

ter; (ii) the geometrical (sigma-model) interpretation in terms of metric, torsion and dilaton

backgrounds; (iii) the determination of the toroidal partition function and the spectrum

as functions of R. For the SL(2, R) deformations, the available results are less exhaustive,

especially concerning the spectrum and the partition function [20] [30] [55]. Our aim is to

understand the spectra – partition functions – as well as the issue of supersymmetry, when

these deformations appear in a more general set up like the NS5/F1.

12We systematically set the AdS3 radius to one in the expressions for the background fields. One has to

keep in mind, however, that a factor k is missing in the metric. This plays a role when performing T-dualities

by applying the Buscher rules [58] because it can affect the periodicity properties of some coordinates.
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5.1 The J3J̄3 deformation

The J3J̄3 deformation of SL(2, R) is the one that naturally appears by analytically con-

tinuing the deformed SU(2). It was analyzed in [30]. Much like the latter, the metric,

antisymmetric tensor and dilaton can be obtained by considering the SL(2, R)·U(1)/U(1)

coset, where the U(1) in the product is compact with a radius related to the deformation

parameter, and the gauged one is a diagonal combination of the extra U(1) with the “time-

like” U(1) in the SL(2, R), defined by h = exp ī
2̌2. The geometry corresponding to the

J3J̄3-deformed SL(2, R), with deformation parameter ˺ − 1 > 0, is thus found to be

ds2 = dr2 +
− cosh2 rdt2 + ˺ sinh2 rd̏2

˺ cosh2 r − sinh2 r
(5.1)

B =
˺ cosh2 rd̏ ∧ dt

˺ cosh2 r − sinh2 r
, (5.2)

with dilaton

e2Φ = e2Φ0
˺ − 1

˺ cosh2 r − sinh2 r
. (5.3)

The scalar curvature of this geometry is

R = 2

(
1 − tanh2 r

) (
2

(
˺2 − tanh2 r

)
− 5˺

(
1 − tanh2 r

))
(
˺ − tanh2 r

)2 .

Notice that the background fields are usually expected to receive 1/k corrections; hence,

they are valid semi-classically only, except when they are protected by symmetries as in

the unperturbed WZW models.

At ˺ = 1 we recover the AdS3 metric and antisymmetric tensor. For ˺ ≥ 1, the

geometry is everywhere regular whereas for ˺ < 1 the curvature diverges at r = arctanh
√

˺.

Similarly, the string coupling gs = expΦ is finite everywhere for ˺ ≥ 1 and blows up at

r = arctanh
√

˺ for ˺ < 1. This means that the semi-classical approximation fails for ˺ < 1.

The string theory is however well defined. It is actually related by T-duality to the range

˺ > 1 as will be discussed later.

The two endpoints of the deformed background are remarkable:

The ˺ ջ ∞ limit. In this case the background fields become:

ds2 = dr2 + tanh2 rd̏2 − dt2

˺
(5.4)

e−Φ = e−Φ0 cosh r (5.5)

with no antisymmetric tensor. This is the cigar geometry times a free time-like coordinate.

The cigar – Euclidean black hole [19] – is the axial gauging (g ջ hgh) of the U(1) subgroup

defined by h = exp ī
2̌2. It generates time translations (see Eq. (A.7)) and acts without

fixed points. The corresponding geometry is regular and the 2̉-periodicity of ̏ inherited

from the SL(2, R) ensures the absence of conical singularity.

The ˺ ջ 0 limit. Now we recover the trumpet plus a free time-like coordinate:

ds2 = dr2 + coth2 rdt2 − ˺d̏2 (5.6)

e−Φ = e−Φ0 sinh r. (5.7)
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The trumpet is the vector gauging (g ջ hgh−1) of the same U(1), and generates now

rotations around the center (see Eq. (A.7)). Throughout this gauging the time coordinate

becomes space-like and vice-versa. The subgroup acts with fixed points, and this accounts

for the appearance of a singularity at r = 0, which is present no matter the choice for

the periodicity of t (in fact this coordinate is not periodic if we start from the universal

covering of SL(2, R)). Notice also that the time coordinate ̏ is compact, but infinitely

rescaled though.

A similar phenomenon occurs in the J3J̄3 deformation line of the SU(2) WZW model.

The two endpoints are the axial and vector gaugings of SU(2) by a U(1), times a free

boson, at zero or infinite radius. Axial and vector gaugings are identical in the compact

case [38]. They are T-dual descriptions of the same CFT, whose background geometry is

the bell. Therefore, in the compact case, there is a real T-duality relating large and small

deformation parameters. The situation is quite different in the non-compact case.

We would like now to better understand the algebraic point of view and determine

the partition function of the deformed theory at any ˺. To all orders in the deformation

parameter, the deformation acts only on the charge lattice of the Cartan subalgebra along

which the WZW theory is deformed. Therefore, as in the SU(2) case, the deformation at

hand corresponds to a shift of the “radius” of the J3, J̄3 lattice:
√

2k ջ
√

2k˺. The form

(3.3) of the original SL(2, R) partition function enables us to implement this radius shift

in the time-like lattice with the modular-invariant result:

Z33̄(˺) = 4
√

̍2(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

m,w,m′,w′∈Z

˿

[
w + s1 − t1
m + s2 − t2

]
(k) ˿

[
w′ + t1
m′ + t2

]
(−k˺) . (5.8)

We can first expand the spectrum around the symmetric SL(2, R) point (i.e. for ˺ = 1+˾,

|˾| ≪ 1). It allows to express the spectrum in terms of the SL(2, R) quantum numbers.

Using the same techniques as in Appendix C, we first perform a Poisson resummation, and

integrate over t2. We find the exponential factor:

exp

{
−̉̍2˾

[
n2

k
− k(w+ − (w − t1))

2

]

−2̉̍2w+

(
k(w − t1) −

k

2
w+

)
− 2̉̍2s1(q + q̄ + 1 + k(w − t1))

+2ỉs2(q − q̄ − n) − (k − 2)̉̍2s
2
1 + 2ỉ̍1(w+ + s1)n

}
.

The second and third lines are exactly the same as the undeformed SL(2, R) and lead to

the same analysis. For ˾ ≪ 1, the first line gives simply a shift on the weights of the

operators according to their J3
0 ,J̄3

0 eigenvalues:

L˾
0 = L0 −

˾

k

(
m̃ +

k

2
w+

) (
˜̄m +

k

2
w+

)
,

L̄˾
0 = L̄0 −

˾

k

(
m̃ +

k

2
w+

) (
˜̄m +

k

2
w+

)
.
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In terms of the unflowed eigenvalues: m = m̃+kw+/2 , m̄ = ˜̄m+kw+/2, the deformation

term is

˽h = ˽h̄ = −˾mm̄/k

It breaks of course the SL(2, R)L · SL(2, R)R symmetry of the CFT.

In the limits ˺ ջ 0 or ∞, the J3, J̄3 lattice decouples. We then recover a free time-like

boson (of zero or infinite radius) times an SL(2, R)/U(1) coset. By using the large/small-

radius limits presented in Appendix B, we can trace the effect of these limits at the level

of the partition function13:

Z33̄(˺) ջ
˺ջ∞

k − 2√
k̍2̀ ¯̀

ZSL(2,R)/U(1)A (5.9)

with ZSL(2,R)/U(1)A given in (3.2). This is precisely the geometrical expectation since the

large-˺ limit of the background (5.1)–(5.3) is the cigar, Eqs. (5.4), (5.5) describing the

semiclassical geometry of the axial U(1) gauging of SL(2, R). Similarly, we find

Z33̄(˺) ջ
˺ջ0

4
√

k˺(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

m,w∈Z

˿

[
w + s1 − t1
m + s2 − t2

]
(k) . (5.10)

In terms of background geometry, this limit describes the trumpet (Eqs. (5.6)and (5.7))

times a free time-like coordinate. We can therefore read off from expression (5.10) the

partition function of the vector coset:

ZSL(2,R)/U(1)V = 4(k − 2)3/2√̍2̀ ¯̀

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

m,w∈Z

˿

[
w + s1 − t1
m + s2 − t2

]
(k) . (5.11)

The spectrum of primary fields of this coset can be computed straightforwardly, and reads:

Lvector
0 = L̄vector

0 = −j(j − 1)

k − 2
+

̅2

k
, with ̅ = −k

2
(w − t1) ∈ R, (5.12)

both for continuous and discrete representations. The Gaussian variable w − t1 can be

integrated out, and leads to the partition function:

ZSL(2,R)/U(1)V = 4
(k − 2)3/2

√
k

̀ ¯̀

∫
d2s

e
2̉
̍2

(Im(s1̍−s2))2

|̚1 (s1̍ − s2|̍)|2
. (5.13)

The cigar and trumpet geometries are semi-classically T-dual: they are related by

Buscher duality [58]. Any two points (˺, 1/˺) in the above line of deformations are in fact

13The ˺ → ∞ limit requires analytic continuation because the lattice is time-like.
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connected by an element of O(2, 2, R) [30]. However, recalling the spectrum of primaries

of the axial coset:

Laxial
0 = −j(j − 1)

k − 2
+

(n
2 − kw

2 )2

k
, with L̄axial

0 = −j(j − 1)

k − 2
+

(n
2 + kw

2 )2

k
, (5.14)

we observe that they are different from the vector ones. Our previous discussion gives

the explanation for this apparent “failure” of T-duality. The coordinate ̏ in the cigar

metric (5.4) inherits the 2̉
√

2k periodicity (in the asymptotic region r ջ ∞) from the

angular coordinate of AdS3, irrespectively of the cover of SL(2, R) under consideration;

therefore the corresponding lattice in the partition function is compact with radius
√

2k.

However, the t coordinate of the trumpet metric (5.6) is 2̉N
√

2k-periodic, for the N -th

cover of SL(2, R) (see Fig. 1). Consequently, since our original choice was the universal

SL(2,R) point

Axial coset: g   hgh

1
2
  
  
  

n
d

st

C
o
v
er

..
.

Vector coset: g   h gh
−1

3 3
J  J    Deformation line 

Figure 1: The T-duality for the different covers of SL(2, R).

cover of the algebra, the spectrum we found – Eq. (5.12) – corresponds to the “universal

cover” of the trumpet, i.e. with a non-compact transverse coordinate.

The spectrum of the above coset theories has been studied in [59]. In that work,

axial and vector cosets were argued to be T-dual, but the definition used for the T-duality

amounts to exchange the momenta and winding modes of the physical states. In the case of

SL(2, R), this is equivalent to the more rigorous definition of T-duality – residual discrete

symmetry of a broken gauge symmetry – only on the single cover of the group manifold.

Indeed, if we consider the single cover of SL(2, R), we obtain in the limits ˺ ջ 0 and

˺ ջ ∞ the same spectrum of primaries for the vector and axial cosets, Eq. (5.14), but

with different constraints: m̃ � ¯̃m = n, m̃ ∓ ¯̃m = −kw, where plus and minus refer to the

vector and axial cosets respectively.
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Before closing this chapter, we would like to comment on the unitarity of the unde-

formed model. To this end, we consider a small deformation parameterized by ˾:

˺ = 1 − ˾ , ˾ > 0.

Then the quadratic term in Eq. (5.9) is space-like and enables us to perform the energy

integration without any analytic continuation (in fact, we slightly rotate the energy direc-

tion into the light-cone). In the limit ˾ ջ 0 , we obtain a delta-function that gives the

trivial partition function previously discussed. It is possible to analyze this result from

a different perspective. We decompose the characters of the discrete representations e.g.,

by using a non-compact generalization of the Kac̆-Peterson formula [60]: ̐j,+
SL(2,R)(̍) =

∑
m∈N

cj
mq−(j+m)2/k with the string functions cj

m = q−j(j−1)/(k−2)+(j+m)2/k · (oscillators).

Changing the Cartan radius
√

2k ջ ˺
√

2k, ˺ < 1, all characters become convergent.

5.2 The J2J̄2 deformation

The operator J2J̄2 is also suitable for marginal deformations of the theory. It is not

equivalent to J3J̄3 because it corresponds to a choice of space-like Cartan subalgebra

instead of a time-like one. Conversely the corresponding deformation can be realized as

SL(2, R) · U(1)/U(1) where the gauged U(1) is now a diagonal combination of the extra

U(1) factor with SL(2, R) elements of the type h = exp−̄
2̌3.

Owing to the previous discussion, we easily determine the partition function at any

value of the deformation parameter. This is realized by deforming the corresponding cycle

in the Cartan torus, which amounts in shifting the radius of the space-like J2, J̄2 lattice. In

order to present this partition function in a form closer to the one of the J3J̄3 deformation,

we diagonalize J2 instead of J3. This is achieved by redefining the lattice variables in

Eq. (3.3) as:

w + s1 − t1 ջ w − t1 , w′ + t1 ջ w′ + t1 + s1,

m + s2 − t2 ջ m − t2 , m′ + t2 ջ m′ + t2 + s2.

Then we write the following partition function for the J2J̄2 deformation:

Z22̄(˺) = 4
√

̍2(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
·

·
∑

m,w,m′,w′∈Z

˿

[
w − t1
m − t2

]
(k˺) ˿

[
w′ + t1 + s1

m′ + t2 + s2

]
(−k) . (5.15)

Getting the effective geometry is interesting per sei but its systematic analysis goes

beyond the scope of the present work. For extreme deformations, a space-like coordinate

is factorized, and we are left with an SL(2, R)/U(1) coset with Lorentzian target space:

the Lorentzian two-dimensional black hole.

Again the ˺ ջ 0 and ˺ ջ ∞ limits are related by T-duality, which at the level of

the semi-classical geometry describe various space–time regions of the black hole [59]. For

˺ ջ ∞ we obtain:

Z22̄(˺) ջ
˺ջ∞

1√
k˺̍2̀ ¯̀

ZBH (5.16)

– 28 –



with

ZBH = 4
√

̍2(k − 2)3/2 ̀ ¯̀

∫
d2s

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
∑

m′,w′∈Z

˿

[
w′ + s1

m′ + s2

]
(−k). (5.17)

There is a subtlety in the latter expression compared to the ordinary Euclidean axial

black hole (3.2). In the path-integral calculation of the partition function for the Euclidian

coset, the oscillators were coupled to the full real momentum of the free boson. We used

the periodicity of the determinant to break the zero modes into an integer part and a real

compact part. The integer part was interpreted as the lattice of the zero modes of the

compact boson and the real part as Lagrange multipliers which impose constraints on the

Hilbert space. In the present case, we have to perform an analytic continuation in order

to move to the Hamiltonian representation of the partition function,

ZBH = 4
√

k(k − 2)3/2 ̀ ¯̀

∫

R2

d2v
e

2̉
̍2

[Im(i(v1̍−v2))]2
e
− k̉

̍2
|v1̍−v2|2

|̚1 (i(v1̍ − v2)|̍)|2
,

and read the string spectrum. Now, because the coupling is imaginary, the determinant is

no longer periodic; therefore we have a non-compact time-like coordinate coupled to the

oscillators.

5.3 The null deformation

As we already mentioned in Sec. 2.2, the SL(2, R) WZW model allows for extra, uncon-

ventional, marginal deformations, which are not generated by Cartan left-right bilinears

such as J2J̄2 or J3J̄3. Instead, the marginal operator we will consider is the following:

JJ̄ ∼
(
J1 + J3

) (
J̄1 + J̄3

)
,

(see Eqs. (2.15) and (A.8)–(A.13)).

In the holographic dual description, these null currents are the translation generators

of the conformal group acting on the boundary in Poincaré coordinates [61]. We will here

analyze their action from the sigma-model viewpoint and determine the spectrum and

partition function of the deformed model. Supersymmetry issues will be addressed in the

more complete set up of { null-deformed SL(2, R) } · SU(2), in Sec. 6.

We recall that the metric of the deformed background is (see Eqs. (2.9))

ds2 =
du2

u2
+

−dT 2 + dX2

u2 + 1/M2
.

The scalar curvature reads:

R = −2
u2

(
3u2 − 4/M2

)

(u2 + 1/M2)2
.

This geometry is smooth everywhere for M2 > 0. On the opposite, M2 < 0 gives a singular

geometry, which seems however interesting, and corresponds to the repulsion solution [62].

In order to study the null deformation of AdS3, it is useful to introduce a free-field

representation of SL(2, R), in which operators J and J̄ have a simple expression. We first
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introduce ̏ = − log u, ¯˼ = x+ and ˼ = x−. The worldsheet Lagrangian (see Eq. (2.14))14

reads:
2̉

k
L = ∂̏∂̄̏ + e2̏∂ ¯˼∂̄˼. (5.18)

It can be represented with a (˻, ˼) ghost system of conformal dimensions (1, 0):

2̉

k
L = ∂̏∂̄̏ + ˻∂̄˼ + ¯˻∂ ¯˼ − ˻ ¯˻e−2̏. (5.19)

Classically, ˻ and ¯˻ are Lagrange multipliers. They can be eliminated by using their

equations of motion, and this gives back the action (5.18). At the quantum level, how-

ever, we must integrate them out; taking into account the change of the measure and the

renormalization of the exponent, we obtain, after rescaling the fields:

2̉L = ∂̏∂̄̏ + ˻∂̄˼ + ¯˻∂ ¯˼ − ˻ ¯˻e
−

q

2
k−2

̏ −
√

2

k − 2
R(2)̏. (5.20)

The last term is the screening charge necessary to compute correlation functions in the

presence of the background charge for the field ̏ (R(2)-term). The OPE of the free fields

are ̏(z, z̄)̏(0) ∼ − ln(zz̄) and ˻(z)˼(0) ∼ 1/z. By using these free fields, the holomorphic

currents (A.8)–(A.10) are recast, at quantum level, as:

J1 + J3 = ˻,

J2 = −i˻˼ − i

√
k − 2

2
∂̏,

J1 − J3 = ˻˼2 +
√

2(k − 2)˼∂̏ + k∂˼.

They satisfy the ŜL(2, R)L OPA, Eqs. (A.14). Notice finally that the holomorphic pri-

maries of the SL(2, R) CFT read in this basis:

Φj
m = ˼j−me

q

2
k−2

j̏
. (5.21)

The conformal weight of this operator is entirely given by the Liouville primary, whereas the

J2 eigenvalue corresponds to the sum of the “ghost number” and the Liouville momentum.

We can use the above free-field representation to write the null deformation of the

AdS3 sigma model, Eq. (2.16):

2̉L = ∂̏∂̄̏ + ˻∂̄˼ + ¯˻∂ ¯˼ − ˻ ¯˻
[

1

M2
+ e

−
q

2
k−2

̏
]
−

√
2

k − 2
R(2)̏.

For any non-zero value of the deformation parameter, the fields ˻ and ¯˻ can be eliminated,

leading to two light-cone free coordinates. The energy–momentum tensor reads:

T = −1

2
∂̏∂̏ − 1√

2(k − 2)
∂2̏ − M2∂ ¯˼∂˼.

14Note that the Euclidean rotation from SL(2, R) to H+
3 is performed by just considering ˼ and ¯˼ as

complex conjugate.
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We would like to determine the partition function of the model at hand. To this end we

will follow the procedure which has by now become familiar: implement the deformation

into the twist-shift orbifold structure of the AdS3. The ghost number is no longer conserved

because the ghost-number current ˻˼ (equal to ˼∂ ¯˼ exp 2̏, on shell) is not a conformal field

(this means in particular that the fields (5.21) are now ill-defined). However, there is still

a global U(1)symmetry: ˼ ջ ei˺˼, ¯˼ ջ e−i˺ ¯˼ that we can orbifoldize (this is a twist on a

complex boson). However, with this representation it is not possible to implement spectral

flow without adding extra fields; therefore we have to find the action of the deformation

on the zero-mode structure.

Owing the above ingredients, we can construct the partition function that fulfills the

following requirements:

1. The endpoint of the deformation, M2 ջ 0, should give the Liouville theory times a

free light-cone. At M2 ջ ∞ one should recover the undeformed SL(2, R).

2. The partition function must be modular invariant.

This enables us to propose the following partition function for the null-deformed model:

Z null
SL(2,R)

(
M2

)
= 4

√
̍2(k − 2)3/2

∫
d2s d2t

e
2̉
̍2

(Im(s1̍−s2))2

|̚1(s1̍ − s2|̍)|2
· (5.22)

·
∑

m,w,m′,w′∈Z

˿

[
w + s1 − t1
m + s2 − t2

] (
k
1 + M2

M2

)
˿

[
w′ + t1
m′ + t2

] (
−k

1 + M2

M2

)
.

which is obtained by changing the radii of both space-like (J1, J̄1)15 and time-like (J3, J̄3)

lattices by the same amount. It is natural since these moduli correspond to the deformations

along J1 and J3. In the pure SL(2, R) theory, the spectrum is constructed by acting on

the primaries with the modes of the affine currents. The difference with the linear dilaton

model is that the shift of the oscillator number is linked to the shift of the zero modes. In

writing (5.22), which interpolates between these two models, we have implemented that this

shift should vanish at infinite deformation (i.e. M2 = 0), which indeed happens provided

the radius of the lattice of light-cone zero-modes becomes large. We will expand on that

in the next section. In the limit of infinite deformation M2 ջ 0, by using the standard

technology developed so far, we find

Z null
SL(2,R)

(
M2

)
∼ (k − 2)3/2M2

̉2̍
3/2
2 (̀ ¯̀)3

, at M2 ∼ 0.

This coincides with the partition function for U(1)Q · R
1,1.

The derivation of the spectrum goes as previously (see Appendix C). Again, we con-

centrate on the vicinity of the unbroken SL(2, R) (although the spectrum is known at any

M2):
M2

1 + M2
= 1 − ˾ , ˾ ≪ 1.

15or equivalently (J2, J̄2) since they are exchanged by a group transformation

– 31 –



The deformed discrete spectrum is

L0 = −j(j − 1)

k − 2
− w+

(
m̃ +

˾

2
(m̃ + ˜̄m)

)
− k

4
(1 + ˾)w2

+ + N

+
˾(1 − 2j)

2(k − 2)

(
m̃ + ˜̄m +

k

2(k − 2)
(1 − 2j)

)
,

L̄0 = −j(j − 1)

k − 2
− w+

(
˜̄m +

˾

2
(m̃ + ˜̄m)

)
− k

4
(1 + ˾)w2

+ + N̄

+
˾(1 − 2j)

2(k − 2)

(
m̃ + ˜̄m +

k

2(k − 2)
(1 − 2j)

)
. (5.23)

The last terms of both equations are due to the displacement of the poles corresponding to

the discrete representations. For the continuous spectrum, we have a similar shift on the

weights:

L0 =
s2 + 1/4

k − 2
− w+

(
m̃ +

˾

2
(m̃ + ˜̄m)

)
+

k

4
(1 + ˾)w2

+ + N,

L̄0 =
s2 + 1/4

k − 2
− w+

(
˜̄m +

˾

2
(m̃ + ˜̄m)

)
+

k

4
(1 + ˾)w2

+ + N̄

with a deformed density of states. We observe that the deformation term is linked to the

spectral flow.

6. The supersymmetric null deformation of SL(2, R) × SU(2)

So far, we have been considering conformal deformations of the AdS3 background, realized

by marginal deformations of the corresponding SL(2, R) WZW model. In supersymmetric

NS5-brane configurations, the SL(2, R) appears usually along with SU(2). We will here

analyze the issue of supersymmetry in presence of null deformations of the SL(2, R) factor.

We will in particular show that the requirement for the worldsheet N = 2 superconformal

symmetry to be preserved, gives very tight constraints on the allowed deformations.

6.1 The N = 2 algebra of the deformed theory

We first rewrite the N = 2 algebra for SL(2, R) · SU(2), Eqs. (4.9), (4.10) and (4.14) in

the free-field representation (Eqs. (3.9), (3.10)). We recall that Ii are the SU(2) currents,

̑i and ̐i the fermions of respectively SU(2) and SL(2, R):

√
2G� = i

√
2

k + 2

(√
k + 4

2
∂X ∓ i

√
k + 2

2
∂̊

)
e
∓i

q

2
k+4

(X−T )
̐�

+

√
2

k + 2

[
I3 ∓

(√
k + 4

2
i∂T + ̐+̐−

)]
̑3 � ̐3

2
+

√
2

k + 2
I∓̑�, (6.1)

J = ̑3̐3 + ̐+̐− + ̑+̑− +
2

k + 2

[√
k + 4

2
i∂T + ̐+̐− − I3

]
. (6.2)
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The fermions ̐+, ̐− are bosonized as ̐+̐− = i∂H1. Note also a shift k ջ k + 4 with

respect to the formulas for pure AdS3; k is the level of ŜU(2), and this shift ensures that

the total bosonic central charge equals six (see (4.5) and (4.6)).

In [39], a map was given between the free-field representation of the superconformal

algebra for SL(2, R) and the algebra for N = 2 Liouville times two free coordinates. As a

first step towards the supersymmetrization of the null deformation studied previously, we

will show that there exists a one-parameter family of N = 2 algebras interpolating between

SL(2, R) · SU(2) and U(1)Q · R
1,1 · SU(2).

The N = 2 generators (with a non-standard complex structure) are, for U(1)Q·R
1,1·

SU(2),

√
2Ĝ� =

(
i∂X̂ −

√
2

k + 2
i∂Ĥ1 � ∂̊

)
e�iĤ1

+

(√
2

k + 2
I3 ∓ i∂T̂

)
̑3 � ̐3

√
2

+

√
2

k + 2
I∓̑�,

Ĵ = i∂Ĥ1 + ̑3̐3 + ̐+̐− +
2

k + 2

[√
k + 2

2
i∂X̂ − I3

]
,

where T̂ , X̂, are the light-cone coordinates. This is not the usual N = 2 subalgebra of the

N = 4 superconformal algebra (Eqs. (4.3) and (4.4)) of the U(1)Q · SU(2) SCFT.

We now perform the following SO(2, 1) rotation, which leaves unchanged the OPE’s:

Ĥ1 = H1 − tX−,

T̂ = cT + sH1,

X̂ = cX + s(H1 − tX−),

where X− = X − T , and we have introduced:

c = cosh ̌ , t = tanȟ , s = sinȟ = s0/p , with s0 =

√
2

k + 2
and p ≥ 1.

For p = 1, the rotated N = 2 algebra corresponds exactly to the superconformal algebra

of SL(2, R) · SU(2), Eqs. (6.1) and (6.2). Furthermore, one can check that the N = 2

superconformal structure is preserved for any p.

Coming back to the null deformation of SL(2, R)·SU(2), we conclude that the above

one-parameter family of supercurrents can be implemented along the line of deformation.

The N = 2 R-symmetry current of the deformed theory takes the form:

J = ̑3̐3 + ̐+̐− + i∂H1 + ps2

(
1

t
i∂T + i∂H1

)
− s2

0 I3 + (p − 1)t i∂X−,

and the deformed supercurrents read:

√
2G�

2 =
(
s0I3 ∓ i(c ∂T + s ∂H1)

) ̑3 � ̐3

√
2

+ s0I
∓̑�

+ i
[
c ∂X − (s0 − s)

(
∂H1 − t ∂X−)

∓ i∂̊
]
e�i(H1−tX−). (6.3)
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Clearly, the background contains both torsion (in the first line of (6.3)) and a background

charge (in the second line). The field H1 still corresponds to a free complex fermion,

provided we change the radius of the compact light-cone direction:

R̂+ =
2

t
=

√
2 (p2(k + 2) + 2).

The latter statement holds because the deformation is null. It therefore confirms our

assumption (Sec. 5.3) that the null deformation corresponds to a change of the radius of

the compact light-cone coordinate. The relation between this parameterization and the

mass scale introduced in Sec. 2 is, up to 1/k corrections:

1

M2
=

k + 2

k + 4

(
p2 − 1

)
. (6.4)

The holomorphic primary fields for the deformed SL(2, R) are recast as:

Φ
w+, def
j m = exp

{√
2

k + 2
j̏ + it

[(
m̃ − 1

2t2
w+

)
X− +

1

2t2
w+(X + T )

]}
,

where, as in the undeformed theory, m̃ − ˜̄m ∈ Z and m̃ + ˜̄m − 2w+/t2 is the energy. This

gives the following N = 2 charges:

QR = q1 + q2 + q0 − w+ +
2

p(k + 2)
[m̃ + q1 − w+] − 2

k + 2

[
mSU(2) + q2

]

with qi the fermionic charges.

The worldsheet supersymmetry of the deformed theory works similarly to the unde-

formed one (p = 1). In fact, the spectral-flow charge w+ in the first bracket has to be

compensated by a shift of q1, because the spectral-flow symmetry must act on the total

current [52]. We are left with well-normalized charges for I3 and deformed J 3.

6.2 Space–time supersymmetry

The supersymmetry generators of the original SL(2, R) · SU(2) model are given in Eq.

(4.15) with a restriction on the allowed charges captured in (4.18), on top of the usual GSO

projection.

In the deformed theory, these operators are no longer physical with respect to the

supercurrent G = G+ + G− given in Eq. (6.3). The physical spin fields are instead

Θdef
˾ (z) = exp

{
−̞

2
+

i

2

4∑

ℓ=0

˾ℓHℓ +
i

2
˾1(p − 1)t X−

}
. (6.5)

Since the only modification resides in the X− term, it changes neither the conformal

dimensions of these fields nor their mutual locality. By using the same projection as

before, we obtain a set of well-defined physical spin operators. Acting with one of these

operators on a left-moving vertex operator of the NS sector (qℓ ∈ Z),

V (z′) ∼ e−̞Φ
w+, def
j m exp i

4∑

ℓ=0

qℓ Hℓ(z
′),
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gives a leading term behaving like

(z − z′)
1
2{−1+

P4
ℓ=0 ˾ℓqℓ+˾1(p−1)w+}.

We conclude that the locality condition of space–time supercharges with respect to the

states requires the deformation parameter be an odd integer: p ∈ 2Z + 1. Note that since

this quantization condition originates from the massive states (those with w+ 6= 0), it is

not visible in the supergravity analysis. In the limit of infinite deformation, this choice

generates modified space–time supercharges, constructed with H1 − s0X
−. This choice

is not the one obtained from the N = 4 algebra (see Eqs. (4.3) and (4.4)), because the

complex structure for the fermions is different. An appropriate choice, though, avoids

infinite shifts in the spin fields, and allows for reaching a well-defined theory at the limit

of infinite deformation.

At this point we want to discuss the issue of supersymmetry breaking. In type IIB,

the first projection performed in the undeformed theory keeps the spinors (+,2′,2′) and

(−,2,2′) of SO(1, 1) · SO(4) · SO(4)T for both supersymmetry generators. When the

AdS3 factor of the background is deformed in the null direction, the gravitino must be right-

moving in space–time (hence, it depends on X−), which picks up the spinor (−,2,2′). So,

although the number of covariantly constant spinors is reduced by a factor of two in the

deformed background, the number of transverse fermionic degrees of freedom appearing in

the spectrum is the same. A subtlety comes, however, while dealing with the right-moving

sector of the theory. As already mentioned, in WZW models, the right superconformal

algebra is written with a torsion term of opposite sign. The correct torsion for the right

movers in the SL(2, R) factor demands to rotate the fields of SU(2)R · U(1)Q · R
1,1 as:

ˆ̄H1 = H̄1 − tX̄+,
ˆ̄T = cT̄ − sH̄1,
ˆ̄X = cX̄ + s(H1 + tX̄+).

Therefore, the right algebra is written with X̄+ rather than with X̄−. For the undeformed

model this is irrelevant since the two free-field representations are isomorphic. However,

for non-zero deformation, it makes a difference because the right-moving spin fields will be

corrected with X̄+ rather than X̄−:

Θ̄def
¯˾ (z) = exp

{
−̞

2
+

i

2

4∑

ℓ=0

¯˾ℓH̄ℓ + ¯˾1(p − 1)t X̄+

}
.

As a consequence, gravitinos from the right- and left-moving sectors of the worldsheet CFT

propagate in opposite light-cone directions. They give space–time transverse supercharges

(2,2′) from the left and (2′,2′) from the right. In type IIA, the same reasoning leads to

the representations (2,2′) for both generators. The conclusion is that the deformation flips

the chirality of space–time fermions from the right sector.

6.3 The partition function for superstrings on deformed SL(2, R) × SU(2)

As we have seen in the previous analysis, the only necessary modification on the fermionic

part is the flip of chirality for the right-moving fermions. It is implemented by inserting
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(−)FR , where FR is the space–time fermion number for right-movers. This is an orbifold,

that projects out the Ramond states from the untwisted sector, while the twisted sector

restores the Ramond states, with opposite chirality though. The fermionic vertex operators

are thus constructed with exp�i (H1 + (p − 1)t X−) /2. However, since this modification

has no effect on the conformal weights of the spin fields, it does not alter the fermionic

characters in the partition function. The remaining parts of the partition function have

been discussed in previous sections. Putting everything together, we find for the {null-

deformed SL(2, R)} · SU(2) · T 4/Z2:

ZIIB(p) =
Im̍

̀2 ¯̀2
ZSU(2)Z

null
SL(2,R)(p)

1

2

1∑

h,g=0

Ztwisted
T 4/Z2

[
h

g

]

·1

2

1∑

a,b=0

(−)a+b ̚2

[
a

b

]
̚

[
a + h

b + g

]
̚

[
a − h

b − g

]

·1

2

1∑

ā,b̄=0

(−)ā+b̄ 1

2

1∑

h′,g′=0

(−)(1−˽p,1)[āg′+b̄h′+h′g′] ¯̚2

[
ā

b̄

]
¯̚
[
ā + h

b̄ + g

]
¯̚
[
ā − h

b̄ − g

]
,

where p ∈ 2Z + 1 and Z null
SL(2,R)(p) is given in (5.22) with k ջ k + 4; the relation between

p and M2 has been given by Eq. (6.4). The sum over h′ and g′ flips the chirality of the

right-moving fermionic representation for any p 6= 1, according to the left-right asymmetry

discussed in the text.

This is the simplest modular invariant combination of the various ingredients, with the

correct projections dictated by the superconformal invariance. It should, by no means, be

considered as unique, and many other models do exist, which are equally acceptable.

7. Some comments about holography

In this last section of the paper, we will give some remarks about the holographic dual

of string theory in the background (2.9). Since this string theory is exactly solvable and

perturbative everywhere, we can use the gauge/gravity correspondence beyond the super-

gravity approximation. The purpose here is only to identify the non-gravitational dual of

the setup and to explain its relevance to study little string theory. Although the space–time

studied in this paper is constructed as a deformation of AdS3, the holographic interpreta-

tion is different from the undeformed case.

7.1 The D1/D5 setup and AdS/CFT

Let first review briefly the usual holographic dual of the theory of D1/D5-branes [23].

Starting with the supergravity solution of Eqs. (2.1), (2.2) and (2.3), we would like to take

a limit where the theory on the branes is decoupled from the bulk modes. This is obtained

by the low-energy limit:

˺′ ջ 0 , U = r/˺′ fixed

– 36 –



so that the gravitational coupling constant goes to zero. All open-string modes become

infinitely massive and only the zero modes survive; the dual theory is a field theory.

In the above limit, the dimensionless volume of the four-torus has a fixed, finite value:

v̂(T 4) = N1/N5.

Therefore, the dual conformal theory is (1 + 1)-dimensional. In the low-energy limit,

the D1-branes are trapped inside the D5-brane world-volume and can be considered as

string-like instantons of the six-dimensional U(N5) gauge theory of the D5-branes. The

N = (4, 4) superconformal field theory dual to the near-horizon limit of the background

is the Higgs branch of a sigma-model on the moduli space of these instantons, of central

charge c = 6(N1N5 + 1) [23].

In regions of the moduli space where the string coupling is large, the theory is ap-

propriately described in the S-dual frame. The string background is then given by the

WZW theory: SU(2)k · SL(2, R)k+4, where k = N5. Now the constant value of the

six-dimensional string coupling is g6 = N5/N1. Note that, although the number of fun-

damental strings do not appear in the worldsheet CFT description, the string theory is

weakly coupled only for large values of N1.

An interesting feature of this theory is that it is possible to construct directly out of

the worldsheet currents the generators of the space–time Virasoro algebra [9], which act

on the boundary of AdS3.

7.2 The null deformation of AdS3

The null deformation of AdS3 cannot be small; regardless the value of the deformation

parameter, the causal structure of the space–time is completely changed. There is no

longer conformal boundary, but rather an asymptotic flat geometry with a linear dilaton.

Anyway, the deformation parameter can always been scaled to one (if positive) by rescaling

the non-compact coordinates of the light-cone.

From the holographic point of view, the null deformation corresponds to adding an

(infra-red) irrelevant operator in the Lagrangian. It is therefore more appropriate for

holography to start with the holographic dual of the linear dilaton background and perturb

it in the infra-red by a relevant operator.

Our decoupling limit (2.4) is quite different from the standard one. We send the ten-

dimensional string coupling to infinity. Therefore in order to study this part of the moduli

space of the brane theory we have to perform an S-duality. In the dual variables, the limit

under consideration is

g̃s ջ 0 , ˜˺′ fixed , r/g̃s fixed. (7.1)

This looks the same as the little-string-theory limit. However, in the case at hand, the

background contains fundamental strings, which affect the geometry in the vicinity of the

branes. In the limit (7.1) the energy of the D1-branes stretched between the NS5-branes

is kept fixed: ED1 ∼ r/( ˜˺′g̃s). If instead we keep the energy of the fundamental strings

fixed, EF1 ∼ r/ ˜˺′, the contribution of the fundamental strings disappears and we are left

with the “pure” NS5-brane background (see [9]). Another important difference between
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the standard near-horizon limit and the partial near-horizon limit is that the later involves

the decompactification of the torus, in the D-brane picture (we send the asymptotic value

of the dimensionless volume v to infinity). Therefore the dual “gauge” theory should be

six-dimensional; this is again the same as little string theory.

7.3 A little review of little string theory

The little string theory is the decoupled theory living on the world-volume of the NS5-

branes (for a review, see [63]). The world-volume theory is decoupled from the bulk by

taking the limit:

g̃s ջ 0 , ˜˺′ fixed.

This is not a low-energy limit, unlike in the AdS/CFT case. The resulting theory is

interacting and non-local, since it exhibits the T-duality symmetry. In the case of type

IIB string theory, the low-energy limit of LST is a U(N5) gauge theory with N = (1, 1)

supersymmetry and a bare gauge coupling:

g2
Y M = ˜˺′.

The coupling grows at large energy, and additional degrees of freedom, which are identified

as string-like instantons in the low- energy theory, appear at energies of order ˜˺′−1/2. These

instantons are identified with fundamental strings attached to the NS5-branes. In the infra-

red this theory flows to a free fixed point. In the case of type IIA string theory, the infra-red

limit is an N = (2, 0) interacting superconformal theory. It contains tensionless strings.

The conjectured holography of [25] states that this theory is dual to string theory in

the NS5-brane background in the near-horizon limit [1]:

ds2 = dx̅dx̆̀̅̆ + ˜˺′N5

(
d̊2 + dΩ 2

3

)
,

Φ = Φ0 − ̊,

H = 2˜˺′N5 ǫ(Ω3).

In this limit, r/g̃s – the energy of the D1-branes stretched between the NS5-branes – is kept

fixed. This geometry corresponds to the exact conformal field theory SU(2)k·U(1)Q, with

k + 2 = N5 that was discussed in Sec. (4.1.1). This holographic description breaks down

in the region Φ ջ −∞, near the branes, because the string coupling blows up. In the type

IIB case, this is related to the fact that the infra-red fixed point is free. In the type IIA

theory, this strong-coupling region is resolved by lifting the background to M-theory [25];

we obtain the background AdS7 · S4 of eleven-dimensional supergravity in the vicinity of

the M5-branes (distributed on a circle in the eleventh dimension).

As in the AdS/CFT correspondence, on-shell correlators of non-normalizable states

in string theory corresponds to off-shell Green functions of observables in LST. The non-

normalizable states of the NS5-brane background are constructed with the discrete repre-

sentations of the linear dilaton:

V =
(
̑ ¯̑ΦjΦ̄j

)
j+1

e
2j√

2(k+2)
̊
, (7.2)
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where the primary operator of spin j of SU(2) and the fermions are combined into an

operator of spin j +1. From the worldsheet point of view, the operators (7.2) are necessary

to balance the background charge in the correlation functions. The theory contains also

delta-function-normalizable states, from the continuous representations:

V ∼ e

„

− 1√
2(k+2)

+is

«

̊
,

but their holographic interpretation is less clear. In the bulk they are propagating fields

in the linear dilaton background. There is a third class of operators from the discrete

representations, normalizable in the ultraviolet but not in the infra-red:

V ∼ e
−2(j+1)√

2(k+2)
̊
ΦjΦ̄j .

These operators correspond to states localized on the five-branes. When we deform the

theory towards SL(2, R), they become the discrete representations of the unitary spectrum

of SL(2, R).

7.4 Low energy limit, strong coupling and fundamental strings

The decoupling limit of the LST (7.2) does not really make sense for type IIB superstrings

in the deep infra-red region. In fact, as the string coupling blows up here, sending its

asymptotic value to zero does not ensure that the theory living on the branes decouples

from the bulk at very low energies (see [64] for a related discussion). Since the bulk theory

is non-perturbative in this region, the resolution of this puzzle is quite conjectural.

Our background, viewed from the LST side, provides a possible mechanism to better

describe the situation. We first take the worldsheet description of the bulk physics; the

bosonic Lagrangian of the theory is

2̉L = ∂̊∂̄̊ −
√

2

k + 2
R(2)̊ + ∂X+∂̄X− + 2̉LWZW

SU(2)k
+

9∑

i=6

∂Xi∂̄Xi.

Starting from this extremity of the line of marginal deformations, we add at first order the

following (1, 1) operator to the Lagrangian:

˽L ∼ M2e
−

q

2
k+2

̊
∂X+∂̄X−.

It provides a Liouville potential for the linear dilaton and thus regulate the strong-coupling

region. This potential adds a non-trivial “electric” NSNS flux in the background. We know

from our previous analysis that deforming the theory in this way corresponds to adding

fundamental strings in the infra-red region of the background. This operator is a singlet of

SU(2)L · SU(2)R. The brane picture is that, as we go down into the throat (the strong-

coupling region) macroscopic fundamental strings condense in the world-volume of the NS

five-branes.

Now consider the dual, non-gravitational theory living on the D5-branes. The low-

energy bosonic Euclidean action is

Sgauge =

∫
1

˺′gs
Tr F ∧∗F +

i

˺′C0 dt∧dx∧Tr F ∧F +
1

˺′gs

{
DXi ∧ ∗DXi + [Xi, Xj ]2 ∗ I

}
.
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Where C0 is the flux generated by the D1-branes. It is well known that for gauge theories

in dimensions higher than four, field configurations of non-zero energy (instanton-like) have

an infinite action and therefore do not contribute to the path integral. The conclusion is

different in the presence of the D1-brane flux. Starting with any instanton solution in four

dimensions,

∗4F = F,

we can lift it to a field configuration in six dimensions which obey a generalized self-duality

condition:

∗6F = F ∧ dt ∧ dx,

Such a solution is not really an instanton, since it is invariant under time translations.

This configuration is one-half BPS, because it imposes the following fermionic projection

on supersymmetry generators:
1

2

(
1 − ˼6789

)
̀ = 0,

where 6, 7, 8, 9 are the coordinates of the 4-torus in our conventions. The gauge action for

such a solution is

Sgauge =
1

˺′

[
1

gs
+ iC0

] ∫
dt ∧ dx ∧ TrF ∧ F.

In the infra-red, the RR 2-form behaves as:

C0 = − i

gs

[
˺′vU2

gsN1
− 1

]
ջ

Uջ0

i

gs
.

Therefore, the classical action for such a configuration vanish. The conclusion is that, in

presence of the D1-brane flux, an imaginary “theta-like” topological term is added to the

SYM action. Now stringy instanton solutions of the gauge theory are minima of the action

and contribute to the path integral; in the infra-red the theory is not the free SYM fixed

point, but rather the (1 + 1)-dimensional dynamics of these objects.

At this point one can wonder if there are other natural infra-red completions of the

perturbative string background. Another proposal, called “double-scaled little string the-

ory” has been made [4]. The idea is to describe the Higgs phase of the little string theory,

where the NS5-branes are distributed on a circle of radius r0. The double scaling limit

is defined by: g̃s ջ 0, r0/
√

˜˺′ ջ 0. In this limit, the worldsheet dual background is

described by an orbifold of an N = 2 Liouville theory with a potential tensorized with the

coset SU(2)/U(1). By using a duality discussed recently in [65], this theory is argued to

be equivalent to (
SU(2)

U(1)
· SL(2, R)

U(1)

) /
ZN5 .

In this model the strong-coupling throat region of the NS5-branes background is replaced

by the tip of the cigar geometry, so the dilaton value is bounded from above. However,

because of the duality, this model is not continuously connected to the pure NS5-brane

background by a marginal deformation. The holographic interpretation of this mirror

symmetry needs further investigation.
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8. Discussion and conclusions

Let us summarize the main conclusions of this paper. We have shown that a new, inter-

esting decoupling limit for the D1/D5-brane theory (or NS5/F1 in the S-dual description)

exists. It captures not only the infra-red dynamics, but also the full renormalization-

group flow. Furthermore, this theory is free of strong-coupling problems in the bulk, in

contrast with the little-string-theory limit in the moduli space. We have studied this back-

ground mainly from the string worldsheet point of view, since the bulk background in the

NS5/F1 picture is an exactly solvable worldsheet conformal field theory: {null-deformed

SL(2, R)} · SU(2)·(T 4 or K3).

We have first analyzed the undeformed SL(2, R) theory, for which our achievement

is the construction of the partition function for the (Lorentzian) AdS3, including both

discrete and continuous representations, in all the sectors of spectral flow. Our procedure

is to start from the coset theory SL(2, R)/U(1)A, and to reconstruct the SL(2, R) partition

function by coupling the former with a lattice corresponding to the time direction. The

partition function is thus obtained in a linearized form, where the energy integration is

manifest. Although formally divergent, the expression of the partition function contains all

the information about the full spectrum, and behaves as expected in the large-k limit. Upon

integrating the energy, we recover the partition function of [12] [13] [17]. An important

feature of our partition function is that one light-cone direction is compact, whereas the

other is non-compact. This allows for a natural definition of the light-cone Hamiltonian.

The SL(2, R) WZW model is a building block for physically interesting backgrounds,

such as AdS3 · S3 · T 4, which preserve supersymmetry and have a brane origin. We

have written the extended worldsheet superconformal algebra for this theory, although, as

discussed in [9] [50], it is somehow problematic to define the space–time supersymmetry in

that way. In order to implement the projection that leaves unbroken one half of flat-space

supersymmetry, we have chosen to consider superstrings on the T 4/Z2 orbifold point of K3.

This implies only minor modifications in the brane interpretation of the background: the

topological sector of the orbifold corresponds to additional D1-branes with negative charge

(this is clear from the D-brane gravitational couplings), while the microscopic degrees of

freedom living on the branes are different from the T 4 case. We could instead have insisted

on keeping the T 4 as the internal manifold, but then the orbifold action acting on SU(2)·
SL(2, R) – necessary for cutting half of the supersymmetries – would have been more

complicated. The lattice interpretation of the SL(2, R) partition function is a very powerful

tool in the process of understanding marginal deformations in AdS3 backgrounds. We have

considered left-right symmetric bilinears in the currents. For SL(2, R) this amounts to

three different deformations: two marginal deformations corresponding to the two different

choices of Cartan subalgebra, and one marginal deformation along a “null” direction.

The deformation with respect to the time-like generator J3 relates the theory to the

Euclidean black hole SL(2, R)/U(1)A, on one side, and to its T-dual SL(2, R)/U(1)V on

the other side. We have found that the spectra of the two cosets do not match exactly.

This is related to the fact that we have started with a theory on the universal cover of

SL(2, R). The conclusion is different if we take the single cover instead, but then string
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theory does not make sense except at the coset points, because of the presence of closed

time-like curves. The J3 deformation gives a geometry that also interpolates between the

AdS3 geometry (in global coordinates) and the linear dilaton background. In the case at

hand, however, the brane picture – if any – remains to be understood.

Similar considerations hold for marginal deformations driven by the space-like choice

of Cartan generator, namely J2. In the limit of infinite deformation, we obtain now the

Lorentzian two-dimensional black hole.

The case of null deformation of SL(2, R) has attracted most of our attention, because of

its brane interpretation and the underlying decoupling limit. We have reached a modular-

invariant partition function for the purely bosonic case, and extended the whole set up to

the supersymmetric background. We have in particular shown that the physical spin fields,

which give the space–time supercharges, are modified asymmetrically by the background,

and are restricted by the same projection as in the absence of any deformation. The

locality condition for this charges with respect to the string states, however, gives an extra

quantization condition, on the deformation parameter. Therefore, as a superconformal

worldsheet theory, the line of deformation is continuous, but space–time supersymmetry

further selects a discrete subset of deformation points. We observe that, at least for k

large, these special points are such that the O(2, 2, R) transformations of Eq. (2.19) that

give the null-deformed model belong to O(2, 2, Z), i.e. become a discrete line of dualities.

The decoupling limit of the D1/D5-brane configuration that we have presented here,

calls for further holography investigation. In the present paper, the analysis of the holo-

graphic picture of this gravitational background has been very superficial: it provides a

natural infra-red regularization of little string theory, by imposing an upper bound on

the string coupling constant, without changing the asymptotic ultraviolet geometry. More

work is needed to understand it.

There are many other issues that remain open, as for example:

• Study in more detail other realizations of the worldsheet supersymmetry that do not

involve the orbifold of the four-torus.

• Give a complete picture of the AdS3·S3 landscape by means of a systematic analysis

of other supersymmetry-preserving marginal deformations e.g. cosets or limiting

gravitational-wave backgrounds.

• Interpret these backgrounds in terms of brane set-ups.

• Put holography at work; the explicit calculation of correlation functions in the de-

formed theory seems at first sight rather difficult, and needs further investigation.

Finally it is worth stressing that connecting the near-horizon geometry of NS5/F1-

branes (SL(2, R) · SU(2) · U(1)4) with the near-horizon limit for the NS5-branes alone

(R1,1 · U(1)Q · SU(2) · U(1)4) is a step towards the search of an exact CFT description

of a background which is SL(2, R) in some region of space–time and asymptotically flat in

another one.
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A. The SL(2, R) WZW model: a reminder

We collect in this appendix some well-known facts about the SL(2, R) WZW model, within

a consistent set of conventions. The commutation relations for the generators of the

SL(2, R) algebra are

[
J1, J2

]
= −iJ3 ,

[
J2, J3

]
= iJ1 ,

[
J3, J1

]
= iJ2. (A.1)

The sign in the first relation is the only difference with respect to the SU(2). Introducing

J� = iJ1 ∓ J2,

yields16 [
J3, J�]

= �J� ,
[
J+, J−]

= 2J3, (A.2)

which are also valid for SU(2). This is the sℓ(2) algebra. Its representations are the same

for both SL(2, R) and SU(2); only their unitarity properties are different (see e.g. [66]).

The quadratic Casimir for SL(2, R) is defined as:

C2 =
(
J1

)2
+

(
J2

)2 −
(
J3

)2
= −1

2

(
J+J− + J−J+

)
−

(
J3

)2
, (A.3)

and its eigenvalues parametrized by17 C2 = j(1 − j).

Irreducible representations of the above algebra are essentially of two kinds: discrete

D∓(j) or continuous principal Cp(b, a) and continuous supplementary Cs(j, a). The dis-

crete ones have highest (D−) or lowest (D+) weight, whereas the continuous ones do not.

The spin j of the discrete representations is real18, and their states are labelled by |jm〉,
m = ∓j,∓j ∓ 1,∓j ∓ 2, . . . For the principal continuous ones, j = 1

2 + ib, b > 0, and the

magnetic number is m = a, a � 1, a � 2, . . . , −1
2 ≤ a < 1

2 , a, b ∈ R; for the supplementary

continuous ones, 0 < j ≤ 1
2 and −1

2 ≤ a < 1
2 , with the constraint

∣∣j − 1
2

∣∣ < 1
2 − |a|,

a, j ∈ R. These representations are unitary and infinite-dimensional; D�(j) become finite-

dimensional when j is a negative integer or half-integer, and are non-unitary for any nega-

tive j. Notice finally that the quadratic Casimir C2 is positive for both continuous series;

for the discrete ones it is positive or negative when 0 < j < 1 or 1 < j, respectively.

16In some conventions J� = J1 ± iJ2, as for SU(2).
17There is an arbitrariness in the sign of C2, as well as on that of j. The ones we consider here are the

most popular in the community. However, the most efficient are the opposite ones both for C2 and j, since

they allow for a unified presentation of SU(2) and SL(2, R) representations.
18In order to avoid closed time-like curves, we are considering the universal covering of SL(2, R). There-

fore, j is not quantized.
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The three-dimensional anti-de Sitter space is the universal covering of the SL(2, R)

group manifold. The latter can be embedded in Minkowski space with signature (−, +, +,−)

and coordinates (x0, x1, x2, x3) – we set the radius to one:

g =

(
x0 + x2 x1 + x3

x1 − x3 x0 − x2

)
. (A.4)

The Poincaré patch introduced in the Gauss decomposition, (u, x�) ∈ R
3 covers exactly

once the SL(2, R). Comparing Eqs. (2.13) and (A.4) yields

x0 + x2 =
1

u
, x1 � x3 =

x�

u
, x0 − x2 = u +

x+x−

u
.

The metric and antisymmetric tensor read:

ds2 =
du2 + dx+dx−

u2
, H = dB =

du ∧ dx+ ∧ dx−

u3
. (A.5)

The isometry group of the SL(2, R) group manifold is generated by left or right actions

on g: g ջ hg or g ջ gh ∀h ∈ SL(2, R). From the four-dimensional point of view, it is

generated by the Lorentz boosts or rotations ˿ab = i (xa∂b − xb∂a) with xa = ̀abx
b. We

list here explicitly the six generators in the Poincaré coordinates, as well as the action they

correspond to:

L1 =
1

2
(˿32 − ˿01) = −i

(
x−

2
u∂u +

1

2

(
(x−)2 − 1

)
∂− − u2

2
∂+

)
, g ջ e−

̄
2
̌1

g,

L2 = −1

2
(˿02 − ˿31) = −i

(
1

2
u∂u + x−∂−

)
, g ջ e−

̄
2
̌3

g

L3 =
1

2
(˿03 − ˿12) = i

(
x−

2
u∂u +

1

2

(
(x−)2 + 1

)
∂− − u2

2
∂+

)
, g ջ ei ̄

2
̌2

g,

R1 =
1

2
(˿01 + ˿32) = i

(
x+

2
u∂u +

1

2

(
(x+)2 − 1

)
∂+ − u2

2
∂−

)
, g ջ ge

̄
2
̌1

,

R2 =
1

2
(˿31 − ˿02) = −i

(
1

2
u∂u + x+∂+

)
, g ջ ge−

̄
2
̌3

R3 =
1

2
(˿03 + ˿12) = −i

(
x+

2
u∂u +

1

2

(
(x+)2 + 1

)
∂+ − u2

2
∂−

)
, g ջ gei ̄

2
̌2

.

Both sets satisfy the algebra (A.1). Notice also that in terms of Euler angles defined by

g = ei(t+̏)̌2/2eř1ei(t−̏)̌2/2, (A.6)

L3 and R3 simplify considerably:

L3 + R3 = −i∂t , L3 − R3 = −i∂̏; (A.7)

these generate time translations and rotations around the center.
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We will now focus on the WZW model on SL(2, R). The above isometries turn into

symmetries of the action displayed in Eq. (2.12), leading thereby to conserved currents.

In writing Eq. (2.14), we have chosen a gauge for the B field:

B = − 1

2u2
dx+ ∧ dx−.

The two-form is not invariant under R1,3 and L1,3, and the action (2.14) leads correspond-

ingly to boundary terms which must be properly taken into account in order to reach the

conserved currents. The latter can be put in an improved-Noether form, in which they

have only holomorphic (for Li’s) or anti-holomorphic (for Rj ’s) components. These are

called J i(z) and J̄ j(z̄) respectively. Their expressions are the following:

J1(z) � J3(z) = − k

8̉
Tr

(
̌1 ∓ ǐ2

)
∂g g−1, J2(z) = − k

8̉
Tř3∂g g−1,

J̄1(z̄) � J̄3(z̄) =
k

8̉
Tr

(
̌1 � ǐ2

)
g−1∂̄g, J̄2(z̄) = − k

8̉
Tř3g−1∂̄g.

These yield in Poincaré coordinates:

J1 + J3 = − k

4̉

∂x+

u2
= − k

4̉
J (A.8)

J1 − J3 =
k

4̉

(
2x−∂u

u
− ∂x− + (x−)2

∂x+

u2

)
(A.9)

J2 =
k

4̉

(
∂u

u
+ x−∂x+

u2

)
, (A.10)

J̄1 + J̄3 =
k

4̉

∂̄x−

u2
=

k

4̉
J̄ (A.11)

J̄1 − J̄3 =
k

4̉

(
−2x+ ∂̄u

u
+ ∂̄x+ − (x+)2

∂̄x−

u2

)
(A.12)

J̄2 =
k

4̉

(
∂̄u

u
+ x+ ∂̄x−

u2

)
, (A.13)

where J and J̄ are the null currents introduced in Eq. (2.15).

At the quantum level, these currents, when properly normalized, satisfy the following

ŜL(2, R)L · ŜL(2, R)R OPA19:

J3(z)J3(0) ∼ − k

2z2
,

J3(z)J�(0) ∼ �J�

z
, (A.14)

J+(z)J−(0) ∼ 2J3

z
− k

z2
,

19In some conventions the level is x = −k. This allows to unify commutation relations for the affine
cSL(2, R)x and dSU(2)x algebras. Unitarity demands x < −2 for the former and 0 < x with integer x for the

latter.
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and similarly for the right movers. Equivalently on the modes of these currents generate

the affine Lie algebra:

[
J3

n, J3
m

]
= −k

2
n˽m,−n,

[
J3

n, J�
m

]
= �J�

n+m,
[
J+

n , J−
m

]
= 2J3

n+m − kn˽m,−n.

The Virasoro algebra generators of the conformal field theory are built out of these

currents:

L0 =
−1

k − 2

[
1

2

(
J+

0 J−
0 + J−

0 J+
0

)
+ (J3

0 )2 +

∞∑

m=1

(
J+
−mJ−

m + J−
−mJ+

m + 2J3
−mJ3

m

)
]

Ln =
−1

k − 2

∞∑

m=1

(
J+

n−mJ−
m + J−

n−mJ+
m + 2J3

n−mJ3
m

)
.

The central charge is c = 3 + 6/(k − 2).

Lowest-weight representation of this CFT can be constructed by using the standard

rule: start with a set of primary states annihilated by the operators J i
n with n ≥ 1; these

ground states fall into representations of the global algebra generated by the zero modes

J�,3
0 . The module is then constructed by acting with the creation operators J i

−n (n ≥ 1).

Because the metric of the algebra is indefinite, the representations of the affine algebra

will contain negative norm states, and the CFT is not unitary. However, by using the Vira-

soro constraints it is possible to construct a unitary string theory containing the SL(2, R)

CFT. Since the level 0 generators commute with the Virasoro algebra, the spectrum of the

string theory must be constructed out of unitary representations of SL(2, R). The unitary

representations relevant here are: the discrete representations D�(j) with j > 0 and the

principal continuous representations Cp(b, a). The second step in the proof of the unitarity

of the spectrum is to show that the negative norm states obtained with the creation opera-

tors are removed at each level by the Virasoro constraints. For the discrete representations,

this is true only if the spin of the allowed representations is bounded: 0 < j < k/2. This

is not consistent with the general structure of string theory ; in fact assuming that the in-

ternal CFT contributes positively to L0, this restriction on the spin puts an absolute upper

bound on the level of string excitations: N ≤ 1+k/4. The case of continous representations

is worse: the only allowed states are tachyons.

From the representations given above, it is possible to construct new ones by acting

with an automorphism of the affine algebra called spectral flow (w ∈ Z):

J̃3
n = J3

n − k

2
w ˽n,0,

J̃�
n = J�

n�w.

This solves the above consistency problem. The eigenvalues of the states are then shifted

according to:

m̃ = m − k

2
w , ˜̄m = m̄ − k

2
w,
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and the Virasoro generators as:

L̃n = Ln + wJ3
n − k

4
w2˽n,0 = Ln + wJ̃3

n +
k

4
w2˽n,0.

The flowed representations obtained from the lowest-weight representations constructed

above are generically not bounded from below ; after imposing the Virasoro constraints,

one can show that the physical spectrum of the string theory still contains only positive

norm states.

B. Free-boson conformal blocks

The generic conformal blocks for a free compactified boson are the U(1) characters,

˿

[
̒

̅

] (
R2

)
=

R√
̍2

exp−̉R2

̍2
|̒̍ − ̅|2 , (B.1)

where R is the compactification radius (imaginary for a time-like boson), and ̒, ̅ need

not be integers.

The partition function for an ordinary, free compactified boson reads (in the Lagrangian

representation):

Z(R) =
Γ1,1(R)

̀ ¯̀
=

1

̀ ¯̀

∑

m,w∈Z

˿

[
w

m

] (
R2

)
. (B.2)

Notice that for (̒, ̅) ∈ R
2 in (B.1), a modular-invariant combination is provided by

Z̃(R) =
1

̀ ¯̀

∫

R2

d̒ d̅R2 ˿

[
̒

̅

] (
R2

)
(B.3)

=
R√
̍2̀ ¯̀

, (B.4)

which is the partition function of a decompactified free boson (the measure d̒ d̅R2 ensures

the correct scaling of with R).

Bosons can also be twisted or shifted. This corresponds to ordinary or freely acting

orbifolds. We will first focus on ZN shifts, whose spectra are also captured in Eq. (B.1).

The shifted-partition-function sectors read in this case:

Z

[
h

g

]
(R) =

Γ1,1

[
h
g

]
(R)

̀ ¯̀
=

1

̀ ¯̀

∑

m,w∈Z

˿

[
w + h/N

m + g/N

] (
R2

)
, h, g ∈ {0, . . . , N − 1}, (B.5)

and satisfy the periodicity conditions

Z

[
h

g

]
(R) = Z

[
h + N

g

]
(R) = Z

[
h

g + N

]
(R). (B.6)

The basic properties of the quantities introduced so far are summarized as follows:

̍ ջ ̍ + 1 : ˿

[
̒

̅

] (
R2

)
ջ ˿

[
̒

̅ − ̒

] (
R2

)
,

̍ ջ −1

̍
: ˿

[
̒

̅

] (
R2

)
ջ |̍ |˿

[
̅

−̒

] (
R2

)
,
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and

1

N

N−1∑

h,g=0

Z

[
h

g

]
(R) = Z

(
R

N

)
. (B.7)

Notice finally that the duality symmetry of the partition function (B.2), namely Z(R) =

Z
(
R−1

)
, does not survive the ZN shift. This becomes clear in the following identity,

obtained by double Poisson resummation:

∑

m,w∈Z

˿

[
w + h/N

m + g/N

] (
R−2

)
=

∑

y,n∈Z

e
2ỉ
N

(ng−yh)˿

[
n

y

] (
R2

)
.

As a consequence, the two limits (R ջ 0 or ∞) of (B.5) are distinct:

Z

[
h

g

]
(R) ջ

Rջ∞

{
R/

√
̍2̀ ¯̀ for h = g = 0,

0 otherwise,
(B.8)

whereas

Z

[
h

g

]
(R) ջ

Rջ0

1

R
√

̍2̀ ¯̀
∀h, g, (B.9)

up to exponentially suppressed terms20.

We now consider ZN twists of a two-torus, for N ≤ 4. The corresponding sums read:

Z2,2

[
2h/N

2g/N

]
=

Γ2,2(T, U)

̀2 ¯̀2
for h = g = 0,

= 4
̀ ¯̀∣∣∣̚

[1+2h/N
1−2g/N

]
(0|̍)

∣∣∣
2 sin2 ̉

Λ(h, g)

N
otherwise, (B.10)

where T, U are the usual T 2-compactification moduli. Here Λ(h, g) is an integer which is

correlated to the number of fixed points of the torus, depending of the twisted sector under

consideration. In the case of a T 4, the ZN twists give rise to twisted sectors which are the

square of the those given in Eq. (B.10). The T 2/ZN twisted partition function reads:

Ztwisted
T 2/ZN

(T, U) =
1

N

N−1∑

h,g=0

Z2,2

[
2h/N

2g/N

]
. (B.11)

Shifts and twists can be combined. We will consider here two cases, which happen to

play a role in the analysis of the SL(2, R) and of its cosets. The first is a ZN orbifold of

a compact boson of radius R times a two-torus. The ZN acts as a twist on the T 2 and

as a shift on the orthogonal S1. The order of the orbifold is restricted to N ≤ 4 by the

20When h/N and g/N become continuous variables, ˽-functions appear, which must be carefully normal-

ized.
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symmetries of the lattice of the two-torus. The partition function for this model reads:

ZZN
=

1

N

N−1∑

h,g=0

Γ1,1

[
h
g

]
(R)

̀ ¯̀
Z2,2

[
2h/N

2g/N

]

=
1

N

Γ1,1(R) Γ2,2(T, U)

̀3 ¯̀3

+
1

N

∑

(h,g) 6=(0,0)

4 sin2 ̉
Λ(h, g)

N

e2̉̍2h2/N2

∣∣∣̚1

(
h̍−g

N |̍
)∣∣∣

2

∑

m,w∈Z

˿

[
w + h/N

m + g/N

] (
R2

)
. (B.12)

Similarly, we can consider a ZN · ZN orbifold of four free bosons. The first ZN acts

as a shift on a compact boson of radius R1 and as a twist on a T 2; the second ZN acts as a

shift on the compact boson of radius R1 and similarly on another compact boson of radius

R2. The partition function now reads:

ZZN·ZN
=

1

N2

N−1∑

h1,g1=0

N−1∑

h2,g2=0

Γ1,1

[
h1−h2

g1−g2

]
(R1)

̀ ¯̀

Γ1,1

[
h2

g2

]
(R2)

̀ ¯̀
Z2,2

[
2h1/N

2g1/N

]

=
1

N2

Γ1,1(R1) Γ1,1(R2) Γ2,2(T, U)

̀4 ¯̀4

+
1

N2

∑

(h1,g1) 6=(0,0)

Γ1,1

[
h1

g1

]
(R1) Γ1,1(R2)

̀2 ¯̀2
Z2,2

[
2h1/N

2g1/N

]

+
1

N2

∑

(h2,g2) 6=(0,0)

Γ1,1

[−h2

−g2

]
(R1) Γ1,1

[
h2

g2

]
(R2) Γ2,2(T, U)

̀4 ¯̀4

+
1

N2

1

̀ ¯̀

∑

(h1,g1) 6=(0,0)

∑

(h2,g2) 6=(0,0)

4 sin2 ̉
Λ(h1, g1)

N

e2̉̍2h2
1/N2

∣∣∣̚1

(
h1̍−g1

N |̍
)∣∣∣

2 ·

·
∑

m1,w1,m2,w2∈Z

˿

[
w1 + (h1 − h2)/N

m1 + (g1 − g2)/N

] (
R2

1

)
˿

[
w2 + h2/N

m1 + g2/N

] (
R2

2

)
. (B.13)

Models based on freely acting orbifolds exhibit rich decompactification properties [67]

[68] [69], which are due to the breaking of the duality symmetries. There are two limits of

interest21 here:

ZZN·ZN
ջ

R2ջ0

1

R2
√

̍2̀ ¯̀
Z

(
R1

N

)
Ztwisted

T 2/ZN
(T, U) (B.14)

and

ZZN·ZN
ջ

R2ջ∞
R2

N
√

̍2̀ ¯̀
ZZN

(R1, T, U) (B.15)

obtained by using the above equations. In the first limit the two circles decouple from the

T 2, and the only reminiscence of the second ZN shift is the rescaling R1/N . In the second

limit, only the decompactifying circle decouples.

21Similarly, for R1 → 0 or ∞, we obtain respectively (B.14) or (B.15), with R1 ↔ R2.

– 49 –



C. Derivation of the spectrum

C.1 The spectrum of SL(2, R)

In this appendix we solve for the constraints s1 and s2 to obtain the spectrum of SL(2, R),

following the lines of [14] and [18]. The total exponential factor in (3.4) after expanding

the ̚1 function and integrating t2 is

exp

{
− ̉̍2k(w+ + s1)(w− − 2t1 + s1) − 2ỉ̍1n(w+ + s1)

+2ỉns2 − 4̉̍2
1

4(k − 2)
+ 2̉̍2s

2
1 − 2̉̍2 (q + q̄ + 1) s1

+2ỉ̍1 (q − q̄) s1 − 2ỉ (q − q̄) s2 − 2̉̍2

(
N + N̄

)
+ 2ỉ̍1

(
N − N̄

) }
,

where q is the number of J+
n<0 minus J−

n<0 operators acting on the ground state, and

similarly for q̄. The integration over s2 gives simply the constraint: q − q̄ = n. The

remaining integration over s1 reads:

∫ 1

0
ds1 exp

{
−2̉̍2s1 (k(w − t1) + q + q̄ + 1) − (k − 2)̉̍2s

2
1

}
.

As in [18], we introduce an auxiliary variable s in order to integrate the constraint:

exp
{
−2̉̍2s1 (k(w − t1) + q + q̄ + 1) − (k − 2)̉̍2s

2
1

}

= 2

√
̍2

k − 2

∫ +∞

−∞
ds exp

{
−4̉̍2

s2

k − 2
− 2̉̍2 (2is + q + q̄ + 1 + k(w − t1)) s1

}
.

We would like to emphasize that s is not just an auxiliary variable but stands for the

momentum of the Liouville field coupled to the other degrees of freedom of the theory. At

this stage, the interpretation of the partition function is clear in the free-field representation

(see Sec. 3.2). In this case, the BRST constraint relates the Liouville momentum, the

oscillator number and the lattice of the light-cone coordinates. The integration over s1

gives finally

e−4̉̍2
s2

k−2

̉
√

̍2(k − 2)

[
1

2is + q + q̄ + 1 + k(w − t1)
− e−2̉̍2(2is+q+q̄+1+k(w−t1))

2is + q + q̄ + 1 + k(w − t1)

]
.

We complete the square in the second term by shifting the integration contour of s in the

complex plane: s ջ s− i(k− 2)/2. We thus pick up residues corresponding to the discrete

representations, for

Ims =
q + q̄ + 1 + k(w − t1)

2
.

These poles are located in the strip

−(k − 2) < q + q̄ + 1 + k(w − t1) < 0,
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and correspond to the states of the discrete spectrum, obeying the constraint

m̃ + ˜̄m = 2j + q + q̄ = −k(w − t1).

Hence, we obtain the discrete representations in the correct range given in [13]:

1

2
< j <

k − 1

2
.

We note here that due to the continuous shift t1 the spin is not quantized by the constraint.

Putting all factors together, we obtain the following weights for the discrete spectrum:

L0 = −j(j − 1)

k − 2
+ w+

(
−m̃ − k

4
w+

)
+ N,

L̄0 = −j(j − 1)

k − 2
+ w+

(
− ˜̄m − k

4
w+

)
+ N̄ .

The remaining part of the partition function reads:

∑

w,w+

∫
ds

[
1

2is + q + q̄ + 1 + k(w − t1)
− e−2̉̍2(q+q̄+k(w−t1+1/2))

2is + q + q̄ − 1 + k(w − t1 + 1)

]
·

· exp

{
−2̉̍2

(
2

s2

k − 2
+ kw+

(
w − t1 −

w+

2

)
+ N + N̄ − 2

)
+ 2ỉ̍1

(
N − N̄ − nw+

)}
.

In order to identify the continuous part of the spectrum, we note that the exponent of the

second term, namely

−2̉̍2

(
2

s2

k − 2
+ 2(w+ + 1)

(
k(w − t1) −

k

2
− k

4
(w+ + 1)

)
+ N + q + N̄ + q̄ − 2

)
,

can be seen as the spectral flow by one unit of the w+ sector of the theory: w+ ջ w+ + 1,

m ջ m − k/2, m̄ ջ m̄ − k/2, N ջ N + q, N̄ ջ N̄ + q̄. We can then combine the first

term from the w+ sector and the second term from the flowed w+ − 1 sector to obtain:

∑

w,w+

∫
ds

[
1

2is + q + q̄ + 1 + k(w − t1)
− 1

2is + q + q̄ − 1 + k(w − t1)

]
·

· exp

{
−2̉̍2

(
s2

k − 2
+ kw+

(
w − t1 −

w+

2

)
+ N + N̄ − 2

)
+ 2ỉ̍1

(
N − N̄ − nw+

)}
.

The second line represents the density of long-string states, and gives a divergence while

summing over q. By regularizing the sum as explained in [14],

∞∑

r=0

1

A + r
e−rǫ = log ǫ − d

dA
log Γ(A),

we obtain the density of states of the continuous spectrum:

̊(s) =
1

̉
log ǫ +

1

4̉i

d

ds
log

Γ
(

1
2 − is − m̃

)
Γ

(
1
2 − is + ˜̄m

)

Γ
(

1
2 + is − m̃

)
Γ

(
1
2 + is + ˜̄m

) .
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The weights of the continuous spectrum are

L0 =
s2 + 1/4

k − 2
+ w+

(
−m̃ − k

4
w+

)
+ N,

L̄0 =
s2 + 1/4

k − 2
+ w+

(
− ˜̄m − k

4
w+

)
+ N̄ ,

with m̃ + ˜̄m = −k(w − t1) and m̃ − ˜̄m = n. Therefore we have identified both types of

representations, including the sectors obtained by spectral flow.

C.2 The spectrum of the null-deformed SL(2, R)

We now derive the first-order spectrum of the null-deformed SL(2, R) theory, whose par-

tition function is given in (5.22).We expand, as previously, all oscillator terms and obtain

the overall exponential factor

exp

{
− 2̉̍2˺kw+(w − t1 − w+/2) − 4̉̍2

s2 + 1/4

k − 2
− 2ỉ̍1nw+

+2ỉs2(n − q + q̄) − 2̉̍2

(
2i

√
˺k − 2

k − 2
s + q + q̄ + 1 + ˺k(w − t1)

)
s1

}
,

where

˺ =
M2 + 1

M2
.

After integrating over s1 we are left with

exp
{
−4̉̍2

s2+1/4
k−2

}

2̉̍2

(
2i

√
˺k−2
k−2 s + q + q̄ + 1 + ˺k(w − t1)

)

−
exp

{
−2̉̍2

(
2 s2+1/4

k−2 + 2i
√

˺k−2
k−2 s + q + q̄ + 1 + ˺k(w − t1)

)}

2̉̍2

(
2i

√
˺k−2
k−2 s + q + q̄ + 1 + ˺k(w − t1)

) .

As previously, we complete the square in the second term by shifting the Liouville momen-

tum:

s ջ s − i

2

√
(˺k − 2)(k − 2).

The poles corresponding to the discrete representations are now

Im(s) =
1

2

√
k − 2

˺k − 2
[q + q̄ + 1 + ˺k(w − t1)] ;

they are located in the strip:

−
√

(˺k − 2)(k − 2) < q + q̄ + 1 + ˺k(w − t1) < 0.
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The deformed discrete spectrum, for ˺ = 1 + ˾, ˾ ≪ 1, reads:

L0 = −j(j − 1)

k − 2
− w+

(
m̃ +

˾

2
(m̃ + ˜̄m)

)
− k

4
(1 + ˾)w2

+ + N

+
˾(1 − 2j)

2(k − 2)

(
m̃ + ˜̄m +

k

2(k − 2)
(1 − 2j)

)
,

L̄0 = −j(j − 1)

k − 2
− w+

(
˜̄m +

˾

2
(m̃ + ˜̄m)

)
− k

4
(1 + ˾)w2

+ + N̄

+
˾(1 − 2j)

2(k − 2)

(
m̃ + ˜̄m +

k

2(k − 2)
(1 − 2j)

)
. (C.1)

The last terms of both equations are due to the displacement of the poles corresponding to

the discrete representations. By using the parameterization considered in the supersym-

metric model, ˺k = p2(k − 2) + 2, the expressions are simpler: the poles of the discrete

representations are now located at

Im(s) =
1

2p

[
q + q̄ + 1 +

(
2 + (k − 2)p2

)
(w − t1)

]
,

inside the strip

−p(k − 2) < q + q̄ + 1 +
(
2 + (k − 2)p2

)
(w − t1) < 0.

If we define, by analogy with the undeformed theory:

2Im(s) ≡ 1 − 2j,

we find the discrete spectrum:

L0 = −j(j − 1)

k − 2
− w+

(
j + q +

1 − p

2
(1 − 2j)

)
− p2(k − 2) + 2

4
w2

+ + N,

L̄0 = −j(j − 1)

k − 2
− w+

(
j + q̄ +

1 − p

2
(1 − 2j)

)
− p2(k − 2) + 2

4
w2

+ + N̄ .

For the continuous spectrum, we use the spectral flow as in the undeformed case:





1

2i
√

˺k−2
k−2 s + q + q̄ + 1 + ˺k(w − t1)

− 1

2i
√

˺k−2
k−2 s + q + q̄ − 1 + ˺k(w − t1 + 1)



 ·

exp

{
−2̉̍2

(
2
s2 + 1/4

k − 2
− w+˺k(w − t1) −

˺k

2
w2

+ + N + N̄

)
+ 2ỉ̍1

(
N − N̄ − nw+

)}
.

This gives the deformed continuous spectrum at first order:

L0 =
s2 + 1/4

k − 2
− w+

(
m̃ +

˾

2
(m̃ + ˜̄m)

)
+

k

4
(1 + ˾)w2

+ + N,

L̄0 =
s2 + 1/4

k − 2
− w+

(
˜̄m +

˾

2
(m̃ + ˜̄m)

)
+

k

4
(1 + ˾)w2

+ + N̄ ,

– 53 –



with the density of long-string states:

̊(s) = 1
̉ log ǫ + 1

4̉i
d
ds log

Γ
(

1
2 − i

(
1 + kǫ

2(k−2)

)
s − m̃ − m̃+ ˜̄m

2 ǫ
)

Γ
(

1
2 + i

(
1 + kǫ

2(k−2)

)
s − m̃ − m̃+ ˜̄m

2 ǫ
) ·

·
Γ

(
1
2 − i

(
1 + kǫ

2(k−2)

)
s + ˜̄m + m̃+ ˜̄m

2 ǫ
)

Γ
(

1
2 + i

(
1 + kǫ

2(k−2)

)
s + ˜̄m + m̃+ ˜̄m

2 ǫ
) .

D. Theta functions

We recall here the basic properties of Jacobi functions. Our conventions are

̚

[
a

b

]
(v|̍) =

∑

p∈Z

ẻi̍(p+a
2 )

2
+2̉i(v+ b

2)(p+a
2 )

a, b ∈ R, so that

̚1 = ̚

[
1

1

]
, ̚2 = ̚

[
1

0

]
, ̚3 = ̚

[
0

0

]
, ̚4 = ̚

[
0

1

]
.

We also recall that

̚1(v|̍) = −2q1/8 sin̉v
∞∏

m=1

(
1 − e2ỉvqm

)
(1 − qm)

(
1 − e−2ỉvqm

)
,

̀(̍) = q1/24
∞∏

m=1

(1 − qm),

and

̚′
1 = −2̉̀3 = −̉̚2̚3̚4,

where the prime stands for ∂v|v=0. Notice that

|̚1(a̍ + b|̍)|2 = e2̉̍2a2

∣∣∣∣̚
[
1 + 2a

1 + 2b

]
(0|̍)

∣∣∣∣
2

,

which leads in particular to the following:
∣∣∣∣̚

[
1 + 2h/N

1 − 2g/N

]
(0|̍)

∣∣∣∣ = e−̉̍2h2/N2

∣∣∣∣̚1

(
h̍ − g

N
|̍

)∣∣∣∣ . (D.1)

Finally, the Riemann identity22 reads:

1

2

1∑

a,b=0

(−1)a+b+̅ab̚

[
a

b

]
(v0)

3∏

j=1

̚

[
a + hj

b + gj

]
(vj) = (D.2)

= ̚

[
1

1

] (
(−)̅+1v0 −

∑
j vj

2

)
3∏

j=1

̚

[
1 − hj

1 − gj

](
(−)̅+1v0 + ⋅ ⋅ ⋅ − vj + ⋅ ⋅ ⋅ )

2

)
,

where the parameter ̅ = 0 or 1, and
∑

j hj =
∑

j gj = 0.

22We use the short-hand notation ̚
ˆ
a

b

˜
(v) for ̚

ˆ
a

b

˜
(v|̍).
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[21] C. Klimčik and A.A. Tseytlin, “Exact four-dimensional string solutions and Toda like sigma

models from “null-gauged” WZNW theories”, Nucl. Phys. B424 (1994) 71 [arXiv:

hep-th/9402120].

[22] A. Giveon, D. Kutasov and O. Pelc, “Holography for non-critical superstrings”, JHEP 9910

(1999) 035 [arXiv: hep-th/9907178].

[23] J.M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [arXiv:

hep-th/9711200].

[24] H.J. Boonstra, K. Skenderis and P.K. Townsend, JHEP 9901 (1999) 003 [arXiv:

hep-th/9807137].

[25] O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, “Linear dilatons, NS5-branes and

holography”, JHEP 9810 (1998) 004 [arXiv: hep-th/9808149].

[26] N. Seiberg, “New theories in six dimensions and matrix description of M-theory on T 5 and

T 5/Z2”, Phys. Lett. B408 (1997) 98 [arXiv: hep-th/9705221].

[27] J.R. David, G. Mandal and S.R. Wadia, “Microscopic formulation of black holes in string

theory”, Phys. Rept. 369 (2002) 549 [arXiv: hep-th/0203048].

[28] J. de Boer, “Six-dimensional supergravity on S3· AdS3 and 2d conformal field theory”,

Nucl. Phys. B548 (1999) 139 [arXiv: hep-th/9806104].

[29] S.F. Hassan and A. Sen, “Marginal deformations of WZNW and coset models from O(d, d)

transformation”, Nucl. Phys. B405 (1993) 143 [arXiv: hep-th/9210121].

[30] A. Giveon and E. Kiritsis, “Axial vector duality as a gauge symmetry and topology change in

string theory”, Nucl. Phys. B411 (1994) 487 [arXiv: hep-th/9303016].

[31] A. Giveon, M. Porrati and E. Rabinovici, “Target-space duality in string theory”, Phys.

Rept. 244 (1994) 77 [arXiv: hep-th/9401139].

[32] G.T. Horowitz and A.A. Tseytlin, “On exact solutions and singularities in string theory”,

Phys. Rev. D50 (1994) 5204 [arXiv: hep-th/9406067].

[33] D. Gepner and Z. Qiu, “Modular invariant partition functions for parafermionic field

theories”, Nucl. Phys. B285 (1987) 423.

[34] L.J. Dixon, M.E. Peskin and J. Lykken, “N = 2 superconformal symmetry and SO(2, 1)

current algebra”, Nucl. Phys. B325 (1989) 329.

[35] N. Mohammedi, “On the unitarity of string propagation on SU(1, 1)”, Int. J. Mod. Phys.

Lett. A5 (1990) 3201.

[36] S. Hwang, “No ghost theorem for SU(1, 1) string theories”, Nucl. Phys. B354 (1991) 100.

[37] J.M. Evans, M.R. Gaberdiel and M.J. Perry, “The no-ghost theorem for AdS3 and the

stringy exclusion principle”, Nucl. Phys. B535 (1998) 152 [arXiv: hep-th/9806024].

[38] E. Kiritsis, “Exact duality symmetries in CFT and string theory”, Nucl. Phys. B405 (1993)

109 [arXiv: hep-th/9302033].

[39] Y. Hikida, K. Hosomichi and Y. Sugawara, “String theory on AdS3 as discrete light-cone

Liouville theory”, Nucl. Phys. B589 (2000) 134 [arXiv: hep-th/0005065].

– 56 –



[40] P. A. Griffin and O.F. Hernandez, “Structure of irreducible SU(2) parafermion modules

derived via the Feigin–Fuchs construction”, Int. J. Mod. Phys. A 7 (1992) 1233.

[41] Y. Satoh, “Ghost-free and modular invariant spectra of a string in SL(2, R) and

three-dimensional black hole geometry”, Nucl. Phys. B513 (1998) 213 [arXiv:

hep-th/9705208].
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