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Abstract

We study a non-standard decoupling limit of the D1/D5-brane system, which
interpolates between the near-horizon geometry of the D1/D5 background and
the near-horizon limit of the pure D5-brane geometry. The S-dual description
of this background is actually an exactly solvable two-dimensional (worldsheet)
conformal field theory: {null-deformed SL(2, R)} × SU(2) × T 4 or K3. This
model is free of strong-coupling singularities. By a careful treatment of the
SL(2, R), based on the better-understood SL(2, R)/U(1) coset, we obtain the
full partition function for superstrings on SL(2, R)×SU(2)×T 4/Z2. This allows
us to compute the partition functions for the J3J̄3 and J2J̄2 deformations, as
well as the full line of supersymmetric null deformations, which links the SL(2, R)
conformal field theory with linear dilaton theory. The holographic interpretation
of this setup is a renormalisation-group flow between the decoupled NS5-brane
world-volume theory in the ultraviolet (Little String Theory), and the low-energy
dynamics of super Yang–Mills string-like instantons in six dimensions.
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1 Introduction

So far only few exact, solvable string supersymmetric backgrounds with a neat brane inter-
pretation are known. The most popular is certainly the near-horizon limit of the NS5-brane
background [1], which is an exact worldsheet conformal field theory based on SU(2)k×U(1)Q

(a three-sphere plus a linear dilaton), and preserves 16 supercharges thanks to the N = 4
superconformal algebra on the worldsheet [2]. This background includes a strong-coupling
region, that can be excised by distributing the five branes either on a circle [3] [4] or on a
spherical shell [5].

Another well-known exact string vacuum is the near-horizon geometry of NS5-branes
wrapped on a four-torus (or on a K3 manifold) and fundamental strings [6] [7] [8]. In type
IIB string theory, one can use S-duality to map this solution to the D1/D5-brane system.
The supersymmetry of this background is enhanced from 8 to 16 supercharges in the near-
horizon limit. In this case the exact conformal field theory is SL(2, R) × SU(2) × U(1)4.
However, until recently, the SL(2, R) CFT [9] [10] was poorly understood (see [11] and
references therein). Substantial progress in the determination of the correct Hilbert space
of this theory was made in [12], [13] and [14]. The key ingredient, first used in [15], was the
observation that one must add all the representations obtained by the spectral flow of the
affine algebra ŜL(2, R)L × ŜL(2, R)R. This allows to reconcile the unitarity bound on the
spin of the SL(2, R) representations (0 < j ≤ k/2) with the requirement that the operator
product algebra be closed.

A partition function for bosonic strings on thermal AdS3 (i.e. H+
3 /Z) was proposed

in [13], by using the older result by [16]. In [17], the partition function for the axial coset
SL(2, R)/U(1)A – whose target-space interpretation is a Euclidian two-dimensional black
hole [18] – was analyzed in the same spirit; it allowed to extract the full spectrum in agree-
ment with previous semi-classical analysis. However, as a consequence of the non-compact
nature of the group, these partition functions are plagued with a divergence, which should be
handled with care in order to obtain sensible results. Finding a modular-invariant partition
function for SL(2, R) that reproduces the spectrum found in [12] is to our knowledge still
an open problem. One of the aims of the present paper is to fill this gap, which is a first
step towards the complete understanding of superstrings on SL(2, R) × SU(2) × T 4 or K3
as well as deformations of this background. The structure of the partition function will be
understood from a different viewpoint, by using the orbifold language, and the supersym-
metrization will be discussed by considering the extended superconformal algebra on the
worldsheet.

The above two string backgrounds are in fact members of a family of conformal field
theories interpolating between them both in space-time and in moduli space. These theories
can be viewed as exact marginal deformations of the SL(2, R) WZW model, driven by a
left-right combination of null currents (i.e. currents generating null subgroups) [19]. The
endpoint of this deformation gives the linear dilaton and two light-cone free coordinates [20].
This geometry corresponds actually to a near-horizon limit for the NS5-branes only (such
a limit was also mentioned in [21]). We explain in this paper how this background can be
obtained by a particular decoupling limit of the NS5/F1 background, which is not a low-
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energy limit, but involves also the decompactification of the torus. An important achievement
of the present work is that this model can also be viewed as a regularization of the strong-
coupling region of the NS5-brane theory, which thus provides an alternative to [5], with a
better-controlled worldsheet conformal field theory.

This class of backgrounds clearly preserves a fraction of target-space supersymmetry,
which is generically one quarter, enhanced to one half on the endpoints of the deformation.
An interesting feature of this deformation is that it is completely fixed by the requirement
of N = 2 superconformal invariance on the worldsheet. We will show that it reduces to an
orthogonal rotation between the worldsheet bosons and fermions interpolating between the
N = 2 superconformal algebras of SU(2) × U(1)Q × R

1,1 and SU(2) × SL(2, R).

There has been in the last years a considerable renewal of interest for these theories
because, besides their intrinsic interest as exact string backgrounds, they enter in several
gauge/gravity dualities. The celebrated AdS/CFT correspondence [22] is a conjectured
equivalence between the near-horizon geometry of the D3- or D1/D5-brane background (re-
spectively AdS5 × S5 and AdS3 × S3 × T 4 ) and the extreme infra-red theory living on their
world-volume, a superconformal gauge theory with maximal supersymmetry. In a similar
fashion, a holographic duality between the decoupled NS5-brane world-volume theory – the
so-called little string theory (LST) – and the linear-dilaton background has been conjectured
in [23].

The holographic interpretation of our setup is clear. The ultraviolet region of the holo-
graphic “gauge” dual corresponds to the asymptotic geometry, and is therefore the decoupled
world-volume theory living on the NS5-branes. This theory is not a field theory, since there
is no ultraviolet field-theoretic fixed point, and contains string-like excitations [24], hence
the name “little string theory” [23]. In the type IIB case, this theory is described in the
infra-red by a gauge theory in six dimensions with U(N5) gauge group and N = (1, 1) su-
persymmetry. The standard NS5 background corresponds to a renormalisation-group flow
towards a free fixed point in the infra-red, whose dual picture is a strong-coupling region in
the gravitational background.

In the case of the null deformation of SL(2, R), the addition of fundamental strings in the
background corresponds in the dual theory to a configuration of string-like instantons of the
low-energy gauge theory. Therefore the physics near the infra-red fixed point is governed by
the dynamics of the moduli space of these instantons. The effective theory in 1+1 dimensions
is superconformal, hence the dilaton stops running. This CFT has been studied intensively
in the last years, in particular in the context of black-hole quantum mechanics (see [25] for
references).

The paper is organized as follows. In Sec. 2 we present the precise decoupling limit
which leads to the background of interest, and explain why this background is an exact
conformal theory. Section 3 is a reminder of bosonic strings in AdS3, with special emphasis
to the derivation of a partition function for the SL(2, R), where the spectrum is read off
unambiguously at finite or infinite radius. Then we introduce the worldsheet fermions and
discuss in Sec. 4 the superstrings in the background AdS3 × S3 × T 4/Z2 with particular
attention to the construction of extended worldsheet superconformal algebras. In Sec. 5 we
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give the partition functions for the J3J̄3 and J2J̄2 deformations of SL(2, R), and study in
detail its null deformation, which is the main motivation of this article. Null deformations
of the supersymmetric background AdS3 × S3 × T 4 are extensively discussed in Sec. 6,
with a particular attention to the requirement of preserving N = 2 superconformal algebra.
Section 7 gives a brief outlook of the holographic interpretation of this superstring vacuum.

2 A new decoupling limit for the D1/D5-brane system

In this section, we will present a decoupling limit for the D1/D5-brane system or conversely
the NS5/F1 dual configuration. In this limit, we obtain a line of exact conformal theories,
which turn out to be connected by a marginal deformation. Supersymmetry properties and
spectra will be analyzed later.

2.1 The supergravity solution and a partial near-horizon limit

We consider the D1/D5-brane system in type IIB string theory. The D5-branes extend
over the coordinates x, x6, . . . , x9, whereas the D1-branes are smeared along the four-torus
spanned by x6, . . . , x9. The volume of this torus is asymptotically V = (2π)4α′2v. With
these conventions, in the sigma-model frame, the supergravity solution at hand reads (metric,
dilaton and Ramond–Ramond field strength):

ds̃2 =
1√

H1H5

(
−dt2 + dx2

)
+

√
H1H5

(
dr2 + r2dΩ2

3

)
+

√
H1

H5

9∑

i=6

(dxi)2, (2.1)

e2φ̃ = g2
s

H1

H5

, (2.2)

F[3] = − 1

gs

dH−1
1 ∧ dt ∧ dx + 2α′N5Ω3 (2.3)

(Ω3 is the volume form of the three-sphere) with

H1 = 1 +
gsα

′N1

vr2
, H5 = 1 +

gsα
′N5

r2
.

The four-torus can be replaced by a Calabi-Yau two-fold K3, provided that the charges of the
D1 and D5 branes are of the same sign. The near-horizon (r → 0) string coupling constant
and the ten-dimensional gravitational coupling constant are

g2
10 = g2

s

N1

vN5

, 2κ2
10 = (2π)7e2〈φ̃〉α′4.

The standard decoupling limit of Maldacena, which leads to the AdS3/CFT2 correspon-
dence [22], is

α′ → 0,
U ≡ r/α′ fixed,
v fixed.

3



In this limit, the holographic description is a two-dimensional superconformal field theory
living on the boundary of AdS3 that corresponds to the world-volume theory of the D1/D5
system compactified on a T 4 whose volume is held fixed in Planck units [8] [26].

In order to reach a decoupling limit that corresponds to the near-horizon geometry for
the D5-branes only, one has to consider the limit:

α′ → 0,
U = r/α′ fixed,
gsα

′ fixed,
α′2v fixed.

(2.4)

The last condition is equivalent to keeping fixed the six-dimensional string coupling constant:

g2
6 =

g2
s

v
.

Since the gravitational coupling constant vanishes in this limit, the world-volume theory
decouples from the bulk. The geometrical picture of the setup is the following: as v → ∞,
the torus decompactifies and the density of D-strings diluted in the world-volume of the
D5-branes goes to zero.

The string coupling remains finite in this near-horizon limit, while the asymptotic region
is strongly coupled. A perturbative description, valid everywhere is obtained by S-duality.
The supergravity solution (2.1), (2.2) in the S-dual frame reads:

ds2 = e−φ̃ds̃2 =
1

gs

{
1

H1

(
−dt2 + dx2

)
+ α′2H5

(
dU2 + U2dΩ2

3

)
+

9∑

i=6

(dxi)2

}
, (2.5)

e2φ =
1

g2
s

H5

H1

(2.6)

with (in the limit (2.4) under consideration)

H1 = 1 +
gsN1

α′vU2
, H5 =

gsN5

α′U2
. (2.7)

The expression (2.3) for the antisymmetric tensor remains unchanged but it stands now for
a NS flux and we’ll trade F[3] for H[3].

We now introduce the new variables:

u =
1

U
, X± = X ± T =

x ± t

g6

√
N1N5

,

and the following mass scale:

M2 =
gsN1

α′v
. (2.8)
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In these coordinates, the solution (2.5), (2.6) and (2.3), with (2.7), reads:

ds2

α′ = N5

{
du2

u2
+

dX2 − dT 2

u2 + 1/M2
+ dΩ2

3

}
+

1

α′gs

9∑

i=6

(dxi)2,

e2φ =
1

g2
10

u2

u2 + 1/M2
, (2.9)

H[3]

α′ = N5

{
2u

(u2 + 1/M2)2du ∧ dT ∧ dX + 2Ω3

}
.

This is the geometry of a deformed AdS3 times an S3 × T 4. Asymptotically (u → 0), it
describes the near-horizon geometry of the NS5-brane background, SU(2)k×U(1)Q×R

1,1×T 4

in its weakly coupled region. In the u → ∞ limit, the background becomes that of the
NS5/F1 near-horizon: SL(2, R)×SU(2)×T 4, with a finite constant dilaton. In some sense,
we are regulating the strong-coupling region of the NS5-brane background by adding an
appropriate condensate of fundamental strings. As we already advertised, this regularization
is an alternative to the one proposed in [5]; it avoids the spherical target-space wall of the
latter, and replaces it by a smooth transition, driven by a marginal worldsheet deformation,
as will become clear in Sec. 2.2.

Before going into these issues, we would like to address the question of supersymmetry.
The configuration displayed in Eqs. (2.9) preserves by construction one quarter of super-
symmetry. Consider indeed IIB supergravity. The unbroken supersymmetries correspond to
the covariantly constant spinors for which the supersymmetry variations of the dilatino and
gravitino vanish:

δλ =

[
γµ∂µφ σ3 − 1

6
Hµνργ

µνρ

](
η1

η2

)
= 0, (2.10)

δψµ =

[
∂µ +

1

4

(
w ab

µ − H ab
µ σ3

)
Γab

] (
η1

η2

)
= 0. (2.11)

where σ3 is the third Pauli matrix. The two supersymmetry generators η1 and η2 have the
same chirality : Γ11η1,2 = η1,2.

Let us for example concentrate on the dilatino variation, Eq. (2.10):

δλ =
[
Γ2 eu

2 ∂uφ σ3 − Huxt eu
1 ex

2 et
0 Γ1Γ2Γ0 + Hθϕχ eθ

3 eϕ
4 eχ

5 Γ3Γ4Γ5
](

η1

η2

)

=

[
1/M2

u2 + 1/M2
Γ2 σ3 − u2

u2 + 1/M2
Γ1Γ2Γ0 − Γ3Γ4Γ5

] (
η1

η2

)
,

where Latin indices a, b, . . . refer to the tangent-space orthonormal bases, with {0, 1, 2} and
{3, 4, 5} corresponding to the AdS3 and S3 submanifolds. The two SO(9, 1) spinors are
decomposed into SO(1, 1) × SO(4) × SO(4)T :

16 → (+,2,2) + (+,2′,2′) + (−,2′,2) + (−,2,2′).
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The first SO(4) is the isometry group of the transverse space (coordinates x2,... ,5) and SO(4)T

corresponds to the four-torus.

In the infinite-deformation limit, M2 → 0, this equation projects out the SO(4) spinors
of one chirality:

[
σ3 − Γ2Γ3Γ4Γ5

](
η1

η2

)
= 0.

The surviving supersymmetry generators, are, for η1, (+,2,2) and (−,2,2′), and for η2,
(+,2′,2′) and (−,2′,2).

In the opposite limit of undeformed AdS3, M2 → ∞, we have instead:

[
1 + Γ0Γ1Γ2Γ3Γ4Γ5

](
η1

η2

)
= 0,

which projects out the SO(5, 1) spinor (coordinates x0,1,6,... ,9 of the five-brane world-volume)
of right chirality, i.e. keeps the representations (+,2,2) and (−,2′,2) for both supersymme-
try generators. For any finite value of the deformation, both projections must be imposed:

[
1/M2

u2 + 1/M2

(
σ3 − Γ2Γ3Γ4Γ5

)
− u2

u2 + 1/M2

(
Γ0Γ1 + Γ2Γ3Γ4Γ5

)] (
η1

η2

)
= 0,

which breaks an additional half supersymmetry. The remaining supersymmetries are (+,2,2)
for η1 and (−,2′,2) for η2. The gravitino equation gives no further restrictions as it should
(it reduces to the Killing spinor equation on S3 and deformed AdS3), and we are eventually
left with one quarter of supersymmetry. Supersymmetry enhancement occurs only for the
limiting backgrounds – AdS3 × S3 or three-sphere plus linear dilaton –, which preserve one
half of the original supersymmetry.

2.2 Exact conformal-field-theory description: a null deformation of SL(2, R)

We will now show that the deformed-AdS3 factor in the background (2.9) is the target space
of an exactly conformal sigma-model.

The action for a WZW model is in general

S =
k

16π

∫

∂B
Tr

(
g−1dg ∧ ∗g−1dg

)
+

ik

24π

∫

B
Tr

(
g−1dg

)3
. (2.12)

In the case of SL(2, R), one can use the Gauss decomposition for the group elements:

g = g−g0g+ =

(
1 0
x− 1

)(
1/u 0
0 u

)(
1 x+

0 1

)
, (2.13)

which provides the Poincaré coordinate system (see Appendix A). With this choice, the
sigma-model action reads:

S =
k

2π

∫
d2z

(
∂u∂̄u

u2
+

∂x+∂̄x−

u2

)
. (2.14)
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As usual, the affine symmetry ŜL(2, R)L×ŜL(2, R)R is generated by weight-one currents.
Since the group is non-compact, there are null directions, easily identified in the Poincaré co-
ordinates. The corresponding Û(1)L × Û(1)R symmetries are linearly realized and generated
by the following null currents1:

J =
∂x+

u2
, J̄ =

∂̄x−

u2
. (2.15)

The (1, 1) operator J(z)J̄(z̄), is truly marginal and can be used to generate a line of CFT’s.
Along this line, i.e. for finite values of the deformation parameter 1/M2, the geometry
back-reaction must be taken into account. Integrating the corrections (much like in [27]
and [28] for compact cases) one obtains the following null-deformed SL(2, R)-sigma-model
action [19]:

S =
k

2π

∫
d2z

(
∂u∂̄u

u2
+

∂x+∂̄x−

u2 + 1/M2

)
. (2.16)

The affine symmetry ŜL(2, R)L × ŜL(2, R)R is broken down to Û(1)L × Û(1)R and only two
currents survive, which now read:

J =
∂x+

u2 + 1/M2
, J̄ =

∂̄x−

u2 + 1/M2
. (2.17)

The deformed target-space geometry and antisymmetric tensor are read off directly from
Eq. (2.16), and turn out to coincide with the deformed-AdS3 factor in (2.9).

There is an alternative way to reach the same conclusion. As shown in [27], marginal
deformations of a WZW model correspond to O(d, d, R) transformations. In order to imple-
ment the latter in the case at hand, we rewrite the SL(2, R)-WZW action as:

S =
k

2π

∫
d2z

(
∂u∂̄u

u2
+ ∂

(
x+x−)

· E · ∂̄
(

x+

x−

))
(2.18)

with

E =

(
0 1/u2

0 0

)
.

Acting on the corresponding background with the following O(2, 2, R) element2 (see e.g. [29]
for a review):

g =

(
I 0

−Θ/M2
I

)
, with Θ =

(
0 1
−1 0

)
, (2.19)

1Strictly speaking, these are not Cartan generators. See Appendix A.
2The simplest setup for illustrating this transformation is flat background – compactified bosons: two

light-cone coordinates with a constant B-field. The original lagrangian, 4πL = ∂x+∂̄x−, transforms into

4πL̃ = M2

1+M2 ∂x+∂̄x−; this amounts to a shift of radii.
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we recover (2.18) with

E ′ = g(E) =

(
0 1

u2+1/M2

0 0

)
,

which is precisely the null-deformed SL(2, R)-WZW action, Eq. (2.16).

Notice finally that the deformed SL(2, R)-WZW model under consideration can also be
obtained as a coset by gauging a U(1) subgroup of SL(2, R) × U(1) [30]. We will come
back later to this CFT to compute the one-loop partition function, which demands a careful
treatment of global properties of the fields. The question of supersymmetry along these
deformations needs also to be recast in the present, exact CFT framework, and will be
discussed in Sec. 6.

3 Bosonic strings on AdS3

This section is devoted to the bosonic part of the AdS3 (i.e. SL(2, R)) component of the
previous backgrounds. Despite many efforts and achievements (a short summary is given
Appendix A), our understanding is not completely satisfactory. We show here how to reach
information about SL(2, R) starting from the better-understood SL(2, R)/U(1)A axial gaug-
ing. This enables us to provide a partition function for the SL(2, R), which carries full in-
formation about the spectrum. Under this form, the SL(2, R) WZW model resembles a ZN

freely acting orbifold of T 2 ×S1 ×S1 over U(1), at large N . Spectra and partition functions
of SL(2, R) deformations will be addressed in Sec. 5.

3.1 SL(2, R) from SL(2, R)/U(1)A

There is a tight link between the spectrum of string theory on AdS3 and the spectrum of the
axial-gauged coset SL(2, R)/U(1)A – non-compact parafermions. The states in the coset are
those of the SL(2, R) CFT with the restriction J3

n|state〉 = 0 for n > 0, and the conditions
on the zero modes J3

0 + J̄3
0 = −wk and J3

0 − J̄3
0 = n. It is therefore possible to reconstruct

the SL(2, R) starting from its axial gauging, much like in the case of compact parafermions,
where the SU(2)/U(1) gauging enables for reconstructing the SU(2) WZW model [31]. In
the non-compact case, however, the coset was shown to be a unitary conformal field theory
[32], whereas this holds for the SL(2, R) only if Virasoro conditions are imposed [10] [33]
[34] [35]. The physical states can be choosen, up to a spurious state, to be annihilated by
the positive modes of the timelike current J3

n>0. This is the same as for the coset, except for
the zero modes.

Our aim is here to show how a partition function for the SL(2, R) can be reached starting
from the partition function of the SL(2, R)/U(1)A proposed in [17]. We start with the WZW
action (2.12) for g ∈ SL(2, R) parametrized with Euler angles (see Eq. (A.6)). We will gauge
the U(1) axial subgroup g → hgh with h = eiλσ2/2. The action for the gauged model is

S(g, A) = S(g) +
k

2π

∫
d2zTr

(
A∂̄gg−1 + Āg−1∂g − AgĀg−1 − AĀ

)
.
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The gauge field is Hodge-decomposed as:

A = ∂(ρ̃ + ρ) +
i

τ2

(u1τ̄ − u2) , Ā = ∂̄(ρ̃ − ρ) − i

τ2

(u1τ − u2).

After field redefinitions, the gauged-fixed action is given by an SL(2, R) times a compact
boson, with global constraints and a (b, c) ghost system. This theory is unitary and the
corresponding target space is Euclidean.

The partition function has been computed by using path-integral techniques in [16] and
[17]. We would like to summarize the method and remind the final result. Following [17] the
model is transformed, for technical convenience, into a U(1)-gauging of the – non-unitary –
H+

3 = SL(2, C)/SU(2) CFT:

S =
k

2π

∫
d2z

(
∂φ∂̄φ + (∂v̄ + v̄∂φ)

(
∂̄v + v∂̄φ

))

+
k

2π

∫
d2z∂ρ∂̄ρ +

1

π

∫
d2z

(
b∂̄c + b̃∂c̃

)
.

The first part of the action is indeed the H+
3 = SL(2, C)/SU(2) sigma-model. The various

fields acquire non-trivial holonomies from the gauge field, and can be decomposed as:

φ = φ̂ +
1

4τ2

[(u1τ̄ − u2)z + (u1τ − u2)z̄] ,

ρ = ρ̂ +
1

4τ2

[(u1τ̄ − u2)z + (u1τ − u2)z̄] ,

v = v̂ exp− 1

4τ2

[(u1τ̄ − u2)z + (u1τ − u2)z̄] .

The fields v and v̄ give the following contribution to the partition function:

det

∣∣∣∣∂ +
1

2τ2

(u1τ̄ − u2) + ∂φ̂

∣∣∣∣
−2

= det

∣∣∣∣∂ +
1

2τ2

(u1τ̄ − u2)

∣∣∣∣
−2

exp
2

π

∫
d2z∂φ̂∂̄φ̂

= 4ηη̄
e

2π
τ2

(Im(u1τ−u2))2

|ϑ1(u1τ − u2|τ)|2
exp

2

π

∫
d2z∂φ̂∂̄φ̂,

where ϑ1(ν|τ) is an elliptic theta function (see Appendix D). The periodicity properties of this
determinant allows for breaking u1 and u2 into an integer and a compact real: u1 = s1 + w,
u2 = s2 + m, si ∈ [0, 1). Taking finally into account the contributions of the free bosons φ
and ρ and that of the ghosts, leads to the result [17]:

ZSL(2,R)/U(1)A = 4
√

k(k − 2) ηη̄

∫
d2s

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
+∞∑

m,w=−∞
e
− kπ

τ2
|(s1+w)τ−(s2+m)|2

. (3.1)

We can recast the latter in terms of the free-boson conformal blocks (B.1):

ZSL(2,R)/U(1)A = 4
√

(k − 2)τ2 ηη̄

∫
d2s

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
∑

m,w∈Z

ζ

[
w + s1

m + s2

]
(k), (3.2)

9



which meets our intuition that there are one compact and one non-compact bosons in the
cigar geometry.

A few remarks are in order here. The integration over s1, s2 should be thought as a
constraint on the Hilbert space, which defines the non-compact parafermionic Z charge.
The allowed parafermionic charges are m = n/2, m̄ = −n/2 for the unflowed sector, and
m = (n − wk)/2 and m̄ = −(n + wk)/2 for the w-flowed sector. Another important issue is
the logarithmic divergence originating from s1 = s2 = 0, and due to the non-compact nature
of the group. Baring this divergence, the partition function (3.1) is modular-invariant, as can
be easily checked by using the modular properties of Jacobi functions. Its content in terms
of non-compact-parafermion discrete and continuous series can be further investigated (see

[17] for details). Moreover, in the large-k (flat-space) limit, ZSL(2,R)/U(1)A ∼ k
(
π
√

τ2ηη̄
)−2

up to an infinite-volume factor3: we recover two free, uncompactified bosons.

We will now show that it is possible to recover a partition function for the SL(2, R)
WZW model, starting from the above result for the coset SL(2, R)/U(1)A. In many re-
spects this is similar to what happens in the compact case: SU(2)k can be reconstructed
as

(
SU(2)k/U(1) × U(1)√2k

) /
Zk, where Zk is the compact-parafermionic symmetry of the

coset SU(2)k/U(1), and acts freely on the compact U(1)√2k. To some extent, however, ma-
nipulations involving divergent expressions such as (3.1) can be quite formal, and require to
proceed with care.

As we already pointed out, the states in SL(2, R)/U(1)A are those of SL(2, R) that are
annihilated by the modes J3

n and J̄3
n n > 0, and have J3

0 and J̄3
0 eigenvalues (n−wk)/2 and

−(n + wk)/2. Therefore, in order to reconstruct the SL(2, R) partition function, we need
to couple the coset blocks with an appropriately chosen lattice for the Cartan generators
J3 and J̄3 corresponding to a free time-like boson. This coupling should mimic the Zk

freely action that appears in the SU(2)k (see the discussion for the SU(2) in [36]), in a
non-compact-parafermionic version, though. By using the conformal blocks for free bosons
given in Appendix B (see Eq. (B.1)), we reach the following partition function for SL(2, R),
in the Lagrangian representation:

ZSL(2,R) = 4
√

τ2(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m,w,m′,w′∈Z

ζ

[
w + s1 − t1
m + s2 − t2

]
(k) ζ

[
w′ + t1
m′ + t2

]
(−k) . (3.3)

Modular invariance is manifest in this expression, since it has the structure of a freely
acting orbifold (this can also be easily checked by using formulas of Appendices B and D).
The extra k−2 factor comes along with the J3, J̄3 contribution; it ensures the correct density
scaling in the large-k limit, as explained in Appendix B about Eq. (B.3). We perform a
Poisson resummation4 on m and m′, which are trade for n and n′. We define n± = n ± n′

3This factor comes as
∫ +∞

−∞
dxdy

x2+y2 exp−π(x2 + y2).
4The resummation on m′ is of course performed by means of analytic continuation, as usual when dealing

with a time-like direction.
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and w± = w ± w′, and rewrite the partition function in the Hamiltonian representation:

ZSL(2,R) = 4
√

τ2(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
∑

n±,w±∈Z

e−iπ(n−(s2−2t2)+n+s2) ×

× e−
πτ2

k (n+n−+k2(w++s1)(w−+s1−2t1))+iπτ1(n−(w−+s1−2t1)+n+(w++s1)). (3.4)

Expression (3.4) becomes more transparent by introducing light-cone directions with
corresponding left and right lattice momenta:

P+
L,R =

n+

√
2k

±
√

k

2
w−, (3.5)

P−
L,R =

n−
√

2k
±

√
k

2
w+. (3.6)

In terms of these unshifted5 momenta the partition function at hand reads:

ZSL(2,R) = 4
√

τ2(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

n±,w±∈Z

e−iπ
√

k
2 ((P+

L +P+
R )s2+(P−

L +P−
R )(s2−2t2)) ×

× q
1
2

(
P+

L +
√

k
2
(s1−2t1)

)(
P−

L +
√

k
2
s1

)
q̄

1
2

(
P+

R −
√

k
2
(s1−2t1)

)(
P−

R −
√

k
2
s1

)
. (3.7)

3.2 Uncovering the spectrum

The latter expression is divergent. It contains however all the information about the spec-
trum. The integral over t2 leads to the constraint δn−,0 and, due to the shift t1, the “winding”
w−− 2t1 is continuous. The coordinate X+ corresponds therefore to a boson “compactified”
at zero radius. Conversely, the other light-cone degree of freedom is compact. This light-cone
compactification (for a related discussion, see [37]) is not so surprising. Indeed, the quantum
numbers of a given state in the SL(2, R) CFT, j = j̄, m+m̄, m−m̄, w are respectively those
of a Liouville field, a non-compact coordinate, and a compact one. Since we consider the
universal cover of SL(2, R), such that the time is non-compact, the only possibility is that
one of the light-cone directions is compactified at radius

√
2k. Note also a particular feature

of a two-dimensionnal lattice for two light-cone coordinates : if the radius of one light-cone
coordinate shrinks to zero, the momenta and windings of the other light-cone coordinate
are exchanged. This fact explains why the energy, as it appears in the partition function of
SL(2, R), is actually a (shifted) winding mode.

5Due to the shifted-orbifold structure of the partition function the relevant quantities are actually the
shifted momenta:

P s+

L,R = P+

L,R ±
√

k

2
(s1 − 2t1) , P s−

L,R = P−
L,R ±

√
k

2
s1.
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We will now proceed and analyze further the partition function given in Eq. (3.7). After
integrating out t2 we obtain:

ZSL(2,R) = 4
√

τ2(k − 2)3/2

∫
d2s

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
∑

n+,w+∈Z

e−iπn+(s2−τ1(w++s1)) ×

×
∫ 1

0

dt1
∑

w−∈Z

e−πτ2k(w++s1)(w−+s1−2t1). (3.8)

It is straightforward to show that the large-k limit of this partition function is, up to the usual

infinite-volume factor, Z ∼ k3/2π
(
π
√

τ2ηη̄
)−3

. This was somehow built-in when writing (3.3)
out of (3.2); it meets the expectations for ordinary flat-space spectrum. Furthermore, it is
possible to extract the spectrum of the theory at any finite k, and trace back its origin in
terms of SL(2, R) representations. We proceed along the lines of [13] and [17]. The precise
derivation of the spectrum is given in Appendix C. Here we only collect the results.

Discrete representations. The discrete representations appear in the range 1
2

< j < k−1
2

.
Their conformal weights are the following:

L0 = −j(j − 1)

k − 2
+ w+

(
−m − k

4
w+

)
+ N,

L̄0 = −j(j − 1)

k − 2
+ w+

(
−m̄ − k

4
w+

)
+ N̄ ,

with m + m̄ = −k(w − t1) and m − m̄ = n.

Continuous representations. The continuous spectrum appears with the density of states:

ρ(s) =
1

π
log ε +

1

4πi

d

ds
log

Γ
(

1
2
− is − m

)
Γ

(
1
2
− is + m̄

)

Γ
(

1
2

+ is − m
)
Γ

(
1
2

+ is + m̄
)

The weights of the continuous spectrum are

L0 =
s2 + 1/4

k − 2
+ w+

(
−m − k

4
w+

)
+ N,

L̄0 =
s2 + 1/4

k − 2
+ w+

(
−m̄ − k

4
w+

)
+ N̄ ,

with m, m̄ as previously.

These results are in agreement with the unitary spectrum proposed in [12]. Here this
spectrum was extracted straightforwardly from a modular-invariant partition function, con-
structed in the Lorentzian AdS3 .

Our aim is now to better understand the coupling between the oscillators and the
zero modes of the light-cone coordinates, as appearing in the partition function. To this
end, we write the algebra ŜL(2, R)L by using the free-field representation of non-compact

12



parafermions [38] [39]. The currents read:

J± = −
(√

k

2
∂X ± i

√
k − 2

2
∂ρ

)
e±i

√
2
k
(X−T ), (3.9)

J3 = i

√
k

2
∂T, (3.10)

with the following stress tensor:

T =
1

2
(∂T )2 − 1

2
(∂X)2 − 1

2
(∂ρ)2 +

1√
2(k − 2)

∂2ρ. (3.11)

There is a linear dilaton with background charge Q =
√

2/(k − 2) along the coordinate ρ.
It contributes the central charge, which adds up to c = 3 + 6/(k − 2). Adding w+ units of
momentum along T corresponds to the spectral-flow symmetry:

J3 → J3 − k

2z
w+ , J±(z) → z∓w+J±(z).

The primary operators are those of a free-field theory with a peculiar zero-mode structure
though, which is read off directly from the lattice component of the partition function, Eq.
(3.4)6:

exp

{√
2

k − 2
jρ + i

√
2

k

[
k

4
w+X+ +

(
m − k

4
w+

)
X− +

k

4
w+X̄− +

(
m̄ − k

4
w+

)
X̄+

] }

One should stress, however, that even if the theory can be represented with free fields, the
descendants are constructed by acting with the modes of the affine currents: the oscillator
number and the zero modes are shifted simultaneously. We are therefore lead7 to use the
the Lagrange multipliers s1 and s2 in the partition function (3.4) to enforce this twisting.

3.3 About the structure of the partition function

Our approach has been to build a modular-invariant partition function for SL(2, R) starting
from that of the coset model SL(2, R)/U(1)A. We have reached expression (3.3) or equiva-
lently (3.7). These expressions are divergent, as was originally the partition function for the
coset, Eq. (3.2). However, the presence of a divergence is not an obstruction for uncovering
the spectrum encoded in the partition functions, as shown in [17] for the coset and here for
the AdS3. In this section, we would like to make contact with the – not fully satisfactory
– expressions found in [11] and [12], explain why the methods used previously failed, and
clarify the underlying freely acting orbifold structure.

6The fact that the roles of X+ and X− are reversed between the left-moving and the right-moving sectors
will be explained in the fifth section. For the moment note that the partition function is invariant under:
X̄± → X̄∓.

7This is close to the construction of gravitational waves, see [40].
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We start with Eq. (3.8) that we regulate by shifting s1τ − s2 → s1τ − s2 + θ in the
elliptic theta function. This breaks modular invariance unless, together with τ → −1/τ , θ
transforms into −θ/τ . Then, summation over w− and integration over t1 can be merged into
an integration over the light-cone energy E = k(w−− 2t1), which is performed after analytic
continuation. A Poisson resummation over n+ finally leads to the following result:

ZSL(2,R) = 4
(k − 2)3/2

k
√

τ2

∫
d2s

∑

m+,w+∈Z

δ (w+ + s1) δ (m+ + s2)
e

2π
τ2

(Im(s1τ−s2+θ))2

|ϑ1(s1τ − s2 + θ|τ)|2

= 4
(k − 2)3/2

k
√

τ2

e
2π
τ2

(Imθ)2

|ϑ1 (θ|τ)|2
. (3.12)

This result is precisely that of [11] and [12], up to an overall normalization.

In unitary conformal field theories, the partition function is usually decomposed in char-
acters of the chiral holomorphic and anti-holomorphic algebras:

Zgenus−one(τ, τ̄) =
∑

L,R

NL,RχL(τ)χ̄R(τ̄),

where the summation is performed over all left-right representations present in the spectrum
with multiplicities NL,R, and χ(τ) are the corresponding characters:

χ(τ) = Trrepq
L0− c

24 .

This decomposition is very powerful for classifying models (i.e. multiplicities NL,R) by follow-
ing the requirements of modular invariance. From the path-integral point of view, different
modular-invariant combinations correspond to different choices for boundary conditions on
the fields. However, this decomposition relies on the very existence of the characters. This
holds for WZW models on compact groups. It does not apply to the case of non-compact
groups, unless the group is Abelian – free bosons. Then the zero-mode representations are
one-dimensional, the characters of the affine algebra are well-defined, and the infinite-volume
divergence decouples into an overall factor. For non-Abelian groups, unitary8 representations
of the zero-modes are infinite-dimensional, and the characters of the affine algebra diverge.
This degeneracy can be lifted by switching on a source coupled to some Cartan generator:

χ(τ, θ) = Trrepq
L0− c

24 e2iπθJ0 .

Such a regularization is not fully satisfactory because it alters modular-covariance and does
not allow to cure the characters of the continuous part of the spectrum. Moreover, the best
these generalized characters can do, is to lead (after formal manipulations) to expressions
like (3.12). The information carried by the latter is quite poor: it diverges at θ → 0 and
the divergence cannot be isolated as a volume factor; the large-k limit is obscure; only the
discrete part of the spectrum seems to contribute. These caveats are avoided in the integral

8If we give up unitarity, finite-dimesional zero-mode representations do exist, but Virasoro conditions do
not eliminate all spurious states.
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representation we have presented here (Eqs. (3.3) or (3.7)), which is closer in spirit with
the work of [13] for the thermal AdS3. Although divergent, it is modular-invariant, contains
a nice spectral decomposition and has a well-defined large-k limit in agreement with our
expectations.

To close this chapter, we would like to comment on the freely acting orbifold structure
implemented in Eq. (3.3). We consider for illustration the ZN orbifold of a compact boson
of radius R times a two-torus, presented in Appendix B. The ZN acts as a twist on T 2 and
as a shift on the orthogonal S1. The partition function for this model is given by Eq. (B.11).
Although it is not compatible with the symmetries of a two-dimensional lattice, we take
formally the large-N limit of this expression. The first term of (B.11) vanishes while the
sum over h, g in the second term becomes an integral over s1, s2 ∈ [0, 1]. We also drop out

the geometrical factor sin2 πΛ(h,g)
N

which is meaningless here, and find:

lim
N→∞

ZZN

N
= 4

∫
d2s

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
∑

m,w∈Z

ζ

[
w + s1

m + s2

] (
R2

)
. (3.13)

In order to make final contact with the partition function of the SL(2, R)/U(1)A (Eq. (3.2))
we must identify R2 with k, and mod out a non-compact free boson, i.e. multiply (3.13) by√

τ2 ηη̄. We insist that we do not claim that the theory SL(2, R)/U(1)A is the same as an
freely acting orbifold of flat space, but only that the structure is very close. An important
difference is that the oscillators of the field X of the free-field representation (eq. (3.9)) are
twisted and its zero modes shifted simultaneously. This is not possible in flat space.

One can similarly understand the orbifold structure underlying the full SL(2, R) model.
To this end we consider the ZN × ZN model given in Appendix B. In the formal large-N
limit, all but the last term vanish in the partition function (B.12); the sums over h1, g1 and
h2, g2 are trade for integrals over s1, s2 and t1, t2 ∈ [0, 1] × [0, 1]:

lim
N→∞

ZZN×ZN

N2
= 4

1

ηη̄

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m1,w1,m2,w2∈Z

ζ

[
w1 + s1 − t1
m1 + s2 − t2

] (
R2

1

)
ζ

[
w2 + t1
m2 + t2

] (
R2

2

)
. (3.14)

In order to make final contact with the partition function of the SL(2, R) (Eq. (3.3)) we
must identify in (B.12), R2

1 with k, R2
2 with −k, and mod out a non-compact free boson, i.e.

multiply (3.14) by
√

τ2 ηη̄.

The function ϑ1(0, τ), which is identically zero, never appears in the orbifold since its cor-
responds to the untwisted, unprojected sector and is replaced by the usual toroidal partition
sum:

Γ2,2(T, U)

η4η̄4
.

In the case of SL(2, R) (the N → ∞ limit), the sum on the sectors is replaced by an
integral over s1 and s2. The integration over the energy picks up precisely the untwisted,
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unprojected sector, as it gives the constraint δ(2)(s1τ − s2). We can rewrite formally the
integrated partition function in terms of the functional determinant for the twisted bosons:

Z =
(k − 2)3/2

k
√

τ2ηη̄

∫
d2s δ(2)(s1τ − s2) det

∣∣∣∣∂ +
1

2τ2

(s1τ̄ − s2)

∣∣∣∣
−2

=
(k − 2)3/2

k
√

τ2ηη̄
det |∂|−2

Thus we find that the partition function of SL(2, R) is the same as a linear dilaton and two
light-cone free coordinates 9.

4 Superstrings on AdS3 × S3
× T 4

We develop in this chapter the supersymmetry tools, which are needed for studying super-
strings on NS5- or NS5/F1-brane backgrounds, as well as on the deformed AdS3 geometries
interpolating between them. This includes explicit realizations of extended N = 2 and N = 4
supersymmetry algebras. In principle it is possible to construct a space-time supersymmetric
string background with SL(2, R) × SU(2) ×M, where M is any N=2 superconformal field
theory with the correct central charge ĉ = 4. To make contact with the NS5/F1 background,
we can choose either T 4 or a CFT realization of K3. We finally present the partition function
of the model on AdS3 × S3 × K3.

4.1 Extended superconformal algebras

Since the AdS3×S3×T 4 background preserves one half of the supersymmetry, the worldsheet
theory should factorize into an N = 4 superconformal theory with ĉ = 4 and an N = 2 free
theory with ĉ = 2 [41]. An explicit realization of the relevant extended algebras is necessary
in order to prove that supersymmetry survives at the string level; it is also important for the
determination of the couplings between the bosonic and the fermionic degrees of freedom.
However, as we will see, the straightforward application of the rules of N=2 constructions is
not the correct way to implement space-time supersymmetry in SL(2, R) × SU(2).

4.1.1 Flat background

We start with the case of a flat four-dimensional background, corresponding to a four-torus
or an orbifold. Our aim is to remind the construction of an extended “small” N = 4
algebra [42] [43] out of the N = 1 fields of the superstring: the bosons X i, Y i i = 1, 2 and
the fermions λa a = 1, . . . , 410. The generators of the N = 1 superconformal algebra are the
following:

T = −1

2

2∑

i=1

(
∂X i∂X i + ∂Y i∂Y i

)
− 1

2

4∑

a=1

λa∂λa,

G = iλ1∂X1 + iλ2∂Y 1 + iλ2∂X2 + iλ3∂Y 2.

9As already stressed, there is a central charge deficit coming for the other CFT’s defining the string
theory which corresponds to the lowest weight of Liouville continuous representations [2].

10The OPE of those fields are ∂Xi(z)∂Xj(0) ∼ −δij/z2 and similarly for the Y i’s, and λa(z)λb(0) ∼ δab/z.
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Combining the fields in complex pairs, Zi = (X i + iY i)/
√

2 and Λ1,2 = (λ1,3 + iλ2,4)/
√

2, we
can split the supercurrent to form an N = 2 algebra:

T = −
2∑

i=1

∂Zi∂Z̄i − 1

2

2∑

i=1

(
Λ̄i∂Λi − 1

2
Λi∂Λ̄i

)
, (4.1)

G+ = i
2∑

i=1

Λi∂Z̄i, (4.2)

G− = i
2∑

i=1

Λ̄i∂Zi, (4.3)

J =
2∑

i=1

ΛiΛ̄i. (4.4)

The U(1) current of this N = 2 algebra can be bosonized with the help of a compact scalar
at self-dual radius: J = i

√
2∂H+. This field generates an SU(2) R-symmetry algebra at

level one, where the currents are

(S3, S±) =

(
i√
2
∂H+, e±i

√
2H+

)
. (4.5)

Acting with the R-currents (4.5) on the supercurrents (4.2) and (4.3), we obtain the two
remaining supercurrents of the N = 4 algebra. The four supercurrents transform into two
conjugate SU(2) R-symmetry doublets:





G+ = i
[
∂Z̄1e

i√
2
H−

+ ∂Z̄2e
− i√

2
H−]

e
i√
2
H+

G̃− = i
[
∂Z̄1e

i√
2
H−

+ ∂Z̄2e
− i√

2
H−]

e
− i√

2
H+ (4.6)





G̃+ = i
[
∂Z1e

− i√
2
H−

+ ∂Z2e
i√
2
H−]

e
i√
2
H+

G− = i
[
∂Z1e

− i√
2
H−

+ ∂Z2e
i√
2
H−]

e
− i√

2
H+ (4.7)

4.1.2 NS5 background

The near-horizon geometry of the NS5-brane background is the target space of an exactly
conformal sigma-model based on SU(2)k ×U(1)Q ×U(1)6 [1] [44]. Let us concentrate on the
SU(2)k × U(1)Q factor. The full algebra of this four-dimensional internal subspace consists
of the bosonic SU(2)k, the Liouville coordinate, and four free fermions:

J i(z)J j(0) ∼ k

2

δij

z2
+ i

3∑

`=1

εij`J `(0)

z
, i, j, ` = 1, 2, 3,

∂ρ(z)∂ρ(0) ∼ − 1

z2
,

ψa(z)ψb(0) ∼ δab

z
, a, b = 1, . . . , 4.
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Here the N = 4 algebra is generated by twisting the “large” N = 4 algebra [43] based on
the affine symmetry SU(2)k+1 × SU(2)1 × U(1). The generators of that algebra read:

T =
1

k + 2

3∑

i=1

J iJ i − 1

2
∂ρ∂ρ − 1

2

4∑

a=1

ψa∂ψa,

Gi =

√
2

k + 2

[
−J iψ4 +

3∑

j,`=1

εij`
(
J j − ψ4ψj

)
ψ`

]
+ iψi∂ρ,

G4 =

√
2

k + 2

3∑

i=1

[
J iψi +

1

3

3∑

j,`=1

εij`ψiψjψ`

]
+ iψ4∂ρ, (4.8)

Si =
1

2

(
ψ4ψi +

1

2

3∑

j,`=1

εij`ψjψ`

)
,

S̃i =
1

2

(
ψ4ψi − 1

2

3∑

j,`=1

εij`ψjψ`

)
+ J i,

where ρ is an ordinary bosonic coordinate.

The large N = 4 algebra is contracted to the required small N = 4, provided the ρ
coordinate is promoted to a Liouville field by adding a background charge Q (i.e. a linear
dilaton in the corresponding direction). The effect on the algebra (4.8) is the following:

T → T − Q∂2ρ , Ga → Ga − iQ∂ψa. (4.9)

The background charge Q is such that we obtain a ĉ = 4 theory: Q =
√

2/(k + 2). The linear
dilaton background compensates the central charge deficit of the SU(2)k. As previously, we
bosonize the self-dual and anti-self-dual fermionic combinations:

i
√

2∂H± = ψ1ψ2 ± ψ4ψ3.

Here both the self-dual and the anti-self-dual combinations remain free, due to the exact
cancellation between the torsion terms and the background-charge terms. The self-dual ones
define the R-symmetry SU(2)1 algebra generated by the currents (4.5). The resulting “small”
(N = 4)-algebra generators are again combined into two SU(2) R-symmetry doublets:

G+, G̃− =
[
QJ−e

i√
2
H−

+ i
(
Q

(
J3 + i

√
2∂H−

)
− i∂ρ

)
e

−i√
2
H−]

e
±i√

2
H+

, (4.10)

G̃+, G− =
[
QJ+e

−i√
2
H−

+ i
(
Q

(
J3 + i

√
2∂H−

)
+ i∂ρ

)
e

i√
2
H−]

e
±i√

2
H+

. (4.11)

4.1.3 NS5/F1 background

We now move to the AdS3×S3×T 4 background, which describes the near-horizon geometry
of the NS5/F1-brane system. Our focus is the six-dimensional SL(2, R) × SU(2) subspace
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that we want to split into one ĉ = 4 system with N = 4 superconformal symmetry and one
with ĉ = 2 with N = 2. The total central charge of this factor is given by:

ĉ =
3kSL(2,R)

kSL(2,R) − 2
+

3kSU(2)

kSU(2) + 2
. (4.12)

Therefore to obtain a critical string background (ĉ = 6) for any level, we must choose

kSL(2,R) − 4 = kSU(2) = k. (4.13)

The N = 1 algebra of the theory is generated by

T =
1

k + 2
IiIjδ

ij +
1

k − 2
JαJβηαβ − 1

2
ψi∂ψi − 1

2
χα∂χα, (4.14)

G =

√
2

k + 2

[
ψiI

i − i

3
εij`ψ

iψjψ` + χαJα − i

3
εαβγχ

αχβχγ

]
, (4.15)

where I i and Jα denote respectively the bosonic currents of SU(2) and SL(2, R), ψi and χα

the corresponding fermions, and ηαβ = (+, +,−)11.

The N = 2 algebras of SL(2, R) × SU(2).
The various currents provided by the SU(2) and SL(2, R) algebras and the associated
fermions allow for extracting one N = 2, ĉ = 2 algebra generated by:

G±
2 =

1√
2(k + 2)

[(
I3 + ψ+ψ−)

∓
(
J3 + χ+χ−)] (

ψ3 ± χ3
)
, (4.16)

J2 = ψ3χ3. (4.17)

We have combined the currents and the fermions as follows :

J± = J1 ± iJ2 , I± = I1 ± iI2 , ψ± =
ψ1 ± iψ2

√
2

, χ± =
χ1 ± iχ2

√
2

.

The remaining generators form another N = 2 algebra decoupled from the first one [46]:

G±
4 =

1√
k + 2

[
I∓ψ± − iJ∓χ±]

, (4.18)

S3 =
1

2(k + 2)

(
2J3 + (k + 4)χ+χ− − 2I3 + kψ+ψ−)

. (4.19)

The various coefficients in S3 are such that: (i) S3 is regular with respect to G±
2 in order

to obtain two independent algebras, and (ii) S3(z)G±
4 (0) ∼ ± G±

4 (0)/2z. The normalization
of S3 follows from S3(z)S3(0) ∼ 1/2z2. Therefore we rewrite it in terms of a free boson as
follows:

i√
2
∂H+ =

1

2

(
ψ+ψ− + χ+χ−)

+
1

k + 2

(
J3 + χ+χ− − I3 − ψ+ψ−)

=
1

2

(
ψ+ψ− + χ+χ−)

+
1

k + 2

(
J 3 − I3

)
. (4.20)

11Indices i, j, . . . and α, β, . . . run both over 1, 2, 3, and we raise them with δij and ηαβ .
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We have introduced the total currents, including the fermionic part:

J 3 = J3 + χ+χ− and I3 = I3 + ψ+ψ−, (4.21)

respectively for SL(2, R) and SU(2), both at level k + 2.

We can use the bosonic fields J 3 and I3 in order to extend the superconformal symmetry
to N = 4. This is possible provided the R-symmetry current is compactified at the self-
dual radius, which is indeed the case here since the total currents J 3 and I3 are correctly
normalized in Eqs. (4.20), and can both be bosonized at radius

√
2(k + 2). However, in

ordrer to form the superconformal characters of SU(2) and SL(2, R), the characters of these
currents are coupled to the N=2 coset theories:

SU(2)

U(1)
× U(1)

R=
√

k
k+2

and
SL(2, R)

U(1)
× U(1)

R=
√

k+2
k

.

The coupling acts as a Zk+2 shift in the lattice of J 3 and I3; it is similar to the discussion
about the bosonic SL(2, R). Therefore, the charges of the current S3 are not those of a
boson at self-dual radius.

Space-time supersymmetry.
For a worldsheet superconformal theory with accidental N = 2 superconformal symmetry,
the space-time supersymmetry charges are obtained by spectral flow of the R-symmetry
current [47]. However, this requires that the charges of all the physical states with respect to
this U(1) current are integral. As we have seen above, the R-symmetry current of the ĉ = 4
block, whose expression is given in (4.20) does not fulfill this requirement, because its charges
depend on the eigenvalues of I3 and J 3. Moreover, space-time supercharges based on the
above N = 2 current lead to incompatibilities with target space symmetries [48]. These
problems arise because, even in flat space, the space-time supercharges are constructed
with the fermion vertex operators at zero momentum. In the present case, the space-time
momentum enters directly in the N = 2 charges and the SU(2) charges, though compact,
cannot be considered as internal.

We will proceed as in [8]: we construct directly the space-time supercharges with the
spin fields of the free fermions, which are BRST invariant and mutually local. This seems
sensible, since the fermions in a critical string theory based on WZW models are free. The
N = 2 current of the theory:

J = J2 + 2S3 =
2

k + 2

(
J 3 − I3

)
+ ψ+ψ− + χ+χ− + ψ3χ3,

differs from the free-fermionic one by the “null” contribution (J 3 − I3) /(k + 2). We can of
course wonder if there is another choice of N = 2 structure that could be more appropriate.
This exists and is provided by replacing the SL(2, R) by an SL(2, R)/O(1, 1) × U(1). It
suffers, however, from the same problem.

The required projections in SL(2, R) × SU(2) × U(1)4.

Here we come to the full background AdS3 × S3 × T 4. The worldsheet fermions of the T 4

are bosonized as:

λ1λ2 = ∂H3 , λ3λ4 = ∂H4,
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and those of SU(2) × SL(2, R) as:

ψ+ψ− = i∂H2 , χ+χ− = i∂H1 , ψ3χ3 = i∂H0.

In the −1/2 picture, the spin fields are

Θε(z) = exp

{
−ϕ

2
+

i

2

4∑

`=0

ε`H`

}
, (4.22)

where e−ϕ/2 is the bosonized superghost ground state in the Ramond sector [49].
The standard GSO projection keeps all spin fields satisfying

ε0ε1ε2ε3ε4 = 1, (4.23)

which is required by BRST invariance. In type IIB superstrings, the GSO projection is the
same on the spin fields from the right-moving sector, while for type IIA it is the opposite.
In the AdS3 × S3 × T 4 background, the fields (4.22) must obey the additional relation:

ε0ε1ε2 = 1, (4.24)

Equivalently, for type IIB, by using the GSO projection (4.23), the restriction on the allowed
spin fields can be imposed on the fermions of the four-torus:

ε3ε4 = 1. (4.25)

Relations (4.24) or (4.25) ensure the absence of 1/z
3
2 poles in the OPE of the spin fields with

the N = 1 supercurrent (4.15) that would otherwise appear as a consequence of the torsion
terms. Note also that in the superconformal algebra for the right-moving sector, the torsion
terms come with a negative sign in the supercurrent, but the projection remains the same.

In order to preserve the N = 1 supercurrent, we must implement the projection (4.25)
as a Z2 orbifold on the coordinates of the four-torus. This is why we are effectively dealing
with the background AdS3 × S3 × K3. Then, from the S-dual viewpoint, the model we are
describing consists of D5-branes wrapped on a K3 manifold and D-strings. It is known [51]
that in this case there is an induced D-string charge which is the opposite of the total D5-
brane charge. Indeed, including gravitational corrections to the Wess–Zumino term of the
D5-brane action, generates the following D1-brane charge:

Qind
1 = N5

∫
c2(K3)

24
= −N5

Therefore the net number of D1-branes accompanying the D5-branes is N1 + N5. This has
little effect on the S-dual model under consideration here, because the number of D-strings
affects the value of the string coupling but not the worldsheet CFT.

In conclusion, we have seen that, in order to obtain a supersymmetric spectrum consistent
with the BRST symmetry, we have to project out half of the space-time spinors from the
Ramond sector. By modular invariance, this projection must act as an orbifold on the
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fermionic characters and also on the bosonic part to be consistent with superconformal
invariance. For simplicity we have choosen to act on the fermions associated with the four-
torus; therefore the background is now AdS3 × S3 × T 4/Z2. The T 4/Z2 orbifold can be
replaced by another realization of K3 in CFT, such as a Gepner model [47]. Another way
to realize the projection is to twist the fermionic characters associated with AdS3 × S3. In
this case, we have to act on the SL(2, R) and SU(2) bosonic characters.

4.2 The partition function for superstrings on AdS3 × S3 × K3

We are now in position to write the partition function for type IIB superstrings on AdS3 ×
S3 × K3. We must combine the various conformal blocks in a modular-invariant way, and
impose the left and right GSO projections together with the additional projections dictated
by the presence of torsion.

The standard orbifold conformal blocks are given in Appendix B. The SU(2)k partition
function is chosen to be the diagonal modular-invariant combination [52] and the SL(2, R)
factor was discussed in Sec. 3. Putting everything together, including the conformal and
superconformal ghosts, we obtain:

ZIIB =
Imτ

η2η̄2
ZSU(2)ZSL(2,R)

1

2

1∑

h,g=0

Ztwisted
T 4/Z2

[
h

g

]

×1

2

1∑

a,b=0

(−)a+b ϑ2

[
a

b

]
ϑ

[
a + h

b + g

]
ϑ

[
a − h

b − g

]

×1

2

1∑

ā,b̄=0

(−)ā+b̄ ϑ̄2

[
ā

b̄

]
ϑ̄

[
ā + h

b̄ + g

]
ϑ̄

[
ā − h

b̄ − g

]
, (4.26)

We can read from this expression the spectrum of chiral primaries with respect to the
space-time superconformal algebra [8]. The vertex operators for such left-moving states in
the NS sector are given in the (-1) ghost picture by (see [55]):

VI
j = e−ϕ λI Φ

SL(2,R)
j, m Φ

SU(2)
j−1, m′

W±
j = e−ϕ

[
χΦSL(2,R)

]
j±1, m

Φ
SU(2)
j−1, m′

X±
j = e−ϕ Φ

SL(2,R)
j, m

[
ψΦSU(2)

]
j−1±1, m′

where Φ
SU(2)
j′,m′ and Φ

SL(2,R)
j,m are respectively the bosonic primaries fields of the holomorphic

current algebras SU(2)k and SL(2, R)k+4. They are combined with the worldsheet fermions
into representations of SU(2)k+2 and SL(2, R)k+2.

These states live in the five-plus-one dimensional world-volume of the NS5-branes. In
order to obtain the closed string spectrum, we tensorize this left-moving spectrum with the
right-moving one, and impose the Z2 projection on the torus. Additional states localized in
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one-plus-one dimensions are constructed with the twisted sectors of the orbifold:

W̃±
j = e−ϕ V tw

[
ψΦSU(2)

]
j±1, m

Φ
SL(2,R)
j−1, m′ ,

X̃±
j = e−ϕ V tw Φ

SU(2)
j, m

[
χΦSL(2,R)

]
j−1±1, m′ ,

where V tw are the twist fields of the NS sector.

5 Marginal deformations of SL(2, R)

The SL(2, R) geometry in Euler (global) coordinates reads12:

ds2 = dr2 − cosh2 rdt2 + sinh2 rdφ2,

B = cosh2 rdφ ∧ dt

and there is no dilaton. Strictly speaking the time coordinate t is 2π-periodic for the
SL(2, R), but non-compact for its universal covering (AdS3); φ is 2π-periodic and r > 0.

Conformal deformations of this background are generated by truly marginal operators
i.e. dimension-(1, 1) operators that survive their own perturbation. In the presence of
holomorphic and anti-holomorphic current algebras, marginal operators are constructed as
products JαJ̄β, not all being necessarily truly marginal. In the SU(2) WZW model, nine
marginal operators do exist. However, they are related by SU(2)× SU(2) symmetry to one
of them, say J3J̄3. Hence, only one line of continuous deformations appears.

The situation is different for SL(2, R), because here one cannot connect any two vectors
by an SL(2, R) transformation. This is intimately related to the existence of several families
of conjugacy classes: the elliptic and hyperbolic, which correspond to the two different
choices of Cartan subalgebra, and the parabolic corresponding to the null subalgebra. Three
different truly marginal left-right-symmetric deformations are possible, leading therefore to
three families of continuously connected conformal sigma models. Each of them preserves a
different U(1)L × U(1)R subalgebra of the undeformed WZW model.

The marginal deformations of SU(2) have been thoroughly investigated [27] [28] [54] with
respect to: (i) the identification with the

(
SU(2)k/U(1) × U(1)√2kα

) /
Zk, where SU(2)k/U(1)

is the gauging of the SU(2)k WZW model, and α is the deformation parameter; (ii) the ge-
ometrical (sigma-model) interpretation in terms of metric, torsion and dilaton backgrounds;
(iii) the determination of the toroidal partition function and the spectrum as functions of R.
For the SL(2, R) deformations, the available results are less exhaustive, especially concerning
the spectrum and the partition function [19] [28] [53]. Our aim is to understand the spectra –
partition functions – as well as the issue of supersymmetry, when these deformations appear
in a more general set up like the NS5/F1.

12We systematically set the AdS3 radius to one in the expressions for the background fields. One has to
keep in mind, however, that a factor k is missing in the metric. This plays a role when performing T-dualities
by applying the Buscher [56] rules because it can affect the periodicity properties of some coordinates.
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5.1 The J3J̄3 deformation

The J3J̄3 deformation of SL(2, R) has been already analyzed because it is the one that
naturally appears by analytically continuing the deformed SU(2) [28]. Much like the latter,
the metric, antisymmetric tensor and dilaton can be obtained by considering the SL(2, R)×
U(1)/U(1) coset, where the U(1) in the product is compact with a radius related to the
deformation parameter, and the gauged one is a diagonal combination of the extra U(1) with
the “time-like” U(1) in the SL(2, R), defined by h = exp iλ

2
σ2. The geometry corresponding

to the J3J̄3-deformed SL(2, R), with deformation parameter α − 1 > 0, is thus found to be

ds2 = dr2 +
− cosh2 rdt2 + α sinh2 rdφ2

α cosh2 r − sinh2 r
(5.1)

B =
α cosh2 rdφ ∧ dt

α cosh2 r − sinh2 r
, (5.2)

with dilaton

e2Φ = e2Φ0
α − 1

α cosh2 r − sinh2 r
. (5.3)

The scalar curvature of this geometry is

R = 2

(
1 − tanh2 r

) (
2
(
α2 − tanh2 r

)
− 5α

(
1 − tanh2 r

))
(
α − tanh2 r

)2 .

Notice that the background fields are usually expected to receive 1/k corrections; hence,
they are valid semi-classically only, except when they are protected by symmetries as in the
unperturbed WZW models.

At α = 1 we recover the AdS3 metric and antisymmetric tensor. For α ≥ 1, the geometry
is everywhere regular whereas for α < 1 the curvature diverges at r = arctanh

√
α. Similarly,

the string coupling gs = exp Φ is finite everywhere for α ≥ 1 and blows up at r = arctanh
√

α
for α < 1. This means that the semi-classical approximation fails for α < 1. The string
theory is however well defined. It is actually related by T-duality to the range α > 1 as will
be discussed later.

The two endpoints of the deformed background are remarkable:

The α → ∞ limit. In this case the background fields become:

ds2 = dr2 + tanh2 rdφ2 − dt2

α
(5.4)

e−Φ = e−Φ0 cosh r (5.5)

with no antisymmetric tensor. This is the cigar geometry times a free time-like coordinate.
The cigar – Euclidean black hole [18] – is the axial gauging (g → hgh) of the U(1) subgroup
defined by h = exp iλ

2
σ2. It generates time translations (see Eq. (A.7)) and acts without

fixed points. The corresponding geometry is regular and the 2π-periodicity of φ inherited
from the SL(2, R) ensures the absence of conical singularity.
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The α → 0 limit. Now we recover the trumpet plus a free time-like coordinate:

ds2 = dr2 + coth2 rdt2 − αdφ2 (5.6)

e−Φ = e−Φ0 sinh r. (5.7)

The trumpet is the vector gauging (g → hgh−1) of the same U(1), and generates now
rotations around the center (see Eq. (A.7)). Throughout this gauging the time coordinate
becomes space-like and vice-versa. The subgroup acts with fixed points, and this accounts
for the appearance of a singularity at r = 0, which is present no matter the choice for the
periodicity of t (in fact this coordinate is not periodic if we start from the universal covering
of SL(2, R)). Notice also that the time coordinate φ is compact, but infinitely rescaled
though.

A similar phenomenon occurs in the J3J̄3 deformation line of the SU(2) WZW model.
The two endpoints are the axial and vector gaugings of SU(2) by a U(1), times a free
boson, at zero or infinite radius. Axial and vector gaugings are identical in the compact
case [36]. They are T-dual descriptions of the same CFT, whose background geometry is
the bell. Therefore, in the compact case, there is a real T-duality relating large and small
deformation parameters. The situation is quite different in the non-compact case.

We would like now to better understand the algebraic point of view and determine the
partition function of the deformed theory at any α. As in the SU(2) case, the deformation
at hand corresponds to a shift of the “radius” of the J3, J̄3 lattice:

√
2k →

√
2kα. The form

(3.3) of the original SL(2, R) partition function enables us to implement this radius shift in
the time-like lattice with the modular-invariant result:

Z33̄(α) = 4
√

τ2(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m,w,m′,w′∈Z

ζ

[
w + s1 − t1
m + s2 − t2

]
(k) ζ

[
w′ + t1
m′ + t2

]
(−kα) . (5.8)

We can first expand the spectrum around the symmetric SL(2, R) point (i.e. for α = 1 + ε,
|ε| ¿ 1). It allows to express the spectrum in terms of the SL(2, R) quantum numbers.
Using the same techniques as in Appendix C, we first perform a Poisson resummation, and
integrate over t2. We find the exponential factor :

exp

{
−πτ2ε

[
n2

k
− k(w+ − (w − t1))

2

]

−2πτ2[w+(k(w − t1) −
k

2
w+) − 2πτ2s1(q + q̄ + 1 + k(w − t1))

+2iπs2(q − q̄ − n) − (k − 2)πτ2s
2
1 + 2iπτ1(w+ + s1)n

}

(5.9)

The second and third lines are exactly the same as the undeformed SL(2, R) and lead to the
same analysis. For ε ¿ 1, The first line gives simply a shift on the weights of the operators
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according to their J3
0 ,J̄3

0 eigevalues:

Lε
0 = L0 −

ε

k

(
m +

k

2
w+

)(
(m̄ +

k

2
w+

)

L̄ε
0 = L̄0 −

ε

k

(
(m +

k

2
w+

)(
(m̄ +

k

2
w+

)

In terms of the flowed eigenvalues: m̃ = m − kw+/2 , ˜̄m = m̄ − kw+/2, the deformation
term is:

δh = δh̄ = −εm̃ ˜̄m/k

It breaks of course the SL(2, R)L × SL(2, R)R symmetry of the CFT.

In the limits α → 0 or ∞, the J3, J̄3 lattice decouples. We then recover a free time-like
boson (of zero or infinite radius) times an SL(2, R)/U(1) coset. By using the large/small-
radius limits presented in Appendix B, we can trace the effect of these limits at the level of
the partition function13:

Z33̄(α) →
α→∞

k − 2√
kτ2ηη̄

ZSL(2,R)/U(1)A (5.10)

with ZSL(2,R)/U(1)A given in (3.2). This is precisely the geometrical expectation since the
large-α limit of the background (5.1)–(5.3) is the cigar, Eqs. (5.4), (5.5) describing the
semiclassical geometry of the axial U(1) gauging of SL(2, R). Similarly, we find

Z33̄(α) →
α→0

4
√

kα(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m,w∈Z

ζ

[
w + s1 − t1
m + s2 − t2

]
(k) . (5.11)

In terms of background geometry, this limit describes the trumpet (Eqs. (5.6)and (5.7)) times
a free time-like coordinate. We can therefore read off from expression (5.11) the partition
function of the vector coset:

ZSL(2,R)/U(1)V = 4(k − 2)3/2√τ2ηη̄

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m,w∈Z

ζ

[
w + s1 − t1
m + s2 − t2

]
(k) , (5.12)

The spectrum of primary fields of this coset can be computed straightforwardly, and reads,
both for continuous and discrete representations:

Lvector
0 = L̄vector

0 = −j(j − 1)

k − 2
+

µ2

k
, with µ = −k

2
(w − t1) ∈ R.

13The α → ∞ limit requires analytic continuation because the lattice is time-like.
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The gaussian variable w − t1 can be integrated, and leads to the partition function:

ZSL(2,R)/U(1)V = 4
(k − 2)3/2

√
k

ηη̄

∫
d2s

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1 (s1τ − s2|τ)|2
. (5.13)

The cigar and trumpet geometries are semi-classically T-dual; in fact a simple Buscher
duality [56] send one geometry to the other. Any two points (α, 1/α) in the above line of
deformations are in fact connected by a duality element of O(2, 2, R) [28].
However, if we recall for comparison the spectrum of primaries of the axial coset:

Laxial
0 = − j(j−1)

k−2
+ (n/2−kw/2)2

k
, (5.14)

L̄axial
0 = − j(j−1)

k−2
+ (n/2+kw/2)2

k
. (5.15)

we see immediately that the vector and axial cosets do not have the same spectrum. Our
previous discussion gives an explanation for this apparent “failure” of T-duality. In fact, we
have seen that the coordinate φ in the cigar metric (5.4) inherits the 2π

√
k periodicity from

the angular coordinate of AdS3, irrespectively of the cover of SL(2, R) considered; therefore
the corresponding lattice in the partition function is compact with radius

√
k. However, the

t coordinate of the trumpet metric (5.6) has a periodicity of 2πn
√

k, for the nth covering
of SL(2, R). Therefore, as we have chosen the universal cover of the algebra to obtain a
physically sensible theory, we have found a spectrum (Eqs. (5.14) and (5.15)) corresponding
to the “universal cover” of the trumpet, i.e. with a non-compact transverse coordinate. The
spectrum of these coset theories has been studied previously in [57]. The conclusions of
the authors about the duality were not the same as ours. The point is that they perform
the T-duality by exchanging the momentum and winding modes of the spectrum. This
is equivalent to exchange axial and vector gauging, up to the cover of SL(2, R), which is
precisely the reason of discrepancy.

Before closing this paragraph, we would like to comment on the unitarity of the deformed
model. To this end, we consider a small deformation parameterized by ε:

α = 1 − ε , ε > 0 (5.16)

Then the quadratic term in Eqn. (5.9) is space-like and allow to perform the energy integra-
tion without any analytic continuation; in fact, we slightly rotate the energy direction into
the light-cone. In the limit ε → 0 , we obtain a delta-function that gives the same trivial
partition function as we obtained previously. It is possible to analyze this result in a different
way. We decompose the characters of, for example, the discrete representations using a non-
compact generalization of the Kac̆-Peterson formula [58]: χj,+

SL(2,R)(τ) =
∑

m∈N
cj
me−(j+m)2/k

with the string functions cj
m = q−j(j−1)/(k−2)+(j+m)2/k × (oscillators). If we change the Cartan

radius
√

2k → α
√

2k, α < 1, all the characters become convergent.

5.2 The J2J̄2 deformation

The operator J2J̄2 is also suitable for marginal deformations of the theory. It is not equivalent
to J3J̄3 because it corresponds to a choice of space-like Cartan subalgebra instead of a time-
like one. Conversely the corresponding deformation can be realized as SL(2, R)×U(1)/U(1)
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where the gauged U(1) is now a diagonal combination of the extra U(1) factor with SL(2, R)
elements of the type h = exp−λ

2
σ3.

Owing to the previous discussion, we easily determine the partition function at any value
of the deformation parameter. This is realized by deforming the corresponding cycle in the
Cartan torus, which amounts in shifting the radius of the J2, J̄2 lattice. In order to present
this partition function in a form closer to the one of the J3J̄3 deformation, we diagonalize
J2 instead of J3. This is achieved by redefining the lattice variables in Eq. (3.3)as:

w + s1 − t1 → w − t1 , w′ + t1 → w′ + t1 + s1

m + s2 − t2 → m − t2 , m′ + t2 → m′ + t2 + s2.

Then we write the following partition function for the J2J̄2 deformation:

Z22̄(α) = 4
√

τ2(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m,w,m′,w′∈Z

ζ

[
w − t1
m − t2

]
(kα) ζ

[
w′ + t1 + s1

m′ + t2 + s2

]
(−k) . (5.17)

Getting the effective geometry is interesting per sei but its systematic analysis goes
beyond the scope of the present work. For extreme deformations, a space-like coordinate is
factorized, and we are left with an SL(2, R)/U(1) coset with Lorentzian target space: the
two-dimensional black hole.

Again the α → 0 and α → ∞ limits are related by T-duality, which at the level of
the semi-classical geometry describe various space-time regions of the black hole [57]. For
α → ∞ we obtain:

Z22̄(α) →
α→∞

1√
kατ2ηη̄

ZBH (5.18)

with

ZBH = 4
√

τ2(k − 2)3/2 ηη̄

∫
d2s

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
∑

m′,w′∈Z

ζ

[
w′ + s1

m′ + s2

]
(−k). (5.19)

There is a subtlety in the latter expression compared to the ordinary Euclidean axial
black hole (3.2). In the path-integral calculation of the partition function for the Euclidian
coset, the oscillators were coupled to the full real momentum of the free boson. We used
the periodicity of the determinant to break the zero modes into an integer part and a real
compact part. The integer part was interpreted as the lattice of the zero modes of the
compact boson, and the real part as Lagrange multiplers which impose constraints on the
Hilbert space. In the present case, we have to perform an analytic continuation to move to
the Hamiltonian representation of the partition function and read the string spectrum:

ZBH = 4
√

k(k − 2)3/2 ηη̄

∫

R2

d2v
e

2π
τ2

[Im(i(v1τ−v2))]2
e
− kπ

τ2
|v1τ−v2|2

|ϑ1 (i(v1τ − v2)|τ)|2
.

Now, because the coupling is imaginary, the determinant is no longer periodic; therefore we
have a non-compact time-like coordinate coupled to the oscillators.
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5.3 The null deformation

As we already mentioned in Sec. 2.2, the SL(2, R) WZW model allows for extra, unconven-
tional, marginal deformations, which are not generated by Cartan left-right bilinears such
as J2J̄2 or J3J̄3. Instead, the marginal operator we will consider is the following:

JJ̄ ∼
(
J1 + J3

) (
J̄1 + J̄3

)
,

(see Eqs. (2.15) and (A.8)–(A.13)).

Operators J2J̄2 and J3J̄3 deform the theory by shifting the weights of the states according
to their quantum numbers m and m̄. Instead, JJ̄ gives masses to the states according to
their spectral flow. In the holographic dual description, these null currents are the translation
generators of the conformal group acting on the boundary in Poincaré coordinates [59]. We
will here analyze their action from the sigma-model viewpoint and determine the spectrum
and partition function of the deformed model. Supersymmetry issues will be addressed in
the more complete set up of null-deformed SL(2, R) × SU(2), Sec. 6.

We recall that the metric of the deformed background is (see Eqs. (2.9))

ds2 =
du2

u2
+

−dT 2 + dX2

u2 + 1/M2
.

The scalar curvature reads:

R = −2
u2 (3u2 − 4/M2)

(u2 + 1/M2)2 .

This geometry is smooth everywhere for M2 > 0. The opposite case M2 < 0 gives a singular
geometry, however it is also interesting, and corresponds to the repulsion solution [60].

In order to study the null deformation of AdS3, it is useful to introduce a free-field
representation of SL(2, R), in which operators J and J̄ have a simple expression. We first
introduce φ = − log u, γ̄ = x+ and γ = x−. The worldsheet Lagrangian (see Eq. (2.14))14

reads:

2π

k
L = ∂φ∂̄φ + e2φ∂γ̄∂̄γ. (5.20)

It can be represented with a (β, γ) ghost system of conformal dimensions (1, 0):

2π

k
L = ∂φ∂̄φ + β∂̄γ + β̄∂γ̄ − ββ̄e−2φ. (5.21)

Classically, β and β̄ are Lagrange multipliers. They can be eliminated by using their equa-
tions of motion, and this gives back the action (5.20). At the quantum level, however, we

14Note that the Euclidean rotation from SL(2, R) to H+
3 is performed by just considering γ and γ̄ as

complex conjugate.
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must integrate them out; taking into account the change of the measure and the renormal-
ization of the exponent, we obtain, after rescaling the fields:

2πL = ∂φ∂̄φ + β∂̄γ + β̄∂γ̄ − ββ̄e−
√

2
k−2

φ −
√

2

k − 2
R(2)φ. (5.22)

The last term is the screening charge necessary to compute correlation functions in the
presence of the background charge for the field φ (R(2)-term). The OPE of the free fields
are φ(z, z̄)φ(0) ∼ − ln(zz̄) and β(z)γ(0) ∼ 1/z. By using these free fields, the holomorphic
currents (A.8)–(A.10)) are recast, at quantum level, as:

J1 + J3 = β,

J2 = −iβγ − i

√
k − 2

2
∂φ,

J1 − J3 = βγ2 +
√

2(k − 2)γ∂φ + k∂γ;

They satisfy the ŜL(2, R)L OPA, Eqs. (A.14). Notice finally that the holomorphic primaries
of the SL(2, R) CFT read in this basis:

Φj
m = γj−me

√
2

k−2
jφ. (5.23)

The conformal weight of this operator is entirely given by the Liouville primary, whereas the
J2 eigenvalue corresponds to the sum of the “ghost number” and the Liouville momentum.

We can use the above free-field representation to write the null deformation of the AdS3

sigma model, Eq. (2.16):

2πL = ∂φ∂̄φ + β∂̄γ + β̄∂γ̄ − ββ̄

[
1

M2
+ e−

√
2

k−2
φ

]
−

√
2

k − 2
R(2)φ.

For any non-zero value of the deformation parameter, the fields β and β̄ can be eliminated,
leading to two light-cone free coordinates. The energy-momentum tensor reads:

T = −1

2
∂φ∂φ − 1√

2(k − 2)
∂2φ − M2∂γ̄∂γ.

We would like to determine the partition function of the model at hand. To this end
we’ll follow the procedure which has by now become familiar: implement the deformation
into the twist-shift orbifold structure of the AdS3. The ghost number is no longer conserved
because the ghost-number current βγ (equal to γ∂γ̄ exp 2φ, onshell) is not a conformal field
(this means in particular that the fields (5.23) are now ill-defined). However, there is still
a global U(1)symmetry: γ → eiαγ, γ̄ → e−iαγ̄ that we can orbifoldize (this is twist on a
complex boson). However with this representation it is not possible to implement spectral
flow without adding extra fields; therefore we have to find the action of the deformation on
the zero modes structure.

Owing the above ingredients, we can construct the partition function that fulfills the
following requirements:
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1. The endpoint of the deformation, M2 → 0, should give the Liouville theory times a
free light-cone. At M2 → ∞ one should recover the undeformed SL(2, R).

2. The deformation should act on the spectral-flow quantum number.

3. The partition function must be modular invariant.

This enables us to propose the following partition function for the null-deformed model:

Z null
SL(2,R)

(
M2

)
= 4

√
τ2(k − 2)3/2

∫
d2s d2t

e
2π
τ2

(Im(s1τ−s2))2

|ϑ1(s1τ − s2|τ)|2
×

×
∑

m,w,m′,w′∈Z

ζ

[
w + s1 − t1
m + s2 − t2

] (
k
1 + M2

M2

)
ζ

[
w′ + t1
m′ + t2

](
−k

1 + M2

M2

)
.

(5.24)

which is obtained by changing the radii of both space-like (J2, J̄2)15 and time-like (J3, J̄3)
lattices by the same amount. In the pure SL(2, R) theory, the spectrum is constructed by
acting on the primaries with the modes of the affine currents. The difference with the linear
dilaton model is that the shift of the oscillator number is linked to the shift of the zero modes.
In writing (5.24), which interpolates between these two models, we have implemented that
this shift should vanish at infinite deformation (i.e. M2 = 0), which indeed happens provided
the radius of the lattice of light-cone zero-modes becomes large. We’ll expand on that in the
next section. In the limit of infinite deformation M2 → 0, by using the standard technology
developed so far, we find

Z null
SL(2,R)

(
M2

)
∼ (k − 2)3/2M2

π2τ
3/2
2 (ηη̄)3

, at M2 ∼ 0.

This coincides with the partition function for U(1)Q × R
1,1.

The derivation of the spectrum goes as in previously (see Appendix C). Again, we con-
centrate on the vicinity of the unbroken SL(2, R) (although the spectrum is known at any
M2):

M2

1 + M2
= 1 − ε , ε ¿ 1.

The deformed discrete spectrum is

L0 = −j(j − 1)

k − 2
− w+

(
m +

ε

2
(m + m̄)

)
− k

4
(1 + ε)w+ 2 + N

+
ε

2(k − 2)

(
m + m̄ +

k

2(k − 2)
(1 − 2j)

)
,

L̄0 = −j(j − 1)

k − 2
− w+

(
m̄ +

ε

2
(m + m̄)

)
− k

4
(1 + ε)w+ 2 + N̄ ;

+
ε

2(k − 2)

(
m + m̄ +

k

2(k − 2)
(1 − 2j)

)
(5.25)

15 or equivalently (J1, J̄1) since they are exchanged by a group rotation
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The last terms of both equations are due to the displacement of the poles corresponding to
the discrete representations. For the continuous spectrum, we have a similar shift on the
weights:

L0 =
s2 + 1/4

k − 2
− w+

(
m +

ε

2
(m + m̄)

)
+

k

4
(1 + ε)w+ 2 + N,

L̄0 =
s2 + 1/4

k − 2
− w+

(
m̄ +

ε

2
(m + m̄)

)
+

k

4
(1 + ε)w+ 2 + N̄

with a deformed density of states. As expected, the deformation term is linked to the spectral
flow.

6 The supersymmetric null deformation of SL(2, R) × SU(2)

So far, we have been considering conformal deformations of the AdS3 background, realized
by marginal deformations of the corresponding SL(2, R) WZW model. In supersymmetric
NS5-brane configurations, the SL(2, R) appears usually along with SU(2). We will here
analyze the issue of supersymmetry in presence of null deformations of the SL(2, R) factor.
We will in particular show that the requirement for the worldsheet N = 2 superconformal
symmetry to be preserved, gives very tight constraints on the allowed deformations.

6.1 The N = 2 algebra of the deformed theory

We first rewrite the N = 2 algebra for SL(2, R)× SU(2), Eqs. (4.16), (4.17) and (4.21) (we
drop the subscript “2” in G±

2 because we will only be concerned with N = 2 algebra) in the
free-field representation (Eqs. (3.9), (3.10)). We recall that I i are the SU(2) currents, ψi

and χi the fermions of respectively SU(2) and SL(2, R).

G± = i

√
2

k + 2

(√
k + 4

2
∂X ∓ i

√
k + 2

2
∂ρ

)
e∓i

√
2

k+4
(X−T )χ±

+

√
2

k + 2

[
I3 ∓

(√
k + 4

2
i∂T + χ+χ−

)]
ψ3 ± χ3

2
+

√
2

k + 2
I∓ψ± (6.1)

J = ψ3χ3 + χ+χ− + ψ+ψ− +
2

k + 2

[√
k + 4

2
i∂T + χ+χ− − I3

]
. (6.2)

The fermions χ+, χ− are bosonized as χ+χ− = i∂H1. Note also a shift k → k + 4 with
respect to the formulas for pure AdS3; k is the level of ŜU(2), and this shift ensures that
the total bosonic central charge equals six (see (4.12) and (4.13)).

In [37], a map was given between the free-field representation of the superconformal
algebra for SL(2, R) and the algebra for N = 2 Liouville times two free coordinates. As a
first step towards the supersymmetrization of the null deformation studied previously, we
will show that there exists a one-parameter family of N = 2 algebras interpolating between
SL(2, R) × SU(2) and U(1)Q × R

1,1 × SU(2).
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The N = 2 generators (with a non-standard complex structure) are, for U(1)Q × R
1,1 ×

SU(2),

√
2G± =

(
i∂X̂ −

√
2

k + 2
i∂Ĥ1 ± ∂ρ

)
e±iĤ1

+

(√
2

k + 2
I3 ∓ i∂T̂

)
ψ3 ± χ3

√
2

+

√
2

k + 2
I∓ψ±

J = i∂Ĥ1 + ψ3χ3 + χ+χ− +
2

k + 2

[√
k + 2

2
i∂X̂ − I3

]
.

where T , X, are the light-cone coordinates. Then we perform the following SO(2, 1) rotation,
which leaves unchanged the OPE’s:

Ĥ1 = H1 − tX−,

T̂ = cT + sH1,

X̂ = cX + s(H1 − tX−),

where X− = X − T , and we have introduced:

c = cosh σ , t = tanh σ , s = sinh σ = s0/p , with s0 =

√
2

k + 2
and p ≥ 1.

For p = 1, the rotated N = 2 algebra corresponds exactly to the superconformal algebra
for SL(2, R) × SU(2), Eqs. (6.1) and (6.2). Furthermore, one can check that the N = 2
superconformal structure is preserved for any p.

Coming back to the null deformation of SL(2, R) × SU(2), we conclude that the above
one-parameter family of supercurrents can be implemented along the line of deformation.
The N = 2 R-symmetry current of the deformed theory takes the form:

Ĵ = ψ3χ3 + χ+χ− + i∂H1 + ps2

(
1

t
i∂T + i∂H1

)
− s2

0 I3 + (p − 1)t i∂X−,

and the deformed supercurrents read:

√
2G±

2 =
(
s0I3 ∓ i(c ∂T + s ∂H1)

) ψ3 ± χ3

√
2

+ s0I
∓ψ±

+ i
[
c ∂X − (s0 − s)

(
∂H1 − t ∂X−)

∓ i∂ρ
]
e±i(H1−tX−). (6.3)

Clearly, the background contains both torsion (in the first line of (6.3)) and a background
charge (in the second line). The field H1 still corresponds to a free complex fermion, provided
that we change the radius of the compact light-cone direction:

R̂+ =
2

t
=

√
2 (p2(k + 2) + 2)
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The latter statement holds because the deformation is null. It therefore confirms our as-
sumption (Sec. 5.3) that the null deformation corresponds to a change of the radius of the
compact light-cone coordinate. The relation between this parametrization and the mass
scale introtuced in Sect. 2 is :

1

M2
=

k + 2

k + 4

(
p2 − 1

)
. (6.4)

The bosonic SL(2, R) currents are deformed as:

J3 → J3
def =

1

t
i∂T

J± → J±
def = i

[
1

t
∂X +

s0 − s

c
∂X− ± 1

s
i∂ρ

]
e±itX−

.

And the holomorphic primary fields for the deformed SL(2, R) are recast as:

Φdef
j mm̄ = exp

{√
2

k + 2
jφ + it

[(
m − 1

2t2
w+

)
X− +

1

2t2
w+(X + T )

]}
,

where, as in the undeformed theory, m−m̄ ∈ Z is the angular momentum and m+m̄−2w+/t2

is the energy. This gives the following N = 2 charges:

QR = q1 + q2 + q0 − w+ +
2

p(k + 2)
[m + q1 − w+] − 2

k + 2

[
mSU(2) + q2

]

with qi the fermionic charges.

The worldsheet supersymmetry of the deformed theory works similarly to the undeformed
one (p = 1). In fact, the spectral-flow charge w+ in the first bracket has to be compensated
by a shift of q1, because the spectral-flow symmetry must act on the total current [50]. We
are left with well-normalized charges for I3 and deformed J 3.

6.2 Space-time supersymmetry

The supersymmetry generators of the original SL(2, R) × SU(2) model are given in Eq.
(4.22) with a restriction on the allowed charges captured in (4.25), on top of the usual GSO
projection.

In the deformed theory, these operators are no longer physical with respect to the super-
current G = G+ + G− given in Eq. (6.3). The physical spin fields are instead

Θdef
ε (z) = exp

{
−ϕ

2
+

i

2

4∑

`=0

ε`H` +
i

2
ε1(p − 1)t X−

}
. (6.5)

Since the only modification resides in the X− term, it changes neither the conformal dimen-
sions of these fields nor their mutual locality. By using the same projection as before, we
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obtain a set of well-defined physical spin operators. Acting with one of these operators on a
left-moving vertex operator of the NS sector (q` ∈ Z),

V (z′) ∼ e−ϕΦdef
j m exp i

4∑

`=0

q` H`(z
′),

gives a leading term behaving like

(z − z′)
1
2{−1+

∑4
`=0 ε`q`+ε1(p−1)w+}.

We conclude that the locality condition of space-time supercharges with respect to the states
requires the deformation parameter be an odd integer: p ∈ 2Z + 1. Note that since this
quantization condition originates from the massive states (those with w+ 6= 0), it is not
visible in the supergravity analysis. In the limit of infinite deformation, this choice generates
modified space-time supercharges, constructed with H1 − s0X

−. This choice is not the one
obtained form the N = 4 algebra (see Eqs. (4.10) and (4.11)), because the complex structure
for the fermions is different. An appropriate choice, though, avoids infinite shifts in the spin
fields, and allows for reaching a well-defined theory at the limit of infinite deformation.

At this point we want to discuss the issue of supersymmetry breaking. In type IIB, the
first projection performed in the undeformed theory keeps the spinors (+,2,2) and (−,2′,2)
of SO(1, 1)×SO(4)×SO(4)T for both supersymmetry generators. When the AdS3 factor of
the background is deformed in the null direction, the gravitino must be right-moving in space-
time (hence, it depends on X−), which picks up the spinor (+,2,2). So, although the number
of covariantly constant spinors is reduced by a factor of two in the deformed background,
the number of transverse fermionic degrees of freedom appearing in the spectrum is the
same. A subtlety comes, however, while dealing with the right-moving sector of the theory.
As already mentioned, in WZW models, the right superconformal algebra is written with a
torsion term of opposite sign. The correct torsion for the right movers in the SL(2, R) factor
demands to rotate the fields of SU(2)R × U(1)Q × R

1,1 as:

ˆ̄H1 = H̄1 − tX̄+,
ˆ̄T = cT̄ − sH̄1,
ˆ̄X = cX̄ + s(H1 + tX̄+).

Therefore, the right algebra is written with X̄+ rather than with X̄−. For the undeformed
model this is irrelevant since the two free-field representations are isomorphic. However,
for non-zero deformation, it makes a difference because the right-moving spin fields will be
corrected with X̄+ rather than X̄− :

Θ̄def
ε̄ (z) = exp

{
−ϕ

2
+

i

2

4∑

`=0

ε̄`H̄` + ε̄1(p − 1)t X̄+

}
.

As a consequence, right- and left-moving gravitinos propagate in opposite light-cone direc-
tions, and give space-time transverse supercharges (2′,2). In type IIA, the same reasoning
leads to the representations (2,2) for both generators. The conclusion is that the deforma-
tion flips the chirality of space-time fermions from the right sector.
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6.3 The partition function for superstrings on deformed SL(2, R) × SU(2)

As we have seen in the previous analysis, the only necessary modification on the fermionic
part is the flip of chirality for the right-moving fermions. It is implemented by inserting
(−)FR , where FR is the space-time fermion number for right-movers. This is an orbifold,
that projects out the Ramond states from the untwisted sector, while the twisted sector
restores the Ramond states, with opposite chirality though. The fermionic vertex operators
are thus constructed with exp±i (H1 + (p − 1)t X−) /2. However, since this modification
has no effect on the conformal weights of the spin fields, it does not alter the fermionic
characters in the partition function. The remaining parts of the partition function have been
discussed in previous sections. Putting everything together, we find for the {null-deformed
SL(2, R)} × SU(2) × T 4/Z2:

ZIIB(p) =
Imτ

η2η̄2
ZSU(2)Z

null
SL(2,R)(p)

1

2

1∑

h,g=0

Ztwisted
T 4/Z2

[
h

g

]

×1

2

1∑

a,b=0

(−)a+b ϑ2

[
a

b

]
ϑ

[
a + h

b + g

]
ϑ

[
a − h

b − g

]

×1

2

1∑

ā,b̄=0

(−)ā+b̄ 1

2

1∑

h′,g′=0

(−)(1−δp,1)[āg′+b̄h′+h′g′] ϑ̄2

[
ā

b̄

]
ϑ̄

[
ā + h

b̄ + g

]
ϑ̄

[
ā − h

b̄ − g

]
,

where p ∈ 2Z + 1 and Z null
SL(2,R)(p) is given in (5.24) with k → k + 4; the relation between

p and M2 has been given by Eq. (6.4). The sum over h′ and g′ flips the chirality of the
right-moving fermionic representation for any p 6= 1, according to the left-right asymmetry
discussed in the text.

This is the simplest modular invariant combination of the various ingredients, with the
correct projections dictated by the superconformal invariance. It should, by no means, be
considered as unique, and many other models do exist, which are equally acceptable.

7 Some comments about holography

In this last section of the paper, we will give some remarks about the holographic dual of
string theory in the background (2.9). Since this string theory is exaclty solvable and per-
turbative everywhere, we can use the gauge/gravity correspondence beyond the supergravity
approximation. The purpose here is only to identify the non-gravitational dual of the setup
and to explain its relevance to study Little String Theory. Although the space-time stud-
ied in this paper is constructed as a deformation of AdS3, the holographic interpretation is
different from the undeformed case.

7.1 The D1-D5 setup and AdS/CFT

Let first review briefly the usual holographic dual of the theory of D1/D5-branes [22]. Start-
ing with the supergravity solution of Eqs. (2.1), (2.2), and (2.3) we would like to take a limit
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where the theory on the branes is decoupled from the bulk modes. This is obtained by the
low energy limit:

α′ → 0 , U = r/α′ fixed

so that the gravitational coupling constant goes to zero. All the open string modes become
infinitely massive and only the zero modes survive; the dual theory is a field theory.

Note that in this limit, the dimensionless volume of the 4-torus has a fixed, finite value:

v̂(T 4) = N1/N5

Therefore, dual conformal theory is 1+1 dimensional. In the low energy limit, the D1-branes
are trapped inside the D5-branes world-volume and can be considered as instantons of the
six-dimensional U(N5) gauge theory of the D5-branes. The N = (4, 4) superconformal field
theory dual to the near-horizon limit of the background is the Higgs branch of a sigma-model
on the moduli space of these instantons, of central charge c = N1N5[22].

In the regions of the moduli space where the string coupling is large, the theory is
appropriately described in the S-dual frame. The string background is then given by the
WZW theory: SU(2)k × SL(2, R)k+4, where k = N5. Now the constant value of the six-
dimensional string coupling is g6 = N5/N1. Note that, although the number of fundamental
strings do not appear in the worldsheet CFT description, the string theory is weakly coupled
only for large values of N1.

An interesting feature of this theory is that it is possible to construct directly out of the
worldsheet currents the generators of the space-time Virasoro algebra [8], which act on the
boundary of AdS3.

7.2 The null deformation of AdS3

The null deformation of AdS3 cannot be small; regardless the value of the deformation
parameter, the causal structure of the space-time is completely changed. There is no con-
formal boundary any more, but rather an asymptotic flat geometry with a linear dilaton.
Anyway, the deformation parameter can always been scaled to one (if positive) by rescaling
the non-compact coordinates of the light-cone.

From the holographic point of view, the null deformation corresponds to adding an (infra-
red) irrelevant operator in the lagrangian. It is therefore more appropriate for holography
to start with the holographic dual of the linear dilaton background and perturb it in the
infra-red by a relevant operator.

Our decoupling limit (2.4) is quite different from the standard one. First, we send the
ten-dimensional string coupling to infinity; therefore to study this part of the moduli space
of the brane theory we have to perform a S-duality; in the dual variables, the limit is

g̃s → 0 , α̃′ fixed

This is precisely the same as the little string theory limit as will be shown shortly.

Another important difference is that this limit involves the decompactification of the
torus (in the D-branes picture, we send the asymptotic value of the dimensionless volume v
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to infinity). Therefore the dual “gauge” theory should be six-dimensional; this is again the
same as little string theory.

7.3 A little review of little string theory

The little string theory is the decoupled theory living on the world-volume of the NS5-branes
(for a review, see [61]). The world-volume theory is decoupled from the bulk by taking the
limit:

g̃s → 0 , α̃′ fixed

Note that this is not a low energy limit, unlike the AdS/CFT case. The resulting theory
is interacting and non-local, since it exhibits the T-duality symmetry. In the case of type
IIB string theory, the low energy limit of LST is a U(N5) gauge theory with N = (1, 1)
supersymmetry and a bare gauge coupling:

g2
Y M = α̃′

The coupling grows at large energy, and additional degrees of freedom, which are identified
as string-like instantons in the low energy theory, appear at energies of order α̃′−1/2. These
instantons are identified with fundamental strings attached to the NS5-branes. In the infra-
red this theory flows to a free fixed point. In the case of type IIA string theory, the infra-red
limit is an N = (2, 0) interacting superconformal theory. It contains tensionless strings.

The conjectured holography of [23] states that this theory is dual to string theory in the
NS5-branes background in the near horizon limit [1]:

ds2 = dxµdxνηµν + α̃′N5(dρ2 + dΩ 2
3 )

Φ = −ρ

H = 2α̃′N5 ε(Ω3)

This geometry corresponds to the exact conformal field theory SU(2)k×U(1)Q, with k+2 =
N5 that was discussed in sect. (4.1.2). We see immediately that this holographic description
breaks down in the region Φ → −∞, near the branes, because the string coupling blows
up. In the type IIB case, this is related to the fact that the infra-red fixed point is free.
In the type IIA theory, this strong coupling region is resolved by lifting the background to
M-theory [23]; we obtain the background AdS7 × S4 of eleven-dimensional supergravity in
the vinicity of the M5-branes (distributed on a circle in the eleventh dimension).

As in the AdS/CFT correspondence, on-shell correlators of non-normalizable states in
string theory corresponds to off-shell Green functions of observables in LST. The non-
normalizable states of the linear dilaton background are the discrete representations with
imaginary momentum. More precisely, we consider the following massless operators of the
worldsheet CFT:

V = (ψψ̄ΦjΦ̄j)j+1e
2j√

2(k+2)
ρ

(7.1)
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where the primary operator of spin j of SU(2) and the fermions are combined into a operator
of spin j+1. They correspond to the following operators of the world-volume theory:

Tr X i1 . . . X in ; n = 2, 3, . . . k + 2

which are symmetric, traceless combinations of the four adjoint scalars X i, i = 6, 7, 8, 9
in the U(N5) vector multiplet. From the worldsheet point of view, the operators (7.1) are
necessary to balance the background charge in the correlation functions.

The theory contains delta function-normalizable states, from the continuous representa-
tions:

V ∼ e
(− 1√

2(k+2)
+is)ρ

They are believed to correspond to states in the LST and form a continuous spectrum above a
mass gap given by the background charge. In the bulk they are propagating fields in the linear
dilaton background. There is a third class of operators from the discrete representations,
normalizable in the ultraviolet but not in the infra-red:

V ∼ e
−2(j+1)√

2(k+2)
ρ
ΦjΦ̄j

These operators correspond to states localized in the five-branes. When we deform the
theory towards SL(2, R), they become the discrete representations of the unitary spectrum
of SL(2, R).

7.4 Low energy limit, strong coupling and fundamental strings

The decoupling limit of the LST (7.3) does not really make sense for type IIB superstrings in
the deep infra-red region. In fact, as the string coupling blows up here, sending its asymptotic
value to zero does not ensure that the theory living on the branes decouples from the bulk
at very low energies. Since the bulk theory is nonperturbative in this region, the resolution
of this puzzle is quite conjectural.

Our background, viewed from the LST side, provides a possible mechanism to describe
what is going on there. We first take the worldsheet description of the bulk physics; the
bosonic lagrangian of the theory is

2πL = ∂ρ∂̄ρ −
√

2

k + 2
R(2)ρ + ∂X+∂̄X− + 2πLWZW

SU(2)k
+

9∑

i=6

∂X i∂̄X i

Starting from this extremity of the line of marginal deformations, we add at first order the
following (1,1) operator to the Lagrangian:

δL ∼ M2e−
√

2
k+2

ρ ∂X+∂̄X−

It provides a Liouville potential for the linear dilaton and regulate the strong coupling region.
Note that this potential adds a nontrivial “electric” NSNS flux in the background. We know
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from our previous analysis that deforming the theory in this way corresponds to adding
fundamental strings in the infra-red region of the background. This operator is a singlet of
SU(2)L × SU(2)R. We propose that, as we go down into the throat (the strong coupling
region) the type IIB string theory undergo some kind of phase transition where macroscopic
fundamental strings condense in the world-volume of the NS five-branes.

Now consider the dual non-gravitational theory living on the D5-branes. The low energy
bosonic Euclidean action is

S =

∫
1

α′gs

Tr F ∧ ∗F +
i

α′C0 dt ∧ dx ∧ Tr F ∧ F +
1

α′gs

{
Dφi ∧ ?Dφi + [φi, φj]2 ∗ I

}

Where C0 is the flux generated by the D1-branes. It is well known that for gauge theories
in dimensions higher than four, fields configurations of nonzero energy (instanton-like) have
an infinite action and therefore do not contribute to the path integral. The conclusion is
different in the presence of the D1-branes flux. Starting with any instanton solution in four
dimensions:

∗4F = F

we can lift it to a field configuration in six dimensions which obey a generalized self-duality:

∗6F = F ∧ dt ∧ dx

Such a solution is not really an instanton, since it is invariant under time translations. This
configuration is one-half BPS, because it imposes the fermionic projection on supersymmetry
generators:

1

2

(
1 − γ6789

)
η = 0

where 6,7, 8, 9 are the coordinates of the 4-torus in our conventions. The gauge action for
such a solution is

S =
1

α′

[
1

gs

+ iCO

] ∫
dt ∧ dx ∧ TrF ∧ F

In the infra-red, the RR 2-form behaves as:

C0 = − i

gs

[
α′vU2

gsN1

− 1

]
→

U→0

i

gs

Therefore, the classical action for such a configuration vanish. The conclusion is that, in
presence of the D1-brane flux, an imaginary “theta-like” topological term is added to the
SYM action. Now stringy instanton solutions of the gauge theory are minima of the action
and contribute to the path integral; in the infra-red the theory is not the free SYM fixed
point, but rather the 1+1 dimensional dynamics of these objects.

At this point one can wonder if there are other natural infra-red completions of the
perturbative string background. Another proposal, called “double scaled little string theory”
has been made some years ago [4]. The idea is to describe the Higgs phase of the little string
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theory, where the NS5-branes are distributed on a circle of radius r0. The double scaling
limit is defined by: g̃s → 0, r0/

√
α̃′ → 0. In this limit, the worldsheet dual background is

described by an orbifold of an N=2 Liouville theory with a potential tensorized with the
coset SU(2)/U(1). Using a duality discussed recently in [62], this theory is supposed to be
equivalent to (

SU(2)

U(1)
× SL(2, R)

U(1)

)
/ZN5

In this model the strong coupling throat region of the NS5-branes background is replaced
by the tip of the cigar geometry, so the dilaton value is bounded from above. However, the
identification of the background is not completely clear since it involves a T-duality which
is not well understood for non-compact manifolds. Indeed, another T-duality send the coset
model SU(2)

U(1)
× SL(2,R)

U(1)
×U(1)2 to SU(2)×SL(2, R), whose target space interpretation in terms

of branes is different.

8 Discussion and conclusions

Let us summarize the main conclusions of this paper. We have shown that an interest-
ing and yet unravelled decoupling limit for the D1/D5-brane theory (or NS5/F1 in the
S-dual description) exists. It captures not only the infra-red dynamics, but also the full
renormalization-group flow. Furthermore, this theory is free of strong coupling problems
in the bulk, in contrast with the little string theory limit in the moduli space. We have
studied this background mainly from the string worldsheet point of view, since the bulk
background in the NS5/F1 picture is an exactly solvable worldsheet conformal field theory:
{null-deformed SL(2, R)} × SU(2)×(T 4or K3).

We have first analyzed the undeformed SL(2, R) theory, for which our achievement is
the construction of the partition function for the (Lorentzian) AdS3, including both discrete
and continuous representations, in all the sectors of spectral flow. Our procedure is to start
from the coset theory SL(2, R)/U(1)A, and to reconstruct the SL(2, R) partition function by
coupling the former with a lattice corresponding to the time direction. The partition function
is thus obtained in a linearized form, where the energy integration is manifest. Although
formally divergent, the expression of the partition function contains all the information about
the full spectrum, and behaves as expected in the large-k limit. Upon integrating the energy,
we recover the partition function of [16] [11] [12]. An important feature of our partition
function is that one light-cone direction is compact, whereas the other is non-compact. This
allows a natural definition for the light-cone Hamiltonian.

The SL(2, R) WZW model is a building block for physically interesting backgrounds,
such as AdS3 × S3 × T 4, which preserve supersymmetry and have a brane origin. We
have written the extended worldsheet superconformal algebra for this theory, although, as
discussed in [8] [48], it is problematic to define the space-time supersymmetry in that way. In
order to implement the projection that leaves unbroken one half of flat-space supersymmetry,
we have chosen to consider superstrings on the T 4/Z2 orbifold point of K3. This implies only
minor modifications in the brane interpretation of the background: the topological sector
of the orbifold corresponds to additional D1-branes with negative charge (this is clear from
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the D-brane gravitational couplings), while the microscopic degrees of freedom living on the
branes are slightly different from the T 4 case.

The lattice interpretation of the SL(2, R) partition function is a very powerful tool in the
process of understanding marginal deformations in AdS3 backgrounds. We have considered
left-right symmetric bilinears in the currents. For SL(2, R) this amounts to three differ-
ent deformations: two marginal deformations corresponding to the two different choices of
Cartan subalgebra, and one marginal deformation along a “null” direction.

The deformation with respect to the time-like generator J3 relates the theory to the
Euclidean black hole SL(2, R)/U(1)A, on one side, and to its T-dual SL(2, R)/U(1)V on the
other side. We have found that the spectra of the two cosets do not match exactly. This is
related to the fact that we have started with a theory on the universal cover of SL(2, R).
One can wonder what the conclusion would have been, if we had taken the single cover
instead, for which string theory does not make sense, because of the presence of closed time-
like curves. The J3 deformation gives a geometry that also interpolates between the AdS3

geometry (in global coordinates) and the linear dilaton background. In the case at hand,
however, the brane picture – if any – remains to be understood.

Similar considerations hold for marginal deformations driven by the space-like choice
of Cartan generator, namely J2. In the limit of infinite deformation, we obtain now the
Lorentzian two-dimensional black hole.

The case of null deformation of SL(2, R) has attracted most of our attention, because of
its brane interpretation and the underlying decoupling limit. We have reached a modular-
invariant partition function for the purely bosonic case, and extended the whole set up to
the supersymmetric background. We have in particular shown that the physical spin fields,
which give the space-time supercharges, are modified asymmetrically by the background,
and are restricted by the same projection as in the absence of any deformation. The locality
condition for this charges with respect to the string states, however, gives an extra quanti-
zation condition, on the deformation parameter. Therefore, as a superconformal worldsheet
theory, the line of deformation is continuous, but space-time supersymmetry further selects
a discrete subset of deformation points. We observe that, for k large, these special points
are such that the O(2, 2, R) transformations of Eq. (2.19) that give the null-deformed model,
belong to O(2, 2, Z), i.e. become a discrete line of dualities.

The decoupling limit of the D1/D5-brane configuration that we have presented here, calls
for further holography investigation. In the present paper, the analysis of the holographic
picture of this gravitational background has been very superficial: it provides a natural infra-
red regularization of little string theory, by imposing an upper bound on the string coupling
constant, without changing the asymptotic ultraviolet geometry. More work is needed to
understand it.

There are many other issues that remain open, as for example:

• Study in more detail other realizations of the worldsheet supersymmetry that do not
involve the orbifold of the four-torus.

• Give a complete picture of the AdS3 × S3 landscape by means of a systematic anal-
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ysis of other supersymmetry-preserving marginal deformations e.g. cosets or limiting
gravitational-wave backgrounds.

• Interpret these backgrounds in terms of brane set-ups.

• Put holography at work; the explicit calculation of correlation functions in the deformed
theory seems at first sight rather difficult, and needs further investigation.

Finally it is worth stressing that connecting the near-horizon geometry of NS5/F1-branes
(SL(2, R) × SU(2) × U(1)4) with the near-horizon limit for the NS5-branes alone (R1,1 ×
U(1)Q × SU(2) × U(1)4) is a step towards the search of an exact CFT description of a
background which is SL(2, R) in some region of space-time and asymptotically flat in another
one.
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Appendix A. The SL(2, R) WZW model: a reminder

We collect in this appendix some well-known facts about the SL(2, R) WZW model, within a
consistent set of conventions. The commutation relations for the generators of the SL(2, R)
algebra are

[
J1, J2

]
= −iJ3 ,

[
J2, J3

]
= iJ1 ,

[
J3, J1

]
= iJ2. (A.1)

The sign in the first relation is the only difference with respect to the SU(2). Introducing

J± = iJ1 ∓ J2,

yields16

[
J3, J±]

= ±J± ,
[
J+, J−]

= 2J3, (A.2)

which are the also valid for SU(2). This is the s`(2) algebra. Its representations are the same
for both SL(2, R) and SU(2); only their unitarity properties are different (see e.g. [63]).

The quadratic Casimir for SL(2, R) is defined as:

C2 =
(
J1

)2
+

(
J2

)2 −
(
J3

)2
= −1

2

(
J+J− + J−J+

)
−

(
J3

)2
, (A.3)

and its eigenvalues parametrized by17 C2 = j(1 − j).

16In some conventions J± = J1 ± iJ2, as for SU(2).
17There is an arbitrariness in the sign of C2, as well as on that of j. The ones we consider here are the

most popular in the community. However, the most efficient are the opposite ones both for C2 and j, since
they allow for a unified presentation of SU(2) and SL(2, R) representations.
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Irreducible representations of the above algebra are essentially of two kinds: discrete
D∓(j) or continuous principal Cp(b, a) and continuous supplementary Cs(j, a). The discrete
ones have highest (D−) or lowest (D+) weight, whereas the continuous ones do not. The
spin j of the discrete representations is real18, and their states are labelled by |jm〉, m =
∓j,∓j∓1,∓j∓2, . . . For the principal continuous ones, j = 1

2
+ ib, b > 0, and the magnetic

number is m = a, a ± 1, a ± 2, . . . , −1
2
≤ a < 1

2
, a, b ∈ R; for the supplementary continuous

ones, 0 < j ≤ 1
2

and −1
2
≤ a < 1

2
, with the constraint

∣∣j − 1
2

∣∣ < 1
2
− |a|, a, j ∈ R. These

representations are unitary and infinite-dimensional; D±(j) become finite-dimensional when
j is a negative integer or half-integer, and are non-unitary for any negative j. Notice finally
that the quadratic Casimir C2 is positive for both continuous series; for the discrete ones it
is positive or negative when 0 < j < 1 or 1 < j, respectively.

The three-dimensional anti-de Sitter space is the universal covering of the SL(2, R) group
manifold. The latter can be embedded in Minkowski space with signature (−, +, +,−) and
coordinates (x0, x1, x2, x3) – we set the radius to one:

g =

(
x0 + x2 x1 + x3

x1 − x3 x0 − x2

)
. (A.4)

The Poincaré patch introduced in the Gauss decomposition, (u, x±) ∈ R
3 covers exactly once

the SL(2, R). Comparing Eqs. (2.13) and (A.4) yields

x0 + x2 =
1

u
, x1 ± x3 =

x±

u
, x0 − x2 = u +

x+x−

u
.

The metric and antisymmetric tensor read:

ds2 =
du2 + dx+dx−

u2
, H = dB =

du ∧ dx+ ∧ dx−

u3
. (A.5)

The isometry group of the SL(2, R) group manifold is generated by left or right actions
on g: g → hg or g → gh ∀h ∈ SL(2, R). From the four-dimensional point of view, it is
generated by the Lorentz boosts or rotations ζab = i (xa∂b − xb∂a) with xa = ηabx

b. We
list here explicitly the six generators in the Poincaré coordinates, as well as the action they

18In order to avoid closed time-like curves, we are considering the universal covering of SL(2, R). Therefore,
j is not quantized.
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correspond to:

L1 =
1

2
(ζ32 − ζ01) = −i

(
x−

2
u∂u +

1

2

(
(x−)2 − 1

)
∂− − u2

2
∂+

)
, g → e−

λ
2
σ1

g,

L2 = −1

2
(ζ02 − ζ31) = −i

(
1

2
u∂u + x−∂−

)
, g → e−

λ
2
σ3

g

L3 =
1

2
(ζ03 − ζ12) = i

(
x−

2
u∂u +

1

2

(
(x−)2 + 1

)
∂− − u2

2
∂+

)
, g → ei λ

2
σ2

g,

R1 =
1

2
(ζ01 + ζ32) = i

(
x+

2
u∂u +

1

2

(
(x+)2 − 1

)
∂+ − u2

2
∂−

)
, g → ge

λ
2
σ1

,

R2 =
1

2
(ζ31 − ζ02) = −i

(
1

2
u∂u + x+∂+

)
, g → ge−

λ
2
σ3

R3 =
1

2
(ζ03 + ζ12) = −i

(
x+

2
u∂u +

1

2

(
(x+)2 + 1

)
∂+ − u2

2
∂−

)
, g → gei λ

2
σ2

.

Both sets satisfy the algebra (A.1). Notice also that in terms of Euler angles defined by

g = ei(t+φ)σ2/2erσ1ei(t−φ)σ2/2, (A.6)

L3 and R3 simplify considerably:

L3 + R3 = −i∂t , L3 − R3 = −i∂φ; (A.7)

these generate time translations and rotations around the center.

We will now focus on the WZW model on SL(2, R). The above isometries turn into
symmetries of the action displayed in Eq. (2.12), leading thereby to conserved currents. In
writing Eq. (2.14), we have chosen a gauge for the B field:

B = − 1

2u2
dx+ ∧ dx−.

The two-form is not invariant under R1,3 and L1,3, and the action (2.14) leads correspondingly
to boundary terms which must be properly taken into account in order to reach the conserved
currents. The latter can be put in an improved-Noether form, in which they have only
holomorphic (for Li’s) or anti-holomorphic (for Rj’s) components. These are called J i(z)
and J̄ j(z̄) respectively. Their expressions are the following:

J1(z) ± J3(z) = − k

8π
Tr

(
σ1 ∓ iσ2

)
∂g g−1 , J2(z) = − k

8π
Trσ3∂g g−1,

J̄1(z̄) ± J̄3(z̄) =
k

8π
Tr

(
σ1 ± iσ2

)
g−1∂̄g , J̄2(z̄) = − k

8π
Trσ3g−1∂̄g.
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These yield in Poincaré coordinates:

J1 + J3 = − k

4π

∂x+

u2
= − k

4π
J (A.8)

J1 − J3 =
k

4π

(
2x−∂u

u
− ∂x− + (x−)2∂x+

u2

)
(A.9)

J2 =
k

4π

(
∂u

u
+ x−∂x+

u2

)
, (A.10)

J̄1 + J̄3 =
k

4π

∂̄x−

u2
=

k

4π
J̄ (A.11)

J̄1 − J̄3 =
k

4π

(
−2x+ ∂̄u

u
+ ∂̄x+ − (x+)2 ∂̄x−

u2

)
(A.12)

J̄2 =
k

4π

(
∂̄u

u
+ x+ ∂̄x−

u2

)
, (A.13)

where J and J̄ are the null currents introduced in Eq. (2.15).

At the quantum level, these currents, when properly normalized, satisfy the following
ŜL(2, R)L × ŜL(2, R)R OPA19:

J3(z)J3(0) ∼ − k

2z2
,

J3(z)J±(0) ∼ ±J±

z
, (A.14)

J+(z)J−(0) ∼ 2J3

z
− k

z2
,

and similarly for the right movers. Equivalently on the modes of these currents generate the
affine Lie algebra:

[
J3

n, J3
m

]
= −k

2
nδm,−n,

[
J3

n, J±
m

]
= ±J±

n+m,[
J+

n , J−
m

]
= 2J3

n+m + knδm,−n.

The Virasoro algebra generators of the conformal field theory are built out of these
currents:

L0 =
−1

k − 2

[
1

2

(
J+

0 J−
0 + J−

0 J+
0

)
+ (J3

0 )2 +
∞∑

m=1

(
J+
−mJ−

m + J−
−mJ+

m + 2J3
−mJ3

m

)
]

Ln =
−1

k − 2

∞∑

m=1

(
J+

n−mJ−
m + J−

n−mJ+
m + 2J3

n−mJ3
m

)
.

19In some conventions the level is x = −k. This allows to unify commutation relations for the affine
ŜL(2, R)x and ŜU(2)x algebras. Unitarity demands x < −2 for the former and 0 < x with integer x for the
latter.
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The central charge is c = 3 + 6/(k − 2).

Lowest-weight representation of this CFT can be constructed by using the standard rule:
start with a set of primary states annihilated by the operators J i

n with n ≥ 1; these ground
states fall into representations of the global algebra generated by the zero modes J±,3

0 . The
module is then constructed by acting with the creation operators J i

−n (n ≥ 1).

Because the metric of the algebra is indefinite, the representations of the affine algebra
will contain negative norm states, and the CFT is not unitary. However, by using the
Virasoro constraints it is possible to construct a unitary string theory containing the SL(2, R)
CFT. Since the level 0 generators commute with the Virasoro algebra, the spectrum of the
string theory must be constructed out of unitary representations of SL(2, R). The unitary
representations relevant here are : the discrete representations D±(j) with j > 0 and the
principal continuous representations Cp(b, a). The second step in the proof of the unitarity of
the spectrum is to show that the negative norm states obtained with the creation operators
are removed at each level by the Virasoro constraints. For the discrete representations, this
is true only if the spin of the allowed representations is bounded : 0 < j < k/2. This is not
consistent with the general structure of string theory ; in fact assuming that the internal
CFT contributes positively to L0, this restriction on the spin put an absolute upper bound
on the level of string excitations : N ≤ 1 + k/4. The case of continous representations if
worse : the only allowed state is the tachyon.

From the representations given above, it is possible to construct new ones acting with an
automorphism of the affine algebra called spectral flow (w ∈ Z) to solve this problem :

J̃3
n = J3

n − k

2
w δn,0

J̃±
n = J±

n±w (A.15)

The eigenvalues of the states are then shifted according to :

m̃ = m − k

2
w , ˜̄m = m̄ − k

w
(A.16)

and the Virasoro generators as :

L̃n = Ln + wJ3
n − k

4
w2δn,0 = Ln + wJ̃3

n +
k

4
w2δn,0 (A.17)

The flowed representations obtained from the lowest weight representations constructed
above are generically not bounded from below ; after imposing the Virasoro constraints,
one can show that the physical spectrum of the string theory still contains only positive
norm states.

Appendix B. Free-boson conformal blocks

The generic conformal blocks for a free compactified boson are the U(1) characters,

ζ

[
ω

µ

] (
R2

)
=

R√
τ2

exp−πR2

τ2

|ωτ − µ|2 , (B.1)
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where R is the compactification radius (imaginary for a time-like boson), and ω, µ need not
be integers.

The partition function for an ordinary, free compactified boson reads (in the Lagrangian
representation):

Z(R) =
Γ1,1(R)

ηη̄
=

1

ηη̄

∑

m,w∈Z

ζ

[
w

m

] (
R2

)
. (B.2)

Notice that for (ω, µ) ∈ R
2 in (B.1) a modular-invariant combination is provided by

Z̃(R) =
1

ηη̄

∫

R2

dω dµR2 ζ

[
ω

µ

] (
R2

)
. (B.3)

The measure dω dµR2 ensures the correct scaling of Z̃(R) with R.

Bosons can also be twisted or shifted. This corresponds to ordinary or freely acting
orbifolds. We’ll first focus on ZN shifts, whose spectra are also captured in Eq. (B.1). The
shifted partition-function sectors read in this case:

Z

[
h

g

]
(R) =

Γ1,1

[
h
g

]
(R)

ηη̄
=

1

ηη̄

∑

m,w∈Z

ζ

[
w + h/N

m + g/N

] (
R2

)
, h, g ∈ {0, . . . , N − 1}, (B.4)

and satisfy the periodicity conditions

Z

[
h

g

]
(R) = Z

[
h + N

g

]
(R) = Z

[
h

g + N

]
(R). (B.5)

The basic properties of the quantities introduced so far are summarized as follows:

τ → τ + 1 : ζ

[
ω

µ

] (
R2

)
→ ζ

[
ω

µ − ω

] (
R2

)
,

τ → −1

τ
: ζ

[
ω

µ

] (
R2

)
→ |τ |ζ

[
µ

−ω

] (
R2

)
,

and

1

N

N−1∑

h,g=0

Z

[
h

g

]
(R) = Z

(
R

N

)
. (B.6)

Notice finally that the duality symmetry of the partition function (B.2), namely Z(R) =
Z (R−1), does not survive the ZN shift. This becomes clear in the following identity, obtained
by double Poisson resummation:

∑

m,w∈Z

ζ

[
w + h/N

m + g/N

] (
R−2

)
=

∑

y,n∈Z

e
2iπ
N

(ng−yh)ζ

[
n

y

] (
R2

)
.
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As a consequence, the two limits (R → 0 or ∞) of (B.4) are distinct:

Z

[
h

g

]
(R) →

R→∞

{
R/

√
τ2ηη̄ for h = g = 0,

0 otherwise,
(B.7)

whereas

Z

[
h

g

]
(R) →

R→0

1

R
√

τ2ηη̄
∀h, g, (B.8)

up to exponentially suppressed terms20.

We now consider ZN twists of a two-torus, for N ≤ 4. The corresponding sums read:

Z2,2

[
2h/N

2g/N

]
=

Γ2,2(T, U)

η2η̄2
for h = g = 0,

= 4
ηη̄∣∣∣ϑ

[
1+2h/N
1−2g/N

]
(0|τ)

∣∣∣
2 sin2 π

Λ(h, g)

N
otherwise, (B.9)

where T, U are the usual T 2-compactification moduli. Here Λ(h, g) is an integer which is
correlated to the number of fixed points of the torus, depending of the twisted sector under
consideration. In the case of a T 4, the ZN twists give rise to twisted sectors which are the
square of the those given in Eq. (B.9). The T 2/ZN twisted partition function reads:

Ztwisted
T 2/ZN

(T, U) =
1

N

N−1∑

h,g=0

Z2,2

[
2h/N

2g/N

]
. (B.10)

Shifts and twists can be combined. We will consider here two cases, which happen to
play a role in the analysis of the SL(2, R) and of its cosets. The first is a ZN orbifold of a
compact boson of radius R times a two-torus. The ZN acts as a twist on T 2 and as a shift
on the orthogonal S1. The order of the orbifold is restricted to N ≤ 4 by the symmetries of
the lattice of the two-torus. The partition function for this model reads:

ZZN
=

1

N

N−1∑

h,g=0

Γ1,1

[
h
g

]
(R)

ηη̄
Z2,2

[
2h/N

2g/N

]

=
1

N

Γ1,1(R) Γ2,2(T, U)

η3η̄3

+
1

N

∑

(h,g) 6=(0,0)

4 sin2 π
Λ(h, g)

N

e2πτ2h2/N2

∣∣ϑ1

(
hτ−g

N
|τ

)∣∣2
∑

m,w∈Z

ζ

[
w + h/N

m + g/N

] (
R2

)
. (B.11)

Similarly, we can consider a ZN ×ZN orbifold of four free bosons. The first ZN acts as a
shift on a compact boson of radius R1 and as a twist on a T 2; the second ZN acts as a shift

20When h/N and g/N become continuous variables, δ-functions appear, which must be carefully normal-
ized.
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on the compact boson of radius R1 and similarly on another compact boson of radius R2.
The partition function now reads:

ZZN×ZN
=

1

N2

N−1∑

h1,g1=0

N−1∑

h2,g2=0

Γ1,1

[
h1−h2

g1−g2

]
(R1)

ηη̄

Γ1,1

[
h2

g2

]
(R2)

ηη̄
Z2,2

[
2h1/N

2g1/N

]

=
1

N2

Γ1,1(R1) Γ1,1(R2) Γ2,2(T, U)

η4η̄4

+
1

N2

∑

(h1,g1) 6=(0,0)

Γ1,1

[
h1

g1

]
(R1) Γ1,1(R2)

η2η̄2
Z2,2

[
2h1/N

2g1/N

]

+
1

N2

∑

(h2,g2) 6=(0,0)

Γ1,1

[−h2

−g2

]
(R1) Γ1,1

[
h2

g2

]
(R2) Γ2,2(T, U)

η4η̄4

+
1

N2

1

ηη̄

∑

(h1,g1) 6=(0,0)

∑

(h2,g2) 6=(0,0)

4 sin2 π
Λ(h1, g1)

N

e2πτ2h2
1/N2

∣∣ϑ1

(
h1τ−g1

N
|τ

)∣∣2 ×

×
∑

m1,w1,m2,w2∈Z

ζ

[
w1 + (h1 − h2)/N

m1 + (g1 − g2)/N

] (
R2

1

)
ζ

[
w2 + h2/N

m1 + g2/N

] (
R2

2

)
. (B.12)

Models based on freely acting orbifolds exhibit rich decompactification properties [64]
[65] [66], which are due to the breaking of the duality symmetries. There are two limits of
interest21 here:

ZZN×ZN
→

R2→0

1

R2
√

τ2ηη̄
Z

(
R1

N

)
Ztwisted

T 2/ZN
(T, U) (B.13)

and

ZZN×ZN
→

R2→∞

R2

N
√

τ2ηη̄
ZZN

(R1, T, U) (B.14)

obtained by using the above equations. In the first limit the two circles decouple from the
T 2, and the only reminiscence of the second ZN shift is the rescaling R1/N . In the second
limit, only the decompactifying circle decouples.

Appendix C. Derivation of the spectrum

C.1. The spectrum of SL(2, R)

In this appendix we solve for the constraints s1 and s2 to obtain the spectrum of SL(2, R),
following the lines of [13] and [17]. The total exponential factor in (3.4) after expanding the

21Similarly, for R1 → 0 or ∞, we obtain respectively (B.13) or (B.14), with R1 ↔ R2.
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ϑ1 function and integrating t2 is

exp

{
− πτ2k(w+ + s1)(w− − 2t1 + s1) − 2iπτ1n(w+ + s1)

+2iπns2 − 4πτ2
1

4(k − 2)
+ 2πτ2s

2
1 − 2πτ2 (q + q̄ + 1) s1

+2iπτ1 (q − q̄) s1 − 2iπ (q − q̄) s2 − 2πτ2(N + N̄) + 2iπτ1(N − N̄)

}
(C.1)

where q is the number of J+
n<0 minus J−

n<0 operators acting on the ground state, and similarly
for q̄. The integration over s2 gives simply the constraint: q − q̄ = n. The remaining s1

integration reads:

∫ 1

0

ds1 exp
{
−2πτ2s1 (k(w − t1) + q + q̄ + 1) − (k − 2)πτ2s

2
1

}
(C.2)

As in [17], we can introduce an auxillary variable c to integrate the constraint:

exp
{
−2πτ2s1 (k(w − t1) + q + q̄ + 1) − (k − 2)πτ2s

2
1

}

= 2

√
τ2

k − 2

∫ +∞

−∞
ds exp

{
−4πτ2

s2

k − 2
− 2πτ2 (2is + q + q̄ + 1 + k(w − t1)) s1

}

(C.3)

We would like to insist that s is not just an auxilliary variable but represents the momentum
of the Liouville field coupled to the others degrees of freedom of the theory. The interpreta-
tion of the partition function at this step is particularly obvious in the free field representation
(see sect. (3.2)). In this case, the BRST constraint correlate the Liouville momentum, the
oscillator number and the lattice of the light-cone coordinates. The integration over s1 gives:

e−4πτ2
s2

k−2

π
√

τ2(k − 2)

[
1

2is + q + q̄ + 1 + k(w − t1)
− e−2πτ2(2is+q+q̄+1+k(w−t1))

2is + q + q̄ + 1 + k(w − t1)

]
(C.4)

To complete the square in the second term we shift the integration contour of s in the
complex plane: s → s − i(k − 2)/2. Doing this we pick up residues corresponding to the
discrete representations, for:

Im(s) = (q + q̄ + 1 + k(w − t1))/2

The poles are located in the strip:

−(k − 2) < q + q̄ + 1 + k(w − t1) < 0

They correspond to the states of the discrete spectrum, obeying the constraint:

J3
0 + J̄3

0 = m + m̄ = 2j + q + q̄ = −k(w − t1) (C.5)
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Therefore as in [17] we obtain the discrete representations in the correct range given in [12]:

1

2
< j <

k − 1

2
(C.6)

We note here that due to the continuous shift t1 the spin is not quantized by the constraint.
Putting all the factors together, we obtain the weights of the discrete spectrum:

L0 = −j(j − 1)

k − 2
+ w+

(
−m − k

4
w+

)
+ N

L̄0 = −j(j − 1)

k − 2
+ w+

(
−m̄ − k

4
w+

)
+ N̄ (C.7)

The remaining part of the partition function reads:

∑

w,w+

∫
ds

[
1

2is + q + q̄ + 1 + k(w − t1)
− e−2πτ2(q+q̄+k(w−t1+1/2))

2is + q + q̄ − 1 + k(w − t1 + 1)

]
×

× exp

{
−2πτ2

(
2

s2

k − 2
+ kw+(w − t1 −

w+

2
) + N + N̄ − 2

)
+ 2iπτ1(N − N̄ − nw+)

}

(C.8)

To identify the continuous spectrum, we note that the exponent of the second term:

−2πτ2

(
2

s2

k − 2
+ 2(w+ + 1)

[
k(w − t1) −

k

2
− k

4
(w+ + 1)

]
+ N + q + N̄ + q̄ − 2

)

can be seen as the spectral flow by one unit of the w+ sector of the theory: w+ → w+ + 1 ,
m → m− k/2 , m̄ → m̄− k/2 , N → N + q , N̄ → N̄ + q̄. We can then combine the first
term from the w+ sector and the second term from the flowed w+ − 1 sector to obtain:

∑

w,w+

∫
ds

[
1

2is + q + q̄ + 1 + k(w − t1)
− 1

2is + q + q̄ − 1 + k(w − t1)

]
×

× exp

{
−2πτ2

(
s2

k − 2
+ kw+(w − t1 −

w+

2
) + N + N̄ − 2

)
+ 2iπτ1(N − N̄ − nw+)

}

(C.9)

The second line represents the density of long string states, and gives a divergence while
summing over q. Regularizing the sum as explained in [13]:

∞∑

r=0

1

A + r
e−rε = log ε − d

dA
log Γ(A),
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we obtain the density of states of the continuous spectrum:

ρ(s) =
1

π
log ε +

1

4πi

d

ds
log

Γ(1
2
− is − m)Γ(1

2
− is + m̄)

Γ(1
2

+ is − m)Γ(1
2

+ is + m̄)
(C.10)

The weights of the continous spectrum are, with m + m̄ = −k(w − t1) and m − m̄ = n:

L0 =
s2 + 1/4

k − 2
+ w+

(
−m − k

4
w+

)
+ N

L̄0 =
s2 + 1/4

k − 2
+ w+

(
−m̄ − k

4
w+

)
+ N̄ (C.11)

Therefore we have identified both types of representations, including the sectors obtained by
spectral flow.

C.2. The spectrum of the null-deformed SL(2, R)

We now derive the first-order spectrum of the null-deformed SL(2, R) theory, whose partition
function is given by (5.24). As before we expand all the oscillators term to obtain overall
exponential factor, an obtain after introducing the Liouville modes:

exp

{
−2πτ2

k

α2
w+(w − t1 − w+/2) − 4πτ2

s2 + 1/4

k − 2
− 2iπτ1nw+

+2iπs2(n − q + q̄) − 2πτ2

(
2i

√
k − 2α2

α2(k − 2)
s + q + q̄ + 1 +

k

α2
(w − t1)

)
s1

}
(C.12)

where

α2 =
M2

1 + M2
.

After integrating the constraint s1 we have:

exp
{
−4πτ2

s2+1/4
k−2

}

2πτ2

(
2i

√
k−2α2

α2(k−2)
s + q + q̄ + 1 + k

α2 (w − t1)
)

−
exp

{
−2πτ2

(
2 s2+1/4

k−2
+ 2i

√
k−2α2

α2(k−2)
s + q + q̄ + 1 + k

α2 (w − t1)
)}

2πτ2

(
2i

√
k−2α2

α2(k−2)
s + q + q̄ + 1 + k

α2 (w − t1)
)

(C.13)

As previously, to complete the square in the second term we shift the Liouville momentum:

s → s − i

2

√
(k/α2 − 2)(k − 2) (C.14)
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The poles corresponding to the discrete representations are

Im(s) =
1

2

√
α2(k − 2)

k − 2α2

[
q + q̄ + 1 +

k

α2
(w − t1)

]

and now located in the strip:

−
√

(k/α2 − 2)(k − 2) < q + q̄ + 1 + k(w − t1) < 0

and gives the deformed discrete spectrum, for α2 = 1 − ε, ε ¿ 1:

L0 = −j(j − 1)

k − 2
− w+

(
m +

ε

2
(m + m̄)

)
− k

4
(1 + ε)w+ 2 + N

+
ε

2(k − 2)

(
m + m̄ +

k

2(k − 2)
(1 − 2j)

)
,

L̄0 = −j(j − 1)

k − 2
− w+

(
m̄ +

ε

2
(m + m̄)

)
− k

4
(1 + ε)w+ 2 + N̄ ;

+
ε

2(k − 2)

(
m + m̄ +

k

2(k − 2)
(1 − 2j)

)
(C.15)

The last terms of both equations are due to the displacement of the poles corresponding to
the discrete representations. Using the parametrization taken in the supersymmetric model:
k/α2 = p(k − 2) + 2, the expressions are simpler: the poles of the discrete representations
are now located at:

Im(s) =
1

2p

{
q + q̄ + 1 + [2 + (k − 2)p2](w − t1)

}

in the strip:
−p(k − 2) < q + q̄ + 1 + k(w − t1) < 0.

For the continuous spectrum, we use the spectral flow symmetry as in the undeformed case:

 1

2i
√

k−2α2

α2(k−2)
s + q + q̄ + 1 + k

α2 (w − t1)
− 1

2i
√

k−2α2

α2(k−2)
s + q + q̄ − 1 + k

α2 (w − t1 + 1)


 ×

exp

{
−2πτ2

(
2
s2 + 1/4

k − 2
− w+

k

α2
(w − t1) −

k

2α2
w2

+ + N + N̄

)
+ 2iπτ1(N − N̄ − nw+)

}

(C.16)

This gives at first order the deformed continuous spectrum:

L0 =
s2 + 1/4

k − 2
− w+[m +

ε

2
(m + m̄)] +

k

4
(1 + ε)w2

+ + N

L̄0 =
s2 + 1/4

k − 2
− w+[m̄ +

ε

2
(m + m̄)] +

k

4
(1 + ε)w2

+ + N̄ (C.17)

54



with the density of long string states:

ρ(s) =
1

π
log ε

+
1

4πi

d

ds
log

Γ(1
2
− i(1 + kε

2(k−2)
)s − m − m+m̄

2
ε)Γ(1

2
− i(1 + kε

2(k−2)
)s + m̄ + m+m̄

2
ε)

Γ(1
2

+ i(1 + kε
2(k−2)

)s − m − m+m̄
2

ε)Γ(1
2

+ i(1 + kε
2(k−2)

)s + m̄ + m+m̄
2

ε)

(C.18)

Appendix D. Theta functions

We recall here the basic properties of Jacobi functions. Our conventions are

ϑ

[
a

b

]
(v|τ) =

∑

p∈Z

eπiτ(p+a
2 )

2
+2πi(v+ b

2)(p+a
2 )

a, b ∈ R, so that

ϑ1 = ϑ

[
1

1

]
, ϑ2 = ϑ

[
1

0

]
, ϑ3 = ϑ

[
0

0

]
, ϑ4 = ϑ

[
0

1

]
.

We also recall that

ϑ1(v|τ) = −2q1/8 sin πv
∞∏

m=1

(
1 − e2iπvqm

)
(1 − qm)

(
1 − e−2iπvqm

)
,

η(τ) = q1/24

∞∏

m=1

(1 − qm),

and

ϑ′
1 = −2πη3 = −πϑ2ϑ3ϑ4,

where the prime stands for ∂v|v=0. Notice that

|ϑ1(aτ + b|τ)|2 = e2πτ2a2

∣∣∣∣ϑ
[
1 + 2a

1 + 2b

]
(0|τ)

∣∣∣∣
2

,

which leads in particular to the following:
∣∣∣∣ϑ

[
1 + 2h/N

1 − 2g/N

]
(0|τ)

∣∣∣∣ = e−πτ2h2/N2

∣∣∣∣ϑ1

(
hτ − g

N
|τ

)∣∣∣∣ . (D.1)

Finally, the Riemann identity22 reads:

1

2

1∑

a,b=0

(−1)a+b+µabϑ

[
a

b

]
(v0)

3∏

j=1

ϑ

[
a + hj

b + gj

]
(vj) = (D.2)

= ϑ

[
1

1

] (
(−)µ+1v0 −

∑
j vj

2

)
3∏

j=1

ϑ

[
1 − hj

1 − gj

](
(−)µ+1v0 + · · · − vj + · · · )

2

)
,

22We use the short-hand notation ϑ
[
a
b

]
(v) for ϑ

[
a
b

]
(v|τ).
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where the parameter µ = 0 or 1, and
∑

j hj =
∑

j gj = 0.
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