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CNRS Luminy, Case 907, 13288 Marseille Cedex 9, France
and PhyMat, Université de Toulon et du Var

Abstract: We consider tunneling between 2 symmetric potential wells for
a 2-d Schrodinger operator, in the case of eigenvalues associated with with
quasi=modes supported on KAM or Birkhoff tori.

0. Introduction. We consider here tunneling between 2 symmetric potential

wells for a 2-d Schrodinger operator P = —h?A + V in the limit A — 0, near
some energy level Ey = 0 close to the non degenerate minima of V.

Tunneling is a difficult problem that has exercised so far many subtle and
ingenious strategies ; at least, computing tunneling rates involves various sce-
narios which depend on the details of the dynamics, ranging from integrable
or quasi-integrable systems, to ergodic or chaotic ones (see [W], and [Cr] for a
recent review. )

As a general rule, the energy shift (or splitting of eigenvalues) is related
to the so called Agmon distance Sy(E) between the wells, associated with the
degenerate, conformal metric ds? = (V — E),dx? that measures the life-span
(instanton) of the particle in the classically forbidden region V(z) > E.

Much is known in the 1-d case, even for excited states, or in several di-
mensions for the lowest eigenvalues. For general wells, there is the following
equivalence [Ma] : the corresponding normalized eigenfunctions are non expo-
nentially small (i.e. for all ¢ > 0, larger, in local L? norm, than a constant
times e~ /" 0 < h < h., ) where minimal geodesics, connecting the 2 wells,
meet their boundary, if and only if the splitting is non exponentially small with
respect to e~ So(E)/h

We study the special case of splitting of eigenvalues associated with quasi-
modes supported on KAM or Birkhoff tori ; our goal is to compute tunneling
rates for a large family of such eigenvalues, which we shall call a spectral tunnel
series.

1. Tori and quasi-modes. Let us consider for a moment the case of a single

well around Uy = 0 (so that we can ignore interaction with the other well, ) and
let po(x, &) = €2 + X222 + A\322 be the quadratic part of the (smooth) classical
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hamiltonian p(z,{) near 0 (quadratic approximation). If the frequencies \;’s
are rationnally independent, then Birkhoff’s theorem tells us that the orbits of
p near the fixed point (z,&) = 0 with energy E are quasi-periodic, in the sense
that they are confined within quasi-invariant tori (the Birkhoff tori,) over a
time scale O(E~°). Whenever the system is non integrable, most of these tori,
will be destroyed and replaced by chaotic regions ; however (under a suitable
a diophantine condition on the frequencies, ) the so-called KAM tori, whose
collection form a Cantor set, eventually survive.

Such lagrangian (or possibly isotropic) integral manifolds A support quasi-
modes, whose energies are given by the Einstein-Brillouin-Keller (EBK) quanti-
zation rule : if H(¢) = 2A1¢1 + 2Aato + - - - is the hamiltonian expressed (asymp-
totically) in terms of action-angle variables (¢, ¢), then the energies of the eigen-
states are given to first order in h by :

1
(1) Ey(h) = H(ta), ta=(a+ le)h, a e N?, |alh < Ey

The vector v = (2,--- ,2) is Maslov index, counting the number of caustics met
along an orbit, passing from sheet to sheet on the torus.

For Birkhoff tori associated with energies Ch < E < h%, where 0 < § < 1,
EBK formula (1) can be corrected to all orders in h with an accuracy O(h*) [Sj].
In case of KAM tori, and larger energies (in an interval independent of &, ) these
expansions hold modulo O(e~!/ cnt/s ), for some s > 1 related to the diophantine
condition on the ratio A1 /A2 [Po]. Of course in that case, analyticity properties
of the potential are required as in usual KAM procedures, which makes the
analysis more subtle. But the geometry is the same.

We have seen that tunneling rates hinge upon decay of quasi-modes at the
edge of the well QUg = {V(z) = E}. They also depend on the decay near the
caustics of AP, 1 = ,.

The caustics can be viewed as a rectangle shaped fold line delimiting the
zone of pure oscillations of the quasi-modes, and touching the boundary of the
wells at 4 vertices, the hyperbolic umbilic points (HU) points, section of the
torus by the plane ¢ = 0 in R*. According to (1), the edges of this rectangle
have a size tq = (o + fv)h.

All tori AF continue analytically in the ¢ variables. Over the classically
forbidden region, analytic continuation amounts to parametrize the orbits with
imaginary time. It is convenient to view AF as a multidimensional Riemann
sheet structure, with a number of sheets corresponding to the choice of the sign
of momentum, gluing along the caustics, and all intersecting at the HU’s. AP
is parametrized by a phase function Ff (), where y € OUg denotes the umbilic
and can be identified with ¢. This phase is complex (reflecting the oscillations of
the corresponding quasi-mode) on all but one sheet of AZ, denoted by AZ | which
lies over the classically forbidden region, and corresponds to a pure exponential
decay of the quasi-mode (we exclude the sheet which gives exponential growth.)

In case of Birkhoff tori, we gave a complete asymptotic expansion of the
quasi-mode in some region of the decaying zone [KaRo], close to, but at a finite



distance from the caustics. Similar expansions can be obtained closer to the
caustics, in term of special functions of Airy type. Yet another expansion could
be found in case of KAM tori.

2. Continuation of action integrals in the classically forbidden re-
gion. Another central geometric figure of the problem is the integral manifold

of q(z, &) = —p(x,if) passing above Ug, i.e.
AL ={exptH,(p): p€ 0Up x 0, q(p) = —E, t € R}

This is (locally) a smooth real lagrangian submanifold, of the form & = Vdg(x),
x ¢ Ug. where dg(z) = dg(z,0Ug) is Agmon distance from x to OUg. Ac-
tually, A5 has the fibre bundle structure A5 = UyeaUE vy Here ~, is the
bicharacteristic of g(z, &) at energy —FE issued from OUg at the umbilic y, and
Ty = AP N Ag'

Introducing appropriate coordinate charts of hyperbolic action-angle vari-
ables (¢, ) — (1, ") given by Birkhoff transformations, we can also view Ff (x)
as the action f: &dx computed along some path keeping ' constant, and varying

. o Our first task is to continue = +— FyE(a:) from /N\F, keeping y and FE fixed.

First we introduce some scaling factors. One difficulty throughout consists
in the range of different scales. So let i = +/E be the characteristic size of the
(euclidean) diameter of Ug.

Let y = (y1,y2) be an umbilic, and assume that the torus A” is not “too flat”
in a certain sense, or equivalently, that the rectangle shaped caustics is “not too
far from being a square”. For z also close enough from +,, so that FyE () is still
real, we denote by y(x) the unique point of OUg such that x € 7, (,). We have :
Proposition 1: FyE (x) equals dg(x) precisely along the geodesic v,. Moreover

_ E -~ 872 E . 2 — . 2

where K (z,y) > Ko > 0 whenever dist(z,0Ug) < Cu'/?. (here dist stands for
the euclidean distance.) Denote by I'y () the orthogonal projection of = onto .

Using a variant of Gauss Lemma (the geodesic flow is locally a radial isometry),
Proposition 1 shows that there are smooth level surfaces N, (s) = {dg(z) = su}
, 51 < 8 < 89, dist(N,(s), 0Ug) ~ p'/?, such that

(2) dp(z) — FE(z) ~ f%(x —T,()°, x€Nu(s)

Using that eikonal equation is satisfied by both dg(z) and Ff(z), estimate (2)
continues in the large, all along y,, so far as vy, does not reach any caustics.
This holds in particular, if v = YT is a minimal dg-geodesic between N, (s)
and a fixed zg, somewhere in between the 2 wells. e Our second task is to

compute action from continuation of energy surfaces, i.e. by varying E (and



V accordingly) but keeping x fixed. Let (z,&(z)) = (#,V.dg(z))) € AS, and
(z/,¢") = n(r,f(x)), where & is a suitable canonical transform related to the
mapping (¢, ) — (¢, '), that preserves the boundary of the well : x(y,0) =
(¥, 0).

In fact, we shall compute dg () in a (u-independent) neighborhood w of U
from Agmon distance do(z) at energy 0, which is known to be a C* function of

2k
x. We have : Proposition 2: For z € w, dg(z) = do(x) +Z Vi log = +0(u?).
j

/

Typically, for z € w, L;— log Z—i is comparable to 12 log i, so Proposition 2 gives
J

the singularity of dg(z).

We look next how does dg(z,0w) depends on E in the large. For fixed xg
away from w, let T as above, be a minimal dg-geodesic between N = dw and
xg, parametrized with arc-lenght. We can arrange so that N is a level surface
for dg. Using variations of geodesics as in [HeSj|, we prove : Proposition 3:

For all € > 0, there is a (u-independent) neighborhood Qg of Tg([0,1 —¢€]), a
p?-neighborhood I of E, such that : (i) (z,E’) — dg/ (2, N) € C*(Qg x Ig).
(ii) QE is starshaped, in the following sense : V(z, E') € Qg X I, 3! dp/-minimal
geodesic joining N to x that stays in Qg. 3. The tunnel cycle. We label

objets belonging the to left (resp. right) well with subscript L (resp. R). Extend
Ap = (/~\F ) ;, along the bicharacteristic flow of g.

For a general, non integrable system, there is no reason for this extension
coincides with Ap = (AF)R. However, we say that the pair (pr, pr) € AL X AR,
are in correspondance along a bicharacteristic v if Ay, (or equivalently, because
of symmetry, Ar) supports a quasi-mode, and (pr,pr) € v x 7. We call the
bicharacteristic v a tunnel cycle if there is a pair (pr,pr) in correspondance
along v, with (pr,pr) € (Ag)L X (Ag)R. Then p; and pr are necessarily
umbilics, and 7 a geodesic between Uy (F) and Ug(E). A tunnel cycle will be
called minimal if the geodesic + is minimal, hence of lenght d (UL (E), Ur(E)).
Generically, bicharacteristics connecting pairs in correspondance and tunnel cy-
cles are discrete sets. Moreover, pairs in correspondance, in case of Birkhoff tori,
are only defined modulo O(E>), since this is the case for A and AF. Tunnel
cycles are exceptional, but as we shall see, there are many pairs in correspon-
dance (belonging to different bicharacteristics) close to the umbilics. See [Gr]
and [DoSh] for related notions.

a) The case of a minimal tunnel cycle. The picture is the following :



Let uy (z, E, h) and ugr(z, E, h) be the quasi-modes associated with the um-
bilics pr, and pg, continued beyond the symmetry axis ¥ separating the 2 wells,
in a neighborhood of the minimal geodesic Tg. Using Agmon estimates as in
[HeSj], we can show that they approximate suitably the true eigenfunctions (pro-
vided a gap condition. ) Assume for simplicity there is just one such minimal
geodesic intersecting ¥ at xg. Since uy, and ug are real near X, the eigenvalue
splitting is given by the usual formula

@ BB =402 [0 0.m) S0, m2)drs + O N
1

g

where ¢ C ¥ is a neighborhood of . Denote by S; — S% the phase that comes
up in (3), where S, and S}, stand for suitable F,’(z) as above. By the remark
following Proposition 1, St — S% has a non degenerate critical point precisely
at xtg = Tg No. Moreover, the asymptotics of the quasi-modes near Uy (E)
given in [KaRo], propagate all along Y g, so the integral can be computed by
standard stationary phase expansion around x = xg. Since the amplitude of
ur (and uy) is non vanishing, E* — E~ is exactly of the order e=%0(F)/h,

b) The general case.

Given (pr,pr) in correspondance, we want to compare, for x € X, the
action Ff (z) along the bicharacteristic connecting p; and pr with Agmon
distance dp/(z) relative to a nearby energy value E’. For this, let Tp be a
minimal geodesic between Uy (E’) and Ur(E’), intersecting ¥ at xz g/, the left
and right components of OUg: at y; = yr(E’) and vy, = yr(E’) respectively,
and consider the lattice of umbilics carrying quasi-modes around such a point.
At first approximation, umbilics are of the form y = (A7 'v/2A 101, Ay 'v/2Aatz),
or by (1), y = (A\{'v2hA1a1, Ay ' v/2hAaaz), so the typical neighboring distance
between umbilics is h((a1h) ™" + (azh)~')'/2, which is greater than h/u, but of
the same order when tori are not “too flat”.




Let y be such an umbilic, and A;, = (KF ) p the corresponding Lagrangian
manifold. It is easy to see that there is a bicharacteristic v C Ap N Ag (and
points in correspondance) such that Sy, — S}, has a non degenerate critical point
T € yNX. We have :

(SL—8k)=So(E") = 2(Fy (7)~dp(@))+2(dp(7) ~dp () +2(dp () ~dp (vp/))

and combining Propositions 1-3 gives, under the above hypotheses, that (S —
S%) — So(E') = o(1), as h — 0, either in case of Birkhoff or KAM tori. To
compute (3), one has also to know something about the amplitude, so we need to
improve somewhat the expansions of [KaRo] when getting closer to the caustics.
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