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Abstract 

 

The thermal conductivity of nanometric objects or nanostructured materials can be determined  

using non equilibrium molecular dynamics (NEMD) simulations. The technique is simple in 

its principle, and resembles a numerical guarded hot plate experiment. The 'sample' is placed 

between a hot source and a cold source consisting of thermostatted sets of atoms. The thermal 

conductivity is obtained from the heat flux crossing the sample and the temperature profile in 

the system. Simulations results, however, exhibit a strong dependence of the thermal 

conductivity on the sample size. In this paper, we discuss the physical origin of this size 

dependence, by comparing MD results with those obtained from simple models of thermal 

conductivity based on harmonic theory of solids. A model is proposed to explain the variation 

of the thermal conductivity with system size. 
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Nomenclature  

 

a0 lattice parameter (m) 

C volume specific heat (J.K-1.m-3) 

D density of mode 

e film thickness (m) 
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h Planck constant (J.s) ( η = h / 2π ) 

kb Boltzmann constant (J.K-1) 

K  wave vector (m-1) 

l section characteristic lenght (m) 

L largest dimension of a cube, a wire and film (m) 

m masse (kg) 

p polarization  

t time (s) 

T temperature (K) 

v sound velocity (m.s-1) 

V volume (m3) 

∆t time step (s) 

ε minimum energy of the Lennard Jones potential (J) 

λ thermal conductivity (W.m-1.K-1) 

Λ wave vector largest path in a system (m) 

ω angular frequency (s-1) 

σ zero energy distance of the Lennard Jones potential (m) 

τ relaxation time (s) 

 

I. Introduction 

 

As with other transport or thermodynamic properties, the thermal behaviour of nanostructured 

materials or  nanoelectronic devices cannot be simply inferred by extrapolating macroscopic 

behaviour to small scales. Instead, when the typical size of the device becomes comparable to 

interatomic distances, a discussion of properties and models at the  atomic scale becomes 

essential. The total conductance of nanowire or nanowire arrays, superlattices, thin films and 

periodic thin film structures will depend on the thermal conductivity of each component and 

on the thermal resistance between them, all of which will be scale dependent. The aim of 

experimental and theoretical studies is to predict or to measure these characteristics [1-14]. 

However, the best experimental resolution is still larger than 100 nm. At smaller scales, 

atomistic numerical simulation appears to be an appropriate tool to predict the thermophysical 

properties. 
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Using atomistic modeling, three methods are available for computing thermal conductivities. 

The first one, mostly used for bulk systems, is equilibrium molecular dynamics (MD) [15, 16] 

using the appropriate Einstein or Green–Kubo relations. This approach can be extended to the 

determination of contact resistances [17]. An alternative route is to use non-equilibrium 

molecular dynamics (NEMD) [18, 19], and is more appropriate for inhomogeneous systems. 

The last approach combines a microscopic determination of phonon dispersion relations with 

a transport theory of the Landauer-Buttiker-type (which is generally used to calculate 

electronic transport properties) [20]. 

 

In this paper, we present NEMD simulations of heat transfer in finite size structures. The 

technique mimics numerically a guarded hot plate experiment. The 'sample' is placed between 

a hot source and a cold source consisting of thermostatted sets of atoms. The thermal 

conductivity is obtained from the heat flux crossing the sample and the temperature profile in 

the system. NEMD is  therefore well adapted to study the influence of structural defects and 

solid interfaces. We show that the simulation results exhibit a strong dependence on sample 

size, and also on the type of boundary conditions. In order to understand the physical origin of 

these dependences, we compare our simulation results with a simple approach based on 

phonon transport theory. 

 

The type of effects we are interested in are generic in nature, and our study a methodological 

one. Therefore no attempt was made to model a specific material in a realistic manner. Rather, 

we favour computational efficiency by using a simplistic model of particles interacting 

through a classical, pairwise, Lennard-Jones potential: 

 

( )E r
r rp = 






 − 






















4
12 6

ε σ σ  

  

All the results in the following will be given  in Lennard-Jones units.  ε = 1 , σ = 1  and m = 1 . 

For the calculations, a modified version of the parallel MD code LAMMPS [21] was used.  

 

Finally, we want to emphasize that our calculations are purely classical, which limits their 

applicability to cases where heat transport is essentially phononic, i.e. insulators or bad 

conductors. 
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The paper is organized as follows: in the next section, we describe our NEMD results, and 

how the size of the system and that of the thermostatted zones influence the thermal 

conductivity. Section III describes a semi-analytical approach used to rationalize our results, 

and section IV summarizes our conclusions. 

 

II. Size effects on simulation results 

 

In this section, we discuss two possible origins of the size dependence of thermal conductivity 

observed in our simulations, namely the influence of the thermostats (section II.1) and of the 

boundary conditions (section II.2). All the simulations are performed in a cubic simulation 

cell, containing a  FCC lattice of  Lennard-Jones atoms at mass density ρ σ= 1075 3. / m . The 

side L of the cube was varied between  10a0 and 80a0 with a0 = 1.5496 σ. 

 

II.1. Influence of the thermostatted zones 

 

Several papers describe the methodology used to simulate heat transfer [13, 22-26] with 

NEMD. A hot thermal reservoir and a cold thermal reservoir are used to create a temperature 

gradient in the system. To create these hot and cold region it is possible to control either the 

temperature or the energy given or taken from the thermal reservoir. Two important 

characteristics of the reservoirs  must be well understood in order to avoid an incorrect 

interpretation of the simulation results: 

 

- The heat source and the heat sink cannot be considered as classical boundary conditions of a 

continuous medium. They are part of the system, so that phonons modes are characterized by 

the whole dimension of the system and not by the size of the intermediate zones.  

 

- As a heat flux requires a temperature gradient, if the thermal reservoirs were isotherm then 

no heat flux could flow to or from them. So, there is a temperature gradient within the thermal 

reservoirs, which depends on the heat flux. 

 

Our thermal reservoirs are thermostatted slabs of thickness D, located at positions –D/2 

<x<D/2 and L/2-D/2<x<L/2+D/2. D varies from 2a0 to 30a0 depending of the dimension L of 
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the cube. As mentioned above, a temperature gradient must exist within these zones. The 

thermostat simply maintains the average temperature of the reservoir constant [15, 16]. In 

order to control the temperature  and to calculate the flux given to the heat source and taken 

from the heat sink efficiently, we use simple velocity rescaling: at the end of each time step, 

the temperatures of the heat source and heat sink are calculated and their velocity fields are 

rescaled in order to keep their kinetic energy constant and equal to the one corresponding to 

the target temperature [14, 25]. 

 

It is usually believed that this method modifies the thermal equilibrium at each time step. To 

limit this phenomenon and to allow natural temperature fluctuations, the rescaling can be 

done periodically and only when the instantaneous temperature is much departed from the 

target temperature. In fact, the kinetic energy correction is minimized by a systematic 

rescaling (at each time step and whatever the temperature value) which also allows local 

temperature fluctuations since the set of atoms is large enough. However, the velocity 

rescaling method may have a significant effect on the phonon population and on the local 

thermal equilibrium, which would modify the heat transfer in the system. To check for 

possible influence of the thermostats on the microscopic dynamics, the following quantities 

were investigated. 

 

-the effective density of modes (i.e. the Fourier transform of the velocity autocorrelation of a 

particle) has been determined for a system at equilibrium at temperature T=0.215ε/ kb. It can 

be compared to the density of modes of a system with a heat source and heat sink such that 

the average temperature of the system is also equal to T. The two curves are superimposed in 

figure 1, where one can check that the  influence of thermostats on vibrational dynamics is 

negligible. 

 

-the local velocity distribution function has been determined in a system during a heat transfer 

simulation. The temperature profile in the system during this simulation is shown in figure 2. 

As expected, the temperature in the thermostatted zones is not homogeneous. For each atomic 

layer, the velocity distribution function is compared to the equilibrium Maxwell distribution 

function at the same temperature. Two such distribution functions are presented in figure 3, 

for layers taken in the middle of the heat source and in the middle of the intermediate (not 

thermostatted) zone. The two functions are different due to the temperature difference, but the 

numerical distribution exactly matches a Maxwell-Boltzmann distribution. 
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Finally, we also checked that the thickness of the thermostatted slabs does not influence our 

results (see figure 4) by comparing results for the thermal conductivity obtained with two 

different  thickness  (D = 10a0 and D = 15a0 for L = 50a0). However, the results exhibit a large 

dispersion if the number of free atoms between the thermal reservoirs is too large because the 

system then requires more time to reach the thermal local equilibrium. 

 

Our conclusion is therefore that the thermostats do not significantly modify the microscopic 

dynamics of our system, and are therefore appropriate for performing heat transport 

simulations. 

 

II.2. Influence of the boundary conditions 

 

In MD simulations, the system is placed in a simulation box with a finite size. To predict bulk 

properties, the standard approach is to use periodic boundary conditions (PBC), in which the 

simulation box is periodically repeated in each direction [15, 16]. The system is finite, but 

completely homogeneous. 

 

To study properties of nanometric structures  free surfaces are used in all directions for a 3D 

object, in 2 directions for a wire and in one direction for a film. The object is embedded in a 

much larger simulation cell. Studying solids under these conditions can be difficult since 

evaporation can result in unwanted shape changes. To prevent the formation of the vapor 

phase, the system can be delimited by either with a set of fixed (“dead”) atoms (hard wall) or 

with “phantom” atoms, i.e. weak harmonic springs that bind the atoms located on the system 

surface to their equilibrium position.  The spring constant is chosen such that the associated 

vibrational frequency is smaller than the Einstein frequency, so as to minimize the influence 

of this constraint on vibrational dynamics. 

 

In both cases, two phenomena can explain the size dependence of the thermal conductivity: 

- the phonon number decreases with the system size and the wave vector distribution function 

can no longer be considered continuous; this “mode counting” effect is in principle similar for 

periodic boundary conditions and  systems with free boundaries. 
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- if the phonon mean free path is larger than the box size then phonons will be more 

frequently scattered. This is quite obvious for systems with free surfaces, but for systems with 

periodic boundary conditions, this effect has not been clearly pointed out [29, 33, 34]. 

 

For a temperature T=0.215ε/ kb, the thermal conductivity of a cube of dimension L=Na0 has 

been determined using NEMD. The influence of the cube size has been studied for N =10 to 

80. Four kinds of boundary conditions were used: periodic boundary surfaces in the three 

directions, free surfaces with fixed (“dead”) atoms, free surfaces with phantom atoms in all 

three directions, and unconstrained free surfaces. Due to the evaporation problem mentioned 

above, only one reliable data point could be obtained for the latter case. Figure 4 compares the 

results for  the thermal conductivity obtained with these different boundary conditions, as a 

function of system size.  Free surfaces with dead or phantom atoms yield, within numerical 

accuracy, the same conductivity. The thermal conductivity is slightly smaller for the periodic 

boundary conditions than for free surfaces. This would indicate that, somewhat surprisingly,  

periodic boundary conditions result in stronger phonon scattering than free surfaces. 

 

Plotting the inverse of the thermal conductivity as a function of the inverse of the system size 

results in a linear relationship, both for free and periodic boundary conditions. The bulk 

thermal conductivity is obtained from the extrapolation of the regression line to system of 

infinite length (figure 5). The difference between the two asymptotic values is less than ten 

percent. Using the potential parameter of Argon(ε/ kb =120K, σ=0.34nm) the bulk thermal 

conductivity is found to be equal to 1.4 +/-10% W/(mK)  at 25 K, which is in good agreement 

with the value found  in the literature (1.2 W/mK at 30 K increasing when the temperature 

decreases) [32]. The minimum cube size that would be required to obtain the bulk thermal 

conductivity with an accuracy greater than 3% is determined using the extrapolation curve: it 

is equal to 1170a0 for a system with periodic boundary conditions and 590a0 for a system with 

free surfaces. These systems are much too large (more than 109 atoms) to be considered for 

MD, which justify the use of smaller systems and the extrapolation procedure. 
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III. Simple  models for the size dependence of the thermal conductivity 

 

III.1. Analytical expression of the thermal conductivity 

 

In a system of volume V at temperature T, the number of phonons with wave vector K and 

polarization p is given by the Planck distribution function [27, 28]:  

( )n
e

K p x, =
−

1

1
     (1) 

with ( )
x

K p
k Tb

=
η ω ,  and where ( )ω K p,  is given by the dispersion curve. 

 

The internal energy of the phonons (K,p) per unit volume is the product of the number of 

phonons and their individual energy [27, 28]: 

( ) ( )
( )U K p

K p

V ex
,

,
=

−

ηω

1
     (2) 

which leads to its volume specific heat: 

( ) ( )
( )C K p

U K p
T

k x
e

V e
b

x

x
,

,
²

²
= =

−

∂
∂ 1

    (3) 

The total volume specific heat is then equal to the sum over all the wave vectors and 

polarizations: 

( )C k x
e

V e
b

x

x
kp

=
−

∑∑ ²
²1

     (4) 

If ω were constant then the expression for the volume specific heat would be the same as the 

one given by the Einstein model. Using elementary kinetic theory, the thermal conductivity 

associated with the phonons (K,p) can be written as [27, 28]: 

( )λ τK p C K p v K p K p, ( , ) ²( , ) ( , )=      (5) 

with:  - v the group velocity of the phonons (K,p): ( )v K p d dK, /= ω , 

- ( )τ K p,  is the phonon relaxation time. 

 

Assuming a harmonic solid (no interaction between phonons), the phonons of different wave 

vectors and polarizations can be considered as a low density gas at constant volume. The total 

thermal conductivity is then the sum of the individual conductivities for all the wave vectors 

and polarizations:  
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( )λ λ τ= =∑∑ ∑∑K p C K p v K p K p
pK pK

, ( , ) ²( , ) ( , )     (6) 

If the group velocity and the relaxation time are assumed to be constant, the classical 

expression for the thermal conductivity for an infinite system is obtained : 

( )λ τ τ= =∑∑v C K p Cv
pK

² , ²     (7) 

The thermal conductivity is constant and does not depend on the system dimension. So, to 

illustrate the influence of the system size on the thermal conductivity, it is necessary to take 

into account the actual variation of the group velocity and the relaxation time with the wave 

vector. 

 

If the system size is infinite, the sum in (7) becomes an integral, which is most conveniently 

reexpressed using a change of variables from wavevector  K to pulsation ω (through the 

dispersion curve and density of modes). The result for λ reads: 

( ) ( ) ( ) ( )
λ ω τ ω ω ω ω

ω

ω

ω

=
−∫

η η

η
²
²

² ²

²

/

/3 10
k T V

v D e

e
d

b mol

k T

k T

b

b

R

   (8) 

This expression has been proposed by Rosemblum et al. [29], who used it with the 

assumption of constant group velocity, to compute thermal conductivities of diamond crystals. 

It was named the 'Phonon Spectrum' (PS) method since it requires the knowledge of the 

density of mode, D(ω), which can be determined previously from equilibrium MD. For a 

perfect crystal, a general expression representing the phenomenological variation of the 

relaxation time is used:  

( ) ( ) ( )τ ω τ ω τ ω− − −= +1 1 1
U BC     (9) 

with the relaxation time due to the Umklapp processes [28, 30]: 

( ) ( )τ ω ξ
U AK T B T− = −1 ² exp /      (10) 

and the relaxation time due to the presence of the system boundaries: 

( ) ( )τ ω αΛBC v− =1 /      (11) 

An other empirical formula [35] was proposed for τ BC : 

( )τ ωBC v s− = −1 1* ( ) / Λ        (12) 

where s represents the fraction of all phonon specularly scattered from the boundary surfaces 

( [ ]s ∈ −0 1 ). Here Λ is the distance traveled between two scattering events by the boundaries. 
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Rosemblum et al. [29] assume Λ to be constant and equal to the characteristic length of the 

system. A, B, ξ , α  are identified in order to fit the calculated thermal conductivity to an 

experimental value. The PS method allows the prediction of the thermal conductivity of an 

infinite medium (L infinite leads to ( )τ ωBC
− =1 0 ), or of a finite object with characteristic length 

L in the three directions of space from the knowledge of the density of state and a few 

experimental values. As shown in the previous section, the density of modes can be calculated 

from simple molecular dynamics simulation at equilibrium. This method requires much less 

CPU time than NEMD and the results do not depend on the way heat transfer is simulated. 

However, the continuous integral over the angular frequency range implies that: 

 

- the phonon properties do not depend on the wave vector direction. Since Λ is assumed 

constant for all wave vectors, it is then not possible to study the size effects in nanowires or 

nanofilms. For such structures, Λ is a function of the wave vector direction and can be 

considered infinite in one or two directions. 

 

- the number of modes is infinite. The number of mode is equal to 3N-3 where N is the 

number of atoms in the system. If the system size is small, the sums in equation 6 can not be 

accurately transformed into a continuous integral.  

 

To calculate the thermal conductivity of small systems, it seems therefore preferable to use 

equation 6 which contains more information on the wave vector: the number of modes, the 

group velocity, the relaxation time, the angular properties and their variation with the wave 

vector direction. This should in principle allows for proper inclusion of size and geometry 

effects, both in the mode counting and in the scattering. This method will be described in the 

following as the Wave Vectors (WV) method. 

  

III.2. Vibrational properties of Argon 

 

The thermal conductivity has been calculated with the WV method (equation 6) for a cube 

made of solid argon in order to compare the WV model results to the NEMD results for 

periodic boundary conditions and fixed boundary surfaces. For the periodic boundary 

conditions, two other geometries are studies: a nanofilm and a nanowire. To implement 

equation 6, vibrational properties of Argon must be known. 
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Solid argon has an fcc structure which unit cell is described by the three primitive vectors: 

a1(0,a0/2,a0/2), a2(a0/2,0, a0/2) and a3(a0/2, a0/2,0) where a0 is the lattice parameter of the 

conventional fcc cell. The first Brillouin zone of the fcc structure is a cube truncated on its 

eight corners [27]. 

 

For a fcc crystal of dimension (Nxa0, Nya0, Nza0) in the x, y and z directions, with periodic 

boundary conditions in the three directions, the wave vectors describing the crystal vibrations 

are linear combination of: 

Kx=2pxπ/( Nxa0), Ky=2pyπ/( Nya0), Kz=2pzπ/( Nza0)  

with ] ]p N Nx x x∈ − , , ] ]p N Ny y y∈ − , , ] ]p N Nz z z∈ − ,  (the wave vector are in a cube) 

and − < + + ≤3 30 0π π/ /a K K K ax y z , − < − + ≤3 30 0π π/ /a K K K ax y z , 

− < + − ≤3 30 0π π/ /a K K K ax y z , − < − + + ≤3 30 0π π/ /a K K K ax y z  (These later conditions allow to 

truncate the cube on its eight corners). 

The number of wave vectors is equal to 4NxNyNz which is the number of atoms. To simulate a 

cube, Nx = Ny= Nz, for a nanofilm : Nx is finite and  Ny and Nz tend to and infinite value. For a 

nanowire : Nx=Ny and Nz tends to an infinite value. 

 

For a cube with dimensions (N1a0, N1a0, N1a0) and fixed boundary surfaces, the wave vectors 

describing the crystal vibrations are linear combination of: 

Kx=pxπ/( N1a0), Ky=pyπ/( N1a0), Kz=pz π/( N1a0) 

with ( )[ ]p p p Nx y z, , ,∈ −1 2 1 2  and K K K a Nx y z+ + ≤ − −3 2 1 10π / / ( )  

Due to the fixed boundary surfaces, the wave vectors are confined in 1/8 of the Brillouin zone 

of the fcc structure. However, the number of wave vectors is still equal the number of atoms : 

4N13 in this case. To compare the thermal conductivity of the cube with fixed boundary 

surfaces to the thermal conductivity of a cube with periodic boundary conditions,  one has to 

set Nx = Ny= Nz=N1-2. 

 

The dispersion curves of Argon should be known in order to calculate the angular and the 

group velocities for each wave vector. Assuming an harmonic crystal, there are one 

longitudinal mode and two degenerate transverse modes for each wave vector direction, 

which can be model as: 
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( )ω ω πK t K
KMt

M
, sin( )=

2
 ( )V K t V K

KMt
M

, cos( )= π
2

 for the two transverse modes and 

( )ω ω πK l K
KMl

M
, sin( )=

2
 ( )V K l V K

KMl
M

, cos( )= π
2

 for the longitudinal mode. 

For simplicity, it is also assumed that the dispersion curves are the same for all wave vector 

directions, with KM the maximum wave vector length in the first Brillouin zone. Considering 

the data for Argon in the literature [27, 36], the maximum angular and group velocities are 

equal to: 

ωMl rad s= 135 1013. /  and v m sMl = 1800 /  for the longitudinal mode and 

ω ωMt Ml= 0 6. *  and v vMt Ml= 0 6. *  for the two transverse modes. 

 

Using equations 9, 10 and 12, the relaxation time at constant temperature can be written as : 

( )τ− = + −1
1 1K A K v s K² * ( ) / ( )Λ  

For a cube, Λ(K) is equal to the characteristic length of the cube. But, for the wire and the 

film, Λ(K) is defined as the maximum length a wave can travel in the system between two 

boundaries. It is then calculated for each wave vector direction. The constant A1 is determined 

so that the asymptotic value of the thermal conductivity calculated with the WV model for an 

infinite length is equal to the experimental thermal conductivity of Argon. At T= 25 K: 

λ bulk mK= 14. / ( ) W leads to A m s1 18921= . ² / 10-12 . All the results are normalized by this bulk 

value. 

 

III.3. Results 

 

The thermal conductivity is calculated for a cube of Argon at 25 K for the two limiting values 

of the scattering parameter s (figure 6): 

 

- s = 1 : only specular reflexions occur at the boundaries. The phonon mean free path is not 

limited by the system boundaries. This condition is used to study the influence of the number 

of wave vectors on the thermal conductivity, independently of the system geometry. This is of 

course an artificial construction, which cannot be directly compared to MD simulations. The 

thermal conductivity of this cube made of an fcc solid Argon is smaller than   0 97. *λ bulk  for a 

dimension less than 50 a0 for the periodic boundary conditions and 135 a0 for the fixed 

boundary surfaces. Above these dimensions, mode counting effects can reasonably be  
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neglected. The thermal conductivity of the system with free surfaces is smaller than the one of 

the periodic system: for periodic boundary conditions, the first Brillouin zone is uniformly 

sampled while, for fixed boundary surfaces, wave vectors are not allowed on the limit of the 

first Brillouin zone. 

 

- s = 0 : phonons are scattered at the system boundaries. The phonon mean free path decreases 

(equations 9 and 11) due to the finite size of the system. The length Λ(K) is then equal to the 

maximum distance a plane wave could travel in the wave vector direction. This leads to a 

smaller thermal conductivity than in the bulk value. For NEMD simulations with periodic 

boundary conditions, phonons reaching a boundary surface re-enter the system through 

another surface, which can be considered as a scattering event. For a system with free 

surfaces, phonons reaching a boundary surface are reflected and scattered back into the 

system. Analytical results with scattering and NEMD results can then be compared. 

Qualitatively, the agreement is quite good between the two methods: the relative variations 

are of the same order of magnitudes and the thermal conductivity of the cube with fixed 

boundary condition is greater than the one of the cube with periodic boundary conditions. 

Quantitatively the variation of the thermal conductivity due to the boundary conditions is 

much larger with NEMD than with the WV model, and the asymptotic value is reached for 

smaller system sizes with NEMD than with the WV model. These differences can easily be 

explained by the following assumptions, made in the WV model, and which may in fact not 

be valid : (1) vibration modes are plane waves, (2) the system is harmonic and (3) the phonon 

properties do not depend on the wave vector and polarization. It has been verified that the 

relative variations of the thermal conductivity are almost the same if one considers different 

dispersion curves for transverse and longitudinal polarization. So assumptions (1), (2) are 

certainly the ones which constitute the most serious  approximations. Note also that we have 

used the same value of the scattering parameter s for the two situations. By adjusting the value 

of s to an intermediate value, it would of course be possible to increase, in the WV model, the 

difference between fixed and periodic boundary conditions, so that the WV results would be 

qualitatively closer to the NEMD results.  

 

Another important difference between MD and WV model lies in the specific heat. In 

molecular dynamics simulations, the energy of each vibration mode is equal to kbT. This leads 

to a constant specific heat, kb, for all the vibration modes. Actually, as phonons follow the 

Planck distribution function, the specific heat depends on the wave vector and the temperature 
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(equation 3). This effect can never be taken into account in classical MD simulations. Using 

the WV model and assuming a constant specific heat for all wave vectors, it is clear  that the 

equipartition of energy in MD simulations leads to an overestimation of the thermal 

conductivity; we have checked, however, that   the relative variations with  system size are 

similar if the classical formula, rather than the correct Planck distribution, is used for the 

specific heat. This is reasonable, since finite size effects are dominated by long wavelength 

phonons, for which the classical formula is most accurate. Moreover, at high temperature, the 

phonon specific heat (equation 3) tends to kb, so that  the error in MD simulations due to this 

classical treatment of lattice vibrations will decrease.  

 

As the WV model qualitatively reproduces the size dependence of the thermal conductivity of 

a nanoparticle, we have extended it  to study the size dependence of the thermal conductivity 

of a nanofilm and a nanowire. Only periodic boundary conditions are considered since the 

difference with fixed boundary surfaces is small. The scattering parameter s is equal to zero. 

Films and wires actually have two characteristic lengths: 

- the thickness e and the characteristic dimension L in the (y, z) plane for the nanofilm (figure 

7a), 

- the characteristic length l of the wire section (in the (x, y) plane) and the length L of the 

nanowire in the z direction (figure 8a). 

The thermal conductivities ( )λ e L,  and ( )λ l L,  of the film and the wire are calculated within the 

WV model for increasing values of L (figures 7b and 8b).  On this figures, the thermal 

conductivity appears to diverge for large values of L, at fixed e and L. The divergence, which 

is barely noticeable for the thick films or wires, becomes evident when the lateral dimensions 

decrease. Such a divergence is typical of low dimensional systems [37], and results from the 

particular role of the wavevectors that are parallel to the longer dimension (i.e. those 

with kx = 0 in the film, with k kx y= = 0 in the wire). For these wavevectors, boundary 

scattering is absent, and the sum over ( k ky z, ) (film) or kz (wire)  yields a divergent integral in 

the limit of large L. In practical cases, this divergence (which, in our model, is actually 

slightly overestimated [38] will be cutoff  either by the device dimension or by a typical 

distance between defects in the larger dimension.   

In order to define a thermal conductivity for films and wires, we have somewhat arbitrarily 

chosen to compute the value of ( )λ e L,  and ( )λ l L,  for a value of L a= 2000 0 , corresponding to a 

typical device size of 1 micrometer. The results, shown in figures 7c and 8c, show that, for the 
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same characteristic length (l and e), the thermal conductivity of the film is larger than the 

thermal conductivity of the wire.  This is expected, since boundary scattering is stronger in 

wires. An interesting feature is the nonmonotonic behaviour with the lateral characteristic 

size. As e or l decrease, the conductivity first decreases as the scattering by boundaries 

becomes more efficient, but eventually increases again at small thickness, when the low 

dimensional character and the associated divergence prevail. This nonmonotonic behaviour 

illustrates  the difficulties encountered in extrapolating data obtained over a limited range of 

sizes in the range of nanometric scales. 

 

IV. Conclusion 

 

NEMD is one of the possible tools for determining the thermal conductivity of a material on 

an atomic scale. Even if NEMD is widely used, its reliability has sometimes been questioned. 

In this paper, the influence of the thermal reservoir, the boundary conditions and the system 

size on the thermal conductivity is studied by use of NEMD simulations of a cube with an fcc 

structure and a Lennard-Jones potential. 

 

It has been shown that, when the thermal reservoirs are thermostatted with a systematic 

velocity rescaling, the local velocity distribution function is the Maxwell distribution function 

and the density of mode remains the same as the one obtained for an equilibrium system. 

Moreover, the temperature gradient between the thermostats is linear. Thus, it is believed that 

the local thermal equilibrium is achieved everywhere in the system. The thermal conductivity 

can then be calculated from the temperature gradient and heat flux. 

 

An analytical model of the thermal conductivity is developed in order to give qualitative 

explanations of the thermal conductivity variations with the system size. In this model, the 

total thermal conductivity is considered as the sum of the individual thermal conductivity of 

all the phonon modes. This is the Wave Vector method. The phonon properties required are 

determined from the literature data for Argon, in order to compare the WV model results to 

NEMD results. All the wave vectors should be characterized but, for simplicity, the thermal 

conductivity has been calculated assuming that phonon properties are the same for all the 

wave vector directions.  

 



 16

The system size dependence of the thermal conductivity is confirmed with our NEMD results. 

The bulk thermal conductivity can be recovered from the extrapolation of the simulation 

results for finite systems towards an infinite system size. Qualitatively, the analytical model 

shows that the size dependence of the thermal conductivity is due to the:  

 

- discretisation of the wave vectors for small systems, 

- influence of the phonon  scattering the boundary surfaces.  

 

Due to the surface scattering, the size dependence of the thermal conductivity is expected for 

the system with free surfaces. Moreover, it is shown that the thermal conductivity does not 

depend on the way free surfaces are modeled: hard wall, phantom atoms and really free 

surfaces. For the system with periodic boundary conditions, the thermal conductivity also 

exhibits a size dependence and values smaller than the ones obtained for the system with free 

surfaces. 

 

The wave vector model was used to study the size dependence of the thermal conductivity of 

a nanofilm and a nanowire. As the film thickness or the section typical length of the wire 

decrease, the thermal conductivity decreases as expected. However, for small enough film 

thickness or wire section (typically less than 20 lattice parameters for solid argon) the thermal 

conductivity increases and can become larger than the bulk thermal conductivity. This is due 

to the vibrational behavior of the film and wire which then resembles the one of a 2D and 1D 

system, respectively, for which the thermal conductivity diverges with the system length. 
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Figure 1: Density of mode D (in arbitrary units) versus angular frequency (Lennard-Jones 
units). Line : results for system at equilibrium; Diamonds : results for system with 

thermostatted zones. 
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Figure 2: Temperature profile in a system with thermostatted zones as a function of the non-
dimensional position in the direction of heat transfer. Periodic boundary conditions are used 

in all directions. The dots indicate the thermostatted zones. 
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Figure 3: Velocity repartition function. Bold line: repartition function in the middle of the hot 
source. Thin line: repartition function in the middle of the intermediate bloc. In both cases, 

numerical and theoretical repartition functions are superimposed. 
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Figure 4: Thermal conductivity in LJ units as a function of the system size. Line with squares: 
periodic boundary conditions. Empty square: result for another thermostat dimension. Line 
with circles: free surfaces with dead atoms. Stars: free surfaces with phantom atoms. Empty 

circle: result for a system with really free surfaces. 
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Figure 5: Inverse of thermal conductivity as a function of the inverse of the system size. The 

extrapolation of the regression line to an infinite system size gives the bulk thermal 
conductivity. 
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Figure 6: Normalized thermal conductivity of a cube as a function of its characteristic length. 

Comparison between the WV model (full lines) with NEMD (dashed lines) for periodic 
boundary conditions (lines with squares) and fixed boundary surfaces (lines with circles). 
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Figure 7:  Normalized thermal conductivity of a film (a) as a function of L for two thickness 
and (b) as a function of its thickness for L=2000 a0.
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Figure 8:  Normalized thermal conductivity of a wire (a) as a function of L for two values of l 
and (b) as a function of l for L infinite. 

 
 

 


