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Solitonic transmission of Bose-Einstein matter waves

P. Leboeuf, N. Pavloff and S. Sinha
Laboratoire de Physique Théorique et Modèles Statistiques, Bât. 100,

Université Paris-Sud, F-91405 Orsay Cedex, France

We consider a continuous atom laser propagating through a wave guide with a constriction. Two
different types of transmitted stationary flow coexist. The first one coincides, at low incident current,
with the non-interacting flow. As the incident flux increases, the repulsive interactions decrease the
corresponding transmission coefficient. The second type only occurs for sufficiently large incident
currents and has a solitonic structure. Remarkably, for any chemical potential there always exists a
value of the incident flux at which the solitonic flow is perfectly transmitted.

PACS numbers: 03.75.Pp, 05.60.Gg, 42.65.Tg

The transport properties of matter confined to small
structures display distinct quantum effects qualitatively
different from those observed at macroscopic scales.
These are grounded on global phase coherence through-
out the sample and can be, in many cases, understood
within single particle pictures, without referring to any
specific details of the system. As a result, they arise in
many different fields (electronic systems, atomic physics,
electromagnetism, acoustics) [1–3]. Some examples are
(weak and strong) localization, Bloch oscillations and
conductance quantization.

Recent experimental developments in the physics of
Bose-Einstein condensation (BEC) of dilute vapor (in
particular the microchip guiding technique) open up the
prospect of studying coherent transport phenomena us-
ing guided atom lasers [4]. Besides, because of the
extraordinary control over these systems, they offer a
unique opportunity to go beyond the single particle be-
havior, and to study specific effects induced by interac-
tion. In the present Letter we focus on a simple situation,
where a BEC matter wave propagates through a guide
with a constriction [5]. By an adiabatic approximation,
the three–dimensional flow is reduced to one dimension,
where the atoms now feel, due to the constriction, a lon-
gitudinal step–like potential of height V0. In the absence
of interaction, the transmission T does not depend on
the incident current but only on the beam’s energy; T
is always lower than unity and tends to this limit when
the energy of the beam is large compared to V0. In the
following we consider atoms with a repulsive effective in-
teraction characterized by a scattering length asc > 0.
The most salient features of the flow are all at variance
with respect to the non-interacting case: (i) the trans-
mission coefficient depends on the current, (ii) at given
chemical potential, there exists a maximum transmitted
current above which no stationary flow exists, (iii) sev-
eral distinct stationary solutions with different T may
coexist and (iv) for any chemical potential larger than
V0, there exists a particular value of the incident current
which induces total transmission.

Consider a continuous atom laser incident on a con-
striction of the waveguide. In the lowest channel, the

constriction acts as a longitudinal potential (within the
adiabatic approximation [6]), whose magnitude is fixed
by the ground state energy of the transverse Hamiltonian.
For a BEC system, the adiabatic approximation implies
that the condensate wave function can be cast in the form
Ψ(~r, t) = ψ(x, t)φ(~r⊥;n;x) (see Ref. [7]), where ψ(x, t)
describes the motion along the axis of the laser (the beam
is flowing along the positive x direction). φ is the equi-
librium wave function (normalized to unity) in the trans-
verse (~r⊥) direction. It depends parametrically on the
longitudinal density n(x, t) =

∫

d2r⊥|Ψ|2 = |ψ(x, t)|2.
The beam is confined in the transverse direction by a
trapping potential V⊥(~r⊥;x), which is x-dependent in the
region of the constriction. Then, the longitudinal wave
equation reads [7,8] (in units where h̄ = m = 1)

−1

2
∂2

xxψ +
{

V‖(x) + ε[n(x, t);x]
}

ψ = i ∂tψ . (1)

In (1), V‖(x) represents an effective longitudinal poten-
tial due to the constriction. If, to be specific, we consider
a transverse harmonic confinement with pulsation ω⊥(x),
then V‖(x) = ω⊥(x)−ω⊥(−∞) (energy is measured with
respect of the ground state energy of the non interact-
ing transverse Hamiltonian far before the constriction).
ε(n;x) is a nonlinear term describing the mean field in-
teraction averaged over a transverse slice of the beam.
One has ε(n;x) = 2ω⊥(x)nasc in the low density regime
(nasc ¿ 1), and ε(n;x) = 2ω⊥(x)

√
nasc in the high den-

sity regime (nasc À 1).
Our purpose is to determine the transmission

of steady state solutions of (1) where ψ(x, t) =
exp{−iµt}A(x) exp{iS(x)}, with A and S real functions.
The density is n = A2 and the local velocity is v = dS/dx.
From Eq. (1) one obtains (i) flux conservation: n(x)v(x)
is a constant that we denote J∞, and (ii) a Schrödinger-
like equation for the amplitude:

−1

2

d2A

dx2
+

{

V‖(x) + ε[n(x);x] +
J2
∞

2n2(x)

}

A = µA . (2)

To define the scattering problem one needs to study the
asymptotic behavior of the flow far from the constriction.
Far upstream V‖(x → −∞) = 0 and the non-linear term
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in (1) looses its explicit x dependence, taking the simpler
form ε[n(x, t)]. Thus, in this region, (2) admits a first
integral of the form [8] :

1

2

(

dA

dx

)2

+ W [n(x)] = Ecl (3)

with W (n) = −ε(n) + µn +
J2
∞

2n
,

where ε(n) =
∫ n

0
ε(ρ)dρ and Ecl is an integration con-

stant. Eq. (3) has a simple interpretation in terms of
classical dynamics. It expresses the energy conservation
of a fictitious classical particle with “position” A and
“time” x, moving in a potential W ; Ecl being the to-
tal energy of this particle. Eq. (3) is thus integrable by
quadrature, and the density profile can be deduced from
the plot of Fig. 1. Small values of Ecl − W (n1) corre-
spond to small density oscillations, whereas the highest
acceptable value is Ecl = W (n2), corresponding to a grey
soliton.

n
2

n
1

n
min

n
max

W
(n

)

E
cl

FIG. 1. W as a function of n. n1 and n2 are the zeros
of dW/dn. At a given Ecl, the up-stream density (or equiv-
alently the “position” of the fictitious particle) oscillates be-
tween nmin and nmax defined by W (nmin) = W (nmax) = Ecl.

In the far down-stream region, V‖(x → +∞) also takes
a constant value V0 = ω⊥(+∞) − ω⊥(−∞) > 0. Hence,
(2) admits, in this region, a first integral analogous of (3)
where, due to the change in ω⊥, ε(n) (resp. ε(n)) takes
a different form which we denote ε0(n) (resp. ε0(n)).
The new form of W (n) is denoted W0(n) and the new
constant of integration is E0

cl:

1

2

(

dA

dx

)2

+ W0[n(x)] = E0
cl (4)

with W0(n) = −ε0(n) + (µ − V0)n +
J2
∞

2n
.

It follows from general arguments on the dispersion of
elementary excitations of Eq. (1) that the physically ac-
ceptable boundary conditions of Eq. (2) correspond to a
constant far down-stream density (see [8]). The asymp-
totic x → +∞ density should thus be equal either to n1,0

(we denote this as “case A”), or to n2,0 (case B); n1,0 and
n2,0 – being the analogous of n1 and n2 of Fig. 1 – are
extrema of W0(n). They are solutions of

µ = ε0(n) + V0 +
J2
∞

2n2
. (5)

In the non-interacting case the term ε0(n) is absent from
W0(n) which has only one minimum (n10). Case A is
therefore the only possible solution in non-interacting
systems. Case B describes new non-perturbative effects
related to interaction. It corresponds to an asymptotic
down-stream density which is part of a soliton.

There exists a maximum value Jmax
∞ of J∞ above

which Eq. (5) admits no solution: as J∞ is increased
(keeping µ and V0 fixed), the two extrema of W0(n) move
toward each other, until they coalesce and disappear.
This marks the onset of a time–dependent flow. If, to
be specific, we consider the case ε0(n) = g0 nν0 , then

Jmax
∞ =

[

2

ν0 + 2
(µ − V0)

]
1

ν0
+ 1

2 √
ν0 g

−1/ν0

0 . (6)

The scattering process is now well defined. It corresponds
to the matching between two asymptotic densities de-
scribed by the classical motion of a particle of energy Ecl

in a potential W (n) at x → −∞, and of energy E0
cl in

a potential W0(n) at x → +∞ (with E0
cl either equal to

W0(n1,0) or to W0(n2,0)). Eq. (2) being non-linear, an
important question is how to properly define a transmis-
sion and a reflection coefficient; i.e., is it possible to dis-
entangle an incident and a reflected wave in the upstream
flow ? We follow here an approach closely related to usual
experimental set-ups, and choose to work with an inci-
dent and a reflected beam which can be approximated
by plane waves. This corresponds to a regime where
Eqs. (2,3) can be linearized in the far upstream region.
In this regime, for x → −∞, we write n(x) = n1 + δn(x)
and expand nW (n) to second order in δn. Then Eq. (3)
leads to

(

d δn

dx

)2

+ κ2
1δn

2 = 8(n1 + δn)[Ecl − W (n1)] , (7)

where κ2
1 = 4(v2

1 − c2
1), v1 = J∞/n1 being the average ve-

locity of the up-stream beam and c1 = [n1(dε/dn)n1
]1/2

the sound velocity of a beam with constant density n1.
The linearization (7) is valid provided |δn(x)/n1| ¿
κ2

1/c2
1. In this regime, if one further imposes v1 À c1, the

up-stream density oscillations can be analyzed in term of
incident and reflected particles (and not quasi-particles).
This allows to unambiguously define the incident, re-
flected, and transmitted current as Ji = (n1 + δn1/2)v1,
Jr = δn1v1/2 and Jt = n1v1 = J∞ (where δn1 =
4[Ecl − W (n1)]/κ2

1). Hence, once Ecl is known, the
transmission at given incident current Ji is determined
through

Ecl = W (n1) +
κ2

1

4
δn1 = W (n1) +

κ2
1

2v1
Ji(1 − T ) . (8)

The linearization procedure explained so far is valid in
the case of small upstream interaction (this is the essence
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of the condition v1 À c1). However, all interaction effects
are fully taken into account in the down-stream region,
where they are indeed more important (the constriction
acts as a barrier which lowers the velocity of the down-
stream flow and, by flux conservation, increases its den-
sity [9]). In the following we solve the exact non-linear
equation (2) and use the linearization procedure only to
define the transmission coefficient T . Thus, the results
presented below are of very general validity, but their
analysis in term of transmission coefficient is only cor-
rect in so far as the linearization procedure is valid.

The method is now the following: for a given µ and Ji,
assume a particular value of T . This determines J∞ =
T Ji, fixes the form of the function W0(n), the value of
n(+∞) (it is equal to n1,0 in case A and to n2,0 in case
B) and of E0

cl = W0[n(+∞)]. Integrating (2) backwards
from x = +∞ to x = −∞ yields Ecl, which should be
compatible with (8). If not, the value of T has to be
modified until self-consistency is achieved.

To understand the physical picture we consider an
abrupt step-like constriction. In this geometry, numer-
ical integration of (2) can be bypassed because Ecl is
simply expressed in terms of E0

cl (see Eq. (9)). We have
numerically checked that the adiabatic approximation is
essentially exact for non-interacting atoms in the regime
studied below. The wide range of validity of the adia-
batic approximation is well established for linear waves
(see, e.g., [10]), but much less is known in the nonlinear
case [11].

We thus consider the case V‖(x < 0) = 0, ε(n;x <
0) = ε(n) and V‖(x > 0) = V0, ε(n;x > 0) = ε0(n).
Eq. (2) admits the first integral (3) for all x ≤ 0 and (4)
for all x ≥ 0. Ecl is determined through E0

cl by imposing
continuity of A and A′ at x = 0:

Ecl − W [n(0)] = E0
cl − W0[n(0)] . (9)

Let’s consider case A first. The asymptotic down-stream
density is n1,0 and thus one has, for all x ≥ 0, n(x) = n1,0

(the fictitious classical particle remains at the bottom of
the potential well W0). In particular, n(0) = n1,0 and
the matching (9) determines Ecl uniquely. The value of
T is denoted T A in this case.

Case B is more interesting because the structure of the
down-stream solution is richer: n(x ≥ 0) being part of the
profile of a grey soliton, n(0) can be varied continuously
provided the matching (9) is fulfilled at a value acceptable
for Eq. (3). Effectively, the only restriction imposed is
that nmin < n(0) < nmax (nmin and nmax are defined in
Fig. 2). As a result, for fixed µ and Ji, Ecl is not uniquely
determined by n(+∞), and the transmission T B varies
between 0 and a value that we denote as T B

max.
To illustrate the different possible stationary flows,

we consider a continuous beam of 23Na atoms propa-
gating through a guide with a transverse confinement
ω⊥(x < 0) = 2π × 1 kHz, to which we impose a nar-
rowing with ω⊥(x > 0) = 2π × 5 kHz. This represents

a barrier of height V0 = 192 nK. We take µ = 220 nK,
which corresponds to the kinetic energy of atoms having a
velocity of 1.3 cm/s. In the region x < 0, ε(n) = gn with
g = 2ascω⊥(x < 0) = 264 nK.nm. In the region x > 0,
the transverse frequency of the guide is multiplied by 5,
and thus ε0(n) = g0n with g0 = 5 × g. An important
parameter of the system is the maximum transmitted
current Jmax

∞ above which no stationary flow can exist
in the guide. From Eq. (6) (with ν0 = 1) one obtains
Jmax
∞ = 3.7 × 104 atom/s.
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FIG. 2. T A and T B

max as a function of Ji/Jmax

∞
(for fixed

µ). The horizontal dashed line is the transmission T (0) of
non-interacting atoms. The grey zone above the dashed hy-
perbola (of equation T = Jmax

∞
/Ji) is a region where no sta-

tionary flow exists. Inset: Schematic of the constriction’s
geometry.

Fig. 2 summarizes the results obtained. The lineariza-
tion condition v1 À c1 is extremely well satisfied in
the whole range of incident currents considered (the less
favorable case occurs at large Ji, where v1 ∼ 20 c1).
The horizontal dashed line is the value of the trans-
mission coefficient of non-interacting atoms : T (0) =
4[µ(µ − V0)]

1/2(
√

µ +
√

µ − V0)
−2 = 0.78. It is cur-

rent independent. When the current is increased from
zero, T A decreases from this value down to T A = 0.57.
At this point (located with a black spot on the figure),
J∞(= T AJi) is equal to Jmax

∞ , and a stationary flow of
type A is no longer permitted (actually it bifurcates to
a type B solution). The prominent feature of the behav-
ior of T A as a function of Ji is its decrease compared
to the non-interacting value T (0). The physical reason
behind this phenomenon is simple: the available kinetic
energy necessary to step over the barrier is reduced when
the interaction energy increases, i.e., when the incident
current increases. This picture is supported by a pertur-
bative treatment which accurately describes the flow at
low incident current (Ji ¿ Jmax

∞ ) and confirms that the
decrease of T A corresponds to an increased fraction of
the interaction energy in the chemical potential.

Case B being mediated via interaction, does not exist
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for low current; it exists only above a current (2g0)
−1(µ−

V0)
2(8µ)−1/2 = 4.3 × 103 atom/s= 0.11Jmax

∞ . From
this point, T B

max increases rapidly up to 1 (reached at
Ji = 0.45Jmax

∞ in the case of Fig. 2), and then decreases
down to a point where one can show that it exactly meets
the end point of T A. From there on, the value of T B is
limited by the condition that the flow should be station-
ary, and one has T B

max = Jmax
∞ /Ji, which coincides with

the dashed hyperbola in Fig. 2.
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FIG. 3. Density profile (in dimensionless units) for
the constriction defined in the text, at incident current
Ji = 0.44 Jmax

∞
(flowing from left to right). The thick solid

line corresponds to a perfectly transmitted solitonic flow (case
B) that coexists with a type-A flow with T A = 0.75 (thin solid
line).

The nonlinear transport induced by the repulsive two-
body interaction has therefore a non-trivial consequence:
new soliton-like solutions emerge which allow for an in-
creased transmission. This contrasts with the behavior
of case B where the transmission is lowered by the inter-
action. One can show that, for any value of µ > V0, there
always exists a value of Ji such that complete transmis-
sion exists in case B: the profile for T B

max = 1 consists
of a constant up-stream density n(x ≤ 0) = n1 con-
nected at x = 0 to half a soliton. Fig. 3 displays the
density profiles of the two stationary flows at an inci-
dent current corresponding to the perfect transmission
in case B (see Fig. 2). Notice the significant difference in
the height of the down–stream densities, a purely non-
linear effect mediated by a solitonic profile. We have
performed numerical computations that show that the
same type of solution also exists for smooth constrictions
and that they are dynamically stable, as confirmed by a
Bogoliubov analysis. The interactions can thus have two
different and, in some sense, opposite consequences on
the transport properties of a condensate flow. They di-
minish the transmission in some instances (case A), but
also allow for new stationary flows that can be perfectly
transmitted (case B) [12].

The effect of the constriction is to induce a step–like
potential in the longitudinal motion of the condensate.
There are other ways to experimentally realize the same

effect. For instance, by applying a blue-detuned laser
beam on the region x > 0 of a condensate propagating
along a guide of constant diameter. In this case, the char-
acteristics of the flow and the barrier should be easily
controlled by modifying the laser’s frequency, intensity
and waist, thus allowing for a neater experimental obser-
vation of the above predicted transport phenomena.
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