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Abstract—In electrically substituted radiometers, the ultra low noise control of the temperature is required. In this framework, we
present results dedicated to the temperature regulation of copper plates, 3 cm diameter and 1 mm thick, using YBa2Cu3O7-� (YBCO)
transition edge sensors (TES). One of the TES was used as the active thermometer of the temperature control unit, whereas the two
others measured the plate temperature behavior. Two heating resistors were wound along a spiral pattern, just underneath the copper
plate, to minimize the heating delay. The correlation between the two TES was clearly highlighted by applying a small heat
perturbation through the second distributed resistor, the path of which closely follows that of the main resistor. Calibrated temperature
oscillations of 30 µK rms @ 10mHz together with spectral analysis were measured and a temperature resolution in the range of a few
µK rms was achieved.

Index Terms—Radiometry, Thermal control, Thermistors

I. INTRODUCTION

ANY sensitive instruments have their low frequency performances improved provided that some of their key parts or sub-
systems benefit of low noise temperature control. It is particularly true in the field of metrological instruments. A good

example is that of absorbing cavities used in absolute radiometers where the temperature fluctuations are a strong limiting factor
[1], [2]. The same limiting factor also arises in more popular applications of microbolometers such that of infrared imaging
systems [3]. On another hand, progress towards wide band absolute thermometers, with mK accuracy, also needs very efficient
but convenient control of the sample holder. A temperature resolution well below the mK has to be reached in that case.

We present here a work dedicated to the temperature control of copper plates, 3 cm diameter and 1 mm thick, which is a first
step towards an electrical substitution radiometer (ESR) in our laboratory. The paper is arranged as follows: section II gives an
analysis of the rules that have led to the design of the sample holder. The third section gives an overview of electronics, both the
read-out and the control units. Section IV is devoted to the results we have got using this assembly, fully tested YBCO transition
edge sensors.

II. SAMPLE HOLDER

A. Design
Many parameters are of importance to design a temperature controlled system, even in the case of small copper or sapphire

pieces coupled to small cryocooler heads receiving cryogenic chip mounts for various sensing purposes. The list of the main
parameters is reported in Table I. It is adequate for quasi first order thermal systems. The numerical values of Table I are those of
our system. Numerous links exist between these parameters, some of which must be specified at the beginning of the design. The
heating power PH must be consistent with the evacuated power of the cooling system. PH is also related to the output voltage
applied to the heating resistor RH1. Since the typical values of RH1 range from 10 to 50 �, it follows that, for a low noise
operation, PH may reach a few tens of Watts. A low noise operation at this level means that standard low noise analog IC circuits
and components must be used, �12 V battery powered, with maximum output currents lower than a few Amps. From the
maximum available heating power and the needed value for the maximum temperature variation �Tmax, the thermal conductance
Gt is deduced as their ratio. After these first parameters are fixed, the thermal capacitance Ct and the time constant � can be
evaluated, provided that additional restrictions are introduced. Our sample holder is designed for an operating temperature above
the liquid nitrogen temperature (77 K). At this elementary level of the design, the variations of some parameters of the sample
holder model with the temperature are not introduced.
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Moreover, the sample holder mass must be higher than the 
in order to act as a heat sink. One point is extremely import
working temperature value using a servo-loop: it is related to
the measurement of the related temperature variations by the
well known that the larger the open loop gain is, the better th
is respected with a sufficient margin. For a first order syste
maximal gain value is related to the separation, in time dom
constant cannot be made infinitely large, and the design mu
usual, pure delays are associated to propagation phenome
diffusivity D material, minimising �d implies the distributio
holder. Indeed, �d scales with the ratio l2/D where l is the len
heat production. However, it cannot be made arbitrary short: 

We also included two sub-systems designated to a prop
represents an important part of the system design. The first 
intertwined with the first one RH1. It is used to introduced ver
in open or closed configurations. The design is such that the 
very convenient way to identify the system, because sinusoi
RH2 may be applied, due to the squaring  from the Joule’s La
of the temperature,  consists of a pair of two auxiliary indep
simultaneously. The coherence between the records lead to 
the sample holder. Finally, the ratio between the amplitud
perturbation in the open and closed loop configurations gives

B. Fabrication
The sample holder we built using the previous rules is s

listed in Table I. The usable area has a diameter of about 3 c
electrical connections. The heating resistor RH1 and RH2 we
spiral digged at the rear of the copper plate. The thermal insu
of printed circuit, 1.27 mm thick, glued to the previous copp
in vacuum, surrounded by a 77 K radiation shield. The therm
using  200 nm thick high quality YBa2Cu3O7-� film deposite
are patterned in strips (600 µm long and 40 µm width) wi
Alternatively, a industrial standard platinum resistor IPRT is 

SAMPLE HOLDER T

Symbol Design

Ct Thermal capacitance
Gt Thermal link between
� Time constant
T0 Temperature of the he
T Temperature of the sa
�T Temperature variation
�Tmax Maximal temperature
RH1,2 Heater electrical resis
PH Heating power
�d Time delay
TABLE I
HERMAL CHARACTERISTICS

ation
Numerical value

7.7 J/K
 Ct and heat sink 77 mW/K

100 s
at sink 77.4 K
mple holder 80 – 130 K

10 – 20 K
 variation � 50 K
tance 30 �

Up to a few Watts
0.4 s
small system it will support (the cavity of a radiometer for example)
ant, for the minimization of the temperature fluctuations around the
 the inherent time delay �d between the heat production inside RH and
 thermometer in the loop. From the basis of servo loop theory, it is

e rejection of heat perturbation is, provided that the Nyquist criterion
m, this gain becomes finite as soon as a finite delay exists and the
ain, between the time constant and the delay. Furthermore, the time
st be very careful with respect to the minimisation of the delay. As
na’s, which is heat diffusion in our case. After choosing a high
n of the heat production just under the usable area of the sample
gth separating the front of the sample holder from the outset of the

it must be stiff enough to secure mechanical rigidity.
er identification and characterisation of the low noise system. It

part is a second heating resistor RH2, that is very well balanced and
y well calibrated heat perturbations through the thermal system, both
Joule heatings through RH1 or RH2 are nearly identical. This allows a
dal heat perturbations at twice the applied voltage frequency across
w. The second subsystem, very efficient for a proper characterisation
endent thermometers, having a very high sensitivity and monitored

an improved system identification of the temperature fluctuations of
e of the detected temperature variations that result from the heat
 a proper characterisation of the servo-loop efficiency.

chematically drawn in Fig. 1. The associated parameter values are
m, and a ring made using standard printed circuit board allows easy

re made using constantan wires, intertwined, wound and glued in a
lation from the copper head of the cooler is made using an other disk
er plate and a final one, clamped to the cold finger. All the system is
ometers are three high temperature coefficient (TCR) resistors made
d on a strontium titanate substrate by pulsed laser deposition. They
th four Au contacts. The total area of each thermometer is 1 mm2.
mounted.

Fig. 1.  Cut view of the sample holder. The important sub-systems are the
use of two identical intertwined heating resistors, and the use of two
independent, out of loop, thermometers.



III. ELECTRONICS

The read-out electronics was developed in our laboratory, especially designed for 10 – 100 � thermistors, biased using highly
stable square wave currents at 1 kHz and 1 mA amplitude. It has been fully tested at 300 K, showing that our system exhibits a
temperature resolution of 25 µKrms in a bandwidth of 1 Hz and over a 2000 s measuring time. These results were obtained using
IPRT sensor. Tested using resistors having a very low TCR, the electronic noise floor has been characterised in the time and the
frequency domains. Made using standard low noise circuits, the voltage (white) noise, referred at the input, is 2 nV/�Hz, little
dependent on the Johnson noise of the thermistor (< 100 � at 300 K). The excess low frequency noise is ranging between 1.8/�f
(nV/�Hz) and 3.2/�f (nV/�Hz). Dividing the previous voltage noise spectrum by the thermistance responsivity (product
RIbxTCR) leads to the noise equivalent temperature (NET) of the system for an ideal (i.e. without excess noise) thermistor R,
working under a bias current Ib. If we introduce the TCR of YBa2Cu3O7-� TES sensors that exhibit values of the order of 1 K-1

and up to 4 K-1
 in the literature [4], one finds limiting NET values associated to our electronic read-out, lying between 5 to 20 nK,

at 1 mA bias and for frequencies above a few Hz. 
From the measured basic parameters GT, CT and delay �d,  a PSPICE [5] model of the overall system was built, including a

standard analog PID controller to close the servo-loop. The parameters of the PID were then calculated in order to match the
conditions discussed in the previous section, and the final circuit was designed using standard methods in electronic design.

IV. RESULTS

As pointed out in section two, a strategy is done to conveniently demonstrate the low noise properties of the sample holder.
It is associated to the use of the well balanced heating resistor RH2 and the use of two independent, out of loop, thermometers

together with the in loop one. Fig. 2 is a plot of the R versus T characteristics of the YBCO thermometers together with their
derivative ; it shows very little dispersion, compatible with the experiments to be done with a high sensitivity along the
superconducting transition. A TCR of about 1 K-1 is easily deduced from the Fig. 2 plots.

The plot
thermal cir
with the v
deduced th
good use o
be reflected
atmospheri
as high as 8
100 nK/s d
level, we h
nitrogen ba
s of Fig. 3 show the effect of a sinusoidal excitation in the auxiliary resistor RH2 that induces a heat perturbation in the
cuit at twice the frequency of the applied perturbing voltage. The frequency doubling appears very clearly, together
ery similar responses of the two independent thermometers. From such sets of measurements in closed loop, we
e efficiency of the heat perturbation rejection to be 400 at dc, in a flat bandwidth of about 50 mHz. Our system making
f liquid nitrogen at ambient pressure as the coolant, we know that any pressure  drift over the liquid nitrogen bath will
 as a temperature drift at the cold head, due to the Clapeyron’s law. The conversion rate is 83 µK/Pa [6] and the

c pressure drift and fluctuations may reach 1 Pa/s on windy days. This means that we are expecting temperature drifts
0 µK/s on open loop and  about 200 nK/s using the servo mode. The plots of Fig. 4 clearly show a temperature drift of
uring the 900 s measuring time. This value is within a factor 2 below the expected one, for windy days, but at this
ad not monitored the pressure to accurately check this prediction. This indicate that a pressure control above the liquid
th would probably improve the very low frequency system performances. Superimposed to the low frequency

Fig. 2.  Superconducting transition of the three
YBa2Cu3O7-� strips used in the experiments at 1 mA bias
(filled symbols). The strips are 600 µm long, 40 µm
wide and 200 nm thick on a SrTiO3 substrate. Also
shown is the derivative with respect to temperature
(closed symbols).
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Fig. 3.  Curve (a): sine wave voltage applied to the
heating resistor RH2 Curve (b) is the in loop thermometer
response and curve (c, d), referred to the right axis, are
the out of loop thermometers responses. Note the
frequency doubling, between the voltage excitation and
the temperature evolution.
ig. 4 is a temperature oscillation, 30 µKp, at a frequency of 10 mHz. It is associated to a small heat perturbation at a
 of 5 mHz in the resistor RH2. These plots clearly show the ability of the thermometer pair to follow very small and very
erature variations. Suppressing the heat excitation shows the temperature drift and small differences between the
 thermometers. It is plotted in Fig. 5. Again the rate of the temperature drift is of the order of 100 nK/s and some
ns around the mean drift value appear still correlated. They are in the range of 10-20 µKpp. The difference between the
ometer indications has also been plotted, it shows a maximum value of � 6 µK, with a standard deviation of 2.8 µKrms

d in this 400 s measuring time. These values are much higher than those expected from the known noise of the detecting
 (see section III). The clear identification of the origin of both the coherent part of the fluctuations around the mean drift
on coherent part observed in the difference is still under investigation. We nevertheless have preliminary elements that
that the coherent deviation around the mean drift reflects true temperature variations of the liquid nitrogen bath,
y rejected by the servo-loop. Some other elements indicate that the non coherent fluctuations around the mean drift
ther associated to a large excess noise at very low frequency in the YBa2Cu3O7-� film operated at the resistive transition.

Fig. 4.  Plots of two coherent responses of the observing
thermometers. It shows a temperature oscillation of
about 30 µKp, superimposed to a temperature drift of
about 100 nK/s.
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V. CONCLUSION

 have focused our work on the use of YBa2Cu3O7-� TES sensors. A standard deviation of 2.8 µKrms was achieved. The
rs can be use as well above their resistive transition, similar to platinum resistors. Although not characterized in this regime,
pect performances in the range of 25 to 30 µKrms as done for IPRT. The question of going below the temperature of the
tion was also addressed a few years ago [6], but, without the pair of independent observing thermometers. Our knowing
 such critical current sensors, is that it is much more difficult to design a low noise read-out electronics because of their low
e impedance, however performances in the range of 1 to 10 µKrms should be feasible as well.
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Fig. 5.  Free response of the observing thermometers in the locked
loop mode, referred by the left scale. The maximum difference
between the thermometers reaches � 6 �K (right axis) with a
standard deviation of 2.8 µKrms.
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