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Abstract

A detailed theory-versus-experiment comparison is worked out for H+
2 intense laser dissocia-

tion, based on angularly resolved photodissociation spectra recently recorded in H.Figger’s group.

As opposite to other experimental setups, it is an electric discharge (and not an optical excita-

tion) that prepares the molecular ion, with the advantage for the theoretical approach, to neglect

without lost of accuracy, the otherwise important ionization-dissociation competition. Abel trans-

formation relates the dissociation probability starting from a single ro-vibrational state, to the

probability of observing a hydrogen atom at a given pixel of the detector plate. Some statistics

on initial ro-vibrational distributions, together with a spatial averaging over laser focus area, lead

to photofragments kinetic spectra, with well separated peaks attributed to single vibrational lev-

els. An excellent theory-versus-experiment agreement is reached not only for the kinetic spectra,

but also for the angular distributions of fragments originating from two different vibrational levels

resulting into more or less alignment. Some characteristic features can be interpreted in terms of

basic mechanisms such as bond softening or vibrational trapping.
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I. INTRODUCTION

The above threshold multiphoton ionization and dissociation of H+
2 subjected to strong

laser interaction, have revealed interesting nonlinear effects in angularly resolved kinetic

energy distributions of the photofragments, measured in experimental works covering the

last decade [1–5]. Among these are the observations of very large increase (or sometimes

decrease) of the photodissociation rates originating from some vibrational states of the par-

ent molecule at some specific laser intensities or, even more unexpectedly, misalignment

effects in fragments angular distributions [6]. The interpretation of such behaviors has been

attempted by referring to some basic dynamical mechanisms evidenced through the light-

induced adiabatic potentials describing the dressed states of the molecule-plus-field system.

According to the frequency regimes, bond softening (in UV) [1, 7] or barrier suppression

(in IR) [8] mechanisms tend to enhance the dissociation cross-section especially in the po-

larization direction of the laser. As opposite to them vibrational trapping (in UV) [9] or

dynamical dissociation quenching (in IR) [10], act as stabilization mechanisms, favoring mis-

alignment in the fragments distributions. This complementarity has also been referred to,

for laser control purposes of the chemical reactivity; namely by softening some bonds while

hardening others [11]. Although very accurate quantum calculations in the frame of time

dependent approaches have been carried out, with successful interpretations of dynamical

behaviors in short-intense laser pulses, to the best of our knowledge, there is no a thorough

and quantitative theory-versus-experiment comparison, up to date, the work of Kondorskiy

et al. [12] being a precursor in this direction. Basically two reasons can be invoked for the

difficulty of such an attempt: only very few theoretical models take into account the competi-

tion between ionization and dissociation processes leading, in very strong fields, to Coulomb

explosions and only very few experimental works are conducted with a careful investigation

of vibrational populations and sufficiently high momentum and angular resolution yielding

accurate information about the dissociation of single vibrational levels.

Experimental works on this system can be classified according to the preparation of the

parent ion H+
2 from the neutral molecule H2. A first category collects experiments referring

to optical ionization with a laser prepulse [1–4]. The independence of the ionization and

dissociation processes can not be experimentally controlled, and their competition is still an

open question [5]. More recently, another kind of approach has been investigated through
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ion beam experiments, where H+
2 ions are produced in a dc electric or plasma discharge

that disentangle ionization and dissociation processes [13, 16]. An accelerated and strongly

collimated monochromatic H+
2 beam is crossed at right angle by a focused intense laser beam.

An advantage of the strong ion beam collimation is the reduction of the intensity volume

effect; all ions being approximately irradiated by the same laser intensity (the validity of

such approximation will however be discussed hereafter). Moreover, experiments conducted

with low intensity pulses coupled to computational simulations of the resulting dissociation

spectra, allow the determination of the population of the rovibrational levels of H+
2 molecules

in the beam. The neutral dissociation fragments (H atoms originating from photodissociation

of H+
2 ) are projected on a multichannel detector (MCD), whereas the charged particles

(undissociated H+
2 molecules and H+ fragments) are extracted by deflection into a Faraday

cup using an electric field. Excellent energy resolution (about 1%) allows the separation, in

the circularly shaped patterns observed on the screen, the momentum projection of fragments

almost originating from a single vibrational level [13].

A model aiming in a quantitative theory-versus-experiment comparison, within the frame

of the ion beam setup, has to fulfill the following requirements:

i) the photodissociation process has to be accurately described in the center of mass

frame by a wavepacket propagation under the effect of an intense radiative field, starting

from a given rovibrational state. There is no need, however, to refer to any competition

with ionization, as the experiment precisely disentangles these two fragmentation processes.

ii) a geometrical transformation towards the MCD-plate has to be carried out, taking into

account the macroscopic kinetics of the ion beam. This relates the total number of particles

collected by a given pixel of the plate, during the whole experiment, to the previously

calculated wavepacket, describing the evolution of an initial rovibrational state under the

effect of a laser pulse of a given intensity.

iii) although particular attention has been paid to the ion beam collimation in order to

reduce the field intensity volume effects, a spatial average over the laser focusing area has

to be carried, taking into account the different radiative couplings felt by H+
2 molecules

according to their geometrical position in the beam. This can be done through the use of

some experimental measurements of the intensity distribution in the focus carried through

a pinhole of 1 µm diameter [13].

iv) quantitative agreement also requires an averaging on the detector plate using some
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windowing functions that simulate the resolution power of the detector.

The organization of the paper follows these achievements in Section II. The results and

their interpretation are presented in Section III with a thorough discussion of the role of the

intensity volume effect. An excellent theory-versus-experiment agreement is obtained not

only for the kinetic but also on the angular distributions of the photofragments. Section IV

is devoted to some conclusions and perspectives.

II. THEORY

Referring only to two radiatively coupled Born-Oppenheimer electronic states; namely the

ground (1sσg) and the first excited (2pσu), an accurate wavepacket propagation method using

the split operator technique is described in detail in ref.[17, 18]. For the sake of completeness,

we give hereafter a brief summary of the method, introducing the corresponding coordinates,

operators and quantum numbers. The emphasis is rather put on the way to relate the

quantum information content of the wavepacket to the observed momentum projections of

the neutral photofragments H resulting from a rovibrational distribution of parent ions H+
2

excited by a laser source of given spatial distribution.

A. The wavepacket propagation

In the laboratory frame and using spherical coordinates, the total molecule-plus-field

Hamiltonian is written in terms of a two-by-two operator matrix:

H(R, θ, φ; t) = TR + Tθ + Tφ + V(t). (1)

RRR is the diatomic internuclear vector. R, θ and φ designate the internuclear distance, polar

and azimuthal angles of RRR with respect to the laser polarization vector εεε, respectively. As

is usually done, a functional change on the wavepacket:

ΨΨΨ(R, θ, φ; t) =
1

R
ΦΦΦ(R, θ, φ; t) (2)

aiming in a simplification of the radial part of the kinetic operators, leads to:

TR = −1
1

2M
∂2

∂R2
; (3a)
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Tθ = −1
1

2MR2

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

; (3b)

Tφ = −1
1

2MR2

1

sin2 θ

∂2

∂φ2
(3c)

with 1 the identity (2×2) operator matrix. Atomic units (~=1) are used in Eqs(3) where

M designates the reduced mass. The time dependence arises in the non-diagonal terms of

the potential energy operator matrix V through the radiative couplings:

V12(R, θ, t) = µ(R)E(t) cos θ, (4)

where µ(R) is the transition dipole moment and E(t) is the laser electric field amplitude,

given as product of a pulse shape ε(t) times an oscillatory term involving the carrier wave

frequency ω:

E(t) = ε(t) cos ωt. (5)

Note that the cos θ in Eq.(4) results from the dot product of the transition dipole vector

(parallel to RRR) times the laser polarization vector εεε.

The diagonal elements V1(R) and V2(R) of VVV are nothing but the BO curves of the ground

(label 1) and first excited (label 2) states of H+
2 . V1, V2 and µ are obtained in the frame of the

Born-Oppenheimer approximation, at the zero order level with respect to the ratio me/m

of the electron to the proton masses. Using spheroidal coordinates, it is well known that

the Schrödinger equation can be written as two eigenvalue equations [19, 20], which have

been numerically solved here using the shooting method [21]. The potential energy curves

have been computed in the range 0 < R < 200 a.u., with a numerical accuracy checked to

be better than 10−12 a.u. The mass ratio m/me has been taken as m/me = 1836.152701.

Finally the dipole matrix element µ between the 1sσg and 2pσu states has been obtained by

numerical integration of the wave functions, at the same level of numerical accuracy.

The time dependent Schrödinger equation (TDSE) describing the wavepacket propagation

is:

i
∂

∂t
ΦΦΦ(R, θ, φ; t) = H(R, θ, φ; t)ΦΦΦ(R, θ, φ; t) (6)

with, as an initial condition:

ΦΦΦ(R, θ, φ; t = 0) =





Φ1(R, θ, φ; 0)

0



 (7)
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reflecting the fact that at time t = 0, only the ro-vibrational levels of the ground electronic

state are populated. The eigenfunction Φ1 precisely corresponds to such a state with quan-

tum numbers g, v, N , MN (electronic ground, vibrational, total and εεε-projected rotational)

and is given by:

Φ1(R, θ, φ; 0) = χg,v,N(R)PMN
N (cos θ)eiMNφ. (8)

PMN
N (cos θ) is the (N ,MN) Legendre polynomial, whereas the radial part is defined as the

solution of the time-independent Schrödinger equation:

[

− 1

2M
d2

dR2
+ V1(R) +

N(N + 1)

2MR2
− Ev,N

]

χg,v,N(E) = 0. (9)

The motion associated with the azimuthal angle φ remains separated under the action of

the φ-independent VVV , such that MN is a good quantum number describing the invariance

through rotation about εεε.

The propagation using the split-operator technique has been described in full detail in

previous works [17, 18, 22]. The peculiarity of odd-charged homonuclear ions is their linearly

increasing dipole moment with R, leading to asymptotically divergent radiative couplings.

We take them into account by splitting the wavefunction into two regions, an internal and

an asymptotic one. The latter is analyzed by a generalization of the Volkov type solutions

[23], while the numerical propagation on the former is performed by Fourier transform

methodology [24] with the implementation of a unitary Cayley scheme for Tθ [22].

B. From wavepacket to observed spectra

The main concern of this paragraph is to relate the experimental observable, i.e. the

probability distribution of hydrogen atoms resulting from H+
2 photodissociation, as recorded

on the multichannel detector (MCD), to the asymptotic part of the wavepacket ΦΦΦ(R, θ, φ; t)

solution of Eq.(6). By asymptotic we mean large internuclear distances R for which the

molecule is considered as dissociated without the possibility of a recombination process.

To the best of our knowledge such a correlation has not rigorously been attempted in the

literature. So far, the interpretation of general tendencies of photodissociation spectra re-

ferring to basic mechanisms, has rather been conducted by angularly resolved kinetic energy
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distribution given by:

P(k, θ, φ) = lim
t→∞

∣

∣

∣Φ̂(k, θ, φ; t)
∣

∣

∣

2

, (10)

where

Φ̂(k, θ, φ; t) =
1√
2π

∫ ∞

−∞

Φ(R, θ, φ; t)e−ikRdR. (11)

is the Fourier transform of Φ over the scalar variable R, (i.e. not over RRR taken as a vector).

The argument retained by doing so, is that asymptotically, due to R−1 type of behavior

in the kinetic operators Eqs(3b,3c), angular dynamics is not affected at large internuclear

distances. Note that in this paragraph, for the sake of simplicity, we drop the labels of ΦΦΦ

depicting initial state quantum numbers (v, N , MN).

FIG. 1: The H+

2 photodissociation experiment through the H2 photoionization

To reach a comparative level of understanding, we are now describing the two families of

experiments. Pertaining to the first family are photodissociation experiments where both
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photodissociation and photoionization steps are laser induced [1–4]. Starting from neutral

H2, in its ground electronic and vibrationless state X(v=0), a multiphoton excitation leads,

through the EF intermediate excited electronic state, to the H+
2 ground state with a dis-

tribution of rovibrational levels. Dissociation follows the absorption of additional photons

and is very fast as compared to the relative motion of the parent ion H+
2 in the laboratory

frame. Whence the photofragments are well separated, H+ ions are extracted (accelerated)

through an electric field and collected on the MCD plate. A schematic view is provided in

figure 1. Photodissociation occurs, as a fast process, at the origin O of the laboratory frame,

at a time which is taken as t = 0. The laser polarization vector is along the z-direction, r1r1r1

and r2r2r2 are the vectors pointing H and H+. A further step is the extraction of the proton

H+ by an electric field applied along the yyy-direction towards the MCD plate positioned at

a distance OO′=D from the origin. The detection occurs on a pixel M defined by its polar

coordinates (ρ, α) on the MCD surface (or by rrr with respect to O) that H+ is reaching

after a time of flight t, with velocity v. It is worthwhile noting that this last step is just a

mapping of the photofragment onto the detector (without dissociation during time t). The

vector transformation relating the proton H+ position (R, θ, φ) in the center of mass frame

to the pixel M (ρ, α) on the detector is known as the Abel transformation [29].

A different situation prevails in the experiments of the second family where an electric or a

plasma discharge ionizes H2 into H+
2 [13, 16]. The resulting ion beam is strongly accelerated

by an electric field and is crossed at t = 0 by the laser beam at a point O of the laboratory

frame. The description of such experiments, as illustrated in figure 2, has to combine two

motions; namely, the translation of the center of mass G in the laboratory frame along uyuyuy

(unit vector along yyy) with velocity v and the nuclear separation (dissociation) in the center

of mass frame. The hydrogen atom H resulting from photofragmentation is collected at the

pixel M of the detector. It is to be noted that M is positioned with respect to the laboratory

frame with a vector rrr, corresponding to r1r1r1 at time t, when H reaches M .

As, our concern is the quantitative interpretation of photodissociation spectra obtained in

H.Figger’s group using an electric discharge to induce ionization [13, 25, 26], emphasis is put

in the following on a thorough description of the kinematics of the second family experiments.

The quantity which is measured, is nothing but the number of hydrogen atoms dN collected

on each pixel M (ρ, α) at infinite time. This can ultimately been related with the time

integral of the flux of the current density jjj(ρ, α, t) of H orthogonal to the area dS = ρdρdα
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FIG. 2: The H+

2 photodissociation experiment based on the ionization of H2 using discharge source

of the finite size pixel M , as

dN(ρ, α) = NdS

∫ ∞

0

jjj(ρ, α, t) · uyuyuydt, (12)

where N is the total number of H photofragments. The flux in Eq.(12), involves an averaging

over the positions of all protons H+ that are not detected in the experiment [14]:

jjj(t) =
1

m

∫

dr2r2r2 Im [Ψ∗(RRR,RGRGRG; t)∇r1r1r1
Ψ(RRR,RGRGRG; t)] . (13)

where Ψ(RRR,RGRGRG; t) is the overwhole wavepacket describing the combined molecular inter-

nal RRR-motion and center of mass RGRGRG-motion. Im stands for the imaginary part. Frame

transformations defining RGRGRG and some vector relations directly related with figure 2, are

gathered in an Appendix. Separation of the photofragments relative motion described by

Ψ(RRR; t), from the motion of the center of mass described by ΦG(RGRGRG; t), leads to the following
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representation of the total wavefunction:

Ψ(RRR,RGRGRG; t) = Ψ(RRR; t)ΦG(RGRGRG; t). (14)

Using the frame transformations Eqs(A-1,A-2) together with Eq.(2) one has:

Ψ(RRR,RGRGRG; t) =
Φ(r1r1r1 − r2r2r2; t)

||r1r1r1 − r2r2r2||
ΦG

(

(r1r1r1 + r2r2r2)

2
; t

)

. (15)

Concerning the calculation of the gradient ∇r1r1r1
involved in Eq.(13), we note that the flux

has to be evaluated at large R with as consequences:

∇r1r1r1
Φ(RRR; t) = ∇RRRΦ(RRR; t) ' uRuRuR

∂

∂R
Φ(RRR; t) (16)

with uRuRuR the unit vector along RRR (Eq.(A-6)) and

∇r1r1r1
ΦG(RGRGRG; t) =

1

2
∇RGRGRG

ΦG(RGRGRG; t) (17)

The approximation involved in Eq.(16) results from the neglect of all angular derivations

due to their occurrence with coefficients decreasing faster than R−1. We proceed now to a

quasiclassical approximation for the description of the center of mass translational motion,

with two implications:

(i) RGRGRG ' vuyuyuyt has a corresponding wavevector KGKGKG ' mvuyuyuy and the application of mo-

mentum operator −i∇RGRGRG
to ΦG(RGRGRG) simply result into mvΦG(RGRGRG). When this is done at

the level of Eq(13) one gets:

jjj(t) =
1

m

∫

dr2r2r2
1

|r1r1r1 − r2r2r2|2
Im

[

Φ∗(RRR; t)
∂

∂R
Φ(RRR; t) + imv|Φ(RRR; t)|2

]

|ΦG(RGRGRG; t)|2. (18)

(ii) No wavepacket spreading is allowed for ΦG(RGRGRG; t) which is localized with an envelope

behaving as a δ-like function, i.e.:

|ΦG(RGRGRG)|2 ' δ(RG − vt). (19)

The integration over r2r2r2 (with dr2r2r2 = 2dRGRGRG) finally leads to:

jjj(t) =
1

mR2
Im

[

Φ∗(RRR; t)
∂

∂R
Φ(RRR; t)uRuRuR + imv|Φ(RRR; t)|2uyuyuy

]∣

∣

∣

∣

RRR=2r1r1r1−2vtuyuyuy

, (20)

with a rather intuitive interpretation of the two components of the flux. The first ı.e.

Φ∗(RRR; t) ∂
∂R

Φ(RRR; t)uRuRuR is merely the current density generated by the expanding wavepacket
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in the center of mass frame, whereas the second corresponds to the current associated with

a density |Φ|2

R2 travelling with a velocity v along uyuyuy. The calculation can be further conducted

analytically by deriving an asymptotic (i.e. R → ∞, t → ∞) expression for Φ [15]. This is

done using a time evolution expression involving the Fourier transform Eq.(11). Actually,

one has for large R, where the potentials can be considered as constant and after the laser

is turned off:

Φ̂(k, θ, φ; t) = e−ik2t/mΦ̂(k, θ, φ) (21)

the solution being induced only by the radial part of the kinetic energy. Returning back to

the wavepacket in the coordinate space:

Φ(R, θ, φ; t) =
1√
2π

∫ ∞

−∞

dkΦ̂(k, θ, φ)e−ik2t/meikR (22)

and replacing Φ̂ by its expression Eq.(11), one gets:

Φ(R, θ, φ; t) =
( m

4iπt

)1/2
∫ ∞

0

dR′Φ(R′, θ, φ)eim(R−R′)2/4t. (23)

Expanding the R-dependent part of the exponential as:

e
im
4t

(R−R′)2 = e
imR2

4t e−
imRR′

2t

[

1 +

(

e
imR′2

4t − 1

)]

(24)

and observing [27] that for large t:

lim
t→∞

∣

∣

∣

∣

(

e
imR′2

4t − 1

)∣

∣

∣

∣

= 0, (25)

an asymptotic expression is obtained for Φ(R, θ, φ; t):

Φ(R, θ, φ; t) ∼t→∞

( m

2it

)1/2

e
imR2

4t Φ̂

(

mR

2t
, θ, φ

)

. (26)

While recasting Eq.(26) into Eq.(20), a rather simple expression results for the asymptotic

flux:

jjj(t) =
m

2Rt2

[

uRuRuR +
2vt

R
uyuyuy

] ∣

∣

∣

∣

Φ̂

(

mR

2t
, θ, φ

)∣

∣

∣

∣

2
∣

∣

∣

∣

∣

RRR=2(r1r1r1−vtuyuyuy)

(27)

The calculation of the projection of jjj on uyuyuy (cf Eq.12) requires the vector relation of

Eq.(A-7) that finally leads to:

jjj · uyuyuy =
mD

4t2
1

[ρ2 + (D − vt)2]2

∣

∣

∣

∣

Φ̂

(

mR

2t
, θ, φ

)∣

∣

∣

∣

2

. (28)
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where R depends on t as given by Eq.(A-3).

The final step is to transform the time integration of jjj · uyuyuy, involved in Eq.(12), into an

integration over the kinetic momentum. We proceed to a change of variable:

k = [ρ2 + (D − vt)2]1/2 mv

D
=

R

2

mv

D
, (29)

the physical meaning of which will be clarified hereafter. Straightforward calculations show

that Eq.(29) can be inverted as:

t =







D
v

(

1 − (k2−k2
ρ)1/2

mv

)

for t ∈
[

0, D
v

]

(k ∈ [kρ, (k
2
ρ + m2v2)1/2])

D
v

(

1 +
(k2−k2

ρ)1/2

mv

)

for t ∈
[

D
v
, +∞

]

(k ∈ [kρ, +∞])
, (30)

upon the introduction of the notation

kρ = mv
ρ

D
(31)

and leads to:

dt = ∓ D

mv2

k
(

k2 − k2
ρ

)1/2
dk. (32)

The ∓ signs correspond to the two time intervals depicted in Eqs(30). The time dependent

argument of Φ̂ in Eq.(26) can than be expressed using the two variables k (Eq.(29)) and kρ

(Eq.(31)) as:

mR

2t
=

m

t
[ρ2 + (D − vt)2]1/2 =

D

vt
k = k

(

1 ∓
(k2 − k2

ρ)
1/2

mv

)−1

. (33)

The experimental conditions, are such that the velocity v of the molecular beam is much

greater than the fragments relative velocity. We can thus consider (k2 − k2
ρ)

1/2/mv as

negligible when compared to 1, taking into account that D is much larger than ρ. The

resulting approximation, namely:

t ' D

v
and

mR

2t
' k (34)

merely means that the time needed for a fragment to reach the pixel M(ρ, α) is approximately

the same as the one needed for the center of mass G to reach the center O′ of the detector.

In the framework of this approximation, the meaning of kρ = mρv/D ' mρ/t (defined by
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Eq.(31) ) is also clear: i.e. the projection of the kinetic momentum k on the detector plane.

Finaly we obtain for the time integrated flux:

∫ ∞

0

jjj · uyuyuydt =
m2v2

4D2







∫ ∞

kρ

+

∫ (k2
ρ+m2v2)1/2

kρ

∣

∣

∣
Φ̂ (k, θ, φ)

∣

∣

∣

2

k
(

k2 − k2
ρ

)1/2
dk






(35a)

=
m2v2

2D2

∫ ∞

kρ

∣

∣

∣Φ̂ (k, θ, φ)
∣

∣

∣

2

k
(

k2 − k2
ρ

)1/2
dk. (35b)

where the upper bond of the second integral in Eq.(35a) has been extended up to +∞
considering that |Φ̂(k, θ, φ)| = 0 for k > mv, which is equivalent to state that the center of

mass kinetic momentum 2mv is much larger than the relative momentum of photofragments

k. Recasting Eqs(35) in Eq.(12), taking into account cylindrical symmetry over φ and

calculating the pre-integral factor as:

m2v2

D2
dS =

mvρ

D

mvdρ

D
dα = kρdkρdα. (36)

one finally gets:

dN(kρ, α) = Nkρdkρdα
1

2

∫ ∞

kρ

∣

∣

∣
Φ̂ (k, θ)

∣

∣

∣

2

k
(

k2 − k2
ρ

)1/2
dk. (37)

The dependence over θ of the right-hand-side of Eq.(37) has to be expressed in terms of α,

referring to the frame transformation Eq.(A-9)

cos θ =
kρ

k
cos α (38)

in such a way that, ultimately dN is written only in terms of the variables kρ and α, with

the parameters v and D characterizing the experimental setup:

dN(kρ, α) = Nkρdkρdα
1

2

∫ ∞

kρ

∣

∣

∣
Φ̂ (k, arccos(kρ/k cos α))

∣

∣

∣

2

k
(

k2 − k2
ρ

)1/2
dk. (39)

The probability to record a hydrogen atom on the surface element dS (pixel M) located at

ρ, α on the MCD (with a kinetic momentum kρ) is obtained by a proper normalization:

P (kρ, α)dS =
1

N
dN(kρ, α) =

dS

2

∫ ∞

kρ

∣

∣

∣Φ̂ (k, arccos(kρ/k cos α))
∣

∣

∣

2

k
(

k2 − k2
ρ

)1/2
dk. (40)
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It is interesting to note that the two probabilities P(k, θ) (given in Eq.10) and P (kρ, α)

(Eq.(40)) are simply connected by:

P (kρ, α) =
1

2

∫ ∞

kρ

P(k, θ)

k
(

k2 − k2
ρ

)1/2
dk. (41)

Two remarks are in order:

i) both equations Eq.(40) and Eq.(41) involve a singularity at k = kρ. This difficulty can

be overcame by a partial integration leading to:

P (kρ, α) =
1

2kρ

arccos

(

kρ

k

)

P (k, θ)
∣

∣

∣

k=∞

k=kρ
− 1

2kρ

∫ ∞

kρ

arccos

(

kρ

k

)

d

dk
P(k, θ)dk (42)

The integrated term in the right-hand-side of Eq.(42) is null, due to the fact that

P(k, θ)
∣

∣

∣

k=∞
= 0. As for the total derivative with respect to k of P(k, θ), it results into:

d

dk
P(k, θ) =

∂P
∂k

+
kρ cos α

k(k2 − k2
ρ cos2 α)1/2

∂P
∂θ

. (43)

When recasting Eq.(43) into Eq.(42) one obtains:

P (kρ, α) = − 1

2kρ

∫ ∞

kρ

arccos

(

kρ

k

)[

∂P
∂k

+
kρ cos α

k(k2 − k2
ρ cos2 α)1/2

∂P
∂θ

]

dk (44)

For k ' kρ, the singularity in the coefficient of ∂P
∂θ

may only occur for α = 0. This is

fortunately compensated by the arccos(kρ/k) term of Eq.(42). Actually expanding Eq.(42)

in terms of powers of (1− kρ/k) one ends up with a non-singular behavior, i.e. 1
kρ

∂P
∂θ

for the

integrand in the vicinity of kρ.

ii) Despite the fact that the experimental situation we are describing is not amenable to

a simple mapping on the detector plate of a photodissociation that had already occured in

the center of mass frame (as a figure 1), it turns out that Eq.(40) can finally be recast in

terms of the commonly used Abel transformation [28]:

P (kρ, α) =
1

4
A





∣

∣

∣

∣

∣

Φ̂ (k, arccos(kρ/k cos α))

k

∣

∣

∣

∣

∣

2


 , (45)

where A is defined as [28]:

A[f(k)](x) = 2

∫ ∞

x

f(k)k

(k2 − x2)1/2
dk. (46)
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In connection with this, it is worthwhile considering the full Fourier transform of the wave-

function describing the relative motion (in contrast to the one carried in Eq.11):

Ψ̂(kkk) =
1

(2π)3/2

∫∫∫

dRRRΨ(RRR)e−ikkkRRR (47)

It can be shown by following the same derivations as Eqs(21-26) [15, 27], that asymptotically

(i.e. for t → +∞ and R → +∞), one has:

Ψ(RRR; t) =
( m

2it

)3/2

e−imR2/4tΨ̂

(

mRRR

2t

)

(48)

which, combined with Eqs(2 and 26), implies that:

|Ψ̂(kkk; t)|2 =

∣

∣

∣

∣

∣

Φ̂(kkk; t)

k

∣

∣

∣

∣

∣

2

, (49)

The probability in Eq.(45) appears now as the Abel transform of
∣

∣

∣Ψ̂ (k, arccos(kρ/k cos α))
∣

∣

∣

2

.

C. Rovibrationally averaged spectra

The probability distributions which are calculated in the previous paragraph refer to

a given initial state (g, v, N , MN) involved in the determination of Φ(t = 0) through

Eq.(8) such that the quantity resulting from Eq.(45) is actually Pv,N,MN
(kρ, α) using a full

notation. An averaging over the initial ro-vibrational populations is thus required to reach

the experimental spectra. As the rotational states N are (2N + 1) times degenerated, a

summation can be carried out over MN , leading to:

Pv,N (kρ, α) =
1

2N + 1

N
∑

MN=0

cMN
Pv,N,MN

(kρ, α), (50)

where c0 = 1 and cMN
= 2 (for MN 6= 0), due to the fact that the total Hamiltonian does

not depend upon the sign of MN . The homonuclear diatomic character of H+
2 implies a

total wavefunction (accounting for the nuclear spin) that is antisymmetric with respect to

the interchange of identical nuclei. To ensure such a property the total nuclear spin number

T must be either 0 (associated with even N), or 1 (associated with odd N). Due to very

rare singlet (T = 0) - triplet (T = 1) transitions, molecular hydrogen mainly consists of two

distinct species: parahydrogen (T = 0) and orthohydrogen (T = 1). The occurrence of ortho
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states is three times more probable than the para ones [17]. This nuclear spin statistics is

accounted for, by a weighting coefficient gN , affecting the rotational populations N , such

that

gN =







1 for even N

3 for odd N
(51)

Apart from this factor, rotational populations are also thermally weighted, according to a

Boltzman distribution described by a rotational temperature Tv depending on the initial

vibrational level. The weighting coefficient is given by:

bN = exp

[

−∆E(v,N)

kβTv

]

. (52)

where kβ stands for the Boltzman constant and ∆E(v,N) for the rotational energies resulting

from the solution of Eq.(9):

∆E(v,N) = E(v,N) − E(v, 0). (53)

The rotationally averaged probabilities resulting from these considerations are

Pv(kρ, α) =
1

Qv

∑

N

bNgNPv,N(kρ, α), (54)

where Qv is a normalization factor:

Qv =
∑

N

bNgN . (55)

The comparison with experimental spectra has also to take into account initial vibrational

populations a(v) (i.e. as they result from the electric discharge acting over H2, prior to the

laser excitation):

P (kρ, α) =
1

Q

∑

v

a(v)Pv(kρ, α), (56)

with

Q =
∑

v

a(v). (57)

We note that the informations concerning the initial vibrational distribution a(v) as well as

the corresponding rotational temperature Tv, have to be provided by experimental measure-

ments.

16



D. Laser spatial intensity averaging

Although particular attention is devoted in the experimental measurements for obtaining

a well focussed ion beam, the molecules are actually excited by different field amplitudes

according to their positions (x, y), due to a non-homogeneous spatial intensity distribution

I(x, y) in the laser beam. It turns out that an average over these non-homogeneities has

a basic importance when attempting a quantitative interpretation of experimental data, as

will be clear in the next section. The average implies a double spatial integration over the

variables x and y (see figure 6):

P (kρ, α) =

∫ L

−L

dx

∫ +∞

−∞

P (kρ, α; I(x, y))dy. (58)

x being limited to a finite interval 2L measuring the width of the ion beam. The integrand

itself is nothing but the probability calculated in Eq.(56) with as an additional argument the

intensity I(x, y), for which this probability is calculated, i.e. P (kρ, α; I(x, y)). For parity

reasons Eq.(58) may be also written as:

P (kρ, α) = 4

∫ L

0

dx

∫ +∞

0

P (kρ, α; I(x, y))dy. (59)

A gaussian shape is assumed for the 2D behavior of the laser within its focus area:

I(x, y) = I0 exp

[

−x2

r2
x

]

exp

[

−y2

r2
y

]

(60)

where rx and ry are the radii of the focal area, such that I(rx, ry) = I0/e
2. These parameters

are obtained from the experimental setup [13] as:

rx,y =
λf

2πbx,y

(61)

where λ is the laser wavelength and f is the focal length of the parabolic mirror focusing

the laser beam. bx and by correspond to the extensions in each direction x and y where 50%

of the energy is dissipated. The peak intensity is calculated whence the total pulse energy

E0 and an autocorrelation time tac have been measured:

I0 =
2
√

2 ln 2E0

π3/2rxrytac

. (62)

The double integration involved in Eq.(59) can be conducted, by integrating first over y,

referring to a variable change:

y = ry

[

− ln

(

I

Ix

)]1/2

(63a)
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dy = −ry

2

[

− ln

(

I

Ix

)]−1/2
dI

I
, (63b)

where Ix = I0 exp [−(x/rx)
2]. The result is:

P (kρ, α; Ix) = 2ry

∫ Ix

0

P (kρ, α; I)

I
[

− ln
(

I
Ix

)]1/2
dI. (64)

Two singularities affect such an expression; namely at I = 0 and at I = Ix. The first has no

consequence, as for I = 0, P (kρ, α; I = 0) = 0. The second can be avoided when integrating

by part:

P (kρ, α; Ix) = 2ry

[

−2
√

I/IxP (kρ, α; I) +

∫ Ix

0

2
√

I/Ix
d

dI
P (kρ, α; I)dI

]

(65)

An identical procedure is then applied for the second integral over x. The final result is

P (kρ, α) = 2rx

[

−2
√

Ix/I0P (kρ, α; Ix)
∣

∣

∣

Ix=I0

Ix=IL

+

∫ I0

IL

2
√

Ix/I0
d

dIx

P (kρ, α; Ix)dIx

]

(66)

where IL is the field intensity at (x = L, y = 0).
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III. RESULTS

This section presents the results of the simulation and interpretation of experimental data.

Among the experimental results obtained in H.Figger’s group [13, 25, 26] three are retained.

The laser intensities I0 have been slightly adjusted with respect to laboratory measurements

of the total pulse energy E0 and autocorrelation time tac, to fit experimental spectra. The

resulting parameters are collected in Table I. The laser pulse carrier wavelength is λ=785

nm. In the calculations the intensity spatio-temporal distribution is assumed to be:

E0 (mJ) tac (fs) I0 (TW/cm2)

0.3 228 7.5

0.5 234 9.5

0.7 240 16.0

TABLE I: Total pulse energy E0 and autocorrelation time tac of the laser field. I0 is the maximal field

intensity value.

I(x, y; t) = I0 exp

[

−x2

r2
x

]

exp

[

−y2

r2
y

]

exp

[

−2t2

w2
t

]

(67)

with the relations between the parameters as given by Eqs(61, 62). The widht of the

molecular jet is L=50 µm, its velocity is v=106 m/s and focal area parameters values are

bx=2.6 mm, by=2.4 mm, f=1000 mm, resulting into rx=48µm, ry=52µm. In the calculations

described below the parameter wt = tac/2
√

ln2, which define the laser pulse temporal shape,

have been taken equal to 140 fs.

Figure 3 displays three-dimensional representations of the dissociation probabilities as a

function of their angular (α) and kinetic (kρ) distributions. The upper diagram corresponds

to the experimental results P e [25] for the laser excitation parameters indicated on the last

row of Table I. The lowest two diagrams give the calculated spectrum (P c) and the absolute

value of the difference |P e − P c|, for the same laser characteristics, at the same scale. The

normalization is such that:
∫ ∞

0

kρdkρ

∫ π/2

0

P e,c(kρ, α)dα = 1. (68)
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FIG. 3: (a) - The three dimensional representation of the experimental result corresponding to E0=0.7

mJ (see the third line in Tab.(I); (b) - The corresponding calculation result; (c) - The difference between

experimental and calculated spectra.

The successive peaks that are obtained correspond to photofragments arising from different

vibrational levels v of the parent ion H+
2 . The energies of the levels are positioned in figure

4 on the rotationless dressed molecular potentials resulting from the diagonalization of the

radiative interaction at fixed angle θ = 0.

The most important peak (at α = 0) corresponds to v=7 and is followed in decreasing

order by the peaks assigned to v=8,9,10. The peak resulting from the dissociation of v=6,

with a much smaller contribution is hidden by the peak v=7, whereas those resulting from

v=11,12 are in the blue-wing of v=10. It is interesting to note that, on the lowest diagram,

the largest error affects the peak resulting from v=9, all others being well represented. This

is to be relationed with the particular energy of v=9 (see figure 4) very close to the avoided

crossing of the dressed potentials. The characteristics of this region being very sensitive to
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FIG. 4: 2D view of the dressed adiabatic potential curves of H+

2 (solid lines) (with a continuous wave laser

of wavelength λ=785 nm and intensity I0=1.6×1013 W/cm2) and the corresponding diabatic BO electronic

states (dashed lines). Are also indicated the eigenvalues of the field-free vibrational levels.

the laser spatial and temporal intensity distributions, even small deviations with respect to

experimental evaluations may lead to appreciable differences explaining figure 3(c).

In figure 5 we show the four main steps to obtain the photofragments distribution Pc,

which may be compared with the experimental one. On each step we plot the cut of the

resulting distribution at θ = 0 for P(k, θ), or α = 0 for P (kρ, α). The upper panel gives

the photodissociation probabilities starting from individual vibrational levels of H+
2 , as cal-

culated in the molecular frame for θ=0 and as a function of k, for laser characteristics

corresponding to the last row of Table I. The vertical lines illustrate the theoretical energies
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of the vibrational levels of H+
2 in a field-free situation. As expected, from the examination of

figure 4, the maxima of the peaks with v < 9 are shifted down and these of v > 9 are shifted

up, due to the radiative coupling. As to the height of the successive peaks, a decrease from

v=6 to v=9 is observed. This, however, does not mean that v=9 is less dissociated than

v=6, as the information which is displayed concerns a cut at angle θ = 0.

The major effect, when attempting a theory-versus-experiment comparison, is the role

played by the spatial intensity distribution of the laser, that so far, has been neglected by

referring to the large laser focal area with respect to the diameter of the ion beam [12].

Spatial averaging brings into interplay molecules interacting with radiative fields having

intensities less than the maximum value I0. This may lead to very large effects on some

vibrational levels as is seen in figure 5 panel (b). More precisely, the peak associated with v=6

is nearly washed out, whereas those describing photodissociation starting from v=9 and v=11

seem to be enhanced. Only the laser maximum intensity leads to a barrier lowering (bond

softening) mechanism for v=6. When a spatial average is carried out, with the inclusion

of lower intensities, the photodissociation from v=6 is severely inhibited due to very low

tunneling, which explains the flat behavior of P i
v(k) for v=6.The vibrational states v=7,8

are also affected by this effect but in a lesser extend as they are closer to the top of the lower

adiabatic potential barrier. The level v=9 is again in a particular situation, energetically

lying on the very top of the barrier. In other words, its photodissociation is not inhibited by

any spatial intensity averaging, and this is why it leads to a narrower and higher peak, than

the ones originating from v=7,8. The narrowing of the peak, in particular, is in relation with

the fact that only a limited energy range corresponds to efficient dissociation within the open

gate between the lower and upper adiabatic potentials that gets narrower with decreasing

intensities. The behavior of v=11 deserves particular interest, as its photodissociation is

rather through a vibrational trapping mechanism involving the upper adiabatic potential.

Lower the field intensity and lesser is the efficiency of this trapping. The spatial intensity

averaging of the laser leads as a consequence to better relative dissociation from v=11

resulting into a high peak.

Figure 5 panel (c) displays the dissociation probabilities P a
v (kρ) as functions of kρ after

the Abel transformation Eq.(41). The basic difference with P i
v(k) (panel b) is the rise of

long range red tails of the individual peaks, especially for v ≥ 9. This is due to the nonlinear

features of the Abel transformation, mixing up a whole range of θ-dependent probabilities
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FIG. 5: Successive steps for a theory-versus-experiment comparison of photodissociation spectrum for a

laser energy 0.7 mJ (last row in the Table I). Panel (a) gives the individual probabilities of initial vibrational

levels v=6,...,12 in the molecular frame, for θ = 0, and as a function of k. Panel (b) takes into account the

spatial intensity distribution of the laser. Panel (c) displays the intensity averaged probabilities after Abel

transformation bringing them in the laboratory frame, for α = 0 and as a function of kρ. Panel (d), same as

c but after convolution by the detector resolution window. Panel (e) sums up all individual v contributions

and compares with the experimental spectrum.

24



for a single α. Less aligned fragment distributions resulting from v=9,10,11 present tails

that are much more marked than the ones coming from v=7 and 8.

The following step for building the experimental observable is the convolution with the

detector resolution window which is taken as a square gate of 0.07 a.u. in kinetic momentum

units, corresponding approximately to a pixel size of 70 µm. This as expected, results into

the smoothing of very sharp structures such as the peaks associated with v=9 and 11 (pannel

d).

Finally the theoretical spectrum is obtained as a sum of partial vibrational distributions

with weights corresponding to the vibrational populations as given by Eqs(56-57). Panel (e)

of figure 5 displays the resulting kinetic energy spectrum which is directly compared with

the experimental one. An excellent agreement is obtained, the most noticeable differences

occurring in the vicinity of v=9, which corresponds to an energy region particularly sensitive

to possible inaccuracies related with the spatial intensity averaging of the laser.

The information we get from figure 5 can be summarized as follows: apart from the

geometrical Abel transformation which is needed to bridge the dissociation probabilities

evaluated in the (k-θ) frame, to the photodissociation spectra as recorded on the detector

plate, one has to take into consideration basically two additional facts, when attempting a

quantitative interpretation of the experimental data:

FIG. 6: The laser field intensity distribution over the molecular beam.

i) The first is the spatial intensity distribution of the laser. Figure 6 displays a three-

dimensional view of the relative spatial extensions of the laser focal area and that of the
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molecular beam as is actually the case in the experiments. Clearly, all the molecules are not

subjected to the same intensity at a given time, requiring thus a spatial averaging, the role of

which is one of the most striking. Figure 7 gathers the spectra on the detector plate, for α = 0

0 2 4 6 8 10
kρ (a.u.)
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FIG. 7: The dissociation probabilities calculated with (dashed line) and without (dotted line) averaging on

the laser intensity distribution, versus experimental data (solid line).

and as a function of kρ for two models: namely, with and without the spatial averaging over

the laser intensity distribution. The results are compared to the experimentally recorded

data. A huge decrease affects the spectrum in the momentum region extending from kρ '
3 to 5 a.u. when averaging over the field intensities. This precisely corresponds to the

contributions of vibrational levels v=6,7 well protected against potential barriers that are

high for lower intensities taking part in the averaging process. Thus the spatial averaging

turns out to be crucial when comparing with experimental spectra.

ii) The second is an accurate knowledge of the field-free vibrational populations of the

parent ion H+
2 , which take part in Eq.(56) through the function a(v). Figure 8 displays in
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FIG. 8: Vibrational levels populations as estimated by Sandig in [26] and fitted in the present work.

terms of histograms the relative vibrational populations of levels v=6,...,12 as they result

from an estimation based on similar discharge experiments [26]. They are actually subjected

to errors presumably within 10 to 15% in relative values. A calculation based on them leads

to the spectrum illustrated in figure 9 which basically disagrees with the experimental one

over a region close to kρ ' 5 to 6 a.u., corresponding to the most important peak. However, a

nice agreement is obtained after some small modifications of the vibrational populations, not

exceeding reasonable error bar limits and remaining within the overall decreasing behavior

for high v’s, as is plotted in figure 8. It is worthwhile noting that this adjustment is done

once for all, for given laser parameters (0.7 mJ of total energy) and is used hereafter for all

other theory-versus-experiment comparisons.

The spectra are gathered within the frame of two one-dimensional representations: either

as a function of the kinetic momentum kρ or as a function of the angle α on the detector.

Figure 10 gives the cuts (at α=0) as a function of kρ, for three laser fields, whose character-

istics are precisely the ones indicated on Table I. It might be noted here that peak intensity

value I0 calculated using Eq.(62) strongly depends from the experimentaly measured param-

eters bx, by and E0. In third column of Table I we give the intensities corresponding to the
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FIG. 9: Dissociation probabilities calculated using Sandig [26] vibrational levels populations (dotted line)

and the modified ones (dashed line) as compared with the experimental data (solid line).

best agreement between experimental and calculated spectra presented on figure 10. This

adjustment is necessary to reproduce correctly the left part of the spectra, which is partic-

ularly sensitive to the laser intensity, as can be seen in figure 7. We emphasized that this

adjustment has only been performed for one-dimensional spectra corresponding to (α=0).

For the same pulse duration the laser intensities are ranging from low to medium and strong,

following the panels a,b, and c. Three features can be emphasized:

i) Three major peaks are obtained, corresponding to the dissociation involving v=7, 8

and 9 levels, positioned in this order in the region kρ ' 5 to 8 a.u. The theory-experiment

agreement is good not only for the positions but also for the relative heights of these peaks;

the most noticeable difference affecting again v=9, more sensitive to an accurate evaluation

of the spatial intensity distribution;

ii) The strongest field (E0=0.7 mJ, panel c) reveals the rise of an additional peak at the

position of v=6. This is related with the bond softening mechanism, where the radiative

coupling induces an important adiabatic barrier lowering, large enough for the population

initially in the bound state v=6 to escape through tunneling. Excellent agreement with
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FIG. 10: Cuts at α = 0 of the calculated (dashed line) and measured (solid line) kinetic momentum spectra

for: (a) E0=0.3 mJ; (b) E0=0.5 mJ; (c) E0=0.7 mJ.
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experimental results is obtained for this bump in the spectrum ;

iii) The blue tail of the spectrum extending above kρ ' 8 a.u. corresponds to the photodis-

sociation of initial populations on v=10,11 and 12, which due to possible vibrational trapping

effects, is less efficient. Here again excellent theory-experiment agreement is reached.

The angular distributions for the same field characteristics, are gathered in figure 11.

They, precisely, correspond to α-dependent 1D representations of fixed kρ-cuts of the 3D

information of the type displayed in figure 3. This is done for two different values of kρ;

namely kρ=5.5 a.u. and kρ=6.5 a.u. corresponding to the positions of the maximum am-

plitudes of the two major peaks of figure 10 attributed to v=7 and 8, respectively. The

following observations can be pointed out:

i) These angular distributions, although labeled as v=7 and 8, actually contain informa-

tions originating from v=9,10,..., through the red-tail contributions of these levels (as is clear

from figure 5 panel c). The excellent theory-versus-experiment agreement that is reached

has to be judged within this intricate influence of the higher energy part of the spectrum.

It is also worthwhile noting that due to larger experimental errors affecting v=9,10, angular

distributions are not studied for higher v’s than 8.

ii) v=7 is much better aligned than v=8. This is basically due to the bond softening

mechanism. A high potential barrier at θ = π/2 protects v=7 population against pho-

todissociation. This barrier is lowered at θ=0 or π where the radiative coupling is at its

maximum, leading to efficient alignment, that is even better for increasing intensity. In

other words the wavepacket associated with v=7 has to skirt around a high potential barrier

at θ = π/2 before dissociating, whereas the one associated with v=8 being closer to the top

of the barrier can more easily tunnel. The consequence is that dissociation is facilitated for

θ=0, or π, when the initial population lies on v=7.

A better understanding and interpretation of the way following which these complemen-

tary bound softening and vibrational trapping mechanisms ultimately affect the dissociation

process, could be gained by a dynamical investigation. Figure 12 illustrates a time-resolved

decay dynamics of individual vibrational levels. The lower panel gives the temporal shape of

the laser intensity for the strongest field into consideration (E0=0.7 mJ, with the parameters

of the last row of Table I). The decay dynamics is given in terms of the decrease of the

short range population as a function of time, starting from a given v of the parent ion H+
2

(i.e. the time dependence of the norm of the internal region wavepacket ||ΦI ||2, as defined
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in subsection 2.1). The behavior of different v’s can be classified as follows:

• Levels affected by the bond softening mechanism; namely v=6,7,8. The decay starts

only after the maximum of the laser pulse, which is required for the potential barriers to be

sufficiently lowered. Although the decay mechanism is rather fast (the slope of ||ΦI ||2 versus

time is large), the photodissociation starting from v=6 is not complete, due to the fact that

the potential barrier is closed before total escape towards the asymptotic region.

• v=9 which lies at the curve crossing region dissociates completely and faster than all

other levels;

• Levels affected by the vibrational trapping mechanism; namely v=10,11,12. The popu-

lations of these levels start to dissociate during the laser rise time, but about the maximum

intensity their decay rate is lowered (the slope of ||ΦI ||2 versus time lower than the one of

levels v=6,7,8). This is basically due to the fact that they are vibrationaly trapped in the

temporarily closed upper adiabatic potential. It is also interesting to note that the popula-

tion of v=12, trapped during the radiative interaction, partially returns back to the ground

state bound potential, in such a way that dissociation starting from v=12 is not complete.

The dynamical alignment characteristics are illustrated in figure 13. Here again the lower

panel indicates the temporal shape of the strongest laser. The upper panels display the

average value of 〈cos2 θ〉 on the internal region wavepacket; i.e. 〈ΦI | cos2 θ|ΦI〉/〈ΦI |ΦI〉,
indicating the alignment characteristics of the parent ion H+

2 as a function of time. Three

initial levels are in consideration, each pertaining to one of the previously selected classes.

The bond softening mechanism leading to the dissociation of v=6 (panel a) results into

very efficient alignment during the pulse, which even remains during the fall off regime. A

thorough interpretation, already given in the literature [30], can be summarized by referring

to a three dimensional representation of the adiabatic potential energy surfaces (displayed

in figure 4). This is provided in figure 14 for a single photon dressed ground and excited

states of H+
2 including (by diagonalization) the radiative interaction. The photodissociation

dynamics starting from v=6 is described by a wavepacket that evolves on the lower adiabatic

potential surface. It has first to skirt around the potential barrier at θ = π/2 and end up in

the lower energy valley at θ = 0 or π. This is why fragments originating from a parent ion

in an initial state well protected by a hardly penetrable potential barrier (as for v=6,7,8)

are well aligned through the bond softening mechanism. On the opposite situation are

parent ions in an initial state basically pertaining to the upper adiabatic potential energy
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FIG. 14: 3D adiabatic representation of the H+

2 potential energy surfaces in the presence of the field with

peak intensity I0 = 7.5 × 1012 W/cm2.

surface (as for v=10,11,12). This surface presents a minimum around θ = π/2, where the

population is temporarily trapped. The dissociation by a single photon absorption further

proceeds by a non-adiabatic transition to the lower adiabatic surface. Such a transition is

more efficient for θ ' π/2 (induced by a lower radiative coupling). Although the last step

which is the evolution on the lower adiabatic surface tends to align the fragments, this effect

is less efficient as the parent ion is prepared at θ ' π/2 on this surface. The result is clearly

understandable in terms of this vibrational trapping mechanism for v=12 (panel c, figure

13). During the rise time of the laser pulse, the parent ion is well trapped on the upper

adiabatic surface leading to a misalignment (the bump of the 〈cos2 θ〉 curve at about t=550

fs). There is no noticeable alignment during the whole duration of the pulse. A second

misalignment, probably due to the nonadiabatic jump, is obtained at t=800 fs. Finally v=9
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which is basically not affected neither by bond softening, nor by vibrational trapping, does

not show any alignment characteristics as is clear from panel b.

IV. CONCLUSION

Once the competition between multiphoton ionization and dissociation processes is dis-

carded by preparing the parent ion H+
2 through an electric discharge experiment, a rather

simple and complete quantum modelisation is provided for a theory-versus-experiment com-

parison of angularly resolved kinetic energy spectra of photofragments resulting from intense

field dissociation. An Abel transformation relates the probability P(k, θ) for a single H+
2

molecule in a given initial ro-vibrational state, to dissociated with kinetic momentum k along

its polar direction θ with respect to the laser polarization vector, to P (kρ, α), the proba-

bility for the photofragment H to be detected on a pixel of the detector plate labeled by

its polar coordinates (ρ, α), A quantitative reproduction of experimental data requires some

statistics over initial ro-vibrational states on one hand and over the spatial distribution of

laser intensities interacting with molecules positioned at different places in the ionic beam,

on the other hand.

An excellent agreement is obtained with experimental spectra and especially for the align-

ment characteristics of the photofragments. A thorough interpretation can be conducted for

single vibrational peaks of the spectra in terms of basic mechanisms, such as bond softening

and vibrational trapping. The most striking observation is the major role the laser volume

effect is playing, in particular over lower vibrational levels.

Among our feature prospects, is the elucidation of the role of isotope effects in the pho-

todissociation of D+
2 and HD+, which are currently studied in H.Figger’s group.
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Appendix

This appendix is devoted to some geometrical and and vector relations illustrated in

figure 2. r1r1r1 and r2r2r2 are the vectors pointing H and H+ in the laboratory frame, RRR and RGRGRG

defined by

RRR = r1r1r1 − r2r2r2 (A-1)

RGRGRG = vtuyuyuy =
1

2
(r1r1r1 + r2r2r2) (A-2)

are the relative internuclear separation and the position of the center of mass G, respectively

(by neglecting the contribution of the electron). The right-angle triangles OO′M and O′M ′M

lead to:
∣

∣

∣

∣

∣

∣

∣

∣

1

2
RRR

∣

∣

∣

∣

∣

∣

∣

∣

2

= ρ2 + (D − vt)2 (A-3)

and

||rrr||2 = ρ2 + D2 (A-4)

whereas from the triangle MGO one gets:

1

2
RRR = rrr −RGRGRG. (A-5)

The unitary vector uRuRuR along RRR, can be easily evaluated using Eqs(A-2,A-3) and Eq.(A-5):

uRuRuR =
RRR

||RRR|| =
rrr − vtuyuyuy

[ρ2 + (D − vt)2]1/2
(A-6)

and its projection over uyuyuy is nothing but:

uRuRuR · uyuyuy =
rrruyuyuy − vt||uyuyuy||2

[ρ2 + (D − vt)2]1/2
=

D − vt

[ρ2 + (D − vt)2]1/2
(A-7)

taking into account: rrr · uyuyuy = D.

The polar angles θ and α positionning H (and M) in the center of mass and detector

frames can be related using the right-angle triangle GM ′M :

cos θ =
HH ′

||1
2
RRR|| =

ρ cos α

||1
2
RRR|| (A-8)

or finally taking into account Eq.(A-3):

cos θ =
ρ cos α

[ρ2 + (D − vt)2]1/2
. (A-9)
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