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COMPUTATIONS OF BOTT-CHERN CLASSES ON P(E)

CHRISTOPHE MOUROUGANE

Abstract. We compute the Bott-Chern classes of the metric Euler sequence

describing the relative tangent bundle of the variety P(E) of hyperplans of a holo-

morphic hermitian vector bundle (E, h) on a complex manifold. We give applica-

tions to the construction of the arithmetic characteristic classes of an arithmetic

vector bundle E and to the computation of the height of P(E) with respect to the

tautological quotient bundle OE(1). 1

Introduction

In the whole work, X will be a smooth complex analytic manifold of dimension n.
For a vector bundle F → X on X we denote by Ap,q(X,F ) the space of smooth
F -valued differential forms on X of type (p, q). On a holomorphic vector bundle
E → X endowed with a hermitian metric h, there exists a unique connection
∇ = ∇E,h compatible with both the holomorphic and the hermitian structures. It
is called the Chern connection of (E, h). Its curvature i

2π∇
2 is multiplication by an

endomorphism-valued 2-form that we will denote by Θ(E, h) ∈ A1,1(X,Herm(E)).
The associated Chern forms are defined by

det(I + tA) =

+∞∑

d=0

tddetd(A) and cd(E, h) := detd(Θ(E, h)) ∈ Ad,d(X, C).

The form cd(E, h) is closed and represents the Chern class cd(E) of E in H2d(X, R)

through De Rham isomorphism. The Chern class polynomial ct(E) :=
∑+∞

d=0 tdcd(E)
is multiplicative on exact sequences. Bott-Chern secondary classes are classes in

Ãd,d(X) :=
Ad,d(X, C)

Imd′ + Imd′′

which functorially represent the default of multiplicativity of the Chern form poly-
nomial ct(E, h) :=

∑+∞
d=0 tdcd(E, h) on short exact sequences of hermitian vector

bundles (see [Bi-G-S] theorem 1.29 and [G-S-2] theorem 1.2.2) :

• For any short exact sequence (S) = (0 → S → E → Q → 0), and any choice

of metrics h = (hE , hS , hQ), c̃d+1(S, h) ∈ Ãd,d(X),

ct(E, hE) − ct(S, hS)ct(Q,hQ) = −
it

2π
d′d′′c̃t(S, h)

where c̃t(S, h) =
∑+∞

d=0 tdc̃d+1(S, h).
• If (S, h) is metrically split, then c̃t(S, h) = 0.
• For any holomorphic map f : X → Y of complex analytic manifolds and any

metric short exact sequence (S, h) over Y , c̃t(f
?S, f?h) = f?c̃t(S, h).

They were introduced by Bott and Chern in their study of the distribution of
the values of holomorphic sections of hermitian vector bundles [B-C]. They were
used by Donaldson for defining a functional on the space of hermitian metrics on

1Key words : Bott-Chern secondary classes, metric relative Euler sequence, arithmetic char-
acteristic classes.
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a given holomorphic vector bundle in order to find Hermite-Einstein metrics [Do].
They were given an axiomatic definition and served as one kind of secondary objects
(together with Green currents and analytic torsion forms) in the study by Bismut
Gillet and Soulé of holomorphic determinant bundle [Bi-G-S]. They enter the very
definition of arithmetic characteristic classes set by Gillet and Soulé [G-S-2].

Bott-Chern classes were computed in few cases, mainly when (E, h) is assumed to
be flat. See the work of Gillet and Soulé in the the case of projective spaces [G-S-2]
of Maillot in the case of Grassmanians [Ma] and of Tamvakis in the case of other
flag manifolds [Ta]. In most of computed cases, Bott-Chern classes are made of
closed forms.

We deal with a relative situation. Let E → X be a holomorphic vector bundle
of rank r over X . Consider π : P(E) → X, the variety of hyperplans of E. The
differential of the quotient map E? − X × {0} → P(E) over X gives rise to the
relative Euler sequence (Σ) on P(E) :

0 → OE(−1) → π?E? → T → 0

where T denotes the twisted relative tangent bundle TP(E)/X ⊗OE(−1). The choice
of a hermitian metric h on E enables to endow all the bundles in the sequence with
a natural hermitian metric. Our aim is to compute Bott-Chern forms (i.e. repre-
sentatives of Bott-Chern secondary classes) for this metric relative Euler sequence
(Σ, h) in terms of the curvature form of (E, h). The case where X is a point is dealt
with by Gillet and Soulé in [G-S-2].

We denote by α the curvature form Θ(OE(1), h) of (OE(1), h). For q ∈ N, we
consider the forms Θqa? on P(E) given at the point (x, [a?]) of P(E), (a? ∈ E?

x) by

Θqa? =
〈π?Θ(E?, h)qa?, a?〉

||a?||2
.

The product is taken with respect to the wedge product in the form part and the
composition in the endomorphism part. The generating function Θt for those forms
is

∑+∞
d=0(−t)d(Θda?). We will also need the Harmonic numbers Hp =

∑p
1

1
i and

their generating function H(X) :=
∑+∞

p=1 HpX
p. We prove

Main theorem. The Bott-Chern secondary class polynomial c̃t(Σ, h) for (Σ, h)
is represented by the form

−H

(
tαΘt + 1 − Θt + tΘt

i

2π
d′d′′ ln Θt

)
Θtπ

?ct(E
?, h).

This form is in general not closed. The first part of the proof consists in finding
an expression in coordinates for c̃d+1(Σ, h). Computations are simplified by the
choice of a normal frame at a given point (x0, [a

?
0]) of P(E). The combinatorial

analysis is rather intricate. The second part is devoted to identify the previously
found expressions in terms of globally defined forms. Finally, the computation
of the Bott-Chern forms generating polynomial enables to express the result in a
concise way, for Bott-Chern forms follow a recursion formula.

Our second aim is to give some applications in the setting of Arakelov geometry.
Let X be an arithmetic variety built on a scheme χ defined on the ring of integers
of some number field. Let E be an arithmetic vector bundle on X . We will write X
for the smooth variety χC(C) and (E, h) for the induced hermitian vector bundle on
X. We give in section 8 an application of our computations to the construction of
arithmetic Chern classes from arithmetic Segre classes. At algebraic level, the total
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Chern class of E? is the inverse of the total Segre class of E. This is also true at the
level of forms (see section 7). But at the arithmetic level, some secondary purely
complex analytic objects have to enter the definition of Segre classes in order to keep
this inverse relation true in the arithmetic Chow group of the base scheme. This is

due to the fact that E
?
⊗OE(1) having a nowhere vanishing section has nevertheless

a non-zero top Chern form. Evaluating some fiber integrals of previously studied
Bott-Chern forms, we give explicit expressions for the secondary classes involved.
This answers a question raised by Bost and Soulé [Bo-S]. This in turn enables to
compute the height of P(E) with respect to OE(1) in term of the top arithmetic
Segre class and a secondary term from complex cohomology. The qualitative output
is that complex characteristic classes of E are the only complex datas of (E, h) that
accounts for the measure of the complexity of P(E) given by its height.

No wonder that such computations at least in the full relative case (see proposi-
tion 7) can be done for other characteristic classes than the Chern classes on other
flag varieties of E to get expressions for their height.

I thank Vincent Maillot for his interest in my work and for his suggestion to
study the arithmetic applications.
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1. Bott-Chern forms

General formulas for computing c̃(S, h) with induced and quotient metrics were
given by Bott and Chern [B-C]. For sake of completeness, we outline their method.

The commutator of End(E)-valued forms α and β is defined to be [α, β] :=
αβ − (−1)deg α deg ββα.

Consider the sequence 0 → S
ι
→ E

p
→ Q → O endowed with metric constructed

from a hermitian metric h on E. Denote by ∇ (resp. ∇S , ∇Q) the Chern connection
of (E, h) (resp. (S, h|S), (Q,h|Q)). Consider the family of connections on E

∇u := ∇ + (u − 1)PQ∇PS

where PS = ιι? (resp. PQ = p?p) denotes the orthogonal projection of E onto
ι(S) (resp. ι(S)⊥). The choice of a local holomorphic frame for E enables to
express locally the connection ∇u as d + Au for some matrix valued (1, 0)-form
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Au. The curvature Θ(∇u) of ∇u is then given by the matrix valued (1, 1)-form
i

2π (dAu+Au∧Au). Recall that the connection ∇u extends to End(E)-valued forms
by ∇u(α) := [∇u, α]. The formula for c̃(Σ, h) relies on the following identities

∇u(Θ(∇u)) = [∇u,Θ(∇u)] = [∇u,∇2
u] = 0 Bianchi formula

= d(Θ(∇u)) + [Au,Θ(∇u)]

∇u(PS) = [∇u, PS ] = u
d

du
∇u got from PS∇

′PQ = PQ∇
′′PS = 0

= d′PS + [Au, PS ].

That is

d′Θ(∇u) = dΘ(∇u) = −[Au,Θ(∇u)]

d′PS = −[Au, PS ] + u
d

du
∇u.

Consider the polarization Detk of detk, that is the symmetric k-linear form on
Mr(C) whose restriction on the small diagonal is detk. Note by Detk(A;B) =
kDetk(A,A, · · · , A,B). The differential version of the Gl(r, C)-invariance of detk

shows that the contribution of the commutators −[Au, ·] vanishes. This leads to

d′ (Detk(Θ(∇u);PS)) = uDetk

(
Θ(∇u);

d

du
∇u

)
.

Now,

i

2π
d

(
d

du
∇u

)
=

i

2π

d

du
d(∇u) =

i

2π

d

du
d(Au) =

d

du

(
Θ(∇u) −

i

2π
Au ∧ Au

)

= −
i

2π
[Au,

d

du
Au] +

d

du
(Θ(∇u)) .

The Gl(r, C)-invariance of deti leads to

−
i

2π
d′d′′Detk(Θ(∇u);PS) =

i

2π
d

(
uDetk

(
Θ(∇u);

d

du
∇u

))

= u
d

du
detk(Θ(∇u)).(1.1)

One then checks in a frame adapted to the C∞ splitting E ' S ⊕ Q given by
ι? ⊕ p, that

Θ(∇u) =

∣∣∣∣∣∣∣∣∣∣

(1 − u)ΘS + uι?ΘEι ι?ΘEp?

upΘEι (1 − u)ΘQ + upΘEp?

∣∣∣∣∣∣∣∣∣∣

Hence integrating equation (1.1) between 0 and 1, we get

ck(E, h) − ck(S ⊕ Q,∇S ⊕∇Q) = −
i

2π
d′d′′

∫ 1

0

Φk(u) − Φk(0)

u
du(1.2)

where

Φk(u) = Detk(Θ(∇u);PS) = coeffλdetk(Θ(∇u) + λPS).

If moreover, the sub-bundle S is of rank 1, then

Φd+1(u) = detd ((1 − u)ΘQ + upΘEp?) .(1.3)
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2. Curvature computations

We will compute the curvature of T and of OE(1) at a point (x0, [a
?
0]) of P(E)

(a?
0 ∈ E?) in a well-chosen frame.

We now recall the formula for the curvature of a quotient bundle. Consider the

sequence 0 → S
ι
→ E

p
→ Q → O endowed with metrics constructed from a her-

mitian metric on E. All the bundles we will consider, including the endomorphism
bundles inherit a metric and a Chern connection from those of E. We will denote
with a star the adjoint maps with respect to the given metric. Notice first that
since pp? = IdQ and ∇E is compatible with the metric, p(∇Hom(Q,E)p

?) = 0. Let
s be a local smooth section of Q. We get first

∇E(p?s) = (∇Hom(Q,E)p
?)s + p?∇Qs = ιι?(∇Hom(Q,E)p

?)s + p?∇Qs

and then

p∇2
E(p?s) = p(∇Hom(S,E)ι) ∧ ι?(∇Hom(Q,E)p

?)s + ∇2
Qs.

That is, taking the type into account, (∇′′
Hom(S,E)ι = 0)

ΘQ = pΘEp? −
i

2π
p(∇′

Hom(S,E)ι) ∧ ι?(∇′′
Hom(Q,E)p

?).

We choose local coordinates x1, · · · , xn around x0, and a frame e?
1, · · · , e?

r for E?

around x0, normal at x0 (i.e. 〈e?
i , e

?
j 〉 = δij −2π

∑
λµ cλµjixλxµ +O(|x|3)) and such

that a?
0 = e?

1(x0). Notice that in this frame at x0, cλµij = cµλji, the connection
∇E? is equal to d and the curvature Θ(E?, h) to i

∑
λµjk cλµjkdxλ ∧ dxµ(e?

k)? ⊗ e?
j .

Recall the Euler sequence :

0 → OE(−1)
ι
→ π?E? p

→ T → 0.

On an appropriate open set around (x, a?
0), the map q : E? − X × {0} → P(E) is

given in coordinates by

q(x,
∑

aie
?
i ) = (x, [a1 : · · · : ar]) = (x,

a2

a1
, · · · ,

ar

a1
).

Hence the map p is given by

p

(
x, [

r∑

1

aie
?
i ],

r∑

1

bje
?
j

)
=


x, [

∑
aie

?
i ],

∑

j≥2

bja1 − b1aj

a2
1

∂

∂zj


 ⊗ (

∑
aie

?
i ).

where for 2 ≤ j ≤ r, zj :=
aj

a1
. Here and in the sequel we will also write z1 := a1

a1
= 1

and dz1 = 0 for convenience. The adjoint of the map p is given by

p?

(
∂

∂zj
⊗

∑
aie

?
i

a1

)
= e?

j −
〈e?

j ,
∑

aie
?
i 〉

||
∑

aie?
i ||

2

∑
aie

?
i .

So, at the point (x0, [a
?
0]), the normality of the frame gives

ι?(∇′′p?)
∂

∂zk
⊗

∑
aie

?
i

a1
= ι?∇′′

(
p? ∂

∂zk
⊗

∑
aie

?
i

a1

)
− ι?p?∇′′

(
∂

∂zk
⊗

∑
aie

?
i

a1

)

= ι?∇′′

(
p? ∂

∂zk
⊗

∑
aie

?
i

a1

)
= −dzk ⊗

∑
aie

?
i

a1
.

Now,

p(∇′ι)

(∑
aie

?
i

a1

)
= p∇′

(
ι

∑
aie

?
i

a1

)
=

r∑

2

dzj
∂

∂zj
⊗

∑
aie

?
i

a1
.
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Summing up the previous computations we infer the formula for the curvature of
T = TP(E)/X ⊗OE(−1) at (x0, [a

?
0])

Θ(T, h) =
∑

2≤j,k≤r

(cjk +
i

2π
dzj ∧ dzk)

(
∂′

∂zk

)?

⊗

(
∂′

∂zj

)
(2.1)

where Θ(E?, h) =
∑

1≤j,k≤r cjk(e?
k)? ⊗ e?

j , cjk := i
∑

λµ cλµjkdxλ ∧ dxµ (cjk = ckj)

and
(

∂′

∂zj

)
is

(
∂

∂zj

)
⊗

∑
aie

?
i

a1
.

For later use, we give the formula for the curvature of (OE(1), h). Denote by Ω
the positive form defined on the whole fiber of π over x0 as the Fubini-Study metric
of (P(Ex0

), h) : in coordinates

Ω :=
i

2π

(1 + |z|2)
∑

j≥2 dzj ∧ dzj −
∑

i,j≥2 zizjdzi ∧ dzj

(1 + |z|2)2
.

Then,

α := Θ(OE(1), h) =
i

2π
d′d′′ log ||e?

1 +
∑

j≥2

zje
?
j ||

2 = Ω −
〈π?Θ(E?, h)a?, a?〉

||a?||2
.

This equality is valid on the whole π−1(x0). At the point (x0, [a
?
0]), it reduces to

α = i
2π

∑
j≥2 dzj ∧ dzj − c11.

3. Computations in coordinates

We will compute the Bott-Chern forms of the metric Euler sequence at a point
(x0, [a

?
0]) of P(E). The results will be given in terms of locally defined forms.

By the previous results (1.2), (1.3) and (2.1),

Φd+1(u) = detd(

∣∣∣∣cjk + (1 − u)
i

2π
dzj ∧ dzk

∣∣∣∣
2≤j,k≤r

)

and

c̃d+1 =

∫ 1

0

Φd+1(u) − Φd+1(0)

u
du.

Our aim is to give an explicit coordinate free expression for the Bott-Chern forms
c̃d+1.

For d = 0, Φ1(u) = 1 and c̃1 = 0.
For d = 1,

Φ2(u) = Trace(

∣∣∣∣cjk + (1 − u)
i

2π
dzj ∧ dzk

∣∣∣∣
2≤j,k≤r

)

= c1(π
?E?) − c11 + (1 − u)Ω

and c̃2 = −Ω.

We need some notations to go along the next computations. The set of positive
integers will be denoted by N?. For any positive integer r, we denote by Nr :=
{1, 2, · · · , r} and Σr the group of permutations of Nr. The notation (a1, a2, · · · , ap)
will be used for the cycle of length p, a1 7→ a2 7→ · · · 7→ ap 7→ a1.

For a finite sequence B in N
(N?)
? of positive integers, we set l(B) = c such that

B belongs to Nc
? (its length) and |B| =

∑c
i=1 bi (its weight).

A finite sequence P in N
(N?)
? of positive integers will be called a partition if it is

non-decreasing. Its elements will then be called the parts. If [1+
∑i

j=1 hj ,
∑i+1

j=1 hj ],



COMPUTATIONS OF BOTT-CHERN CLASSES ON P(E) 7

(0 ≤ i ≤ q − 1, |h(P )| =
∑q

j=1 hj = l(P )) are the biggest intervals where the parts
are constant i.e. p1 = p2 = · · · = ph1

< ph1+1 = · · · = ph1+h2
< ph1+h2+1 · · · · · · ph1+h2+···hq−1

< ph1+h2+···hq−1+1 = · · · = ph1+h2+···hq−1+hq
= pl(P ) then the sequence h(P ) = (hi)1≤i≤q

will be called the height of the partition B. The symbol h(B)! will denote
∏q

i=1 hi!.

For a partition P in N
(N?)
? of positive integers, a permutation σ in Σr will be

said to be of type P if r = |P | and σ can be written as the product of l(P ) cycles
Ci (with disjoint support) where Ci is of length pi.

We define

c′i(E
?) := deti(|cjk|2≤j,k≤r).

For a cycle of length p, we will need (p ∈ N?, s ∈ N?, s ≤ p, Q ⊂ Np)

Ωp,s :=
1

p

∑

Q⊂Np
]Q=s

Ωp,Q with Ωp,Q :=
∑

2≤i1,i2,··· ,ip≤r

p∧

a=1

CI,Q
a,a+1

where

{
CI,Q

a,a+1 =
(

i
2π

)
dzia

∧ dzia+1
if a ∈ Q

= ciaia+1
otherwise

where we have set ip+1 := i1. The set Q denotes the locations of the dz ∧ dz terms.
Hence, s is the total number of dz ∧ dz terms occurring in the cycle. Note that

Ωp,1 =
i

2π

∑

2≤i1,i2,··· ,ip≤r

ci1i2ci2i3 · · · cip−1ip
dzip

∧ dzi1 .

We begin by computing the leading coefficient of our coming formula for Φ.

Lemma 1. For fixed d ∈ N?,

∑

S,P∈N
(N?)
?

S≤P,|P |≤d,|S|=d

(−1)|P |+l(P )

l(P )!

l(P )∧

i=1

Ωpi,si
= Ωd.

Proof. First notice that Ωp,p = 1
pΩp,Np

= 1
p (−1)p−1Ωp. Now,

∑

P,S∈N
(N?)
?

S≤P,|P |≤d,|S|=d

(−1)|P |+l(P )

l(P )!

l(P )∧

i=1

Ωpi,si
=

∑

P,S∈N
(N?)
?

S=P,|P |=d

(−1)|P |+l(P )

l(P )!

l(P )∧

i=1

Ωpi,pi

=
∑

P∈N
(N?)
?

|P |=d

1

l(P )!
∏l(P )

i=1 pi

Ωd = Ωd.

The last equality is proven noticing that the map

Σp → Σp

ϕ 7→
(
ϕ(1), ϕ(2), · · · , ϕ(p1)

)(
ϕ(p1 + 1), ϕ(p1 + 2), · · · , ϕ(p2)

)
· · ·

is surjective on the set of permutations of type P and is
∏l(P )

i=1 pi-to one. Each
permutation of type P is obtained by l(P )! maps of this kind.

We can now compute the function Φ involved in the expression for Bott-Chern
forms. The first part of the proof of our main theorem will be done in three
steps. In the following proposition, we first separate fiber differentials dz and base
differentials arising in the curvature of E?
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Proposition 1.

Φd+1(u) = c′d(E
?)+

∑

1≤s≤d

(1−u)s
∑

P,S∈N
(N?)
?

l(P )=l(S),P≥S
|P |≤d,|S|=s,(l(P )≤s)

(−1)|P |+l(P )

l(P )!
c′d−|P |(E

?)

l(P )∧

m=1

Ωpm,sm
.

Proof. First remark that

Φd+1(u) =
1

d!

∑

2≤i1,i2,··· ,id≤r

∑

σ∈Σd

ε(σ)

d∧

m=1

(cimiσ(m)
+ (1 − u)

i

2π
dzim

∧ dziσ(m)
).

We first invert the summation over σ ∈ Σd and the summation resulting from the
development of the above wedge product. We then have to specify which dz ∧ dz
terms we consider in the development. The part c′d(E

?) is got when no dz ∧ dz
terms are chosen. According to these, we write σ as product of cycles with disjoint
supports, neglecting the precise expression of those cycles containing no dz ∧ dz
terms. If for example we seek for the terms containing only dzi1 and dzi2 among the
dz, we will only write explicitly the cycles in σ containing 1 and 2. The permutation

σ is given by P ∈ N
(N?)
? with |P | ≤ d and ϕ :

∐l(P )
m=1 N

(m)
pm → Nd injective and σ′

permutation of Nd − imϕ by

σ = σ′

l(P )∏

m=1

(
ϕ(1(m)), ϕ(2(m)), · · · , ϕ(p(m)

m )
)

.

Notice that each σ is obtained l(P )!
∏l(P )

m=1 pm times. Hence,

∑

σ∈Σd

=
∑

P

1

l(P )!
∏l(P )

m=1 pm

∑

ϕ

∑

σ′

.

Each Q =
∐l(P )

m=1 Q(m), Q(m) ⊂ Npm
gives the summand (ε(σ) = ε(σ′)(−1)|P |+l(P ))

(−1)|P |+l(P )
d∧

τ=1
τ 6∈im(ϕ)

ε(σ′)ciτ iσ′(τ)

l(P )∧

m=1

pm∧

t=1

C
Iϕ,Q(m)

t(m),(t+1)(m) .

After commuting with
∑

P

∑
ϕ

∑
Q, rewrite

∑

2≤i1,i2,··· ,id≤r

as
∑

2≤iτ ≤r

τ 6∈im(ϕ)

l(P )∑

m=1

∑

2≤i
ϕ(1(m))

≤r

2≤i
ϕ(2(m))

≤r

...
2≤i

ϕ(p
(m)
m )

≤r

.

We get the expression for Φd+1(u) as c′d(E
?) plus

1

d!

∑

P

∑

ϕ

∑

Q

(−1)|P |+l(P )

l(P )!
∏l(P )

m=1 pm

(d − |P |)!c′d−|P |(E
?)

l(P )∧

m=1

(1 − u)]Q(m)

Ωpm,Q(m) .

The summand now does not depend on ϕ. Hence the summation over all injective

ϕ :
∐l(P )

m=1 N
(m)
pm → Nd gives the factor

d!

(d − |P |)!
. We infer

Φd+1(u) = c′d(E
?) +

∑

P

∑

Q

(−1)|P |+l(P )

l(P )!
∏l(P )

m=1 pm

c′d−|P |(E
?)

l(P )∧

m=1

(1 − u)]Q(m)

Ωpm,Q(m) .(3.1)
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Summing now over all Q with same size S gives

Φd+1(u) = c′d(E
?) +

∑

P

∑

S

(−1)|P |+l(P )

l(P )!
∏l(P )

m=1 pm

c′d−|P |(E
?)

l(P )∧

m=1

(1 − u)smpmΩpm,sm

= c′d(E
?) +

∑

P

∑

S

(−1)|P |+l(P )

l(P )!
c′d−|P |(E

?)(1 − u)|S|

l(P )∧

m=1

Ωpm,sm
.

We now simplify the expression of fiber differentials. Remark that when two
dz ∧ dz terms are neighbors (qt+1 = qt + 1),

Ωp,{q1,q2,··· ,qt,qt+1,qt+2,··· ,qs} = −ΩΩp−1,{q1,q2,··· ,qt−1,qt,qt+2−1,··· ,qs−1}

This remark will be improved in the following proposition.

Proposition 2. For all (p, s) ∈ N2 with s ≤ p,

Ωp,s =
∑

1≤b1≤b2≤···≤bs≤p

|B|=p

(−1)s−1(s − 1)!

h(B)!
Ωb1,1Ωb2,1 · · ·Ωbs,1.

Proof. Recall that Ωp,s := 1
p

∑
Q⊂Np
]Q=s

∑
2≤i1,i2,··· ,ip≤r

∧p
a=1 CI,Q

a,a+1. Gathering terms

in the sum in the following way
(
dziq1+1

ciq1+1iq1+2
· · · ciq2−1iq2

dziq2

)
· · ·

(
dziqs−1+1

ciqs−1+1iqs−1+2
· · · ciqs−1iqs

dziqs

)
(
− dziqs+1

ciqs+1iqs+2
· · · cip−1ip

cipi1ci1i2 · · · ciq1−1iq1
dziq1

)

we infer that each Q contributes to
(
−Ωq2−q1,1

)(
−Ωq3−q2,1

)
· · ·

(
−Ωqs−qs−1,1

)(
+ Ωp−qs+q1,1

)
.

Set b′j := qj+1 − qj for 1 ≤ j ≤ s − 1 and b′s := p − qs + q1, we get a map (Ps(Np)
denotes the set of subsets of Np of cardinal s)

Ps(Np)
α
→ (N?)

s β
→ { partitions of weight p and length s}

Q 7→ (b′1, b
′
2, · · · , b′s) 7→ b1 ≤ b2 ≤ · · · ≤ bs

The fiber α−1(B′) has b′s elements and the fiber β−1(B) s!
h(B)! . But

∑

B′∈β−1(B)

b′s =
1

s

∑

B′∈β−1(B)

b′1 + b′2 + · · · + b′s =
p

s

s!

h(B)!
.

Hence the composed map is of degree
p(s − 1)!

h(B)!
over B.

We are now about the final step

Proposition 3. For all d ∈ N,

Φd+1(u) = c′d(E
?)+

∑

1≤s≤p≤d

∑

1≤b1≤b2···≤bs≤p

|B|=p

(1−u)s (−1)p+ss!

h(B)!
c′d−p(E

?)Ωb1,1Ωb2,1 · · ·Ωbs,1

Proof. Fix s ≤ p in N?. The map which assigns to the product Q of Q(m) ∈

Psm
(Npm

) the associated product of partitions B(m) is

l(P )∏

m=1

pm(sm − 1)!

h(B(m))!
to 1. The

map which assigns to the latter product of partitions a partition B of weight p and of

length s by concatenation and reordering is
∑

S∈(N?)(N?)

|S|=s

s!
∏l(S)

m=1 h(B(m))!

h(B)!
∏l(S)

m=1 sm!
to 1. Hence,
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the composed map is
∑

S∈(N?)(N?)

|S|=s

s!
∏l(S)

m=1 pm

h(B)!
∏l(S)

m=1 sm

to 1. Back to the formula (3.1), we

obtain a new expression for Φd+1(u).

Φd+1(u) = c′d(E
?) +

∑

P

∑

Q

(−1)|P |+l(P )

l(P )!
∏l(P )

m=1 pm

c′d−|P |(E
?)

l(P )∧

m=1

(1 − u)]Q(m)

Ωpm,Q(m)

= c′d(E
?) +

∑

1≤s≤p≤d

∑

1≤b1≤b2···≤bs≤p

|B|=p

∑

S∈(N?)(N?)

|S|=s

c′d−p(E
?)(1 − u)s

s!
∏l(S)

m=1 pm

h(B)!
∏l(S)

m=1 sm

(−1)p+l(S)

l(S)!
∏l(S)

m=1 pm

(−1)s+l(S)Ωb1,1Ωb2,1 · · ·Ωbs,1.

We recall once more the identity
∑

S∈(N?)(N?)

|S|=s

1

l(S)!
∏l(S)

m=1 sm

= 1 to end the proof.

Hence, we get the Bott-Chern forms by integrating.

Theorem 1.

c̃d+1 = −
∑

1≤s≤p≤d

∑

1≤b1≤b2···≤bs≤p

|B|=p

Hs
(−1)p+ss!

h(B)!
c′d−p(E

?)Ωb1,1Ωb2,1 · · ·Ωbs,1.

Here Hs is the harmonic number
s∑

1

1

i
=

∫ 1

0

1 − (1 − u)s

u
. This formula re-

duces in the case of flat vector bundle to that of Gillet and Soulé (proposition
5.3 of [G-S-2]). Coordinates free expressions for c′d(E

?) and Ωb,1 will be given in
proposition 4 and 5. Notice that the relative degree of each summand is 2s and the
degree in base variables is 2(d − p + |B| − s) = 2(d − s). We can therefore restrict
the range of s to max(d − dimX, 1) ≤ s ≤ min(r − 1, d).

4. Coordinates free expressions

We now give coordinates free expressions of c′i(E
?) and of the Ωp,1. We will

express the results in terms of the following forms in Aq,q(P(E), C) : for q ∈ N, at
the point (x, [a?]) ∈ P(E),

Θqa? :=
〈π?Θ(E?, h)qa?, a?〉

||a?||2
.

Recall that Θ(E?, h) is in A1,1(X,End(E)). The q-th power is taken with the wedge
product in the form part and the composition in the endomorphism part. We will
also need the form α = Θ(OE(1), h).

Proposition 4.

c′d(E
?) =

∑

p+m=d
p,m≥0

(−1)p(Θpa?)π?cm(E?, h)

where we have set (Θ0a?) = π?c0(E
?) = 1.
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Proof. The expression for Θqa? in coordinates is
∑

J∈{1,··· ,r}q+2

∧q
m=1 cjmjm+1

ajq+1
< e?

j1
, e?

jq+2
> ajq+2∑

(j,j′)∈{1,··· ,r}2 aj < e?
j , e

?
j′ > aj′

and is
∑

J∈{1,··· ,r}q+1

j1=jq+1=1

∏q
a=1 cjaja+1

at the center x0 of the normal frame for (E, h).

Hence,

c′1(E
?) = π?c1(E

?, h) − (Θ1a?)

c′2(E
?) = π?c2(E

?, h) −


c11c

′
1(E

?) −
∑

j≥2

c1jcj1




= π?c2(E
?, h) − (Θ1a?)π?c1(E

?, h) + (Θ2a?).

In the same spirit of the proof of proposition 1, we write the permutations according
to one of the positions of 1 (if any) : σ = (ϕ(1), ϕ(2), · · · , ϕ(p))σ′ if iϕ(1) = 1.

cd(E
?, h) = c′d(E

?)

+
1

d!

∑

1≤i1,i2,··· ,id≤r

1∈{i1,i2,··· ,id}

d∑

p=1

∑

ϕ:Np→Nd
injective
iϕ(1)=1

∑

σ′∈Σd−p

(−1)p+1c1iϕ(2)
ciϕ(2)iϕ(3)

· · · ciϕ(p)1

∧

τ 6∈imϕ

ciτ ,iσ′(τ)
.

Rewriting
∑

1≤i1,i2,··· ,id≤r

1∈{i1,i2,··· ,id}

as
∑

1≤iϕ(2),··· ,iϕ(p)≤r

∑
1≤iτ ≤r
τ 6∈imϕ

, then replacing the sum
∑

ϕ:Np→Ndinjective,

iϕ(1)=1

by product by factor
d!

d − p)!
we infer

cd(E
?, h) = c′d(E

?) +

d∑

p=1

(−1)p+1(Θpa?)π?cd−p(E
?, h).

Before computing the Ωp,1, we need a lemma which relies on special properties
of the normal frame.

Lemma 2. In the center of a normal frame for an holomorphic Hermitian vector

bundle (E, h), dΘE = 0 and id′d′′ΘE = 0.

Proof. Call H the metric matrix and A the connection 1-form for the Chern con-
nection of (E, h) in a frame normal at x0. By the compatibility of the connection
with the metric and the holomorphic structure, we infer that d′H = AH. Then
A(x0) = 0. On the whole chart, ΘE = i

2π (dA+A∧A). So, dΘE = ΘE ∧A−A∧ΘE

(Bianchi identity). Hence, dΘE(x0) = 0. Now, at x0

d′d′′ΘE(x0) = d′dΘE(x0) = d′ΘE ∧ A + ΘE ∧ d′A − d′A ∧ ΘE + A ∧ d′ΘE

= ΘE ∧ d′A − d′A ∧ ΘE

From, d′H = AH and A(x0) = 0 we get d′A(x0) = 0 (Notice that ΘE(x0) = dA(x0)
is of type (1, 1)).



12 CHRISTOPHE MOUROUGANE

Proposition 5. For d ≥ 1, at the point (x0, [a
?
0]),

Ωd+1,1 =
i

2π
d′d′′(Θda?) + (Θd+1a?) + α(Θda?)

+
i

2π

d∑

m=2

∑

B∈N?
(N?)

l(B)=m,|B|=d

(−1)m(d′′Θb1a?)(Θb2a?)(Θb3a?) · · · (Θbm−1a?)(d′Θbma?)

Proof. From the definition of the normal frame we get at x0, d||a?||2 = 0. Hence,
at (x0, [a

?
0]),

i

2π
d′d′′(Θda?) =

i

2π
d′d′′〈π?Θ(E?, h)da?, a?〉 − (Θda?)α.

From lemma 2 and the relation i
2π d′d′′〈e?

i , e
?
j 〉 = −cji we infer using the expression

of 〈π?Θ(E?, h)da?, a?〉 in coordinates

i

2π
d′d′′〈π?Θ(E?, h)da?, a?〉

=
i

2π

∑

J∈{1,··· ,r}d+1

d∧

m=1

cjmjm+1
dzjd+1

∧ dzj1 +
∑

J∈{1,··· ,r}d+2

jd+1=jd+2=1

d∧

m=1

cjmjm+1
(−cjd+2j1)

=
i

2π

∑

J∈{1,··· ,r}d+1

d∧

m=1

cjmjm+1
dzjd+1

∧ dzj1 − (Θd+1a?).

Now, to recover Ωd+1,1 we have to remove the value 1 for the j’s in the first sum.
Gathering the terms according to the fact that they contain at least l j′s achieving
the value 1 (jd+1 6= 1, j1 6= 1), we get (notice that we will interchange dzjd+1

and dzj1)

i

2π

∑

J∈{1,··· ,r}d+1

(
d∧

m=1

cjmjm+1

)
dzjd+1

∧ dzj1

= Ωd+1,1 +
i

2π

d−1∑

l=1

(−1)l
∑

1<q1<q2<

···<ql<d+1

∑

J−Q∈{1,··· ,r}d+1−l

(dzj1cj1j2cj2j3 · · · cjq1−11)

(c1jq1+1
· · · cjq2−11)(c1jq2+1

· · · cjq3−11) · · · (c1jql−1+1
· · · cjql−11)(c1jql+1

· · · cjdjd+1
dzjd+1

)

= Ωd+1,1 +
i

2π

d−1∑

l=1

(−1)l(
∑

1≤j1,j2,··· ,jq1−1≤r

dzj1cj1j2cj2j3 · · · cjq1−11)

(Θq2−q1a?)(Θq3−q2a?) · · · (Θql−ql−1a?)(
∑

1≤jql+1,··· ,jd+1≤r

c1jql+1
· · · cjdjd+1

dzjd+1
)

Using once more the normality of the frame, we compute at the point (x0, [a0])
∑

1≤j1,j2,··· ,jq1−1≤r

dzj1cj1j2cj2j3 · · · cjq1−11 = d′′(Θq1−1a?)

∑

1≤jql+1,··· ,jd+1≤r

c1jql+1
· · · cjdjd+1

dzjd+1
= d′(Θd+1−qla?).

Now, the proof will be complete if we set b1 := q1 − 1 ∈ N?, bj := qj − qj−1 for j
between 2 and l and bl+1 := d + 1 − ql ∈ N? and m = l + 1.
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5. On the Bott-Chern forms generating polynomial

Bott-Chern forms fulfill a recursion formula which is easily expressed in terms
of their generating polynomial. The latter has a concise expression.

Set

ct(E
?, h) :=

+∞∑

d=0

tdcd(E
?, h) ; c̃t(Σ, h) :=

+∞∑

d=0

tdc̃d+1(Σ, h) ; Θt :=

+∞∑

d=0

(−t)d(Θda?).

We will also need as auxiliary notations

c′t(E
?) :=

+∞∑

d=0

tdc′d(E
?) ; Ωt :=

+∞∑

d=1

(−t)dΩd,1 ; H(X) :=
+∞∑

s=1

HsX
s.

Theorem 1 can be rewritten as

tdc̃d+1 = −
∑

1≤s≤d

∑

B∈(N?)s

e+
∑

bi=d

Hs(−1)stec′e(E
?)(−t)b1Ωb1,1(−t)b2Ωb2,1 · · · (−t)bsΩbs,1.

Summing over d, we infer

c̃t(Σ, h) = −
∑

1≤s

Hs(−1)sc′t(E
?)(Ωt)

s = −H(−Ωt)c
′
t(E

?).

Proposition 4 can be rewritten as c′t(E
?) = Θtπ

?ct(E
?, h). As for proposition 5

notice that
+∞∑

d=0

(−t)d+1 i

2π

d∑

m=2

∑

B∈N?
(N?)

l(B)=m,|B|=d

(−1)m(d′′Θb1a?)(Θb2a?)(Θb3a?) · · · (Θbm−1a?)(d′Θbma?)

= −t
i

2π
(

+∞∑

b1=1

(−t)b1d′′Θb1a?)(

+∞∑

bm=1

(−t)bmd′Θbma?)

+∞∑

m=2

(1 − Θt)
m−2

= −t
i

2π

d′′Θtd
′Θt

Θt

so that

−Ωt = t

(
i

2π
d′d′′Θt −

Θt − 1

t
+ αΘt +

i

2π

d′′Θtd
′Θt

Θt

)
.

We are led to our main theorem

Theorem 2. Bott-Chern forms for the metric Euler sequence can be chosen to be

c̃t(Σ, h) = −H

(
tαΘt + t

1 − Θt

t
+ tΘt

i

2π
d′d′′ ln Θt

)
Θtπ

?ct(E
?, h).

6. Some special cases

6.1. On first parts of Bott-Chern forms. The high relative degree part of Bott-
Chern forms is easy to compute with our formulas. Half of the relative degree will
be indicated by an extra indices. Theorem 1 reads

(c̃d+1)d = −HdΩ
d

(c̃d+1)d−1 = −Hd−1

(
c′1(E

?)Ωd−1 − (d − 1)Ω2,1Ω
d−2

)

(c̃d+1)d−2 = −Hd−2

(
c′2(E

?)Ωd−2 − (d − 2)c′1(E
?)Ω2,1Ω

d−2

+(d − 2)Ω3,1Ω
d−3 +

(d − 2)(d − 3)

2
(Ω2,1)

2Ωd−4
)
.
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6.2. On first Bott-Chern forms. The propositions 4 and 5 give theorem 1 an
intrinsic form. Alternatively, we may use theorem 2. Explicitly, we get up to
d′-exact and d′′-exact forms,

c̃1 = 0

c̃2 = − [H1α] − (Θ1a?)

c̃3 = −
[
H2α

2 + π?c1(E
?, h)α

]
− [α + π?c1(E

?, h)] (Θ1a?) −

(
1

2
(Θ1a?)2 − (Θ2a?)

)
.

The terms in bracket are d′d′′-closed.

6.3. For curves and surfaces. We now assume that the manifold X is a curve or
a surface. Only the high relative degree part will occur in theorem 1. Now, make
use of

Ω = α + (Θ1a?)

Ω2,1 =
i

2π
d′d′′(Θ1a?) + (Θ2a?) + α(Θ1a?)

Ω3,1 =
i

2π
d′d′′(Θ2a?) + (Θ3a?) + α(Θ2a?) +

i

2π
d′′(Θ1a?)d′(Θ1a?).

Hence we proved that up to d′-exact and d′′-exact forms Bott-Chern forms are
given on curves by

c̃d+1 = −
[
Hdα

d + Hd−1π
?c1(E

?, h)αd−1
]
−

[
αd−1

]
(Θ1a?)

and on surfaces by

c̃d+1 = −
[
Hdα

d + Hd−1π
?c1(E

?, h)αd−1 + Hd−2π
?c2(E

?, h)αd−2
]

−

[
αd−1 + π?c1(E

?, h)αd−2 − (d − 2)αd−3 i

2π
d′d′′Θ1a?

]
(Θ1a?)

−
[
αd−2

] (
1

2
(Θ1a?)2 − (Θ2a?)

)
.

7. On characteristic forms

7.1. From Segre forms to Chern forms. The geometric Segre forms are defined
for i ∈ N by

s′i(E, h) := π?(α
r−1+i) ∈ Ai,i(X, C).

Consider the metric Euler exact sequence (Σ, h) twisted by OE(1)

0 → OP(E) → π?E? ⊗OE(1) → TP(E)/X → 0

and its top Bott-Chern form c̃r(Σ(1), h). Notice that ct(OP(E)) = 1 for the induced
metric on OP(E) is the flat one. Degree considerations lead to the relation

cr(π
?E? ⊗OE(1), h) = −

i

2π
d′d′′ (c̃r(Σ(1), h)) .

which in cohomology reduces to Grothendieck defining relation for Chern classes

of E. Now, for m ∈ N set Sm+1(E, h) := π? (αmc̃r(Σ(1), h)) ∈ Ãm,m(X). Define

the class Rm+1(E, h) ∈ Ãm,m(X) by

+∞∑

m=0

tmRm+1(E, h) =

(
+∞∑

m=0

(−t)mcm(E, h)

)−1 (
+∞∑

m=0

tmSm+1(E, h)

)
.
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For m ≥ 1, using the projection formula, we infer
∑

p+q=m
p,q∈N

cp(E
?, h)s′q(E, h)

= π?




∑

p+q=m
p,q∈N

cp(π
?E?, h)αr−1+q


 = π?




∑

p+q=m
p,q∈Z

cp(π
?E?, h)αr−1+q




= π?


αm−1

∑

p+s=r
p,s∈Z

cp(π
?E?, h)αs


 = π?

(
αm−1cr(π

?E? ⊗OE(1), h)
)

= −
i

2π
d′d′′π?

(
αm−1c̃r(Σ(1), h)

)
.

From the previous equation, we infer that the Chern forms of (E, h) are related to
the geometric Segre forms s′ by

(
+∞∑

p=0

(−t)pcp(E, h)

) (
+∞∑

q=0

tqs′q(E, h)

)
= 1 −

it

2π
d′d′′

+∞∑

m=0

tmSm+1(E, h)

that is

(7.1)
(

+∞∑

m=0

(−t)mcm(E, h)

)−1

= 1 +

+∞∑

m=1

tm
(

s′m(E, h) +
i

2π
d′d′′Rm(E, h)

)
.

The striking fact is that despite the appearance of the non-closed forms Θqa? in
the expression of c̃r(Σ(1), h) the forms R are d′d′′-closed.

Proposition 6. The forms R are d′d′′-closed or equivalently the Chern forms are

related to the geometric Segre forms s′ by
(

+∞∑

m=0

cm(E?, h)

) (
+∞∑

m=0

tms′m(E, h)

)
= 1

Proof. We first compute the Segre forms.

s′m(E, h) = π?(α
r−1+m) =

(
r − 1 + m

m

)
π?

(
Ωr−1(−Θ1a?)m

)

=

(
r − 1 + m

m

)
(−1)m

∫

Pr−1

Ωr−1 (
∑

cijajai)
m

|a|2m

=

(
r − 1 + m

m

)
(−1)m

∑

I,J∈(Nr)m

ci1j1ci2j2 · · · cimjm

∫

Pr−1

Ωr−1 aj1ai1aj2ai2 · · · ajm
aim

|a|2m

For parity reasons, the integral of non real terms vanishes. We may hence restrict
to I = J as sets with multiplicities. That is there exists a permutation σ ∈ Σm such
that for each λ, jλ = iσ(λ). One term may be gotten from different permutations
if some iλ equals some iµ for λ 6= µ. As in the case of partitions, we define
the height h(I) of a sequence of numbers I to be the sequence of cardinals of
subsets of identical entries. The term aj1ai1aj2ai2 · · · ajm

aim
can be written as

aiσ(1)
ai1aiσ(2)

ai2 · · · aiσ(m)
aim

for h(I)!-different permutations. We will make use of
the formula ∫

Pr−1

|a1|
2m1 |a2|

2m2 · · · |ar|
2mr

|a|2m
Ωr−1 =

(r − 1)!
∏

mi!

(r − 1 + m)!
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where mi ∈ N are such that
∑

mi = m. Back to our computations, we get

s′m(E, h) =

(
r − 1 + m

m

)
(−1)m

∑

I∈(Nr)m

∑

σ∈Σm

ci1iσ(1)
ci2iσ(2)

· · · cimiσ(m)

∫

Pr−1

Ωr−1

h(I)!

|ai1 |
2|ai2 |

2 · · · |aim
|2

|a|2m

=
(−1)m

m!

∑

I∈(Nr)m

∑

σ∈Σm

ci1iσ(1)
ci2iσ(2)

· · · cimiσ(m)
.

For a finite sequence N in N(N?) of non negative integers, a permutation σ in Σm

will be said to be of shape 1n12n2 · · ·mnm , (
∑

pnp = m) if it can be written as the

product of np cycles of length p with disjoint support. There are m!∏
p np!pnp permu-

tations of shape 1n12n2 · · ·mnm in Σm and each will give the same contribution in
the sum after having computed

∑
I∈(N?)m . For p ∈ N, consider the closed forms on

X given by

θp := Trace(Θ(E, h)⊗p) = (−1)p
∑

I∈(Nr)p

ci1i2ci2i3 · · · cipi1 .

We now consider the total Segre form.

∑

m∈N

tms′m(E, h) =
∑

m

tm
1

m!

∑

N∈NdimX∑
pnp=m

dimX∏

p=1

θnp
p

m!∏
p np!pnp

=
∑

N∈NdimX

dimX∏

p=1

(
tpθp

p

)np 1

np!
=

dimX∏

p=1

exp

(
tpθp

p

)
.

Noticing that the signature of a permutation of shape 1n12n2 · · ·mnm is (−1)
∑

p np(p+1),
we also get

∑

m∈N

tmcm(E?, h) =
∑

N∈NdimX

dimX∏

p=1

(
−

tpθp

p

)np 1

np!
=

dimX∏

p=1

exp

(
−

tpθp

p

)
.

7.2. Computation of the class S. We now aim at finding expressions for the
class S in terms of the geometric Segre forms s′

s′m(E, h) = π?(α
r−1+m) =

(
r − 1 + m

r − 1

)
π?

(
(−Θ1a?)mΩr−1

)
.

We will need as auxiliary tools the forms on X defined by

sb
c(E, h) = π?

(
(−1)b(Θba?)αr−1+c

)
=

(
r − 1 + c

r − 1

)
π?

(
(−1)b(Θba?)(−Θ1a?)cΩr−1

)
.

Integral computations of π? similar to the previous one lead to

sb
c(E, h) =

(−1)b+c

(r + c)c!

∑

I∈N
c+1
r

K∈N
b−1
r

∑

σ∈Σc+1

ci1iσ(1)
ci2iσ(2)

· · · ciciσ(c)
cic+1k2

ck2k3
· · · ckbiσ(c+1)

The number of permutations in Σc+1 of shape 1n12n2 · · · (c + 1)nc+1 for which c + 1
is in a cycle of length q is c!

qnq−1(nq−1)!
∏

p6=q pnpnp!
. The contribution of such a cycle
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is (−1)q+b−1θq+b−1 for we plug in Θba? instead of Θ1a?. Forward,

sb
c(E, h) =

1

(r + c)

∑

N∈NdimX∑
pnp=c+1

∑

q/nq≥1

θq+b−1

(
θq

q

)nq−1
1

(nq − 1)!

∏

p6=q

(
θp

p

)np 1

np!

Changing the order of the summations over q and N and then summing over c,

∑

c∈N

tb+c(r + c)sb
c(E, h) =

dimX∑

q=1

tq+b−1θq+b−1

dimX∏

p=1

exp

(
tpθp

p

)

=

(∑

m∈N

tms′m(E, h)

) 


dimX∑

q=b

tqθq




which shows in particular that the forms sb
c(E, h) are explicitly computable from

the geometric Segre forms only and that they are closed.

Define Hb
a to be

a∑

i=1

Hi

(a

i

)(b

i

)−1

.

Theorem 3. The secondary form S is given by

Sm+1(E, h) = −
∑

a+b+c=m

Hr−1+c
r−1−a−bca(E?, h)sb

c(E, h)

Proof. For degree reason, Sm = 0 for m > dimX + 1. It follows from the relation

cp(E ⊗ L, hE ⊗ hL) =
∑

i+j=p

(
r − j

p − j

)
c1(L, hL)icj(E, hE)

for every holomorphic hermitian vector bundle (E, hE) and every holomorphic her-
mitian line bundle (L, hL) and from the transgression techniques of [G-S-2] (The-
orem 1.2.2) that c̃r(Σ(1), h) is equal to

∑
i+j=r αic̃j(Σ, h) =

∑
i+j=r αic̃j . Recall

that for j > r, c̃j = 0.

Sm+1(E, h) = π?

(
αmc̃r (Σ(1), h)

)
=

∑

i+j=r+m

π?

(
αic̃j

)

=
∑

i+c+j=r+m

(
i + c

c

)
π?

(
(c̃j)r−1−iΩ

i(−Θ1a?)c
)

where we used the relation α = Ω − Θ1a? valid on the whole fiber π−1(x0).

Terms of full relative degree are simpler to compute than the whole Bott-Chern
forms. The proposition below is a weak form of theorem 1 whose full strength is
hence not needed for arithmetic applications.

Proposition 7. On the fiber of π over x0,

(c̃d+1)fΩr−1−f = −Hf

(
r − 1

f

)−1 (
r − 1 − d + f

f

) ∑

α+β=d−f

π?cα(E?)(−1)β(Θβa?)Ωr−1.

Proof. Starting from

Φd+1(u) =
∑

2≤i1<i2<···<id≤r

∑

σ∈Σd

ε(σ)

d∧

m=1

(
cimiσ(m)

+ (1 − u)
i

2π
dzim

∧ dziσ(m)

)

and

Ωr−1−f = (r − 1 − f)!
∑

A=(a1<a2<···<ar−1−f )

r−1−f∧

j=1

i

2π
dzaj

∧ dzaj
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we infer (with I = J ∪ Ac and σ = σ′σ′′)

(Φd+1(u))fΩr−1−f

= (1 − u)f (r − 1 − f)!
∑

|A|=r−1−f

∧ i

2π
dzaj

∧ dzaj

∑

2≤j1<j2<···<jd−f ≤r

J⊂A

∑

σ′∈Σd−f

σ′′∈Σf

ε(σ′)
∧

1≤m≤d−f

cjmjσ′(m)
ε(σ′′)

f∧

k=1
Ac=(b1<b2<···<bf )

i

2π
dzbk

∧ dzbσ′′(k)

= (1 − u)f (r − 1 − f)!f !
Ωr−1

(r − 1)!

∑

A

∑

2≤j1<j2<···<jd−f ≤r

J⊂A

∑

σ′∈Σd−f

ε(σ′)
∧

1≤m≤d−f

cjmjσ′(m)

= (1 − u)f (r − 1 − f)!f !

(r − 1)!
Ωr−1

∑

|J|=d−f

∑

|A|=r−1−f
A⊃J

det(c′J,J )

= (1 − u)f (r − 1 − f)!f !

(r − 1)!
Ωr−1

(
r − 1 − d + f

f

)
c′d−f (E?).

This leads to

(c̃d+1)fΩr−1−f = −Hf

(
r − 1

f

)−1 (
r − 1 − d + f

f

)
c′d−f (E?)Ωr−1

at the point (x0, [a
?
0]). To get an expression valid on the whole fiber, we refer to

proposition 4.

Back to the computation of Sm+1, with a + b = (j − 1)− (r − 1− i) = i + j − r,

Sm+1(E, h)

= −
∑

0≤i≤r−1
a+b+c=m

Hr−1−i

(
r − 1

i

)−1(
r − 1 − a − b

r − 1 − i

)(
i + c

c

)
ca(E?, h)π?

(
(−1)bΘba?(−Θ1a?)cΩr−1

)

= −
∑

a+b+c=m

r−1−a−b∑

i=1

Hi
(r − 1 − a − b)!(r − 1 − i + c)!

(r − 1)!(r − 1 − i − a − b)!c!
ca(E?, h)π?

(
(−1)bΘba?(−Θ1a?)cΩr−1

)

= −
∑

a+b+c=m

r−1−a−b∑

i=1

Hi
(r − 1 − a − b)!(r − 1 + c − i)!

(r − 1 − a − b − i)!(r − 1 + c)!
ca(E?, h)sb

c(E, h)

= −
∑

a+b+c=m

r−1−a−b∑

i=1

Hi

(
r − 1 − a − b

i

) (
r − 1 + c

i

)−1

ca(E?, h)sb
c(E, h).

ending the proof of theorem 3.

8. Some arithmetic applications

8.1. On arithmetic characteristic classes. We complete the scheme proposed
by Elkik ([El], see also [G-S-3]) for the construction of the arithmetic characteristic
classes assuming known the construction of the arithmetic first Chern class and the
push forward operation in arithmetic Chow groups.

Let K be a number field, OK its ring of integers and S := spec(OK). Consider
an arithmetic variety X on S (i.e. a flat regular projective scheme χ over S together
with the collection of schemes χC =

∐
σ:K↪→C

χσ) and an arithmetic vector bundle E
of rank r on it (i.e. an locally free sheaf of Oχ-modules together with the collection
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of corresponding vector bundles on χC(C) endowed with a hermitian metric). Write
X for the smooth variety χC(C) and (E, h) for the induced hermitian vector bundle
on X. All the objects we will consider on X are required to be invariant under the
conjugaison given by the real structure of X . The notation Ap,p(X) is now used for
the subspace of conjugaison invariant forms. We will denote by D(X) the space of

(conjugaison invariant) currents on X and by D̃(X) its quotient by Imd′ + Imd′′.

We collect some basic facts we will need on arithmetic intersection theory (see [G-S-1]
for properties of the arithmetic Chow groups and [G-S-2] for the construction of
the arithmetic Chern classes). The arithmetic Chow groups are defined to be the
quotient by the subgroup generated by arithmetic principal cycles and pairs of the
form (0, ∂u + ∂v) of the free Abelian group on pairs (Z, gZ) of an algebraic cycle

Z ⊂ χ and a Green current gZ ∈ D̃(X) for Z(C) defined by the requirement that
δZ(C) +ddcgZ be the current associated with a smooth form in A(X). The notation
δZ(C) is used for the current of integration along Z(C). There are natural maps

a : Ap−1,p−1(X) → ĈH
p
(X )

η 7→ [(0, η)]
ω : ĈH

p
(X ) → Ap,p(X)

[(Z, gZ)] 7→ δZ(C) + ddcgZ

The push-forward map on arithmetic Chow groups is defined component-wise.

Hence, aπ? = π̂?a. The product in ĈH
?
(X ) is defined by the formula : [(Y, gY )] ·

[(Z, gZ)] = [(Y ∩ Z, gY ? gZ)] where the star product is given by

gY ? gZ := gY ∧ δZ + ω([(Y, gY )]) ∧ gZ ∈ D̃(X).

Hence, for r ∈ ĈH
?
(X ), r · a(η) = a(ω(r) ∧ η).

As for the arithmetic Chern classes, they have the following properties :

• For every arithmetic vector bundle E on X , ω
(
ĉt(E)

)
= ct(E, h).

• For every exact sequence (S) = (0 → S → E → Q → 0) of arithmetic vector
bundles on X ,

ĉt(E) − ĉt(S)ĉt(Q) = −a(tc̃t(S(C), h))(8.1)

• For every arithmetic line bundle L and every arithmetic vector bundle E of
rank r on X ,

ĉr(E ⊗ L) =
∑

p+q=r

ĉp(E)ĉ1(L)q.(8.2)

We now explain the construction of the arithmetic characteristic classes. Use first
the usual hermitian theory on X to define in Ad,d(X) the following characteristic
forms

• the Segre forms s′d(E, h) := π?(Θ(OE(1), h)r−1+d),
• the Chern forms cd(E, h) := trace(ΛdΘ(E, h))
• and the forms θd := trace(Θ(E, h)⊗d).

Define the generalized Segre forms sb
c(E, h) ∈ Ab+c,b+c(X) by

+∞∑

c=0

tb+c(r + c)sb
c(E, h) = s′t(E, h)

dimX∑

q=b

tqθq.

Consider the (secondary) characteristic forms Sm+1(E, h) and Rm+1(E, h) in Am,m(X)
given by the relations

Sm+1(E, h) = −
∑

a+b+c=m

Hr−1+c
r−1−a−bca(E?, h)sb

c(E, h)

Rt(E, h) = s′t(E, h)St(E, h).
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where St(E, h) =
∑+∞

m=0 tmSm+1(E, h) and Rt(E, h) =
∑+∞

m=0 tmRm+1(E, h). Our

previous computations ensure that the class of Sm+1(E, h) in Ãm,m(X) is

Sm+1(E, h) = π?(c̃r(Σ(1), h)Θ(OE(1), h)m).(8.3)

Define the m-th geometric Segre class of E to be

ŝ′m(E) := π̂?

(
ĉ1(OE(1))r−1+m

)

in the arithmetic Chow group ĈH(X ) of X . Its m-th arithmetic Segre class

ŝm(E, h) is defined as the class in ĈH(X ) obtained by adding in the definition
of the m-th geometric Segre class an extra term computed precisely thanks to the
previous top Bott-Chern form :

ŝm(E) := ŝ′m(E) + a(Rm(E, h)).

Comparing with the arithmetic Chern class polynomial of E? as defined in [G-S-2]
we get

Theorem 4. In the arithmetic Chow group of X

ĉt(E?) · ŝt(E) = 1.

Proof. This is in fact a precise form of formula (7.1) in the arithmetic setting. For
the twisted arithmetic Euler sequence Σ(1),

0 → O
P(E) → π?E? ⊗OE(1) → T

P(E)/X → 0

formulas (8.2) and (8.1) read
∑

p+q=r

ĉp(π
?E?)ĉ1(OE(1))q = ĉr(π

?E? ⊗OE(1))

= ĉ1(OP(E))ĉr−1(TP(E)/X ) − a(c̃r(Σ(1), h))

= −a(c̃r(Σ(1), h))

By push-forward π̂? to the Chow group of X , using the previously recalled facts
and formula (8.3), this leads to

ĉt(E?) · ŝ′t(E) = 1 − a(tSt(E, h))

that is

ĉt(E?) · ŝt(E) = 1 − a(tSt(E, h)) + ĉt(E?) · a(tRt(E, h)).

But

ĉt(E?) · a(Rt(E, h)) = a(ω(ĉt(E?))Rt(E, h)) = a(ct(E
?, h)Rt(E, h)) = a(St(E, h))

thanks to proposition 6.

This provides an alternative definition of the arithmetic Chern classes and hence of
all the arithmetic characteristic classes without using the splitting principle. This
point of view is closer to that of Fulton [Fu].

8.2. On the height of P(E). For any vector bundle E of rank r on a smooth
complex compact analytic manifold X of dimension n, we define the analytic height

of P(E)
π
→ X by

hOE(1)(P(E)) =

∫

P(E)

c1(OE(1))n+r−1.

It follows from Fubini theorem that

hOE(1)(P(E)) =

∫

X

π?

(
c1(OE(1))n+r−1

)
=

∫

X

s′n(E).
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According to Hartshorne, the ampleness of E → X is defined to be the ampleness
of OE(1) → P(E) hence implies the positivity of the analytic height of P(E) from
its very definition.

In the arithmetic setting, for an arithmetic vector bundle E of rank r over an

arithmetic variety X
f
→ S of relative dimension n over S, we define the arithmetic

height of P(E)
π
→ X with respect to OE(1) by

ĥOE(1)(P(E)) = d̂egf̂?π̂?

(
ĉ1(OE(1))dimP(E)

)

where d̂eg : ĈH
1
(S) → ĈH

1
(Z) → R the last map sending (0, λ) to λ/2 ( see [Bo-G-S]).

From the definition of the arithmetic Segre class, we infer

ĥOE(1)(P(E)) = d̂egf̂?ŝ′n+1 = d̂egf̂?ŝn+1 −
1

2

∫

X

Rn+1.

The complex cohomological term − 1
2

∫
X

Rn+1 is computed thanks to theorem 3.
For example,

R1 = S1 = −
r−1∑

i=1

His
′
0(E, h) = −

r−1∑

i=1

Hi.

R2 = s′1S1 + S2 = −

(
1 +

1

r

)(
r−1∑

i=1

Hi

)
s′1(E, h)

In rank 2, Sm+1(E, h) =
1

m + 1
s′m(E, h)

Rm+1(E, h) = −
∑

p+q=m

1

q + 1
s′p(E, h)s′q(E, h)

In rank 3, Sm+1(E, h) = −
1

m + 1
c1(E

?, h)s′m−1(E, h) −
3m + 5

(m + 1)(m + 2)
s′m(E, h)

=
1

m + 1

(
s′1(E, h)s′m−1(E, h) − s′m(E, h)

)
−

2m + 3

(m + 1)(m + 2)
s′m(E, h).

According to Zhang, a line bundle L → X is said to be ample if L → χ is ample,
(L, h) → X is semi-positive and for every large enough n there exists a Z-basis of
Γ(χ,L⊗n) made of sections of sup norm less than 1 on X. This implies that the
leading coefficient of the Hilbert function of L is positive ([Zh], lemma 5.3) which
in turn implies the positivity of the arithmetic dimX -fold intersection of ĉ1(L) is
positive ([G-S-3]). Hence, the ampleness of E that we define to be the ampleness of
the associated line bundle OE(1) → P(E) implies the positivity of the arithmetic

height of P(E).

Note however that it does not imply the positivity of the secondary term − 1
2

∫
X

Rn+1

as it can be checked with Fulton-Lazarsfeld characterization of numerically positive
polynomials on ample vector bundles [Fu-L] : the numerically positive polynomials
in Chern classes are non-zero polynomials having non-negative coefficients in the
basis of Schur polynomials in Chern polynomials. By Jacobi-Trudi formula, this
basis is also the basis of Schur polynomials in Segre classes. For r = 3, n = 3 the
third coefficient of − 1

2R4 in the degree 3 part of the basis of Schur polynomials in

Segre classes (s′3, s
′
1s

′
2 − s′3, s

′
3
3
− 2s′1s

′
2 + s′3) is − 1

6 .
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