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Abstract: 

A review of physical mechanisms of the rogue wave phenomenon is given. The data of marine 
observations as well as laboratory experiments are briefly discussed. They demonstrate that freak 
waves may appear in deep and shallow waters. Simple statistical analysis of the rogue wave 
probability based on the assumption of a Gaussian wave field is reproduced. In the context of 
water wave theories the probabilistic approach shows that numerical simulations of freak waves 
should be made for very long times on large spatial domains and large number of realizations. As 
linear models of freak waves the following mechanisms are considered: dispersion enhancement 
of transient wave groups, geometrical focusing in basins of variable depth, and wave-current 
interaction. Taking into account nonlinearity of the water waves, these mechanisms remain valid 
but should be modified. Also, the influence of the nonlinear modulational instability (Benjamin–
Feir instability) on the rogue wave occurence is discussed. Specific numerical simulations were 
performed in the framework of classical nonlinear evolution equations: the nonlinear 
Schrödinger equation, the Davey – Stewartson system, the Korteweg – de Vries equation, the 
Kadomtsev – Petviashvili equation, the Zakharov equation, and the fully nonlinear potential 
equations. Their results show the main features of the physical mechanisms of rogue wave 
phenomenon. 
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1. Introduction 

Freak, rogue, or giant waves correspond to large-amplitude waves surprisingly appearing on the 

sea surface (“wave from nowhere”). Such waves can be accompanied by deep troughs (holes), 

which occur before and/or after the largest crest. As it is pointed by Lawton (2001) the freak 

waves have been part of marine folklore for centuries. Seafarers speak of “walls of water”, or of 

“holes in the sea”, or of several successive high waves (“three sisters”), which appear without 

warning in otherwise benign conditions. But since 70s of last century, oceanographers have 

started to believe them. Observations gathered by the oil and shipping industries suggest there 

really is something out a true monster of the deep that devours ships and sailors without mercy or 

warning. There are several definitions for such surprising huge waves. Very often the term 

“extreme waves” is used to specify the tail of some typical statistical distribution of wave heights 

(generally a Rayleigh distribution), meanwhile the term “freak waves” describes the large-

amplitude waves occurring more often than would be expected from the background probability 

distribution. Recently, Haver & Andersen (2000) put the question, what is a freak wave: rare 

realization of a typical statistics or typical realization of a rare population. Sometimes, the 

definition of the freak waves includes that such waves are too high, too asymmetric and too 

steep. More popular now is the amplitude criterion of freak waves: its height should exceed the 

significant wave height in 2-2.2 times. Due to the rare character of the rogue waves their 

prediction based on data analysis with use of statistical methods is not too productive. During 

last 30 years the various physical models of the rogue wave phenomenon have been intensively 

developed and many laboratory experiments conducted. The main goal of these investigations is 

to understand the physics of the huge wave appearance and its relation to environmental 

conditions (wind and atmospheric pressure, bathymetry and current field) and to provide the 

“design” of freak wave needed for engineering purposes. A great progress is achieved in the 

understanding of the physical mechanisms of the rogue wave phenomenon during the last five 

years and the paper contains the review of developed models of freak waves. 

The paper is organized as following. Data of freak wave observations are collected in section 2. 

We demonstrate that freak waves appear in basins of arbitrary depth (in deep, as well as in 

shallow water) with/without strong current. Freak waves may have solitary-like shape or 

correspond to a group of several waves. Freak waves have quasi-plane wave fronts, and therefore 

they can be sought as 2D or anisotropic 3D waves. Briefly, the probability of the rogue wave 

occurrence is discussed in section 3 in the framework of the Rayleigh statistics. This analysis 

shows that a large body of numerical simulations should be performed to verify the theoretical 

scenarios and have reliable prediction of freak waves. Linear mechanisms of the rogue wave 
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phenomenon are investigated in section 4. Assuming that the wind wave field in the linear theory 

can be considered as the sum of a very large number of independent monochromatic waves with 

different frequencies and directions, a freak wave may appear in the process of spatial wave 

focusing (geometrical focusing), and spatio-temporal focusing (dispersion enhancement). Also, 

wave – current interactions can be at the origin of large wave events. Very briefly, the role of 

atmospheric forcing in the rogue wave phenomenon is pointed out; very few papers consider this 

aspect. Because the freak wave is a large-amplitude steep wave, nonlinearity plays an important 

role in the formation of huge waves. These processes are discussed in section 5. Nonlinearity 

modifies the focusing mechanisms due to the optimal phase relations between spectral 

components, but does not destroy them. Focusing mechanisms are robust with respect to random 

wave components. A new mechanism of freak wave formation, suggested in the framework of 

nonlinear theory only, is the modulational instability (Benjamin - Feir instability). This 

mechanism is effective for waves in basins of arbitrary depth but not for shallow water. To 

compare with focusing mechanisms, the modulational instability occurs when the random wave 

components are weak. All the processes mentioned above are investigated in the framework of 

weakly nonlinear models like the nonlinear Schrödinger equation, the Davey–Stewartson system, 

the Korteweg–de Vries equation, and the Kadomtsev–Petviashvili equation. Recently the freak 

wave phenomenon has been considered by using higher-order nonlinear and dispersive models 

(like the Zakharov and Dysthe equations) and the fully nonlinear potential equations; the results 

are presented in section 5. A nonlinear model of wave–current interaction in the vicinity of the 

blocking point is briefly presented. Some solutions, illustrated by envelope soliton penetration 

and reflection on opposite current, are given. In conclusion, perspectives in the study of rogue 

wave phenomenon are discussed towards the assessment of potential design of freak waves. 

2. Freak Wave Observations 

Recently, a large collection of freak wave observations from ships was given in the New 

Scientist Magazine (Lawton, 2001). In particular, twenty-two super-carriers were lost due to 

collisions with rogue waves for 1969-1994 in the Pacific and Atlantic causing 525 fatalities, see 

Figure 2.1. At least, the twelve events of the ship collisions with freak waves were recorded after 

1952 in the Indian Ocean, near the Agulhas Current, coast off South Africa (Lavrenov, 1998). 

Probably, the last event occurred in shallow water 4th November 2000 with the NOAA vessel; 

the text below is an event description reproduced from Graham (2000). 

“At 11:30 a.m. last Saturday morning (November 4, 2000), the 56-foot research vessel R/V Ballena 

capsized in a rogue wave south of Point Arguello, California. The Channel Islands National Marine 

Sanctuary's research vessel was engaged in a routine side-scan sonar survey for the U. S. Geological 
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Survey of the seafloor along the 30-foot-depth contour approximately 1/4 nautical mile from the shore. 

The crew of the R/V Ballena, all of whom survived, consisted of the captain, NOAA Corps officer LCdr. 

Mark Pickett, USGS research scientist Dr. Guy Cochrane, and USGS research assistant, Mike Boyle. 

According to National Oceanic & Atmospheric Administration spokesman Matthew Stout, the weather 

was good, with clear skies and glassy swells. The forecasted swell was 7 feet and the actual swell 

appeared to be 5-7 feet. At approximately 11:30 a.m., Pickett and Boyle said they observed a 15-foot 

swell begin to break 100 feet from the vessel. The wave crested and broke above the vessel, caught the 

Ballena broadside, and quickly overturned her. All crewmembers were able to escape the overturned 

vessel and deploy the vessel's liferaft. The crew attempted to paddle to the shore, but realized the 

possibility of navigating the raft safely to shore was unlikely due to strong near-shore currents.  The crew 

abandoned the liferaft approximately 150 feet from shore and attempted to swim to safety. After reaching 

shore, Pickett swam back out first to assist Boyle to safety and again to assist Cochrane safely to shore. 

The crew climbed the rocky cliffs along the shore. The R/V Ballena is a total loss.”   

Norse Variant
March 1973
Deaths: 29

Anita
March 1973
Deaths: 32

Silvia Ossa
October 1976
Deaths: 37

Skipper 1
April 1987
Deaths: 0

Mezada
March 1991
Deaths: 24

Alborada
July 1984
Deaths: 30

Arctic Career
June 1985
Deaths: 28

Christinaki
Feb 1994
Deaths: 28

Marina di Equa
December 1981
Deaths: 20

Tito Campanella
January 1984
Deaths: 27

Testarossa
March 1973
Deaths: 30

Artemis
Dec 1980
Deaths: 0

Sandalion
Nov 1980
Deaths: 0

Antonis Demades
February 1970
Deaths: 0

Antparos
Jan 1981
Deaths: 31

Bolivar Maru
January 1969
Deaths: 31

Onomichi Maru
December 1980
Deaths: 0

Chandragupta
January 1978
Deaths: 69

Golden Pine
January 1981
Deaths: 25

Dinav
Dec 1980
Deaths: 35

Rhodain Sailor
December 1982
Deaths: 5

Derbyshire
December 1980
Deaths: 44

 

Figure 2.1. Statistics of the super-carrier collision with rogue waves for 1968-1994 

Various photos of freak wave are displayed in Figure 2.2 (Olagnon, 2000). The description of the 

conditions when one of the photos (left upper) was taken is given below (Chase, web). 

“A substantial gale was moving across Long Island, sending a very long swell down our way, meeting the 
Gulf Stream. We saw several rogue waves during the late morning on the horizon, but thought they were 
whales jumping. It was actually a nice day with light breezes and no significant sea. Only the very long 
swell, of about 15 feet high and probably 600 to 1000 feet long. This one hit us at the change of the watch 
at about noon.  The photographer was an engineer, and this was the last photo on his roll of film. We 
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were on the wing of the bridge, with a height of eye of 56 feet, and this wave broke over our heads. This 
shot was taken as we were diving down off the face of the second of a set of three waves, so the ship just 
kept falling into the trough, which just kept opening up under us. It bent the foremast (shown) back about 
20 degrees, tore the foreword firefighting station (also shown) off the deck (rails, monitor, platform and 
all) and threw it against the face of the house. It also bent all the catwalks back severely.  Later that 
night, about 19:30, another wave hit the after house, hitting the stack and sending solid water down into 
the engine room through the forced draft blower intakes.” 

 

          

      

Figure 2.2. Various photos of rogue waves 

These photos and descriptions show the main features of the freak wave phenomenon: the rapid 

appearance of large amplitude solitary pulses or a group of large amplitude waves on the almost 

still water in shallow as well as in deep water. They highlight also the nonlinear character of the 

rogue wave shapes: steep front or crest beard, and also two- and three-dimensional aspects of the 

wave field.  

The instrumental data of the freak wave registration are obtained for different oil platforms. 

Figure 2.3 shows the famous “New year wave” of 26 m height recorded at “Draupner” (Statoil 

operated jacket platform, Norway) in the North Sea 1st January 1995 (Haver & Andersen, 2000).  

The water depth, h, is 70 m, the characteristic period of freak wave is 12 s; so, the wavelength is 

about 220 m according to the linear dispersion relation. The important parameter of dispersion, 

kh, is kh ~ 2 and this means that the observed freak wave can be considered as a wave 

propagating in finite depth. Nonlinearity of this wave can be characterized by the steepness, ka (k 
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is the wave number and a is the wave amplitude), and it is 0.37. Alternative nonlinear parameter, 

a/h, is about 0.2. It should be noted that nonlinearity of the freak wave is very high. Sand et al. 

(1990) have collected data of freak wave observations in the North Sea (depth 20-40 m) for 

1969-1985. Maximum ratio of the freak wave height, Hf, to the significant wave height, Hs, 

reached 3 (Hanstholm, Danish Sector, depth 20 m, Hs = 2 m, Hf = 6 m). Such an event can be 

classified as a freak wave phenomenon in shallow water. Recently, Mori et al. (2002) published 

an analysis of freak wave observations (at least 14 times with the height exceeding 10 m) in the 

Japan Sea (Yura Harbor, 43 m depth) during 1986-1990. Maximum ratio, Hf/Hs reached 2.67.  
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Figure 2.3. Time record of the “New Year wave” in the North Sea 

All data given above demonstrate that freak waves can appear in basins of arbitrary depth (deep, 

intermediate, shallow) with/without strong current. Their main features are: rare and short-lived 

character of this phenomenon, solitary-like shape or a group of the several waves, high 

nonlinearity, and quasi-plane wave fronts. 

Laboratory experiments provide also a wide variety in the forms of the giant waves (Baldock and 

Swan, 1996; Brown and Jensen, 2001; Clauss, 1999, 2002; Contento et al., 2001; Johannessen 

and Swan, 2001; Stansberg, 2001). Water waves in all experiments are generated mechanically 

with different frequencies and directions.  
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3. Probabilistic Approach 

Due to strong dispersion of the water waves, each individual sine wave travels with a frequency 

dependent velocity, and they can travel along different directions. Due to nonlinearity of the 

water waves, individual sine waves interact each to other generating new spectral components. 

As a result, the wave field gives rise to an irregular sea surface that is constantly changing with 

time. To model irregular wave fields, often a random approach is used: an infinite sum of 

sinusoidal waves with different frequencies and with random phases and amplitudes. In the first 

(linear) approximation, the random wave field can be considered as a stationary random normal 

(Gaussian) process with the probability density distribution, 
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where η is the sea level displacement with zero mean level, < η> = 0, and σ2 is the variance, 

computed from  the frequency spectrum, S(ω) 
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It is clear, that all these formulas are valid for a stationary random process, what does not hold 

true in reality. Especially for freak waves due to the rarity of this event, it is hard to say if this 

process is stochastic or deterministic. Nevertheless, first we will discuss the freak wave 

formation and prediction using the Gaussian statistics. Typically, the wind wave spectrum is 

assumed to be narrow, thus the probability function of the wave heights will be defined through 

the Rayleigh distribution 
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The probability that wave heights will exceed a certain level, H, is given by (3.3). 

In oceanography, the wind wave record is characterized by the significant wave height, Hs, 

which is defined as the average of the higher one-third of wave heights in time series. Using the 

Rayleigh distribution, the significant wave height is (Massel, 1996) 
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( ) σσπ 43ln223lnerfc(23 ≅+=sH ,                                              (3.4) 

 

where erfc(z) is the error function. As a result, the Rayleigh distribution can be rewritten through 

the significant wave height 
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Mathematically, a freak wave characterized by the height, Hf, is determined from 

 

sf HH 2> ,                                                                          (3.6) 

 

and the amplitude criterion is used only. The probability of its formation can be evaluated from 

(3.5), and this dependence is presented in Figure 3.1. According to it, the probability of extreme 

wave formation is no more than P(2Hs) = 0.000336 or one wave among 3000 waves. Taking into 

account that the period of wind-generated waves is close to 10 s, we expect a freak wave event 

each 8 – 9 hours. According to data by Sand et al. (1990), maximum height of freak waves is 

3Hs. The probability of this event is 1.5×10-8, or one wave from 67,000,000 waves. Such a wave 

can appear during a continuous 21-year storm.  
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Figure 3.1. Probability of the freak wave formation 
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Formula (3.6) could be simply interpreted. If we choose a wave with a maximal height Hmax in a 

group of N waves, its probability will be P = 1/N. Substituting it to (3.5), the last one could be 

rewritten as (Massel, 1996) 

 

sHNH
2

ln
max ≅ .                                                                   (3.7) 

 

This dependence is presented in Figure 3.2. From this relation it follows that increasing the 

record length (number of waves) weakly influences the maximal amplitude growing. The 

analysis of the short time record will not give true prediction of abnormal wave formation. Thus 

for more reliable prediction of freak waves it is necessary to consider a large number of waves 

(more then 10000). In context of the water wave theories it means that numerical simulation of 

the freak wave phenomenon should be made on wide numerical domains with large number of 

realizations.  
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Figure 3.2. Relation between maximal wave height and number of waves in a group 

 It is obvious that the rare observed abnormal waves, as any distribution function tails, usually do 

not satisfy the statistical hypothesis the waves properties are based on. First of all, the wind wave 

spectrum is not very narrow as it is assumed for the Rayleigh distribution. The analysis of the 

distribution of the maxima (heights, crest amplitudes, trough depths) even in a Gaussian random 

field is a difficult mathematical task; see for instance, Boccotti (1981), Phillips et al. (1993), 

Boccotti (1997), Azais and Delmas (2002), and papers cited here. The second reason is the wave 
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nonlinearity that leads to non-gaussian distribution functions. For instance, the measurements of 

freak waves in the Japan Sea (Mori et al., 2002) show a difference with the Gaussian 

distribution: the skewness, µ3 = 0.25-0.4, and the kurtosis, µ4 =3.1-3.4. The third one is the 

atmospheric pressure and wind flow above the sea surface; they vary with time, destroying the 

hypothesis of the stationary random process. As a result, the Rayleigh distribution (3.5), 

according to the observed data, over predicts the probabilities of the highest waves (Massel, 

1996; Kokorina & Pelinovsky, 2002). Using the observation data (relatively short) it seems an 

impossible task to estimate the low probability of the abnormal high waves correctly. However 

existing models of water waves may be helpful to understand the physical mechanisms of the 

freak wave phenomenon and to select areas with the highest or lowest values of the rogue wave 

probability depending on hydrological and meterological conditions in such zones. 

4. Linear mechanisms of the rogue wave phenomenon 

In linear theory, the wind wave field can be sought as the sum of a very large number of small-

amplitude independent monochromatic waves with different frequencies and directions of 

propagation. In statistical description, the phases of all monochromatic waves are random and 

distributed uniformly, providing the stationary Gaussian process in average due to the central 

limit theorem. The existence of rare extreme wave events (tails of the distribution function) can 

be interpreted as the local intercrossing of a large number of monochromatic waves with 

appropriate phases and directions (space-time caustics). For unidirectional wave field, the 

enhanced displacement can be achieved when a long wave overtake short waves due to 

frequency dispersion. In real three-dimensional field of water waves, both dispersion and spatial 

(geometrical) focusing can generate localized extreme waves. Suitable physical mechanisms are 

described below. 

4.1. Dispersion enhancement of transient wave groups (spatio-temporal focusing) 

If during the initial moment the short waves with small group velocities are located in front of 

the long waves having large group velocities, then in the phase of development, long waves will 

overtake short waves, and large-amplitude wave can appear at some fixed time owing to the 

superposition of all the waves located at the same place. Afterward, the long waves will be in 

front of the short waves, and the amplitude of wave train will decrease. It is obvious, that a 

significant focusing of the wave energy can occur only if all the quasi-monochromatic groups 

merge at a fixed location. Such an initial specific location of transient wave groups leading to 

freak wave formation may appear in the case of increasing wind due to the resonant character of 
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the wave generation by wind. This scenario can explain why the freak wave phenomenon is a 

rare event with short “life time”. 

To emphasize the dispersive focusing of unidirectional water waves quantitatively, the kinematic 

equation for characteristic wave frequency,ω , can be considered (Whitham, 1974) 

 

∂ω
∂
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c
xgr+ =( ) 0 ,                                                             (4.1) 

 

where the group velocity cgr(ω) = dω/dk is calculated using the dispersion relation of water 

waves 

 

ω = gk khtanh( ) ,                                                              (4.2) 

 

h is water depth and g is the acceleration due to gravity. For the sake of simplicity we assume a 

constant water depth. Multiplying by dcgr/dω the equation (4.1) transforms into the universal 

form (Pelinovsky et al., 2000) 
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having evident physical sense: each spectral wave component propagates with its own group 

velocity. The solution of (4.3) corresponds the simple (Riemann) wave 
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 where c0(x) describes initial distribution of the wave groups with different frequencies (group 

velocities) in space. The form of such a kinematic wave is continuously varied with distance 

(time), and its slope is calculated from (4.4) 
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The case dc0/dξ < 0 (or dc0/dx <0 at t = 0) corresponds to long waves behind short waves; and 

the initial increase of the slope of the kinematic wave up to infinity with following decrease, 
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corresponds to the process of long waves overtaking short waves. The merging of several wave 

groups with different frequencies at the same point and time (wave focusing) appears for time, Tf 

= 1/max(-dc0/dx). It is obvious that several focusing points are possible for arbitrary transient 

wave group. The case, when all wave groups will meet at the same point, x0, for time, Tf, is 

described by the self-similar solution of (4.3) 

 

f
gr Tt

xxc
−
−= 0 .                                                                     (4.6) 

 

Because the group velocity of the water waves varies from (gh)1/2 to zero (if capillary effects are 

neglected), the zone of the variable wave group compresses from (gh)1/2Tf to zero for fixed time, 

Tf. The corresponding variation of the wave frequency (wave number) in the group required for 

optimal focusing can be easily found from (4.6). For instance, for the deep water case (cgr ~1/ω) 

it follows from (4.6) that the paddle in the laboratory tank should generate a wave train with a 

variable frequency, ω ~(t0 – t) necessary to provide the maximum effect (optimal focusing). 

The wave amplitude satisfies the energy balance equation (Whitham, 1974) 
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and its solution is found explicity,  
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where A0(x) is an initial distribution of wave amplitude in space. At each focal point, the wave 

becomes extreme, having infinite amplitude (near the focal point, A ~ (Tf – t)-1/2).  

Taking into account that each realization of wind waves always turns into frequency and 

amplitude modulated wave groups, and that kinematic approach predicts infinite wave height at 

caustics point, the probability of freak wave occurence should be very high. In fact, the situation 

is more complicated. Kinematic approach assumes slow variations of the amplitude and 

frequency (group velocity) along the wave group, and this approximation is not valid in the 

vicinity of the focal points (we will not discuss in this section possible limitations of wave 

amplitude related with nonlinear effects and wave breaking). It is a well-known problem in the 

ray methods, not only for water waves. Generalizations of the kinematic approach in linear 
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theory can be done by using various expressions of the Fourier integral for the wave field near 

the caustics. In a generalized form it was expressed through the Maslov integral representation, 

described in details for water waves by Dobrokhotov (1983), Lavrenov (1998a), Brown (2000, 

2001) and Dobrokhotov & Zhevandrov (2003). For instance, Brown (2001) pointed out the 

relation between the focusing of unidirectional wave field and “canonical” caustics: fold and 

longitudinal cusp. We consider here the simplified form of such a representation for conditions 

of optimal focusing (4.6) and use the standard form of the direct and inverse Fourier 

transformation for water wave displacement, 
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where η0(x) = η(x,0)  is the initial water displacement in unidirectional wave field, and ω is the 

wave frequency satisfying (4.2). First of all, let us re-formulate the physical problem of the freak 

wave formation from “normal wave field” to the mathematical problem of the appearance of 

singularities from smooth initial data. Due to invariance of the Fourier integral to the signs of 

coordinate, x, and time, t, this problem has a link with the mathematical theorem of smooth 

solutions of the Cauchy problem for singular initial data. For water waves the answer is positive, 

and the singular delta-function disturbance (as a model for freak wave) transforms into a smooth 

wave field (Green’s function); it can be described by the asymptotic expression within the 

stationary-phase method 
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where the group velocity, cgr (and also wave frequency and wave number) is calculated from the 

conditions for optimal focusing (4.6) for fixed coordinate, x, and Q is the intensity of the delta-

function. In the vicinity of the leading wave (k → 0) expression (4.11) is not valid (the 

wavelength is comparable to the distance to the source) and should be replaced with  
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derived from (4.9) by using the long-wave approximation of the dispersion relation 
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Here Ai(z) is the Airy-function. As a result, the amplitude of the leading wave decreases as t-1/3, 

and its length increases as t1/3.  

So, the delta-function disturbance evolves in a smooth wave field, and due to invariance with 

respect to coordinate and time, we may say that the initial smooth wave field like (4.11) and 

(4.12) with inverted coordinate and time will form the freak wave of infinite height. These 

solutions demonstrate obviously which wave packets can generate a freak wave in the process of 

wave evolution. Bona & Saut (1993) showed that the singularity (dispersive blowup) can be 

formed in the long-wave approximation from the following continuous function, having the 

finite energy (1/8  < m <1/4) 
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Generally speaking, the singular solutions of the linearized equations have mathematical interest 

only. Integral (4.9) can be calculated for smooth “freak waves” (initial data), for instance for a 

Gaussian pulse with amplitude, A0 and width, K-1, in the long-wave approximation (Pelinovsky 

et al, 2001b) 
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Inverting coordinate and time, this wave packet evolves into a Gaussian pulse (4.15), and then 

again disperses according to (4.16). Figure 4.1 shows the freak wave formation in a dispersive 

wave packet on shallow water. Similar solutions can be found for wave packet with a gaussian 

envelope in deep water (Clauss & Bergmann, 1986; Clauss, 1999; Magnusson et al., 1999) 
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where A0 is the wave train amplitude, Ω0 and ω0 are frequencies of the wave envelope and carrier 

wave respectively. Expression (4.17) describes the evolution of a gaussian impulse from a fixed 

point: x in (4.17) is the distance from this point. Such a situation can be modeled in the 

laboratory tank, see for instance, Clauss & Bergmann, 1986; Clauss, 1999. 
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Figure 4.1. Formation of the freak wave of Gaussian form in shallow water 

Exact solutions can be used for seakeeping tests or simulations of design of storm waves in 

ocean engineering. It is evident that in the framework of the linear theory it is easy to make a 
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freak wave of any form: symmetric crest, hole in the sea, wave having a steeper forward face 

preceded by a deep trough (such form is used in some descriptions of the freak waves; see for 

instance, Lavrenov, 1998a,b). 

It is important to emphasize that the dispersive focusing is the result of the phase coherence of 

spectral components of the wave groups, and it cannot be obtained in the framework of the 

models (like kinetic equations) where the wave field is the superposition of Fourier components 

with random phases. 

4.2. Spatial (geometrical) focusing of water waves 

Considering two horizontal coordinates, x and y, wave frequency and wave vector should satisfy 

the generalized kinematic equations (4.1); see Whitham (1974)  
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following from the definitions of the frequency and wave vector 
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where θ is the phase of quasi-monochromatic wave: η = A(x,y,t)exp(iθ(x,y,t)). These equations 

can be rewritten in the characteristic form 
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where the wave frequency, ω, satisfies the dispersion relation (4.2) with variable depth and r  = 

(x,y). There are well-known equations of the ray theory written in Hamiltonian form. The 

specificity of the water waves lies in the dispersion relation (4.2); see for instance, Mei (1993). If 

the bottom topography is stationary, the ray pattern is stationary too and determined by both the 

spatial variability of the bottom and the initial front locations. It is obvious that bottom 

topography is important mainly for long waves, in this case the ray pattern does not depend on 

the frequency.  
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One of the trivial examples of the ray calculations is the basin of constant depth, when all rays 

are straight lines 

 

)(tan 00 xxyy −⋅=− φ ,                                                          (4.21) 

 

where the initial location of the ray corresponds to coordinates, x0, y0, and its slope to angle φ. 

Generally, the rays are not parallel lines, forming a complex pattern with many intercrossing 

(caustics and focuses). Another example is the parabolic bottom topography, h(x) = h0(x/x0)2, 

when the rays are arcs of circle 
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with the center on the coastal line. For real bottom topography the ray pattern is more 

complicated as described by Figure 4.2, where the rays are calculated for the Japan (East) Sea 

from isotropic source (Choi et al., 2002). The ray theory in physics is very well developed; the 

classification of the caustics for water waves has been done, for instance, by Brown (2001). 

Wave amplitude can be calculated from the 2D version of the energy balance equation 
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which transforms into the energy flux conservation along the ray tube (Mei, 1983; Brown, 2000) 

 

const2 =ΛAcgr .                                                                      (4.24) 

 

Here Λ is the differential width of the ray defined as the distance between neighbour rays. At any 

focal point, Λ = 0, and, therefore, wave amplitude becomes infinite (extreme wave event). 

In fact, the situation is more complicated because the energy balance equation (4.23) is no more 

valid in the vicinity of the caustics due to the fast variation of the wave parameters. Detailed 

description of the wave field in the caustics vicinity can be done by using the asymptotic Maslov 

representation (Peregrine & Smith, 1979; Lavrenov, 1998a; Brown, 2000, 2001) or exact 

solutions for some test cases. If for instance, h=h(x) only, the shallow water wave is described by 

the ordinary differential equation 

 



 18 

[ ] 0)()( 22 =−+



 ηωη

ykxgh
dx
dxh

dx
dg ,                                           (4.25) 

 

where the wave is assumed to be monochromatic with frequency, ω, and wave number, ky in y-

direction. Caustics location can be found from (4.25) when the second bracket vanishes; let h = 

hc at x=0. In the vicinity of caustics, the simplified expansion for depth is h(x) = hc(1+x/L). 

 
Figure 4.2. The ray pattern calculated from isotropic source in the Japan Sea 

Thus, equation (4.25) in the vicinity of this point has the form of the Airy equation 

 

0
2

2

2

=− ηη x
L
k

dx
d y ,                                                                (4.26) 

 

and its solution is described by the Airy function 
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As a result, the wave field is bounded on the caustics. Using asymptotic expression for the Airy 

function far from the caustics, the constant in (4.27) can be determined through the amplitude of 

the incident wave, A0, and therefore, the wave amplification on the caustics is 
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A
A ,                                                             (4.28) 

 

and it is relatively weak for long waves. It is important to conclude from the asymptotics of the 

test solution (4.27) that the amplitude of the wave reflected from caustics is that of the incident 

wave, but the phase contains the term π/4 with the opposite sign. As a result, the phase shift 

between reflected and incident waves is proportional to π/2 and this is fundamental for 

investigation of the solitary-like wave transformation on the caustics (additional term 

proportional to the travel time can be cancelled by changing time). Such a phase shift that is 

equivalent to Hilbert transformation, radically changes the wave shape (Pelinovsky, 1996). So, 

the spatial focusing produces not only a wave amplification, but also a change of the wave shape. 

Additionally, the wave dispersion leads to different locations of the caustics of spectral wave 

components and different spectral widths. 

The behavior of the rays in basins with real topography is very complicated; see for example 

Figure 4.2. As a result, many caustics are formed in real wave fields. The general theory of the 

caustics is described by Arnold (1990). Very often the ray pattern can be considered as random. 

The statistical characteristics of the caustics in random media are investigated by Klyatskin 

(1993). Chaotic ray patterns may appear in deterministic medium also because the rays are 

described by nonlinear system of second order with variable coefficients (4.20). Such a system 

may have statistical behavior for specific conditions when the wave can be trapped (Abdullaev, 

1991; Pelinovsky, 1996). 

Formally, the caustics of monochromatic wave fields in basins with stationary bottom 

topography exist for infinite long time.  In fact, a variable wind generates complex and variable 

structures of rays in storm areas, playing the role of initial conditions for the system (4.20). It is 

evident that caustics are very sensitive to the small variation of the initial conditions, and as a 

result, the caustics and focuses appear and disappear at  “random” points and “random” times, 

providing rare and short-lived character of the freak wave phenomenon. 

We would like to point out also that waves can be trapped in coastal zones. Such waves are 

dispersive even in the long-wave approximation, and they may give a spatial-temporal focus 

(Kurkin & Pelinovsky, 2002). 
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4.3. Wave-current interaction as a mechanism of freak waves 

Noting that rogue waves were observed very often in such strong currents as Gulf Stream and 

Agulhas Current, the problem of the wave-current interaction requires a special investigation 

(Peregrine, 1976; Lavrenov, 1998a,b; White & Fornberg, 1998; Brown, 2000, 2001). Formally, 

the ray pattern is described again by the system (4.20) where the dispersion relation should be 

corrected. Considering the deep water waves case, the dispersion relation for waves on a steady 

current becomes anisotropic, see Figure 4.3 for unidirectional wave propagation 
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Even in one-dimensional case, with Ux(x) only, the wave-current interaction is not trivial. When 

the current is opposite to incident monochromatic wave, it blocks the wave at the point, x0, where 

the group velocity (in non-moving system of coordinates) is zero, 
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Figure 4.3. Dispersion relation for unidirectional wave propagation 

Wave approaching the blocking point has the phase and group velocities of the same sign, after 

reflection from the blocking point the group velocity has a sign opposite to that of the phase 
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velocity; see Figure 4.3. The wave number increases in the process of interaction, and an initial 

long wave transforms to a short wave. The wave amplitude can be found from the wave action 

balance equation  
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generalizing the energy balance equation (4.23) for waves on current. For steady currents, (4.31) 

transforms into the wave action flux 

 

const/2 =ΩΛAcgr .                                                               (4.32) 

 

where  Λ as previously is the differential width of the ray tube. For the case of unidirectional 

wave propagation, the blocking point, characterized by zero group velocity (4.30) plays the role 

of caustics and here the wave amplitude formally tends to infinity. In fact, equation (4.31) is not 

valid in the vicinity of the caustics, and more accurate asymptotic analysis using the Maslov 

representation is needed to give the following expression for the wave field (Peregrine and 

Smith, 1979; Lavrenov, 1998a) generalizing (4.27) 
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where k* is the value of the wave number at the blocking point determined by (4.30) and ∂U/∂x is 

calculated at the same point. As a result, wave amplitude at the blocking point is bounded; 

compare with (4.28) 
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Reflection of oblique wave by currents was recently studied analytically by Shyu & Tung 

(1999). A more general approach takes into account two-horizontal coordinates and real profiles 

of transverse shear currents for the complex ray pattern with generation of “normal” caustics 

when the differential width is zero (Λ = 0), and specific “current” caustics when cgr = 0. 

Lavrenov (1998a,b) calculated the ray pattern in the vicinity of the Agulhas Current for one 
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event of freak wave occurence and showed that it contains focus points where the wave energy 

concentrates. White and Fornberg (1998) took into account the weak randomness of the current 

and showed that the distribution of the focus points tends to the universal curve. These 

calculations demonstrate that variable currents can lead to the formation of rogue waves and the 

authors of the above cited papers assume that wave-current interaction is the major mechanism 

of the rogue wave phenomenon in deep water. The short-lived character of the freak waves on 

current can be provided by time variation of the current and wind. 

It is important to mention that caustics in the wave field on the current are mainly dispersive, and 

this should influence significantly the solitary-like pulse propagation. 

4.4. Atmospheric forcing 

Caustics described above appear in the process of the free wave evolution. An interaction of 

water waves with atmosphere, as it is known, can be described mainly by two mechanisms: 

through fluctuations of the atmospheric pressure (Phillips mechanism) and through interaction 

with unstable fluctuations of the shear wind flow (Miles mechanism). In general, both 

mechanisms can be parameterized in the energy balance equation by the terms, like qph + qmiA2, 

where qph and qmi are prescribed in the framework of the linear theory of the wind wave 

generation. Atmospheric forcing increases the wave energy and its variability in space and time. 

Characteristic scales here are large enough (many wavelengths) due to weak interaction between 

wind flow and waves. Therefore, atmospheric forcing cannot change radically the ratio of the 

wave energy inside/outside the focus points. More importantly is that atmospheric forcing in 

storm areas determines the initial location of the wind wave directions variable with time. The 

ray pattern in space is very sensitive to the weak variation of initial locations of the wave rays, 

providing “unpredictability” in appearance and disappearance of the focus points.  Mallory 

(1974) pointed out that according to observations, the rogue waves in the Agulhas Current 

frequently occur when the increased wind of north-east direction is appeared several hours 

before the event, and the wind changes its direction from north-east to south-east for 4 hours (see 

also, Lavrenov, 1998). The first factor (increasing of the wind flow) plays an important role in 

the mechanism of the dispersive focusing. The second one provides also the variation of the 

spatial focusing. Lavrenov (1998a,b) calculated the ray pattern for wind and wave conditions 

during one freak wave event and found the distribution of the focus points in the Agulhas 

Current due to the wave-guide formation. This distribution corresponds roughly to the typical 

locations of the observed freak waves. 
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It is important also to mention that the wind flow generates generally random wave field. Due to 

the random orientation of the wave directions and frequency dispersion, the random caustics 

have to appear and disappear. But their intensity (wave energy) cannot be high, because a 

random number (not too large) of wave groups meet in caustics. As a result, most of the caustics 

in random wave fields cannot be identified with freak waves. Only if optimal conditions are 

fullfilled (strong temporal and spatial coherence in the wave field), the wave amplitude on the 

caustics exceeds twice the significant wave height (amplitude criterion for freak wave event). It 

explains why the probability of the rogue wave appearance is lower than the probability of the 

focus point appearance. Random and coherent wave components do not interact in the 

framework of the linear theory; therefore, the weak coherent “optimal” component can transform 

into the freak wave on the background of strong random field. 

5. Nonlinear theories of rogue wave occurrence 

From linear theories one may conclude that the main mechanisms of rogue wave phenomenon 

are related with wave focusing of frequency modulated wave groups (dispersive and geometrical 

focusing), and with blocking effect of spectral components on opposite currents. Both 

mechanisms are very sensitive to the spectrum width of the wind wave field. In particular, the 

focusing mechanism requires a wide energetic spectrum with a specific phase distribution; 

meanwhile the wave-current mechanism is effective when the spectrum is very narrow. 

Nonlinearity may destroy the phase coherence between spectral components, “washing out” 

caustics and focuses that decreases the amplitude of extreme waves (nonlinear effects on waves 

near caustics have ben studied by Peregrine and Smith, 1979; Peregrine, 1983a). The second 

important ingredient is the role of randomness of the wind wave field that also acts on the phase 

coherence of “deterministic transient” waves (in linear theory, deterministic and random 

components propagate independently). And third, nonlinearity may produces instability of the 

wave field leading to formation of anomalous high waves. All these aspects will be analyzed 

here mainly in the weakly nonlinear limit. 

5.1. Weakly nonlinear “rogue” wave packets in deep and intermediate 

depths  

Simplified nonlinear model of 2D quasi-periodic deep-water wave trains in the lowest order in 

wave steepness and spectral width is based on the nonlinear Schrödinger equation 

 



 24 

AAk
x
A

kx
Ac

t
Ai gr

2
2
00

2

2

2
0

0 ||
28

ωω +
∂
∂=







∂
∂+

∂
∂ ,                                   (5.1) 

 

where the surface elevation, η(x,t) is given by 
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k0 and ω0 are the wave number and frequency of the carrier wave, c.c. denotes the complex 

conjugate, and (…) determine the weak highest harmonics of the carrier wave. The complex 

wave amplitude, A, is a slowly varying function of x and t.  

The nonlinear Schrödinger equation that was derived about 40 years ago plays an important role 

in the understanding of nonlinear dynamics of water waves. It is well-known that a uniform train 

of amplitude A0 is unstable to the Benjamin– Feir instability (BF instability or modulational 

instability) corresponding to long disturbances of wave number, ∆k, of the wave envelope 

satisfying the following relation  
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The maximum instability occurs at ∆k/k0 = 2k0A0, with the maximum growth rate equal to 

ω0(k0A0)2/2. The nonlinear stage of the BF instability was deeply investigated analytically, 

numerically and experimentally. Figure 5.1 illustrates the formation of high-energetic wave 

group in slowly modulated wave train due to the BF instability simulated numerically 

(Pelinovsky et al., 2001a). Wave groups appear and disappear for characteristic timescale of 

order 1/[ω0(k0A0)2]. Such a behavior can be due to the excitation of breather solutions of the 

nonlinear Schrödinger equations (Peregrine, 1983b; Henderson et al., 1999; Dysthe & Trulsen, 

1999; Osborne et al., 2000). One of the breather solutions (a singular breather on an infinite 

domain) corresponds to the so-called algebraic breather (in the system of coordinates moving 

with the group velocity) 
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This algebraic breather is shown in Figure 5.2. The maximal height of this wave (from trough to 

crest) exceeds 3. Also breather solutions can be periodic in time (Ma-breather) and in space 

(Akhmediev breather); see for instance, Dysthe & Trulsen (1999) and Osborne et al. (2000). All 

such solutions can be considered as simple analytical models of freak waves (in fact, it is a group 

of huge waves in the framework of the nonlinear Schrödinger equation) because they satisfy the 

amplitude criterion (3.6) for the height of rogue waves. Breather solutions describe simplified 

dynamics of modulationally unstable wave packets. Osborne et al., (2001) and Calini & Schober 

(2002) gave more detailed analysis of rogue waves event during the nonlinear stage of 

modulational instability by using the inverse scattering approach (so-called homoclinic orbits).  
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Figure 5.1. Snapshot of the evolution of weakly modulated wave train (numbers – time 
normalized by the fundamental wave period) 

 

So, the nonlinear instability of a weakly modulated wave train in deep water may generate short-

lived anomalous high waves, and this is a new mechanism at the origin of the rogue wave 

phenomenon different in principle of all mechanisms presented in section 4. 
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Figure 5.2. Algebraic breather as a model of abnormal wave in a time periodic wave train 

If the modulation of the periodic wave train is not weak, the wave spectrum may present many 

harmonics contained in a relatively narrow band for applicability of the nonlinear Schrödinger 

equation. In this case, the wave is assumed to be the superposition of different spectral 

components propagating with different velocities depending on the wave number and the wave 

amplitude as well. As a result, the focusing process is possible for specific phase relations 

between harmonics. Formally, this process can be analyzed by using the generalized kinematic 

equations (4.1) and (4.7) with the dispersion relation of water waves depending on the wave 

amplitude, but this system is elliptic (Lighthill, 1965) and does not provide simple interpretation 

in terms of caustics as hyperbolic systems. Due to invariance of the nonlinear Schrödinger 

equation with respect to the sign of the coordinate and time (changing A with its complex 

conjugate A*) we may again consider the Cauchy problem for (5.1) with singular initial data, like 

the delta-function. Using the inverse scattering method, it can be shown (Satsuma, 1974; Kharif 

et al., 2001) that the delta function evolves in a smooth solution corresponding to a dispersive 

train and a set of solitons (if the intensity of delta function is large enough). It means that 

inverted smooth wave field will generate the delta function in the process of its evolution and 

then again will disperse. These simple arguments show that wave field may focus in the 

nonlinear case also, but specific conditions between phase (and amplitudes) of the dispersive 

trains and solitons should be provided. Figure 5.3 describes numerical simulations of the 

focusing of an initial wave train with weak amplitude modulation (as in Figure 5.1) and phase 

modulation - chirp (exp(iβx2)), which is optimal for linear focusing (Kharif et al., 2001; 
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Pelinovsky et al., 2001a). Some analytical solutions of the nonlinear Schrödinger equation for 

initial wave packets with chirp were obtained by Calini & Schober (2002). 

For random disturbances the situation is more complicated. First of all, as Alber (1978) pointed 

out randomness increases the stability of the wave packet, reducing the modulation instability.  If 

the wave process can be represented by nearly Gaussian random functions with characteristics 

spectrum width, ∆k and characteristic amplitude, A0 defined as 2(<η2>)1/2, the wave field is 

stable when 
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Figure 5.3. Snapshot of the evolution of wave packet with chirp train (numbers – time 
normalized by the fundamental wave period) 

 

It is almost the same as for deterministic side-band disturbances; see (5.3). Dysthe et al. (2003) 

performed the numerical simulation of the nonlinear Schrödinger equation (5.1) with random 

initial profiles of Gaussian shape. The spectrum broadens symmetrically with time until it 

reaches a quasi-steady width. If the initial parameters of the wave field satisfy (5.5) and 

correspond to the stable case, they do not change in the process of the averaged wave field 
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evolution. If the wave field is initially unstable, its spectrum becomes wide, reducing the 

instability. The final parameters of the averaged wave field again satisfy (5.5). So in average, the 

modulational instability is a factor of relaxation in a random wave field transforming its 

spectrum so that the condition (5.5) is satisfied.  

In situ, wind wave realizations being uniform in average must contain both almost uniform wave 

trains and frequency modulated wave packets. Therefore, freak wave events can appear as the 

result of modulational instability and focusing. Using the JONSWAP spectrum Onorato et al 

(2001) performed numerical experiments to investigate freak wave generation and its statistics. 

In particular, it was shown that if the spectrum is narrow (increasing value of the “enhancement” 

coefficient in the JONSWAP spectrum) the probability of the rogue wave occurence is increased. 

This increase can be explained by the effect of the modulational instability in addition to the 

wave focusing. 

The nonlinear Schrodinger equation can be derived for basins of arbitrary depth. For finite depth, 

the coefficients of (5.1) are function of kh, where h is water depth. For 2D water wave fields, 

modulational instability occurs only for kh > 1.363. On shallow water uniform wave trains are 

stable and only the focusing mechanism can be suggested for explanation of the rogue wave 

phenomenon. Due to weak dispersion on shallow water, the coherence between spectral 

components becomes strong, leading to the formation of solitons and quasi-shock waves. This 

requires an another model than the nonlinear Schrödinger equation and will be described in next 

section. 

For 3D wave trains the 2D nonlinear Schrödinger equation is 
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It is important to note that the 2D nonlinear Schrödinger equation is principally anisotropic, and 

modulations of wave packets in the longitudinal and transversal directions behave differently, in 

particular modulations in the transverse direction are stable. The domain of the BF instability 

(modulation) of the Stokes wave of amplitude A0 can be found very easily; see for instance, Dias 

and Kharif (1999), it (dashed area) is shown in Figure 5.4 (normalized by (2)3/2k2A0) 
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The most important observation is that the instability region is unbounded in the perturbation 

wave vector plane. 
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 Figure 5.4. Diagram of instability of the 3D Benjamin–Feir instability in the plane of wave numbers  

 

Therefore, one can expect that both mechanisms of rogue wave generation, modulational 

instability and wave focusing, should work for 3D wave trains in the deep water. The wave 

focusing in horizontal plane may be observed as dispersive focusing (due to wave dispersion), as 

well as geometrical focusing (due to different directions of wave propagation). Thus, the 

mechanism of rogue wave generation is richer for 3D water waves. 

Figure 5.5 describes the development of the modulational instability for weak amplitude 

modulation (10%) of the periodic wave train (∆kx/k =∆ky/k = 0.3); for more details see Slunyaev 

et al., 2002. In the first stage a quasi one-dimensional wave crest grows (ωt ≈ 2.5). Then the 

transverse modulation becomes important (ωt ≈ 3) leading first to the formation of several 

isolated peaks (ωt ≈ 3.8) followed by the merging of four peaks whose coupling gives rise to the 

giant wave (ωt ≈ 4.1), depicted in Figure 5.6. Its amplitude exceeds 7 times that of the initial 

wave! In numerical experiments by Onorato et al. (2000) the rogue wave height reached the 

value 42 m (the maximum crest of 29 m is accompanied by a minimum 13 m deep), the 

wavelength and steepness are about 450 m and 0.33 respectively. 
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The phenomenon of large-amplitude wave formation is very sensitive to random components of 

the wave field. The maximum wave height is reduced by 15%, if the noise component has an 

amplitude equal to 1% of the deterministic perturbation and a spectral width 5 times wider 

(Slunyaev et al., 2002). It corresponds to the theoretical result by Alber (1978) that a random 

field tends to restabilize an almost uniform wave train. Nevertheless, our experiments showed 

that the randomness does not destroy the BF instability growth at all. Recently, Dysthe et al. 

(2003) obtained the same result from direct numerical simulations of the evolution of a narrow-

banded spectrum of random waves within the framework of the 2D nonlinear Schrödinger 

equation.  

To compare with modulational instability, a similar simulation was performed for dispersive 

focusing showing how robust to random wave field intensity is the latter mechanism. Figure 5.7 

describes a rogue wave event from a random wave filed whose characteristic amplitude is 5 

times greater than the amplitude of deterministic frequency modulated wave train (Slunyaev et 

al., 2002).  

 

 
Figure 5.5. Evolution of the 3D Benjamin–Feir instability for weakly modulated wave train 
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Figure 5.6. Giant wave due to 3D Benjamin – Feir instability 

     
Figure 5.7. Formation of a huge wave from 3D random field 

For finite depths the effect the mean flow generated by modulated waves becomes important, 

and the weakly nonlinear and weakly modulated 3D wave trains in water of finite depth may be 

described by the Davey–Stewartson system in dimensionless form 
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Cgr and cph are group and phase velocities, and the surface elevation is given by 
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The mean flow induced by wave train is described by a function, p. The coefficients N1 and N2 

are nonlinear coefficients, D1 and D2 are the coefficients of longitudinal and transverse 

dispersion. All the coefficients of the system (5.8) depend on the parameter kh only. For 2D 

waves the Davey–Stewartson system reduces to the nonlinear Schrodinger equation (5.1), 

focused for deep water and defocused for shallow water. For 3D waves in deep water the mean 

flow is negligible, and the Davey–Stewartson system reduces to the 2D nonlinear Schrodinger 

equation (5.6). For shallow water, the Davey–Stewartson reduces to the integrable system 

(Anker & Freeman, 1978). 

The main feature of 3D behaviour of water waves is the existence of the BF instability for any 

water depth. Figure 5.8 displays the areas of instability (white) in wave number plane of the 

envelope for various values of kh. In general, unstable disturbances propagate obliquely to the 

direction of the carrier wave. When the depth decreases, the instability area becomes narrow and 

its increment decreases. Therefore, both mechanisms of rogue wave phenomenon (modulational 

instability and wave focusing) should work for 3D wave train in shallow water and intermediate 

depths. A detailed analysis of rogue wave scenarios in the framework of the Davey-Stewartson 

system can be found in Slunyaev et al. (2002). 
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Figure 5.8. Stability diagrams in the plane of envelope wave numbers 

5.2. Extended nonlinear models of extreme wave packets 

The rogue wave phenomenon was discussed above in the framework of weakly nonlinear 

models. In fact, rogue waves have large amplitudes and short duration, so the approximations of 

weak nonlinearity and narrow-banded spectrum do not correspond exactly to real data. For 

instance, the nonlinear Schrödinger equation (and the Davey–Stewartson system) is symmetrical 

with respect to the coordinates and this leads to symmetrical waveforms in the evolution process 

(if it was initially symmetrical). Laboratory experiments show the asymmetry of the wave 

envelope for large amplitudes; see, for instance, Shemer et al. (1998). Weakly nonlinear models 

predict also incorrect values for the BF instability for short-scale modulation with regard to fully 

nonlinear computations given by Longuet-Higgins (see Dysthe, 1979). It means that the wave 

cannot be considered as a weakly nonlinear wave if its steepness is approximately greater than 

0.1. For deep water, Dysthe (1979) derived a modified nonlinear Schrödinger equation to fourth 

order in wave steepness. One of the main results at this order is precisely the influence of the 

wave-induced mean flow. This equation is called now the Dysthe equation. Spatial versions of 

the 2D Dysthe equation are discussed by Lo & Mei (1985) and Kit & Shemer (2002). 

Modifications of the nonlinear Schrödinger equation result in significant reducing of the BF 

instability region, and the Stokes wave will be stable with respect to short-scale disturbances 

according to the predictions of rigorous theories. Modified nonlinear Schrödinger equations 
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describe better the data of laboratory experiments (Shemer et al., 1998; Ablowitz et al., 2000, 

2001).  

Later, Trulsen and Dysthe (1996) extended the Dysthe equation by including higher-order linear 

dispersive terms (up to the fifth derivative of the wave amplitude) describing broader bandwidth 

water waves. Trulsen et al. (2000) noticing the importance of linear dispersion improved the 

Dysthe equation with exact linear dispersion. For numerical simulations of ocean waves, one 

must emphasize that this model does not suffer from energy leakage. The extended Dysthe 

equation is written as follows 
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where Φ(x,z,t) is the induced mean flow satisfying the Laplace equation 
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with the boundary conditions on sea surface (z = 0) 
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it vanishes far from the sea surface (in deep water). The pseudo-differential operator L can be 

obtained from the Fourier integral with the kernel ω(k) - ω(k0), it is 

 

iiiL yxyx −∂−∂−=∂∂ 4/122 ])1[(),( .                                              (5.13) 

 

Additional terms to the nonlinear Schrodinger equation transform initial Gaussian shape of the 

spectrum in asymmetric profile with a steepening of the low-frequency side providing a 

downshift of the spectral peak (Dysthe et al., 2003). The new principal result here is the chaotic 

dynamics of the wave field even for regular initial data (Ablowitz et al., 2000; Ablowitz et al., 

2001; Calini and Schober, 2002); so rogue waves appear and disappear randomly (the same 

effect is also observed in discrete computed models of the nonlinear Schrödinger equation, see 

Herbst and Ablowitz, 1989; Ablowitz et al., 1993). Trulsen (2001) used the extended Dysthe 

equation to simulate numerically the “New Year Wave” event described in section 2. 
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The 2D Dysthe equation and its extensions were used to analyze random wave field evolutions. 

As a result, an anisotropy in the wave field behaviour is predicted. In particular, the spectrum 

develops asymmetrically with a downshift of the spectral peak and an angular widening; 

equilibrium interval, k-2.5 is observed (Dysthe et al., 2003). The wave process is Gaussian in 

average only; its kurtosis oscillates around 3 (value for Gaussian distribution function), 

sometimes becoming very high (Onorato et al., 2002). Large values of the kurtosis correspond to 

large tails of the distribution function, providing higher probability of freak wave occurrence. 

A more general model for fully linear dispersive and weakly nonlinear waves is based on the 

Zakharov equation (1968), which can give more accurate expressions for nonlinear dispersive 

terms. Using the Hamiltonian formalism, Zakharov (1968) derived the appropriated integral 

equations for water wave field. Firstly, the standard potential equations of the motion are 

transformed as follows 

 

)(
)(

* kb
H

t
kbi !

!

δ
δ=

∂
∂ ,                                                          (5.14) 

 

where b( k
"

) is the complex amplitude and H(b, b*) is the Hamiltonian. The asterisk means 

complex conjugate. In the spectral space the complex Fourier amplitudes b( k
"

) are expressed by 

means of integral power series in Fourier amplitudes of the elevation of the free surface and the 

velocity potential at the free surface. Then the Hamiltonian H is developed in terms of an integral 

power series in the complex amplitudes b( k
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Hn are of power n in b( k
"

) responsible of nonlinear effects (for deep water). By taking into 

account H4 and H5 in the truncated Hamiltonian we arrive at the so-called five-wave reduced 

Zakharov equations derived by Krasitskii (1994) 
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where b0 = b( k
!

), bj = b( jk
!

), ω0 = ω( k
!

), V and W are functions of wave vectors: k
!

, 1k
!

 and so 

on, δ is the Kroneker symbol. Kernels V and W are satisfying symmetry conditions. This 

equation describes four-wave and five-wave resonant interactions. Stiassnie and Shemer (1984) 

extended the derivation, including five-wave interaction, to water waves on finite depth. Note 

nevertheless that their kernels lacked these symmetry properties. Within the framework of four-

wave interaction, equation (5.16) reduces to the nonlinear Schrödinger equation under the 

assumption of narrow-banded gravity waves. In finite depth one can recover the Davey–

Stewartson system. While the Zakharov equation is the most sophisticated approximate model 

for the spatio–temporal evolution of water waves it has not the ease of use of the nonlinear 

Schrödinger equation. Note also that the spatial version of the Zakharov equation (Shemer et al., 

2001, 2002) is very convenient for the processing of water wave experiments in 2D wave tanks. 

Annenkov & Badulin (2001) selected in the frequency spectrum of a 20 minutes wave (New 

Year Wave) recording at the ‘Draupner’ platform (it is shown in Figure 2.3), the specific 

component peculiar to five-wave interactions. This component corresponds to class II 

instabilities phase-locked to the dominant component of the spectrum. Physically this instability 

is known to generate water wave horseshoe patterns frequently observed on the sea surface. 

More details can be found in the review paper of Dias and Kharif (1999). In order to have a 

better understanding of the role of this kind of resonance in the formation of rogue waves 

Annekov & Badulin (2001) performed numerical simulations of equation (5.16) in which 

modulational and five-wave interactions are both taken into account. They showed that 

cooperative effects of these interactions may be responsible for the occurrence of rogue waves 

and emphasize the role of oblique waves in this process. 

The Zakharov equation should be a powerful model to study the formation of rogue waves, 

which are not due only to modulational instabilities. The paper by Annekov and Badulin (2001) 

seems to be a first tentative in this direction, where the authors apply this equation to investigate 

rogue waves. 

5.3. Weakly nonlinear rogue waves in shallow water 

For shallow water the ratio of nonlinearity to dispersion is usually high and the generation of the 

highest harmonics become more effective. The approximation of the modulated quasi-

monochromatic wave used in previous section is valid only for very weak waves. The simplified 

model of 2D unidirectional waves in the shallow water taking into account weak nonlinearity 

and dispersion is the Korteweg – de Vries equation 
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where c = (gh)1/2 is long wave speed. Derived in 1895 this equation was the first to exhibit exact 

solutions of the Cauchy problem by using the inverse scattering approach. The solutions of 

(5.17) are stable (see Figure 5.8 for comparison), and, therefore, the nonlinear mechanism of the 

rogue wave formation due to modulation instability does not “work” in shallow water. If the 

initial wave field presents weakly modulated wave train, its form is modified in the process of 

the wave evolution, but the wave amplitude does not vary significantly (Kit et al., 2000). Thus, 

the rogue wave can appear only due to focusing mechanism.  

To demonstrate the nonlinear – dispersive focusing, the solution of the Cauchy problem for 

initial singular data (delta-function) can be used. According to the exact solution, the delta – 

function evolves into the solitary wave (soliton) and oscillating dispersive tail located in space 

according to the values of the speed of each component (the soliton moves with a larger speed 

and is in front of the wave train). Due to invariance of the Korteweg – de Vries equation with 

respect to the reversal of time and coordinate, this wave field inverted in space should transform 

into the initial disturbance at fixed time, and then again transforms into a soliton and a dispersive 

tail. It means that there is no principal limitation for the formation of abnormal waves of large 

amplitude. Therefore, the wave focusing mechanism is applicable in nonlinear case also but the 

wave field structure is more complicated, including solitons and amplitude-frequency modulated 

wave packets. This process was investigated in details in papers (Pelinovsky et al., 2000; Kharif 

et al., 2000) and shown in Figure 5.9 (in the system of coordinates moving with the speed, c). 

The value of the peak of the wave field in the domain increases rapidly and then rapidly 

decreases (Figure 5.10), and this explains the rare and “short-lived” character of the freak wave. 

It is important to mention that the freak wave in the framework of the Korteweg – de Vries 

equation is due mainly to frequency modulated dispersive wave train, not by solitons. Solitary 

waves do not attract to each other in the process of their interaction and cannot focus in a single 

point. Moreover, from the direct solution of the Cauchy problem it follows that initial large 

positive pulse will evolve in a small-amplitude wave field (involving solitons), only if the 

effective Ursell number of the initial disturbance (Ur = A0λ0/h3) is small enough (Pelinovsky et 

al., 2000). For opposite case, generated solitons will have large amplitudes compared with initial 

amplitude, and the amplitude criterion for the freak wave event will not be satisfied. It means 

that the freak wave on shallow water is an almost linear wave in spite of its large amplitude. If 

the initial disturbance is negative (the hole on sea surface), it evolves into damped wave train 

only (with no solitons), and there is no limitation on the Ursell number of negative freak wave. 
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Solutions of periodic problems for the Korteweg–de Vries equation are more complicated. First 

of all, the singular solution (called positon) should be mentioned (Matveev, 2002) 
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are determined by the one parameter, κ. The positon has the same behaviour that the soliton: 

elastic collision, shape conservation and so on. A positon solution as a function of x has a 

second-order pole and, therefore, has an infinite energy. Such solutions cannot be realized 

physically. They show moreover a tendency of smooth solutions of the Korteweg–de Vries 

equation to be close to waves with very high peaks. As Matveev (2002) pointed out, the proper 

nonsingular regularization is presumably provided by finite-gap quasi-periodic solutions of the 

Korteweg–de Vries equation corresponding to spectra with very narrow forbidden zones and 

very narrow spectral bands between these zones in associated spectral problem. 

The detailed analysis of the periodic solutions of the Korteweg–de Vries equation expressed 

through the theta-functions is given in series of papers by Osborne and co-authors; see for 

instance, Osborne, 1995, and Osborne et al., 1998. His approach can be called the nonlinear 

Fourier method: the solution of the Korteweg–de Vries equation is represented by a linear 

superposition of nonlinear oscillatory modes (multi quasi-cnoidal waves) in the associated 

spectral problem. The number of such modes is not too large as in the classic Fourier method, 

and this leads to an effective analysis of the wave field (including random sea state) and 

selection of soliton components. The freak wave in this approach is the superposition of these 

modes with suitable phases. Numerical experiments with linear superposition of strong random 

and weak frequency modulated deterministic components were performed by Pelinovsky et al. 

(2000). Figure 5.11 displays the formation of the freak wave from this quasi-random state. 
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Figure 5.9. Freak wave formation in shallow water 
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Figure 5.10. Maximum wave amplitude versus time in the process of the freak wave formation 
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The present analysis shows that the wave focusing should be the main mechanism of the rogue 

waves in shallow water. But recently, Onorato et al. (2003), studying the nonlinear interactions 

of waves with a doubled-peaked power spectrum in shallow water, derived the coupled nonlinear 

Schrödinger equations and showed that uniform wave train can be unstable to small 

perturbations. It means that in the case of doubled-peaked spectrum the modulational instability 

will lead to the freak wave formation as for deep water, but this process has not yet been 

investigated. 
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Figure 5.11. Freak wave formation from a random field 

 

The 3D wave field in shallow water contains solitons and wave trains propagating in different 

directions. The soliton behaviour in space has the non-trivial feature of the resonant interaction 

as for periodic waves. To demonstrate this the weakly two-dimensional analogue of the 

Korteweg–de Vries equation can be considered, it is famous Kadomtsev–Petviashvili equation 
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The equation (5.19) is integrable as the Korteweg – de Vries and nonlinear Schrödinger 

equations. In particular, the two-soliton solution can be written explicitly (in the system of 

coordinates moving with long-wave speed), see Satsuma (1976), Onkuma & Wadati (1983) and 

Pelinovsky (1996) 
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One interesting example of the applicability of the two-soliton solution (5.20) is the analysis of 

oblique soliton approaching to a vertical wall (y = 0). The boundary conditions on the wall is 

satisfied automatically, if the soliton amplitudes (proportional to k) and speeds (V) are equal, and 

p1 = - p2 (full analogue of the Snell law for reflection of oblique waves). Omitting the 

mathematical manipulations, the wave height on the wall is expressed as 

 

θ2
00

tan4
311

4

h
HH

H

−+
=  ,                                                              (5.21) 

 

where H0 is the amplitude of the incident soliton and θ is the angle between the soliton front and 

the y-axis. When the angle is small (almost along wall propagation) and closed to the 

characteristic nonlinear parameter (H0/h), the wave amplification can be very significant (by a 

factor 4!) to compare with normal approaching, when the wave height on the wall is almost twice 

greater than the soliton amplitude. The significant amplification of the soliton amplitude near the 

wall firstly was found by Miles (1977) using a perturbation technique in the framework of the 

Boussinesq equation. For very small angles of the incident wave, the solution (5.21) is not valid 

and the wave propagation is not stationary. In this case, the soliton interaction induces a “virtual” 

soliton (the “Mach stem”). The resonance processes in the soliton interaction are studied 

intensively, and recently Peterson et al. (2003) suggested that multi-soliton solutions of the 

Kadomtsev–Petviashvili equation can explain 3D extreme wave events in shallow water (not in 

the near-wall area only). The shapes of the large-amplitude wave occuring in the process of the 

two-soliton interaction for various angles between soliton fronts are given in Figure 5.12 from 
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the paper by Peterson et al. (2003). It is important to note that such a wave has infinite “life-

time” and propagates with constant speed. Specific numerical simulations should be performed 

to evaluate the importance of these interactions on the background of random wave fields. 

 

Figure 5.12. Large-amplitude waves occuring in the process of soliton interaction 

5.4. Fully nonlinear models of the extreme waves 

We have discussed the rogue wave phenomenon within the framework of weakly nonlinear 

models. In fact the rogue waves are really huge waves, which should be considered as strongly 

nonlinear waves. Studies about rogue waves within the framework of fully nonlinear and 

dispersive models are very few. The governing equations are the Laplace equation for the 

velocity potential φ(x,y,z,t) with fully nonlinear dynamic and kinematic boundary conditions at 

the free surface z = η(x,y,t)       
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with kinematic and dynamic boundary conditions on the sea surface, z = η(x,y,t) 
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and the boundary condition on sea bottom (z = - h) 
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For infinite depth the condition (5.25) becomes ∇φ  → 0 as z → - ∞.  

Generally direct numerical simulations of rogue waves requires to consider large spatial and 

temporal domains and need to use very large numbers of nodes and time steps. Henderson et al. 

(1999) investigated numerically the time evolution of a two-dimensional almost uniform wave 

train with a small growing modulation. They performed numerical experiments: it was observed 

that the energy focusses into a short group of steep waves called steep wave event (SWE). 

Details about the numerical code they used to study water wave modulations can be found in the 

paper by Dold (1992). They found that the breather solutions of the nonlinear Schrödinger 

equation fit numerical SWE rather well. These SWE's can be considered as rogue wave events. 

So, the rogue wave mechanism related with the BF instability is confirmed in fully nonlinear 

computations. Figure 5.13 concerns the water wave profile, at the maximum of modulation, of an 

initially Stokes waves of wave steepness 0.13 disturbed by its most unstable perturbation 

(Skandrani, 1997). One can observe the formation of the huge wave due to the modulational 

instability. One can observe also a big hole. Note that this direct numerical simulation performed 

by using the Dommermuth & Yue (1987) method, breaks down after few modulation-

demodulation cycles owing to possible local breaking phenomena (see Dias & Kharif, 1999). 
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Fig. 5.13 Water wave profile (left) at t = 0, and (right) at the maximum of modulation 
(numbers – time normalized by the fundamental wave period), see Skandrani (1997) 
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Very recently Grue (2002), Clamond & Grue (2002) and Clamond et al. (2003) performed a fully 

nonlinear numerical simulation of the long time evolution of a two-dimensional localized long 

wave packet (steepness 0.091) and compared their computations with those resulting from the 

classic nonlinear Schrödinger and extended Dysthe equations. Their computations were obtained 

by using the fast computational method for nonlinear water waves developed previously by 

Clamond & Grue (2001) and were consistent with those provided by the pseudo-spectral method 

of Dommermuth & Yue (1987). The potential is written in a finite perturbation series up to given 

order M, which is the order of approximation. For instance, results obtained with M = 4 

correspond to the Zakharov equation or to the Dysthe equation when the spectrum is narrow-

banded. Figure 5.14 shows the comparison for two values of M; M = 4 and M = 8 (Clamond et 

al., 2003). Clamond et al. (2003) found, as expected, that there is a good agreement with 

approximate models for relatively short period of time, O(T0/ε2), for the nonlinear Schrödinger 

equation and O(T0/ε3) for the Dysthe equation, where T0 is the fundamental wave period and ε is 

the wave steepness). For long periods of time it is found that approximate models should not 

necessarily provide correctly the nonlinear dynamics of the water waves and subsequently the 

probability of occurence of rogue waves. This conclusion applies also for the Zakharov equation 

that is the more accurate among all the approximate models. The time evolution of the maximum 

crest amplitude is shown in Figure 5.15. For large time the fully nonlinear model shows the 

absence of the rogue waves meanwhile the extended Dysthe and Zakharov equations predict 

their appearance regularly. Of course, this is only one example of long-time evolution of isolated 

wave packets, but it emphasizes that full nonlinearity plays an important role for very long-time 

simulations. Bateman et al. (2001) extended the spectral wave model of Craig & Sulem (1993) to 

describe the water waves evolution of extreme waves due to the focusing of wave components 

involving spread of energy in both frequency and direction. Occurrence of rogue waves would be 

due to direction spreading of waves. Using a JONSWAP spectrum, a three-dimensional 

simulation of the formation of a rogue wave is presented. Within the framework of fully 

nonlinear equations Brandini and Grilli (2001) investigated numerically the formation of rogue 

waves by using both spectral methods and a three-dimensional boundary element method.   

The previous deterministic numerical experiments were performed to better understand the 

physical mechanisms that can contribute to the formation of abnormal waves. Mori & Yasuda 

(2002) considered exact equations numerically integrated by using the pseudo-spectral method of 

Dommermuth & Yue (1987) to investigate wave statistics. Unfortunately, they truncated the 

solution to fourth-order in wave steepness and this corresponds to the Zakharov equation. So 

their model does not capture the full nonlinearity contained in the equations. This limitation is all 

the more serious, as the water is shallow. As noted previously for long-time computation the 
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water wave evolution can be very different from that given by fully nonlinear models. However, 

one believes that their conclusions remain valid when higher-order nonlinear interactions are 

considered, that is nonlinear terms should affect the long-term statistics of the waves. They 

emphasized that nonlinear interactions increase the occurrence probability of rogue waves in 

deep water in comparison with the Rayleigh distribution.  
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Fig. 5.14. Wave packet evolution in the framework of the fully nonlinear equations with M = 
4 (left) and M = 8 (right) 

 

Recently, Zakharov et al. (2002) proposed a new method for numerical simulation of fully 

nonlinear waves based on combination of the conformal mapping and Fourier transform. The 

total number of harmonics was 12288. Choosing the initial condition as the superposition of the 



 46 

Stokes wave with steepness 0.1 and weak Gaussian random field, they obtain the formation of 

the freak wave with the amplitude exceeding the initial level more than three times. 
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Fig. 5.15. Time evolution of the maximum crest amplitude (normalized by initial amplitude) 
computed in the framework of the fully nonlinear equations with (a) M = 4 and (b) M = 8 
(from Clamond et al., 2003) 

 

In ocean engineering the safe and economic design of any fixed or floating structures depend on 

a reliable estimate of the extreme wave loading. The knowledge of the underlying wave particle 

kinematics beneath the largest wave crests represents key information appropriate to the 

determination of the design loading (Smith & Swan, 2002). Johannessen & Swan (1997) showed 

that water particle kinematics is strongly dependent upon the nonlinear wave-wave interaction. 

They emphasized that if an appropriate description of a extreme wave event is to be achieved, 

both nonlinearity and unsteadiness of the wave motion must be incorporated. Bateman et al. 

(2003) computed velocities and accelerations beneath extreme three-dimensional ocean wave. 

They confirmed the result of Longuet-Higgins (1986) that the maximum magnitude of the 

vertical acceleration arises at some distance beneath the water surface. 
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5.5. Nonlinear models of the wave-current interaction and atmospheric 

forcing 

Smith (1976) is the first who developed a nonlinear model to investigate the giant waves 

occurence in the Agulhas Current. He derived a 2D nonlinear Schrodinger equation with an 

additional term k(∂U∂x)A in the vicinity of the blocking point (4.30); for 2D wave propagating 

against an opposite current it is  
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where dU/dx is calculated at the blocking point, and the wave frequency, ω0, and wave number, 

k0 satisfy the dispersion relation (4.29) at the blocking point. The last term in (5.26) can be easily 

obtained from the linear dispersion relation taking into account the Doppler shift of the wave 

frequency. If nonlinearity is negligible, equation (5.26) coincides with the Airy equation (for 

monochromatic wave) and describes the wave field on caustics; see (4.33) and (4.34). In the 

nonlinear case the solution of (5.26) is the Painleve transcendents of the second kind and 

qualitatively it resembles to the Airy function with transition from sinusoidal to exponential 

behaviour slightly displaced from the blocking point; see Smith (1976) for details. Therefore, 

nonlinearity does not change the scenario of the wave blocking on opposite current. Also, Smith 

(1976) observed that the giant wave should be asymmetric.  

In reality, the situation becomes more complicated if a wide spectrum for water waves is 

considered. In particular, the equation (5.25) has the following soliton solution (Chen and Liu, 

1976) 
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This soliton moves with the variable speed 
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It moves to the blocking point, penetrates the blocking point and then is reflected. Surprisingly, 

the soliton amplitude remains constant in the process of wave propagation in inhomogeneous 

medium due to the balance between dispersive focusing (defocusing) and attenuation 

(amplification) in the zone of the non-uniform current. 

Moreover, the following transformation (Chen and Liu, 1976; Peregrine & Smith, 1979) 
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gives the constant-coefficient nonlinear Schrodinger equation (5.1) for the function A′(x′,t), and 

therefore, the appearance of a freak wave becomes obvious. Taking into account that the 

transformation (5.26) corresponds to frequency modulated wave trains, the zone of the caustics is 

wide compared with quasi-monochromatic waves. So, up to now the problem of the description 

of  rogue waves on opposite current is not investigated in details.  

Nonlinear models of large waves generated by random atmospheric forcing is studied mainly in 

the framework of the kinetic equation for the spectral intensity of wind waves (Lavrenov, 

1998a,b). To study the form of the freak wave it is necessary to solve directly the nonlinear 

evolution equations with random forcing. Mathematically, the problem of stochastic nonlinear 

evolution equations has been studied (see for references the recent papers by Debussche and 

Menza, 2002 and Xie, 2003 where stochastic nonlinear Schrodinger and Korteweg – de Vries 

equations are solved), but up to now there is no link with the rogue wave phenomenon. 

 6. Conclusions 

The rogue wave phenomenon has been instensively investigated these last years, theoretically 

and experimentally. Firstly it is important to emphasize that this phenomenon was documentally 

confirmed in the ocean in deep water as well as in coastal zone, and now a lot of freak wave 

records is collected. All the physical scenarios of possible extreme wave generation (focusing, 

wave-current interaction, modulational instability), in fact, were known but only now (during the 

last 5 years) they are “dressed” by mathematical models of various levels (linear, weakly 

nonlinear, fully nonlinear models). Results of numerical simulations show the behaviour of each 

mechanism taking into account the random character of the wind waves in the ocean. 

Computations provide also the probability of rogue wave occurrence for simplified conditions. 

The many results are very sensitive to the model parameters (shape of wave spectrum, various 

corrections of the weakly nonlinear evolution models, accuracy of numerical schemes for long-
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time computations). Laboratory experiments are performed mainly to study the focusing 

mechanism of the freak wave formation. The influence of the atmospheric forcing on the freak 

wave occurrence was not yet investigated. The large 3D numerical models including variable 

bathymetry and current field are not yet developed, and the cost of such computations is very 

high. Meanwhile, the progress in the understanding of the physics of the rogue wave 

phenomenon and development of adequate mathematical models is very significant for last 

years, and their results began to be use in the design of freak waves in ocean engineering. 
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