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A REMARK ON RENORMALIZED VOLUME
AND EULER CHARACTERISTIC FOR ACHE 4-MANIFOLDS

MARC HERZLICH

Abstract. This note computes the “renormalized volume” and a renormalized
Gauss-Bonnet-Chern formula for asymptotically complex hyperbolic Einstein (the
so-called ache) 4-manifolds.

1. Introduction

Asymptotically symmetric Einstein metrics exhibit many interesting phenom-
ena [3, 8]. They were especially studied in the asymptotically real hyperbolic case,
which enjoys fruitful relationships with physics through the ads-cft correspon-
dence. In this setting, an intriguing invariant, called renormalized volume, has been
defined by C. R. Graham [7] (after works by physicists such as Henningson and
Skenderis [9]), and its role in the formula for the Euler characteristic of the manifold
has been pointed out by M. T. Anderson [1], with applications in the study of the
moduli space of asymptotically real hyperbolic Einstein metrics [2]. This formula is
called “the renormalized Gauss-Bonnet-Chern formula” because all divergent terms
due to non-compactness are shown to cancel, whereas renormalized volume appears
as a finite limit contribution.

The goal of this short note is to point out an analogous formula in the case of
asymptotically complex hyperbolic Einstein (ache) 4-manifolds. Unfortunately, the
situation is less pleasant than in the real case, as we are unable to define a renormal-
ized volume as an invariant of the the complete Einstein metric. It rather depends
on the choice of some contact form (i.e. equivalently, a pseudo-hermitian structure)
realising the CR-structure at infinity. Adding some well-chosen local quantity at
infinity yields however an invariant, and some renormalized Gauss-Bonnet charac-
teristic formula as well.

1.1. Theorem. Let (M, g) be a 4-dimensional Einstein asymptotically complex hy-

perbolic manifold, with boundary at infinity a compact CR manifold X. If V is the

renormalized volume of g associated to a choice of contact form η at infinity, and if

R and τ are the Webster-Tanaka curvature and torsion of that structure, then

V =
3

2
V −

∫

X

(

R2

16
−

5

2
|τ |2

)

is an invariant of the ACHE metric and

χ(M) =
1

8π2

∫

M

(

|W g|2 −
1

24
(Scalg)2

)

+
1

4π2
V .
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As the model case of the complex hyperbolic plane shows, the appearance of the
integral factor on the boundary seems unavoidable; see section 2 for further details.
This shows than, rather than giving rise to a global invariant, the renormalized
volume gives birth to a conformal anomaly, i.e. a formula relating the renormalized
volume for some choice of pseudo-hermitian structure at infinity to its expression for
some other choice at infinity, through a local differential expression. Namely, if we
let V (η) be the renormalized volume for a choice of contact form (pseudo-hermitian
structure) at infinity,

1.2. Corollary. For a contact form η and a function f on X which never vanishes,

V (fη) − V (η) =

∫

X

Pη(f) η ∧ dη,

where Pη is a differential operator on X.

In the real hyperbolic case [7], the conformal anomaly is given by conformally
invariant differential operators, such as the Paneitz operator or its generalizations in
higher even dimensions. Our result in the complex hyperbolic case strongly suggests
that it should be interesting to study the operator arising from the variation of the
quantity

Q(η) =
R2

16
−

5

2
|τ |2

under deformations of the contact form in the same contact structure.

2. Definitions and notations

Let (X3, H, J0) be a strictly pseudo-convex 3-dimensional CR manifold, i.e. a
contact manifold with contact distribution H and almost complex structure J0 on
H. If η in any choice of compatible contact form, an associated metric γ may be
defined on H by γ = dη(·, J0·). This induces a Reeb field ξ and a unique (Tanaka-
Webster) connection whose torsion with respect to the Reeb field will be denoted
by τ .

Let M be a 4-manifold such that the complement of some compact set is diffeo-
morphic to [r0, +∞[×X. We consider first the metric g0 = dr2 + e2r η2 + er γ on
]r0, +∞[×X and let C∞

δ be the space of smooth functions on M such that eδr ∇kf

is bounded for any k. Any metric g on M such that g− (dr2 + e2r η2 + er γ) belongs
to C∞

δ for some δ > 0 will be called an asymptotically complex hyperbolic metric.
Moreover, (M, g) is said to be ache if g is an Einstein metric.

A lot of such metrics arise on pseudo-convex domains in C
2 (and are Kähler-

Einstein in this case [6]) whereas another important family was constructed by
O. Biquard in [3] in the case the boundary at infinity X is endowed with a non-
embeddable CR structure. In [4], the following asymptotic expansions were obtained
for an ache metric g on a neighbourhood of infinity ]r0, +∞[×X, if a contact form
η is given, τa

b,c... are the matrix coefficients of its torsion τ and its Tanaka-Webster

derivatives in a coframe (θ1, θ1̄), and ϑ0 = e−r dr + iη, ϑ1 = θ1 − φyθ1.

2.1. Proposition. (i) there exists an integrable complex structure J given by a (not

necessarily convergent) formal series, determined solely from data at infinity, whose

expansion is given by J = J0−2 e−r τ +e−2r(2|τ |2−J0∇ξτ)+o(e−2r), or equivalently

by a map φ = −i e−r τ + 1
2
e−2r ∇ξτ + o(e−2r) from T

0,1
J0

to T
1,0
J0

.
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(ii) there is a (formal series) Kähler-Einstein metric g, whose Kähler form ω of

g is formally determined up to order 2 as follows

ω = er (dr ∧ η + dη) −
R

2
dη

+
4

3

(

i

8
R,1̄ϑ

0 ∧ θ1̄ −
i

8
R,1ϑ

0̄ ∧ θ1 −
1

2
τ 1
1̄,1ϑ

0 ∧ θ1̄ −
1

2
τ 1̄
1,1̄ϑ

0̄ ∧ θ1

)

−
∆R

2
e−r dη

−
2

3

(

R2

8
− |τ |2 −

∆R

6
+

2i

3
(τ 1

1̄,11 − τ 1̄
1,1̄1̄)

)

e−r dr ∧ η

+
2

3

(

R2

8
− |τ |2 +

∆R

12
−

i

3
(τ 1

1̄,11 − τ 1̄
1,1̄1̄)

)

e−r dη + o(e−2r).

(iii) there exists an anti-J0-invariant symmetric bilinear form k on H and a

unique diffeomorphism ψ asymptotic to identity at infinity such that ψ∗g = g +
k e−r +o(e−2r).

2.2. Corollary. The Kähler metric g is explicitely given by

g = dr2 + e2r η2 + er γ −
R

2
γ + 2γ(J0τ ·, ·) +

1

6
(R,1θ

1 ◦ ϑ0̄ + R,1̄θ
1̄ ◦ ϑ0)

+
2i

3
(τ 1

1̄,1ϑ
0 ◦ θ1̄ − τ 1̄

1,1̄ϑ
0̄ ◦ θ1) − e−r Rγ(J0τ ·, ·) − e−r γ(∇ξτ(·), ·)

−
2

3

(

R2

8
− |τ |2 −

∆R

6
+

2i

3
(τ 1

1̄,11 − τ 1̄
1,1̄1̄)

)

e−2r(dr2 + e2r η2)

+
2

3

(

R2

8
− |τ |2 +

∆R

12
−

i

3
(τ 1

1̄,11 − τ 1̄
1,1̄1̄)

)

e−r γ + o(e−2r),

where α ◦ β = α ⊗ β + β ⊗ α is the symmetrized product of forms.

The main drawback of these facts is the following : given any ACHE metric g

and any choice of pseudo-hermitian structure at infinity realizing the CR structure
induced by g, there is a unique diffeomorphism ψ asymptotic to the identity on X

such that ψ∗g can be written as the sum of a formal Kähler-Einstein metric and a
(not formally determined) term of order 2, plus lower order terms. From now on,
we will forget the diffeomorphism ψ and, if the metric g is written this way in such
coordinates, we will say that it is “in the Kähler gauge associated to the choice of
pseudo-hermitian structure at infinity”.

2.3. Proposition. Let g be an ACHE metric on M , written in a Kähler gauge

associated to some choice of pseudo-hermitian structure at infinity. Then the volume

of large coordinate balls B(r) of radius r (complement of ]r, +∞[×X in M) has an

asymptotic expansion: volg B(r) = π2 e2r + v1 er + V + o(1).

The term V is called the renormalized volume of the metric g associated to the
choice of pseudo-hermitian structure at infinity (it depends only on the choice of a
structure at infinity). To check the proposition, just notice that the volume form of
g only differs from that of g at order 5

2
since k is trace-free, and, in the volume form

of the Kähler form ω, order 3
2

terms do not exist whereas order 2 terms are of zero
integral from Stokes’ formula.
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2.4. Remark. In the asymptotically real hyperbolic Einstein case, the renormalized
volume is similarly defined [7], but with the help of a different gauge. It is proved
in [7] that it is always possible, for any such metric, to find coordinates so that
g = dr2 + h(r) on ]r0, +∞[×X (this is the “geodesic gauge”). The metric h on X

has an expansion in powers of er and V is defined as above as the constant coefficient
in the expansion of vol(B(r)) and is in itself an invariant of g. The reader might
hence think that the “misbehaviour” of the renormalized volume in the complex

case comes from a bad choice of gauge. However, the standard metric of CH2 is
both in the Kähler and geodesic gauges, and Theorem 1.1 yields that the boundary
term in the renormalized Gauss-Bonnet formula (which necessarily is an invariant
of g) is different of the renormalized volume.

3. The proof

We first choose a contact form (or pseudo-hermitian structure) at infinity realizing
the CR structure and we put the ACHE metric in the associated Kähler gauge
around infinity. The basic element of the proof then is the Gauss-Bonnet-Chern
formula for a coordinate ball B(r), whose boundary is the coordinate sphere S(r) =
{r} × X:

χ(B(r)) =
1

8π2

∫

B(r)

(

|W |2 −
1

24
Scal2

)

+
1

96π2

∫

B(r)

Scal2

+
1

12π2

∫

S(r)

T (I ∧ I ∧ I) + 3 T (I ∧ R),

(3.1)

where I is the shape operator of S(r) and R is the curvature (2-form with values in
2-forms) of (M, g), ∧ provides a p + q-form with values in ⊗r+sTM from a p-form
with values in ⊗rTM and a q-form with values in ⊗sTM , and we have denoted by
T the contraction between the volume form of S(r) and elements of ⊗3TM .

It is proven in [4] that the integral involving |W |2− 1
24

Scal2 on B(r) converges for
an ache metric when r goes to infinity. Moreover, it is clear that both the scalar
curvature integral (which is, up to a constant, volB(r)) and the boundary integrals
have an asymptotic expansion in powers of e−

r

2 (there are no polynomial terms as
they cancel in the volume expansion, as noted above). Convergence of all the other
terms implies that divergent terms cancel pairwise, whereas the limit as r goes to
infinity of

χ(M) −

∫

B(r)

(

|W |2 −
1

24
Scal2

)

−
3

8π2
V

is given by the constant terms in the asymptotic expansion of the boundary integrals.
Our task then reduces to a careful computation of these terms. For this, the following
facts will be useful:

(i) it is proven in [4] that replacing g by g in the boundary integrals the boundary
integrals introduces terms that are o(e−2r) only, hence do not contribute in the limit
as the volume form of each sphere is O(e2r) at most. Hence all computations can
be done using the formal Kähler-Einstein metric g rather than the ACHE metric g.

(ii) as the highest-order term in the volume form of S(r) is e2r η∧dη (where η is the
contact form underlying the chosen pseudo-hermitian structure chosen at infinity),
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we will only need to track the order 2 terms in the computations below. Every
asymptotic expansion we will use is of the following type:

A = A0 e2r + A1 e−r + A 3

2

e−
3

2
r + A2 e−2r + o(e−2r).

As a result, order 2 terms may arise only when putting together an order 2 term
with order 0 terms or two order 1 terms with order 0 terms. Order 3

2
terms can

hence be forgotten during the whole computation, unless when some differentiation
is involved, as doing so along directions in X raises the order possibly by a factor 1

2
.

(iii) our final computation involves integration along X, hence each exact term can
be forgotten. Using the CR Stokes’ formula [5], this will be the case of every term
involving R,11̄, R,1̄1, ∆R = R,11̄ + R,1̄1, τ 1

1̄,11 or τ 1̄
1,1̄1̄. In what follows, occurrence of

such a term will be denoted by O.

(iv) from [4] again, the curvature tensor R of any ache metric (seen as a 2-form
with values in 2-forms) is, up to order 2, given by the sum of the model curvature
tensor (i.e. that has the same values as the one of the model space in any basis
{∂r, e

−r ξ, e−
r

2 e, e−
r

2 J0e} of the tangent space of ]r0, +∞[×X) and an order 2 term,
called W−

2 and controlled by the Cartan tensor of the CR-structure at infinity.

From now on, the task can be divided into three steps: computation of the outer
unit normal to S(r) and its intrinsic volume form, computation of the shape opera-
tors (the only step that involves differentiation) and estimation of the order 2 terms
in T (I ∧ I ∧ I) and T (I ∧ R).

From the explicit expansion of g, we get the outer unit normal of S(r):

ν(r) =

(

1 +
1

3
e−2r

(

R2

8
− |τ |2 + O

))

∂r + νT + o(e−2r)(3.2)

where νT is an order 3
2

term tangent to X, involving R,1, R,1̄, τ 1
1̄,1 and τ 1̄

1,1̄. The

volume form $ of S(r) is then (up to forgotten order 3
2

terms):

$ =
1

2
ω2(ν(r), ., ., .) = e2r(1 + e−r $1 + e−2r $2) η ∧ dη + o(e−2r)

= e2r

(

1 −
R

2
e−r +

1

3
e−2r

(

R2

8
− |τ |2 + O

))

η ∧ dη + o(e−2r).
(3.3)

The shape operator is obtained by taking the extrinsic covariant derivative of
the unit outer normal ∇ν(r). As νT is an order 3

2
term, only its derivatives in the

direction of H might contribute to order 2 terms in I, but it is an easy task to
convince oneself that these would add only terms of vanishing integral, hence can be
forgotten. It remains to compute the derivative of the first term in ν(r), seen first
as a bilinear symmetric form. Keeping only symmetric terms in the usual 6-term
formula for the covariant derivative, the only significant term is

1

2

(

1 +
1

3
e−2r

(

R2

8
− |τ |2 + O

))

∂rg.
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This is easily evaluated from the expansion of g recalled above and one gets

g(∇ν(r), ·) = e2r η2 +
1

2
er γ +

R

2
e−r γ(J0τ ·, ·) +

1

2
e−r γ(∇ξτ ·, ·)

+
1

3

(

R2

8
− |τ |2 + O

)

η2 −
1

6

(

R2

8
− |τ |2 + O

)

e−r γ.

(3.4)

One step further, this yields the (endomorphism) shape operator, which we shall

denote by I = I0 + e−r
I1 + e−

3

2
r
I 3

2

+ e−2r
I2 + o(e−2r), where I0 = Idξ +1

2
IdH ,

I1 = R
4

IdH − J0τ , and

I2 =

(

R2

8
− |τ |2 + O

)

Idξ +

(

R2

16
+

5

2
|τ |2 + O

)

IdH + ∇ξτ

and the precise value of I 3

2

is irrelevant as before.

The last step is then easily done by using the following explicit description of the
contraction T : if a curvature term ρ (endomorphism on 2-forms) and symmetric
endomorphisms A, B, and C are diagonal in a basis {e0, e1, e2, e3} chosen to be
{∂r, e

−r ξ, e−
r

2 e, e−
r

2 J0e}, with eigenvalues Krs, αr, βs and γt, then:

T (A ∧ ρ) = A(Krsλt) $, T (A ∧ B ∧ C) = S(αrβsγt) $,(3.5)

where A (resp. S) denotes the sum over circular (resp. all) permutations of {r, s, t}.
This formula makes easy the evaluation of all possible order 2 term, but T (I0 ∧

W−

2 ). We then rely on the following explicit expression of the second order correction
to the curvature [4]. If ω2

−
= e0 ∧ e2 − e1 ∧ e3, and ω3

−
= e0 ∧ e3 − e1 ∧ e2, then

W−

2 = a e−2r((ω2
−
)2 − (ω3

−
)2) + b e−2r(ω2

−
ω3
−

+ ω3
−
ω2
−
),

a and b being reals. The definition of T then yields T (I0 ∧ W−

2 ) = 0.
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