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A REMARK ON RENORMALIZED VOLUME
AND EULER CHARACTERISTIC FOR ACHE 4-MANIFOLDS

MARC HERZLICH

ABSTRACT. This note computes the “renormalized volume” and a renormalized
Gauss-Bonnet-Chern formula for asymptotically complex hyperbolic Einstein (the
so-called ACHE) 4-manifolds.

1. INTRODUCTION.

Asymptotically symmetric Einstein metrics exhibit many interesting phenom-
ena [3, O]. They were especially studied in the asymptotically real hyperbolic (or
AHE) case, which enjoys fruitful relationships with physics through the ADS-CFT cor-
respondence. They are also a useful tool in the study of conformal geometry in estab-
lishing links between the conformal geometry of a compact (n—1)-dimensional man-
ifold (usually called the boundary at infinity) and a complete Einstein n-dimensional
manifold (the AHE manifold). In this setting, an intriguing invariant, called renor-
malized volume, has been defined by C. R. Graham [§], after works by physicists
such as Henningson and Skenderis [10].

In even dimensions n, the renormalized volume is an invariant of the Einstein met-
ric only. If n = 4, its role in the formula for the Euler characteristic of the Einstein
manifold has been moreover pointed out by M. T. Anderson [I], with applications in
the study of the moduli space of Einstein asymptotically real hyperbolic metrics [2].
This formula is called “the renormalized Gauss-Bonnet-Chern formula”: although
the Einstein manifold is non-compact, all divergent terms in the integrals of the
formula are shown to cancel, whereas renormalized volume appears as a finite limit
contribution.

In odd dimensions n, the renormalized volume is not an invariant of the Einstein
metric only but rather depends on a choice of a representative metric on the bound-
ary at infinity in the conformal class. This makes it no less interesting, as it gives rise
to the so-called conformal anomaly phenomenon: the difference between the renor-
malized volumes of two different choices of metric singles out a local differential
operator on the boundary with nice properties [§].

The goal of this short note is to point out analogous results in the case of Einstein
asymptotically complex hyperbolic (or ACHE) manifolds of dimension 4, where the
boundary at infinity is now a strictly pseudoconvex 3-manifold, with the hope that
such an object would be interesting for the study of 3-dimensional CR geometry.

Unfortunately, the situation is less pleasant than in the real case, as the renor-
malized volume is never an invariant of the the complete Einstein metric and always
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depends on the choice of some contact form (or in the usual language of CR geom-
etry: a pseudo-hermitian structure) compatible with the CR-structure at infinity.
This situation is reminiscent from that of Einstein asymptotically real hyperbolic
manifolds of odd-dimensions (i.e. boundary at infinity of even dimension), this
should come as no surprise as it is well-known that CR geometry enjoys lots of
analogies with even-dimensional conformal geometry.

However, the fact that in the ACHE context the bulk Einstein manifold is even-
dimensional brings some nice features. It turns out that adding some well-chosen
local quantity at infinity can yield an invariant of the Einstein metric only. As
expected, a renormalized Gauss-Bonnet characteristic formula can be obtained as
well.

Our main results then read as follows (further notations and definitions are given
in the next section):

1.1. Theorem. Let (M, g) be a 4-dimensional Einstein asymptotically complex hy-
perbolic (ACHE) manifold, with boundary at infinity a compact strictly pseudocon-
ver CR 3-dimensional manifold X with contact distribution H and almost-complex
structure J. Then there exists for any choice of compatible contact form n on X an
invariant V' of the pair (g,m) called renormalized volume of g relative to 7.

1.2. Theorem. Under the same assumptions, if moreover R and T are the curvature
and torsion of the Webster-Tanaka connection on (X, H, J,n), then

3 R 5
V_ﬁv_/x(ﬁ_ém)

s an tnvariant of the metric g only, and

1 1 1
= 92 — — 9)2 —
x(M) 5 /M (\W | 24(Scal ) ) t 1 V.

As the model case of the complex hyperbolic plane shows, the appearance of the
integral factor on the boundary seems unavoidable; see section 2 for further details.
This shows than, rather than giving rise to a global invariant, the renormalized
volume gives birth to a conformal anomaly, i.e. a formula relating the renormalized
volume for some choice of pseudo-hermitian structure at infinity to its expression
for some other choice at infinity, through a local differential expression. Namely, if
we let V(1) be the renormalized volume for a choice of contact form at infinity,

1.3. Corollary. For each contact form n, there is a differential operator P, on X
such that, for any function f on X which never vanishes,

V(i) = V) = [ Rfnndn
b's
In the real hyperbolic case [§], the conformal anomaly is given by differential
operators with nice invariance properties. Our result in the complex hyperbolic case
strongly suggests that it should be interesting to study the operator arising from
the variation of

R* 5
T(n) = — —=|7?
() = 75— 5
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under deformations of the contact form in the same contact structure. Explicit
derivations of the variations of Tanaka-Webster curvature R and torsion 7 are given
as an Appendix to this note; further study will be deferred to a future work.

Note moreover that N. Seshadri has given in [I2] another version of the renormal-
ized volume that covers all dimensions but for Kahler-Einstein metrics only rather
than ACHE.

2. DEFINITIONS AND NOTATIONS.

Let (X3, H,Jy) be a strictly pseudo-convex 3-dimensional CR manifold, ie. a
contact manifold with contact distribution H and almost complex structure Jy on
H. If n in any choice of compatible contact form, an associated metric v may be
defined on H by v = dn(-, Jo-). One gets from it a Reeb field £ and a (Tanaka-
Webster) connection V whose torsion in the direction of £ is 7= V" . —[¢,-].

Let M be a 4-manifold such that the complement of some compact set is diffeo-
morphic to [rg, +00[xX. We consider first the metric gy = dr? + > n? +e" v on
Jr0, +00[x X and let C$° be the space of smooth functions on M such that e V* f
is bounded for any k. Any metric g on M such that g — (dr? +e* n? +¢" ) belongs
to C'5° for some § > 0 will be called an asymptotically complex hyperbolic metric.
Moreover, (M, g) is said to be ACHE if g is an Einstein metric.

A lot of such metrics arise on pseudoconvex domains in C? (and are Kahler-
Einstein in this case [6]) whereas another important family was constructed by
O. Biquard in [3]. The Biquard metrics are especially interesting in the case the
boundary at infinity X is endowed with a non-embeddable CR structure, as they

provide a substitute for the non-existing Kahler-Einstein metric.

In [, the author and O. Biquard carefully studied the asymptotic behaviour of
ACHE metrics, and precise asymptotic expansions were obtained. In all that follows,
we consider an ACHE metric g on a neighbourhood of infinity |rq, +o0o[xX in M.
If a contact form 7 is given, there exists a canonical Tanaka-Webster connection
V on X. For any tensor field D on X, D%~ (a,b,c,d,... € {1,1}) will denote
the components of D (and subsequent Tanaka-Webster derivatives, separated by
a comma from the original components) in a local orthonormal coframe (#*, %),
i.e. such that dn = i0' A 9'. For instance we shall use expressions such as The...
for the (derivatives of the) torsion 7 of V and R, for its curvature. We also
denote ¥° := e " dr + in, and V' := 0' — ¢_0'. Last, in any power series expansion
> () ekr, the k-the term ¢y (seen as a function on X) will be called formally
determined if it can be computed with the knowledge of a finite jet of the CR
structure at © € X only. The most interesting feature of ACHE metrics (and Kéhler-
Einstein metrics as well) is that they are not entirely formally determined. The
results in [4] are summarized in the three following statements:

2.1. Theorem ([]). There exists on |ro, +0o[x X an integrable complez structure J
given by a (not necessarily convergent) formal series, entirely determined formally
from data at infinity. The first terms in its expansion is given by

J=Jy—2e "7 +e 7 (2T]* = JyVer) +ole™™),
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or equivalently by a map ¢ = —ie™" T+ 3¢ Ver +0(e”?) from T?él to T}(;O-

2.2. Theorem ([]). There is on |ro, +oo[xX a (formal series) Kdihler-Einstein
metric g. The Kdahler form w of g is formally determined up to order 2 as follows

w = e”(d’r/\n+dn)—§dn

4 (1 i 1 1 11 g AR
+ 3 (1371190 NG — %R,lﬁo NG — 57'1171190 NGt — =7 100 A 91) - e "dn

) 2
2 [ R? AR 2i 7 .
3 (g—\T|2—T+§(T11,11—T11,11)>e dr A
2 [ R? AR 1 i _r —or
+ 3 (@ - |7'|2 + T 5(7'11711 - 7'11711)> e "dn+o(e ? ).

Moreover, if g is an ACHE metric with the same boundary at infinity, then there exists
an anti-Jy-invariant symmetric bilinear form k on H and a unique diffeomorphism
Y asymptotic to identity at infinity such that v*g =g+ ke ™ +o(e™").

2.3. Corollary ([). The Kdahler metric g is explicitly given by

R 1 - -
§ _ (d7’2 + e2r ?72 + e’ ’}/) — + 2’7<JOT'7 ) + 6<R7191 o 190 + R,iﬁl o 190)

2
9% .
+ 5(7'11,1190 oft — 71171190 of") —e " Ry(Jor+,) —e " Y(Ver(+), )
2 (R? AR 2 . . .
S (- S B - ) e e

2 [ R? AR 1 .

where ao f=a® + R« is the symmetrized product of forms.

The main conclusion of these facts is the following : given any ACHE metric g
and any choice of pseudo-hermitian structure at infinity realizing the CR structure,
there is a unique diffeomorphism 1 asymptotic to the identity on X such that, up to
strictly lower order terms, ©*¢g can be written as the sum of a formally determined
Kéhler-Einstein metric and a formally undetermined term of order 2 (notice that
ke " decays like e2"). From now on, we will forget the diffeomorphism 1 and, if
the metric ¢ is written this way in such coordinates, we will say that it is “in the
Kahler gauge associated to the choice of pseudo-hermitian structure at infinity”.

Using the results of [] that we have just recalled, we can now define the renor-
malized volume:

2.4. Proposition. Let g be an ACHE metric on M, written in a Kdhler gauge
associated to some choice of pseudo-hermitian structure at infinity. Then the volume
of large coordinate balls B(r) of radius r (complement of |r, +oo[xX in M) has an
asymptotic expansion: vol, B(r) = n2e* +vie"+V + o(1). the number V is the
renormalized volume of the metric g associated to the choice of pseudo-hermitian
structure at infinity

Proof. — To check the proposition, just notice that the volume form of g only differs
from that of g at order g since k is trace-free, and, in the volume form of the Kéhler
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form w, order % terms do not exist whereas order 2 terms are of zero integral from
the CR Stokes’ formula [5]: whenever a = ;6" is a (1,0)-form on X (given in a
local orthonormal coframe), one has

da = aljﬁl NG+ aon A 0 + arimin A 6!

(recall av.. denotes the components of Va in the local coframe), and

/al,m/\ﬁl/\@:/(da)/\n:—/a/\dn:O,
X X X

since X is closed and dn = i A 6'. This achieves the proof of Theorem [l OJ

2.5. Remark. In the asymptotically real hyperbolic Einstein case (AHE), the renor-
malized volume is similarly defined [§], but with the help of a different gauge. It is
proved in [§] that it is always possible, given a metric h* in the conformal class of
the boundary at infinity, to find coordinates such that g = dr?+h(r) on ]ry, +oo[x X
(this is the geodesic gauge, the function r being the geodesic defining function asso-
ciated to a choice of metric A in the conformal class at infinity). The metric h(r)
has an expansion in powers of " and V' is defined as above as the constant coefficient
in the expansion of vol(B(r)). It is is in itself an invariant of g. The reader might
hence think that the “misbehaviour” of the renormalized volume in the ACHE case
comes from a bad choice of gauge. However, the standard metric of CH? is both in
the Kéahler and geodesic gauges, and Theorem [Tl yields that the boundary term in
the renormalized Gauss-Bonnet formula (which necessarily is an invariant of g) is
different than the renormalized volume.

2.6. Remark. The most important fact to be noted in the previous Proposition is
that there is no term in vol, B(r) that is linear in . In the AHE case [§], when the
boundary at infinity is odd-dimensional, an analogous phenomenon occurs: linear
terms cancel in the asymptotic expansion of large balls. In the AHE case again but
when the boundary at infinity is even-dimensional (the case that is considered to
be the closest to the ACHE case, although dimensions of the boundaries at infinity
differ), the situation is different: some non-zero linear term appears in the expansion
of the volume, with a coefficient related to the integral term in the Gauss-Bonnet-
Chern formula for the boundary at infinity X itself [§].

If one believes in this analogy (between even-dimensional conformal geometry
and CR geometry), one might then wonder why there is indeed no linear term
in Proposition 4. However, reasoning by analogy again, one would assert from
[§] that the coefficient of the linear term should be a multiple of the integral @-
curvature of X [7], but it has been proved in [7] that this integral always vanishes
in 3-dimensional CR geometry, thus the absence of any linear term, a phenomenon
that might be purely 3-dimensional.

3. PROOF OF THEOREM [2

We first choose a contact form (or pseudo-hermitian structure) at infinity (i.e. on
X) realizing the CR structure and we put the ACHE metric in the associated Kéhler
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gauge around infinity. The basic element of the proof then is the Gauss-Bonnet-
Chern formula for the Euler characteristic of the compact domain with boundary
B(r) delimited by what we shall call the coordinate sphere S(r) = {r} x X:

1 1 1
B - 2 12 12
o) X(B(r)) 2 Jpe (|W| 51 Sca ) + 962 /B(T) Sca
' 1
— TAANIAT T(I
+ 1272 Jgo, (IANTAL)+3T(IAR),

where the A operation provides a p + ¢-form with values in @ T M from a p-form
with values in ®T'M and a g-form with values in ®*T' M, and we have denoted by 7°
the contraction between the volume form of S(r) and elements of @*T M. Moreover,
I is the shape operator of S(r) in (M, g) and R is the curvature (2-form with values
in 2-forms) of (M,g), with W and Scal denoting its Weyl and scalar curvature
(trace-free Ricci curvature is zero as g is Einstein). Notice also the difference in
notation between the (scalar) curvature R of the 3-dimensional CR manifold X and
the curvature tensor R of the 4-dimensional Einstein manifold M.

It is proven in [4] that the integral involving [W|? — 2 Scal® on B(r) converges for
an ACHE metric when r goes to infinity. Moreover, it is clear that both the scalar
curvature integral (which is, up to a constant, vol B(r)) and the boundary integrals
have an asymptotic expansion in powers of €2 (there are no polynomial terms as
they cancel in the volume expansion, as noted above). Convergence of all the other
terms implies that divergent terms cancel pairwise, whereas the limit as r goes to

infinity of
(M) —/ W2 — g} = 2y
X B(r) 24 87T2

is given by the constant terms in the asymptotic expansion of the boundary integrals.
Our task then reduces to a careful computation of these terms. For this, the following
facts will be useful:

Fact 1. It is proven in [4] that replacing ¢ by g in the boundary integrals introduces
terms that are o(e™") only, hence do not contribute in the limit as the volume form
of each sphere is O(e*") at most. Hence all computations can be done using the
formal Kahler-Einstein metric g rather than the ACHE metric g.

Fact 2. More precisely, the highest-order term in the expansion of the volume form
of S(r) is €¥" n A dn (where 7 is the contact form underlying the chosen pseudo-
hermitian structure chosen at infinity). Hence we will only need to track the order
e~ 2" terms in the proof below. Every asymptotic expansion we will meet in the
course of the computations is of the following type:

Age® + Aje + As e 2" 4 Aye ¥ + o(e™?").

As a result, order 2 terms may arise during the computation only when putting
together an order 2 term with order 0 terms or two order 1 terms with order 0
terms. Order % terms can hence be forgotten during the whole computation, unless
when some differentiation is involved, as doing so along directions in X raises the
order possibly by a factor %
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Fact 3. Our final computation involves integration along X, hence each exact
term can be forgotten. Using the CR Stokes’ formula already described in the
proof of Proposition B4, see also [5], this means that every term in R;1, Rij,
AR=R1+ R, 7‘11711 or Tli,ﬁ drops out. In what follows, occurrence of such a term

will be denoted by O.

Fact 4. From [4] again, the curvature tensor R of the formal Kahler-Einstein metric
(seen as a 2-form with values in 2-forms) is, up to order 2, given by the sum of the
model curvature tensor (i.e. that has the same expression w.r.t. g, J as the constant
holomorphic sectional curvature has w.r.t. gCHQ, Jo) and of an order 2 term, called
W, and controlled by the Cartan tensor of the CR-structure at infinity. Said shortly,
one writes: R = R+ Wy e 2.

From now on, the task can be divided into three steps: computation of the outer
unit normal and intrinsic volume form of S(r), computation of the shape operator
(the only step that involves differentiation) and estimation of the order 2 terms in
T(IAIAT) and T(IAR). As the computations involved are rather long, we shall
give here the main intermediate results only, indicating at each stage which are the
key steps and facts that lead to them.

From the explicit expansion of g, we can get immediately the outer unit normal

of S(r):

(3.2) v(r) = (1 + %e_Zr (%2 —|? +(9)) O + vh + o(e™™)

where T

is an order % term tangent to X, involving linearly R, Rj, 7'111 and 7'111.
It will be proved below that it is not necessary to detail further the exf)ression of
this term.

The volume form w of S(r) is then (up to forgotten order 2 terms, see Fact 2

2
above):

Loy
w = w (v(r),..,.)

(3.3) = e(1+e"w +e ¥ m)nAdy + ole™™)
R 1 R?
= % (1 ) e +§ e <§ — |7 + O)) nAdy + o(e™®).

The shape operator I is obtained by taking the extrinsic covariant derivative of
the unit outer normal Vuv(r) (where V here denotes the Levi-Civita connection of g.
As vT is an order % term, only its derivatives in the direction of H might contribute
to order 2 terms in I, but it is an easy task to convince oneself that these would add
only terms linear in 1,1, Ry, T%H and Tllﬁ, hence of vanishing integral from Fact
3. As a result, they can be forgoften. 7

It remains to compute the derivative of the radial term in v(r), seen first as a
bilinear symmetric form. Keeping only symmetric terms in the usual 6-term formula
for the covariant derivative, the only significant term is

1 1 R?
- 1 = A 2r - 2 7.
2( +3e (8 |7 +(’)))8Tg
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This is easily evaluated from the expansion of g recalled above and one gets

P - 1 , R . 1 .,
gVu(r),) = &+ g eyt el ) + g e (Ver )

(34) 1 R2 1 R2
+ 2 (— = |T|2+O) U <— - |T|2+(9> e .

One step further, this yields the (endomorphism) shape operator, which we shall
develop as

(3.5) I=Tp+e T +e ¥ I3 +e 2T +o(e™),

where [j = Id; +% Idyg, I, = %IdH — Jo7, and

R? R* 5
I, = (§ - |T|2+O) Ide + <E+§|r|2+(9) Idg + Vet

and the precise value of Is is irrelevant as before. As a last step, we will obtain

2
below the desired contributions of the integral terms in Formula (Bl by chasing
the order e ?"-terms.

A first easy consequence of the expression (BH) of I is that the V 7-term may be
forgotten: it would create a scalar term linear in V¢7, and no such scalar invariant
exists.

The contraction 7 is now explicitly described as follows: if symmetric endomor-
phisms A, B, and C are diagonal in a basis {e’, ¢!, %, €3} chosen to be g-orthonormal
and J-adapted, with eigenvalues «,., 35 and ~;, then:

(3.6) T(ANBAC) =6(afsm) w,

where & denotes the sum over all permutations of {r,s,t}; moreover, if p is a
curvature term (endomorphism on 2-forms) with constant coefficients in the same
basis with diagonal entries K,s =< p(e” A e®),e" Ae® >, and A is as above, then:

(3.7) T(AN p) = UKy \) w,

where 20 denotes the sum over circular (not all) permutations of {r, s, t}.

These formulae make easy the evaluation of all possible order 2 terms but the one
involving W, : the computations are done in a basis (J,,e™" &, e % h,e”2 Jyh), with
h a y-unit element of H chosen to be an eigenvector of Jy7. This basis is orthogonal
for g except for order %—terms, which we can neglect as usual, and for an order 2-term
due to the presence of V7 in the expression of g. Taking into account this last term
yields a scalar correction linear in V7, which must necessarily vanish, hence one
may also forget it. We summarize below the results, using the following notations:
for any geometric quantity s, s denotes the k-th order term in its asymptotic
expansion; we also denote the order 2 term in I as:

]12 = Aldg +BIdH +V§T.
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The term 7 (I AT AT) is the sum of contributions of type < w,, I, A L. A l; >, with
a—+ b+ c+ d = 2; the results are:

involved terms result
YDQ,Ho/\]IQ/\HO 1/16R2—1/2|T|2
wl,ﬂl /\I[Q/\HO (3 terms) —3/4R2

’WO,Hl/\Hl/\HO (3 terms) 3/2R2—6|T‘2
’WO,HQ A I[(] VAN HO (3 terms) 3/214—'— 68

And for the 7 (I A R)-term, the results are:

involved terms result
’WQ,H()/\RO —5/96R2—|—5/12|T‘2
wl,ﬂl/\Ro 1/16R2
wo,HQ/\RO —A—]_/QB

For the last term, i.e. 7 (IypAW, ), we have to rely on the following explicit expression
of the second order correction to the curvature, extracted from [4]. If w? = % Ae? —
el Ae?, and w? = e’ Ae® — el Ae?, then

Wy =ae ?(w?)? — (w?)?) +be " (w2w® +w?w?),

a and b being reals. The definition of 7 then yields 7 (I A W5 ) = 0. Putting
together all the results obtained so far yields easily the expected Theorem. O

APPENDIX: VARIATIONS OF R AND T.

We give here a quick glimpse on the computations leading to the expression of
the variation of the curvature quantity 7'(n) = If—é — 3|7|? of the Tanaka-Webster
connection under a conformal deformation of the contact form 7.

Let  be a compatible contact form on X and f a positive function. We denote
by (6',6') a local orthonormal (complex) coframe for 7, i.e. dn = i0* A 6'. The
variation of the Tanaka-Webster curvature R is well-known in dimension 3 [I1]; if

R is the curvature for f*n, and Au = w7 + u ;7 is the sub-elliptic Laplacian, then

(3.8) R=f7Q2Af+Rf).

For the torsion 7 and in lack of a precise reference, we will detail the computation
a little bit. Starting from (8',8'), a local orthonormal coframe for f2n is then
given by 6! = f («91 +2if1 n) and its complex conjugate. The Tanaka-Webster
connection 1-form w{ and torsion endomorphism 7 for n (resp. f?n) are defined
by d0' = —wl A0+ 7in A ' (resp. the same formula in the hatted version).

Computing at a point where wi is zero, one gets

A" = df NO* + fdf' +2ifydn+2id (f1) An
(3.9) _ ; _
= 3f16" A6" +2i (f11 + 50) 6" An+ 2ifsi = 1) 6" An.

Identifying this with — @} A 6t + 7 6 A f?n, it comes finally:

(3.10) =07 20 = 6 ).
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From these computations, the interested reader can easily derive the variation of
T'(n) under conformal changes in 7.
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