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Abstract

The exact solution for the scattering of electromagnetic waves on an
infinite number of parallel demi-planes has been obtained by J.F. Carlson
and A.E. Heins in 1947 using the Wiener-Hopf method [ﬂ] We analyze
their solution in the semiclassical limit of small wavelength and find the
asymptotic behaviour of the reflection and transmission coefficients. The
results are compared with the ones obtained within the Kirchhoff approx-
imation.



1 Introduction

For most systems classical mechanics corresponds to the A — 0 limit of quan-
tum mechanics and the nature of classical motion to a large extent determines
spectral statistics of quantum problems [EIL [E] Nevertheless, for certain mod-
els this correspondence breaks down because limiting classical Hamiltonian has
singularities and there is no unique way to continue classical trajectories which
hit them. Though classical mechanics itself is not complete, quantum mechan-
ics in many cases smoothes singularities and associates with each of them a
diffraction coefficient which gives a probability amplitude for the scattering to a
given channel. The simple example of such models is given by diffractive models
with small-size impurities where the total wave function at large distances from
an impurity is a sum of the free wave function plus a reflected field. In two
dimension in a convenient normalization

e DO s,
(7)) = ezkr + ) etk 3271'/4. 1
) 8mkr @

D(0y,0;) is the diffraction coefficient for the scattering of the incident plane
wave of the direction 0; to a reflected plane wave of the direction 0.

Though in classical mechanics such scatters are negligible, their presence
perturbs greatly (and in a calculable way) quantum mechanical problems (see
[B] and references therein).

An important class of diffractive systems consists of plane polygonal billirds
(see e.g. [H]) with billiard corners playing the role of diffraction centers. The
main difficulty in such type of diffractive models is the impossibility to represent
everywhere the scattering field as a sum of a free motion plus small corrections
as in Eq. (ﬂ) which forms the basis of the usual scattering theory.

As an example we present the exact results for the diffraction on a demi-plan
derived by A. Sommerfeld in 1896 [H} The total wave function for this problem
obeying the Helmholtz equation

(A4 EHTU(z,2) =0 (2)

in the plan (z, ) with the Dirichlet boundary conditions along the semi-infinite
screen = > 0 has the following form (in notations of Fig. ﬂ)

‘ ‘ 0r —6;

)
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where F'(u) is the Fresnel integral



Figure 1: Scattering on the demi-plan (thick line). The initial and final rays are
indicated by thin lines. The dotted lines represent optical boundaries.

From the expansion of ¥(7") at large distance it follows (see [{]) that the diffrac-
tion coefficient for this problem is

1 1
9f+9-; : (5)
2

D(efvei) =

0,—0;
cos L= cos

The important specificity of this diffraction coefficient is that it formally blows
up in two directions
Hf =m+ Gi (6>

called optical boundaries (see Fig. EI) which separate regions with different num-
ber of geometrical optic rays which play the role of classical trajectories. As wave
fields are continuous, the separation of the exact field (fJ) in the sum of free mo-
tion plus small reflected fields is not possible in a vicinity of optical boundaries
which manifests itself as the divergence of the diffraction coefficient ().

In practice one can use diffractive coefficient description for all scattering
angles except intermediate parabolic regions near optical boundaries where the
dimensionless arguments of F-functions in Eq. (E) are of the order of 1

u:\/ﬂsin%@wl, (7)

and ¢ is the deviation angle from the optical boundaries (E)

Difficult problems appear when inside these intermediate regions there are
new points of singular diffractions which is inevitable e.g. for plane polygonal
billiards. In the semiclassical limit k& — oo certain cases of multiple diffraction
on singular corners have been computed within the Kirchhoff approximation in
[ﬂ] The long-range nature of the diffraction on sharp corners leads to a strong
interaction between different singular points and no general formulas for exact
diffraction coefficients in these cases are known.



In Refs. [[jj and [§ the exact solution for the reflection of electromagnetic
wave on an infinite number of parallel semi-infinite metallic sheets (equivalent to
the scalar Helmholtz equation with the Dirichlet [E] and Neumann ] boundary
conditions) has been obtained by the Wiener-Hopf method (see also [{]). Exact
expressions for reflection and transmission coefficients (Eqs. (B(), (B]), and (BJ)
below) are quite cumbersome. They are given by infinite products of different
terms each depending non-trivially on the initial momentum k. The purpose of
this paper is the investigation of these results in the semiclassical limit & — oo.

The plan of the paper is the following. In Section E general properties of
the reflection from periodic chain of demi-plans are discussed. In Section& the
exact expressions for diffraction and transmission coefficients obtained in [[f] are
given and more tractable expressions for the modulus of these coefficients are
presented. The most interesting case corresponds to the scattering with small
incident angle when in the intermediate region (ﬂ) there are many singular
points. In Section H two first terms of the expansion of the elastic reflection
coefficient are derived. In Section [ the first terms of expansion of the reflection
coefficients for the forward scattering in the power of the incident angle are
calculated and in Section E the same is done for large-angle scattering. In
Section ﬂ these calculations are generalized for all powers of the incident angle
provided the condition (ﬂ) is fulfilled. The exceptional case when demi-plans
are perpendicular to the scattering plan is treated in Section E In Section H the
exact asymptotics are compared with the ones calculated within the Kirchhoff
approximation and in Section E the summary of obtained results is given.

2 (Generalities

The configuration of half-planes considered in Refs. [}, [§] is represented sche-
matically at Fig. E The equally spaced half-planes are parallel to the z-axis
and their left corners form a scattering plane inclined by an angle a. The initial
incident plane wave ¥o(z,x) comes from the left with angle of incidence 6 with

respect to z-axis.
\1’0(2’ CC) _ eik(z cos 0+x sin 9). (8)

In the far field due to the periodicity of the problem only finite number of waves
can propagate. The reflected plane waves have the following form

\I/;ref) (Z,.’L‘) _ eik(z cos !, +x sin 9;), (9)

where the allowed values of reflected angle 6/, are determined by the usual
grating equation (see e.g. [H])

kd(cos p — cos ¢l) = 2mn. (10)

Here ¢ and ¢, are the incident and reflected angles defined as the angles be-
tween the scattering plane and the incident (respectively, reflected) plane wave
direction

p=a—0, (11)
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Figure 2: Scattering on half-planes staggered by an angle «. 6 is the angle of
incidence of the initial plane wave. Dashed line indicates the scattering plane.
Dotted line is the contour used in the computation of the current conservation.

and
o =05, —a. (12)

d = a/sina is the distance along the scattering plane between corners of the
half-planes, n is an integer.
In terms of the dimensionless momentum

kd
Q- (13)
™
Eq. (IE) determines a finite number of possible reflected directions when ¢ is

ﬁXed 2
cos !, = cosp — an (14)

The allowed values of n are restricted by the inequalities followed from this

expression

—Qsin2§§n3Q0052§. (15)

For later use it is convenient to introduce instead of the initial angle ¢ a new
variable
u=/Qsin g (16)

which is suitable for the description of intermediate regions (ﬂ) where the usual
diffraction coefficient description can not be applied. To investigate the multiple



scattering in such regions, we consider below the limiting case @@ — oo with u
kept fixed which corresponds to small initial angles of the order of 1/1/Q

PR ﬁ (17)

For reflected waves we shall distinguish between small angle reflection where the
variable

Up = \/C_Zsin%;’ (18)

remains finite when Q — oo and large angle reflection otherwise.
In terms of variables ([Iq) and ([[§) the grating equation ([[(]) reads

Up, = V1 + u? (19)

Physical values of reflection angles should obey the inequality 0 < ¢! < 7 or
0 < sing!, < 1. From ([L0) it follows that the physical branch is defined by the

condition
4 u? n + u?
sin !, = 2| - (1— >>0. 20
¢ \/ 0 0 (20)

In the notations of Fig. f the grating equation ([[J) takes the form used in [

kp —wpb — a\/k? — w2 = 27mn, (21)

where
p=asinf + bcosh = dcos p, (22)

b= a/tan« is the shift of the half-plane corners along the z-axis, and
wy, = kcos O], = kcos(a+ o)) (23)

is the projection of the final momentum on the z-axis. The positive (resp.
negative) sign of 1/k? — w2 correspond to forward (resp. backward) scattering.
In particular, the specular reflection corresponds to n = 0 in the above

equation and
wo = kcos(2a — 0) = kcos(a + ). (24)

The possible transmission modes correspond to motion in a straight tube
-~ ™
Yltrans) () = m? sin —mu, (25)
a

where the transmitted frequencies are

B = k2(%)2k,/1<g>2. (26)

and 1 < m < ' is an integer.

Here



3 Exact results

At large distances the total reflected field is the sum over the individual allowed
propagating modes (E)

\IJ(Tef) (Z, Z‘) — Z Rneik[z cos(at!)+z sin(a—&-cp:l)]’ (28)
—Qsin?(p/2)<n<Q cos?(p/2)

with ¢/, determined by Eq. (L) and the coefficients R,, in the sum are reflection
coefficients which define the probability amplitudes of reflection to the given
channel.

Similarly, the total transmitted field is the sum over individual transmitted

modes (29)
\P(trans) _ T, iomz i T 29
(z,2) g e sin —ma (29)

1<m<Q@Qsina

with @y, from Eq. () and the coefficients T, are called the transmission coef-
ficients.

We restrict ourselves to the case of the Dirichlet boundary conditions on the
demi-plans treated in [ﬁ] From the results of this work one can write down
explicit expressions for reflection and transmission coefficients in the form of
infinite products.

The reflection coefficients in Eq. (@) with n = 0 and n # 0 are slightly
different. For n = 0 the reflection coefficient Ry corresponds to the specular
reflection ¢y = ¢ and we shall call it the elastic reflection coefficient. From [ﬂ]
one gets

For non-zero n [ff]
R, (w/ — u)o) K(w/) (31)

The transmission coefficients in the expansion (@) are given by the following
expressions [ff]

mm(w’ — wp) (hp—omt)] K (W)
Ty =——=—= = 1 — (=1)meilkp—wmb)| 22/ 32
a0, (O, — W) (O — wo) [ (=1)"e } K(@y,) (32)
In these formulas wp is given by (B4), w, are defined by (1) and
W' =kcosf = kcos(a — ). (33)
The function K (w) is the ratio of two functions
K(CL)) — g+(w) exu.) (34)



with 1
a T
;[(04 - 5)

i
The denominator fy(w) in (B4) is given by the convergent infinite product

X=- — In(2sin a)], (35)

tan «

- ka ? .wWa wa/mn
frlw) = 1- (—) —i——e /mn (36)
n=1

The numerator g, (w) in (B4) is the product of two functions
9+(w) = G1(w) G2 (w), (37)

where G 2(w) are represented as the following convergent infinite products

Gi(w) = ﬁ (A, — Z-\I;n)e(kpfwbﬂwa)/(27m)+i(7f/27a)’ (38)
n=1
-1
Ga(w) = H (A, + 00, )ehpmwbmiwa)/(Zmn)=i(n/2=a) (39)
and T
s (i ) () 0
v, = %—f—cosa(l—;—pn). (41)

The functions f; (w) and g4 (w) have no singularities or zeros in the upper half
plane
Im w > Im wy (42)

where one assumes that the momentum k& has a small positive imaginary part.
These functions appear in the following Wiener-Hopf type factorization prob-

lem
sinfavk? — w?]
frw)f-(w) = Wa (43)
and
a? + b?

(w—wo)(w—w)gs(w)g—(w) = coslav/ k? — w?] — cos[kp — wb]. (44)

2

Functions f_(w) and g_(w) have no singularities in the lower half plane
Im w < Im ' (45)

The explicit form of these functions is

it ka\> wa :
f-(w) = ,/1() +i— | eTtaw/mm (46)
71;[1 ™ ™



and

9-(w) = él(w)éZ(w)a (47)

where -
él (w) — H (An + ,L-\I/n)e(kpfwaiwa)/(27rn)7i(7r/27a), (48)

n=1

_ —1
Gg(w) — H (An _ i\I/n)e(kp_Wb-Hwa)/(27m)+i(ﬂ/2_a). (49)

The real zeros of the function g4 (w)

g+ (wn) =0 (50)

correspond to pure imaginary values of A,, and coincide with the reflected fre-
quencies (23). Their explicit form is

wy, = kcosa (cosgo— %) —ksina\/sin2g0+ % (Cosgo— Z—Z) (51)

In accordance with Eq. (@) the positive branch of the square root has to be
chosen. w, with positive (resp. negative) n are real zeros of Gi(w) (resp. of
Ga(w)).

For the later use we need also the zeros w}; of the function g_(w). They are
given by Eq. (b1)) with the different sign of the square root

2 4
wy = kcosa (cos<p— %) +ksina\/sin2¢-|— % (cos<p— %) (52)

The transmitted frequencies @,, are zeros of the function f_(w). They are given
by (). The zeros of f, (w) are just —Fn,.

The expressions (B(), (B1)), and (B2) for the reflection and transmission co-
efficients include infinite products and are quite cumbersome. Simpler formulas
can be obtained for the modulus of these coefficients which is sufficient for many
purposes. Using repeatedly the defining relations (i) and (fi4) one can demon-
strate that the values of |R,|? and |T,|? are expressed by the following finite
products

wo — W, wo + Wy
| Ro|? IT—= [I ==K (53)
' £0 wWo — Wy ! £0 wo — Wm!

4sin? asin? @

(wn — w')(wn — wo)

R? = \

Wn — Wi/ Wn, + Wpy N2
X — KW, 54
U e | Bl LGl (54)
n'#0 m'#
n’'#n



4sin? o

(@ — w')(Wm — wo)

|Tm‘2 =

~ ~ ~
« = | AT (55)
Ll Oy — wyy WDy, — Wy
n/#0 m’#£0
m'#m

and

W — wy W — Opy
KW =T] 5—= 1] 5—="| (56)
i @ T W g W W
In Eds. (53)-(54) the products are taken over finite number of real reflected (1)
and transmitted (@) frequencies.
As W' —wy = 2sinasing and wi = o', Eqs. (53) and (54) can be rewritten
in a form which is valid for both n =0 and n # 0

wo — '\ 2 W, — W Wy, + Wy
R = (—) 11 IT <9 k. o)

Wy — W — Wn!
n nitn 0 n'

If n # 0 the first product includes the term with n’ = 0.

The scattering amplitudes fulfill the current conservation. In the configura-
tion of Fig. E it is convenient to consider the current through the surface of a
rectangle enclosing the scattering plane whose two sides are parallel to it. Due
to the periodicity of the demi-planes this surface is reduced to the one indicated
by dotted line in Fig. E and the current through boundaries perpendicular to
the scattering plane can be ignored. In this case the total current through the
parallel parts of this surface is zero and a simple calculation gives the following
relation between the reflected and transmission coefficients

ksing = stincp; IR + Zsina | Ty 24/ K2 — (?)2. (58)

All expressions in this Section are exact and suitable for numerical calculations.
But for theoretical purposes they are practically intractable, especially in the
semiclassical limit @ — oo, because the number of factors in Egs. (p3)-(F3)
increases with (Q and each factor depends non-trivially on Q.

In the next Sections we investigate these expressions when () — co. In this
limit non-trivial results appear when the incident wave forms a small angle ¢
with the scattering plane (as in ([[7)) and we focus our attention on this region.

4 Elastic reflection coefficient

Let us consider first the behavior of the elastic reflection coefficient Ry in
Eq. (B]) in the limit ¢ — 0. Taking into account only the linear in ¢ terms
direct calculations give

Ry =—(1+ By) (59)

10



and

= 2sina 1
6:12571 - -
n=1 V(1 =&) —i&ncosa \/(sin2 a+ &, sina) +icos
1
\/(sin2 a—E&,sina) —icosa
2iQ'sinal(e — 3)—— ~ In(2sina)] (60)
iQ' sin af(« 5) o ~ n(2sina)),

where &, = Q'/n and Q' = ka/m = Qsina.
Separating the real and imaginary parts of Eq. (@) one obtains

B =Q(C1+iCy), (61)
where
Q'] 1
@ = _QSIDQZW+Q/COSQ nzlsma —n)n + ncosw
Q'] 1 (@] 1
_ COSQ; T Osma cosozn_%Jrl _Osma’ (62)
and

Cy = sina Z v —Q Z\/_ v

n=l@ 41 " QI2 sin® a n(n + Q/ sin )

Vn-Q m
*Z\/—

n(n—Q'sina) 20@=3)

5) o —In(2sina)]| . (63)

[Ql+1

Here and below [z] denotes the integer part of z such that = [z] 4+ {z} and
the fractional part {z} obeys the inequality 0 < {z} < 1.

In the computations below we assume that o # 0, 7/2, and 7. In the
semiclassical limit & — oo all sums in the above expressions include many
terms which can be estimated by usual methods. The dominant contribution
corresponds to the change of the summation to the integration. One gets

Q dn

Q' n
-2 sina/ +
o /Q2 —n?2+ Q' cosa  Jo sinay/(Q—n)n+mncosa
Q' d Q d
_ COSO&/ 4” — COSCY/ 4” (64)
0

n+ Q' sina o n— Q' sina

C, =

11



and

 _ o
Cy = sma[ e Q’Qsm a / \/_nJrQ’Smoz) dn
m, 1 .
N / \/_TL*QISIHQ) n_Q[(a_E)tana_ln@Slna)] . (65)

The integrals are elementary and cancel each other, i.e. 51 = 52 = 0. One can
prove that the first correction term (of the order of 1/4/Q) to C; appears from
small n summation in the second term in Eq. (pJ)

Q]

1
— Z + smooth terms
— sina —n)n+ ncosa

N N
1 1 dn
— i — - — 66
sin a/Q N (1; vn /0 \/ﬁ> (66)
The integral is subtracted because we know that all integrals over n are canceled

by other terms.
The last limit can be computed from the relation

, 1 VN 1
i, <¥ v T) =) o

where ((s) is the Riemann zeta function (¢(1) ~ —1.460354).
Finally when Q — oo

1 < 1
sin ay/Q 72
Similarly the dominant contribution to Cy comes from small-n summation in
the second term of Eq. (3)

vn+Q 1 1
Cy — —smaz N CESEY + smooth terms — —mg‘(i). (69)

n=1

From (B1) one concludes that for large k and « # 0, 7/2, 7

5= Va0 - i) (70)

In terms of variable ([L) this result states that the two first terms of the expan-
sion of the elastic reflection coefficient into the power of u are the following

Ry=—1- 2\/56*”/45(%)% (71)

In Section E we demonstrate that these two terms can be obtained from the
Kirchhoff approximation developed in [H]

12



5 Small angle reflection in the limit ¢ — 0

When the incident angle ¢ — 0 it follows from Eqs. (BI) and (B2) that the re-
flection coefficients with n # 0 and all transmission coefficients are proportional
to .

In the computation below it is convenient to rescale all frequencies by k i.e.

to change

w
— —. 2
. (72)

To simplify the notation we shall from now use the same symbols for the rescaled
quantities.

When ¢ — 0 rescaled Eqgs. (B1)), (52), and (6) give
Jmf50D)
w;;zcosa< —6”>+2sm %(1—%) (74)

~ m?
m =\ e 7

with all square roots chosen positive.

Using Eqs. (54) and (5@) one can compute the reflection coefficient modulus
in limit k¥ — oo by writing the logarithm of each product as a sum over the
corresponding frequencies. E.g.

log H |wn — wnr| = Z log |wn — wnr|.

n'#n n'#n

©|‘§

Wy = cosa(

DN

and

When k — oo the sum can be substituted by the integral. Exactly as it was done
in the precedent Section one can check that all integrals in the full product (@)
cancel and the dominant contributions come from regions with small factors.

We are interested first in the behaviour of the reflection coefficients R,, at
fixed n # 0. In this case there are 3 regions with small factors. The first
corresponds to wy,, — Wy, — 0, the second appears when w,, —w;, — 0, and the
third includes cases when n/ is close to n (see Fig. (). In the first region one
should expand the factors near @ sin® o, i.e.

n' = Qsin® a + on, (76)

where
n=—{Qsin*a}+¢q (77)

with integer ¢ and the similar expansion for m’. (As above {x} denotes the
fractional part of x.)

13
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Figure 3: Dependence of different frequencies on n (0 < n < Q). Left: 0 < a <
/2, right: 7/2 < a < . wy, is represented by solid line, w by dotted line, &y,
by dashed line, and —,, by long-dashed line. The full small circles indicate the
point with coordinates (@ sin® , cosa) where two different frequencies (with

© = 0) coincide.

The required series when 0 < o < /2 are easily obtained from Eqgs. @)—

(E)

2
Wi |n=n*+on = COSQ — om (6n) Lo ((5_n)3) ,

Qcosa  4Q2sin® avcosd o Q
and
~ om (0m)? om
Do rmmn = |cosa| — — +0O((=)?).
m|m n*4dm | | Q‘ cos a| 2Q2 Sin2 a| cos3 a| ( Q )

For completeness we add

on
Q)

Wi |ln=n*+én = cosa(l — 4sin? o)+ O(

At small n < Q

n n n n
wp =cosa —2sina, [ =+ O0(=), w, =cosa+2sina, /= +O0(=
Vo Q) Vo O

In the first region when n is small and 0 < @ < 7/2 one formally has

. . —{Qsin®a} +
[Tten ) =] (_2sma\/g " #) |

m/’

Similarly in the second region the expansion of w, — w;, gives

— ] 2
Ttwn — i) ~ [ <—281na\/g L2 {Qg:osc;} - q) |

n’ q

14
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The two products (83) and (B3)) are identical and cancel each other in the ex-
pression for the reflection coefficient. The same remains true when 7/2 < a < 7.
Therefore a dominant contribution comes only from the region of small n’ where

N
U)n—w;:/ - Hl‘i'\/%
n

~

nE[n Wn — Wn/ n’'#n 1 - \/;

exp(— /ON[log(l + \/g) —log(1 — \/g)]dn') (84)

The last term is added because the total integral is canceled by other terms.
When N — oo the integral equals 2,/nvN + O(1/N).

Introducing the convergence factors one gets that this product tends to the
following function

X

N

N i
fo=exp [ 2v(Y \/177—\/N/2) II %ﬁﬁ. (85)

n'#n n'#n
n’#0

When N — oo using Eq. (F7) we obtain

o0 n
fo= v T Ve (36)
1— /2
n’'#n "
n’#£0

Combining all factors together one concludes that in the limit Q — oo the first
term of the expansion of the modulus of the reflection coefficient at small n # 0
has the following asymptotics

—0
|Rn|2 = Q@2|rn|2 = 4U2|7’n‘2a (87)
where v is defined in ([1f]) and

%. (88)

|Tn|2 =
In Fig. @ we present the results of numerical calculation of the first term of ex-
pansion of reflection coefficient from Eq. (@) together with asymptotic formula
(BY) for this quantity. The agreement becomes better at larger Q as it should
be.
Notice that (when « is not too close to 0, /2, and 7) the reflection coef-
ficient at small n do not depend on «. One can check that when Q — oo the
transmission coeflicients with small m are always negligible.

15



log(Ir,|?)

Figure 4: The first term of the expansion of the reflection coefficient at small
n > 1 into a series of u. Two upper curves are |r,|? computed at Q = 1000 and
Q = 8000 with o = 7/3. The lower curve is the asymptotic expression (B§) for
this quantity.

6 Reflection and transmission coefficients at
large n and ¢ — 0

One can prove that for large n the only important contribution comes from
n close to n* = Qsin® & where two different frequencies coincide (see Fig. B).
When 0 < @ < 7/2 in this region only the transmission is noticeable and when
/2 < a < 7 only the reflection is important.

Let us consider first the case 0 < o < 7/2. The expression (5g) for the
transmission coefficient modulus |7},,|? can conveniently be rewritten in the
following form explicitly separating small factors

T2 = sin?p| = 2(&m —/w;‘n) = H &77 _wfll H idl_azm/
(@ — wo) (W' — Wi, )om g & T Wi Dy, — Dyt

% H W' — wp H Wiy 4 Wiyt ) (89)

Wi — Wy T4 W+ Wy
m

m’'#m

n’

In these formulas n’ and m’ are non zero and we assume that m = Q sin® a+dém
where dm is of the order of \/Q.

From Egs. ([§), (79), and (§1)) formal expansions for the above products can
be obtained. The product over n’ contains terms with small n’ = n and large

16



n' = Qsin? o + 6n/. Putting 6n’ = ém + ¢ and taking into account dominant
terms one gets

H (wm - w:ﬂ)

w H(— om —QSiIqu/E)
n’/#m n>1 QCOSQ Q

q (6m)?
(LIO (Qcosa T 1407 sin? acos? a) : (90)

Q

X

The first product comes from small n and the second one is due to the contri-
butions with large n’ = Qsin® a + dm + q.

Computing other products in the similar way one obtains that the first term
of the expansion of the transmission coefficient into a series of u has the form

8u?

T )2 22
ga Qsin22ag

(ug), (91)

where the scaled variable uy is related to m as follows

m — Qsin® a

V@ sin 2

Uy =

and the function g(z) is

g(z) = X @) ﬁ <1 + %)2 (1 + %) e VR, (93)

n=1

The renormalization factor €2¢(2)® has been computed exactly as it was done
above for the reflection coefficient at small n.

When 7/2 < a < 7 one can similarly show that transmission coefficients at
small ¢ are negligible and the reflection coefficients with n close to n = @ sin” a
differ only by the factor 1/2 from the transmission ones with the same value of
nand a =7 —«

Ru(@)f? *=" J{T(r — o)) (94)

For clarity we explicitly show the dependence of . The factor 1/2 with respect
to Eq. (D)) is related with the different normalization of real transmitted modes
(B3) and complex reflected ones (f).

The formulas above are valid when uy is fixed and ) — co. The meaning of
the variable u (@) is most easily seen when 7/2 < av < 7. The scattering demi-
plans can be considered as a system of mirrors and the initial ray with ¢ = 0
after the specular reflection in these (demi) mirrors will form the angle 27 — 2«
with the scattering plane. For the reflection close to this optical boundary (cf.
() it is naturally to introduce a new variable 1, which measures the deviation
of the reflected angle from the angle 27 — 2«

P =21 — 20 — Py (95)
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Figure 5: The first term of the expansion of the transmission coefficient for
@ = 1000 and « = 7/3 into a series of u (dots). The solid line is asymptotic

formula (p3)

At large @) the variable uy in (@ (with m = n) is related with 1, exactly in
the same way as the variable u is related to the incident angle ¢ (see ([[§))

uf:\/@sin%. (96)

We write uy without the index n in order to stress that for large angle scat-
tering the discreetness of reflected and transmitted waves plays no role and the
asymptotic formulas (p]), (p4) can be considered as functions of a continuous
variable uy.

In Fig. (ﬁ) we present the results of numerical calculations of the function
g(uy) calculated from Eq. (B3) together with the asymptotic formula (91). The
agreement is quite good. The reflection coefficient for 7/2 < « < 7 is also well
described by the asymptotic relation (P4).

7 Reflection and transmission coefficients at fi-
nite u

Eqs. (B7), (B1) and (p4) represent the first terms of the expansion of the trans-
mission and reflection coefficients in the power of u = /@ sin(p/2).

The purpose of this Section is to calculate these coefficients at finite values
of u. The calculations are performed exactly as in the precedent Sections. First
we note that the frequencies w, and w; depend on u only in the combination
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Figure 6: The reflection coefficients with n = —3,...,3 with = 8000 and
o = 7/3 (solid lines) together with the asymptotic formula (p7) (dots) for the
same values of n.

n(u) = n+u?. Therefore precedent formulas remain valid when n is substituted
by n(u) = n +u? and the dominant contributions come from the same terms as
above. We omit the details and present only the final answers.

The reflection coefficients at all small n (for negative n > —[u?], n = 0, and
positive n) are given by

(R (u)? = (ﬁizﬁ) G+ @)C(w) (o7)

and the function G(x) has the following form

Y 1+ +
G(z) = e27¢(3) H ¢ 2V H Ve (98)

1 T
= n’>0 v/ +{u?}

n'#[2?%)

The terms with the same value of n’ should be grouped together and then the
total product converges.

In Fig. ] the results of numerical calculations for | R, (u)|? withn = —3,...,3,
@ = 8000 and o = 7/3 are compared with the asymptotic formula (@) and the
excellent agreement is found.

In the discussion of the scattering at large angles corresponding to n close to
Qsin? o it is convenient to introduce reduced transmission ¢(u s, u) and reflection
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r(uy,u) coefficients in the following way

2
Tm - t 5 5 99
\/@sin2a (uf u) ( )
and 5
R, = ——— ,u), 100
\/Qsin ZaT(uf u) ( )

where the variable u defined by Eq. (E) fixes the initial angle and the variable
uy is related with the scattering angle by Eq. (pJ).

As above one can demonstrate that when 0 < o < 7/2 only the transmission
coefficients are important and when 7/2 < o < 7 the reflection coefficients
dominate and asymptotically in corresponding regions

g, )] = SltCug, ) = glug,w) (101)

where

Uu 2
utu 14+ ——L£
glup) = Wi T ¢ Ve [ |l
b 1 I
n'>1 n'>0 V' +{u?}

n'#[u’]

w2 — 2
I (i) or

n'>[u?]+1

X

As above, the terms with the same n’ should be combined together for conver-
gence.

The reduced coefficients t(uy,u) and 7(uys,u) introduced in Egs. (B9), (L0
can be considered as the reflection and transmission coefficients for the scat-
tering in the (continuous) interval of ‘angles’ u as it follows from the current
conservation (fg) rewritten in terms of new variables

u= Z \/n+u2|Rn(u)|2+2/ dupg(uy,u). (103)
n>—[u?] o

Here R, (u) mean the reflection coefficients at small n.
When u — oo the precedent equations can considerably be simplified by
noting that in this limit the products in these equations are large when u¢ is

close to —u. Putting uy = —u + § and taking into account the dominant terms
one gets
. 2
sin(2m(uy + u)u)
Ju) A . 104
slugo) ~ (PR (101

Practically this approximation works well even with v > 1. The semiclassical
derivation of this expression is performed in Section E

20



It
Ir(u)l®

-~ Q=1000
~ Q=4000 2r
—— Q=16000

-~ Q=1000
-~ Q=4000
—— Q=16000

Figure 7: Reduced transmission coefficients with o = 7/3 (left) and the reduced
reflection coefficients with a = 27/3 (right). In both figures u = 2.1. Dashed
line: @ = 1000, dotted line: @ = 4000, solid line: ) = 16000. The thick solid
line are the asymptotic formulas ([[03) and ([01). The thick dotted line is the

approximation ([[04).

In Fig. ﬂ we present numerically computed transmission coefficients with
u = 2.1 and o = 7/3 and reflection coefficients with o = 27 /3 for @ = 1000,
Q = 4000, and Q = 16000 together with the asymptotic formulas (@) and
() With increasing @ the agreement becomes better and better. The ap-
proximation (@) is hardly distinguished from the exact asymptotic formula

(L02).

8 Scattering when a = /2

The formulas of the precedent Sections are not valid when o = /2, i.e. when the
demi-plans are perpendicular to the scattering plane. Nevertheless, asymptotic
expressions for large @@ can also be obtained in this case but the results depend
on the fractional part of @) and, strictly speaking, the semiclassical limit Q — oo
does not exist. The main reason for such behaviour is related with the existence
of a trivial solution for some particular values of @. It is easily seen that when
o = 7/2 the following function (in the notation of Fig. )

T (z,) = sin(kz cos p)et=sin® (105)
is an exact solution of our problem (i.e. it vanishes at the demi-plans) provided
kdcos ¢ = 7l (106)

with integer [. In the notations ([[d) and (1) this relation takes the form

{Q —2u?} =0, (107)
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where 0 < {z} < 1 is the fractional part of x.

Irrespectively how large is the dimensionless momentum @, close to points
when Eq. (@) is fulfilled, the appearance and disappearance of the exact so-
lution ([10q) strongly perturb the reflection and transmission coefficients.

Though the limit @ — oo does not exist, a special limiting case when {Q}
fixed and [Q] — oo can be computed from the approach developed in the pre-
ceding Sections. We omit the details and present only the final formulas.

Let us define a function W (t) as follows.

t

W(t) = 22-V2(3) H 6*2(2*\/5)\/?

n’>1
1 + ’ L 2 ’ . 2
% H ! v +{u?} VT +{tQ_u } (108)

1— ¢t 1 —t
n'>0 V' {2} V' HQ-u?}
V2t
vn'+{Q}

14+ V2t
V' +HQ}

We shall need this function at special values of the arguments ¢t = /n + {u2},
t=+y/n+{Q—u?}and t = —%«/n + {Q} with integer n. The prime in the
second product in Eq. ([09) means that when ¢t = /n + {u2} the term with
n’ = n is omitted in the first factor, when ¢t = /n + {Q — u?} the term with
n' = n is omitted in the second factor and when t = —%\/n + {Q} the term

with n/ = n is absent in the third factor.
The reflection coefficients at small n

1+

2u

U =+ Uy

Rt = ) W ()W (), (109)

where u,, = v/n 4 u? determines the allowed value of small reflection angle (see

([§) and ([9)).

The reflection coefficients at large n = [Q]—g¢ is given by the same expression
([09) but wu,, is substituted by wu,

2u
U + Uq

Ry = ( ) W ()W (u), (110)

where
ug =1vq+{Q} —u? (111)

has the meaning of the allowed value of small deviation of reflected angle from
its maximum possible value. It means that if one writes ¢}, = 7 — d¢/, then for
n = [Q] — ¢ with large [Q] and fixed ¢

/
Uy ~ /Qsin %. (112)
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Figure 8: Reflection coefficients with n = —3,...,3 with o = 7/2 and Q =
8000.7 (solid lines) together with the asymptotic formula ([[09) (dots) for the
same values of n and {Q}.

The reflection coeflicient R, with integer ¢ = 0,1, ..., exists for a finite interval
of u such that 0 <u < +/¢+ {Q}.
The transmission coeflicients for m = [Q] — p with p = 0, 1,. .., are given by

the same expression ([l09) but with the substitution u, — u,

2
0 = () W)W, (113
where )
u, = ——=+/p+ {Q}. (114)

P \/i
If for « = 7/2 one determines the angle of transmission ¢,, from the natural

relation cos ¢, = m/Q then for m = [Q] — p u, is related with d¢, = 7 —
®m=[Q]—p In the same way as above

ddio1—
up = /Qsin %. (115)

Ay Figs. Bid we present the the results of numerical calculations of the
reflection and transmission coefficients together with the above asymptotic for-
mulas. The agreement is very good.
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Figure 9:  Elastic reflection coefficient with @ = 7/2 and [@Q] = 8000 for
different values of fractional part of @ (solid lines). From top to bottom {Q} =
.001,0.201, 0,401, 0.601, 0.801. For clarity each curve is lowered with respect to
the precedent by 2 units. Dots represent the asymptotic formula (@)

Figure 10: Reflection coefficients with o« = /2 and @ = 8000.7 for the largest
values of n = [Q] — ¢ with ¢ =0,...,3 (solid lines). Dots represent the asymp-

totic formula ([L10).
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Figure 11: Transmission coefficients with @ = 7/2 and @ = 8000.7 for the
largest values of m = {Q} — p with p = 0 and p = 3 (solid lines). Dots represent
the asymptotic formula ([[13).

9 Kirchhoff approximation

Semiclassical limit of different cases of multiple diffraction near the optical
boundaries have been considered in Ref. [E] In particular in this paper the
contribution to the trace formula from diffractive orbits close to n-fold repeti-
tion of a primitive diffractive orbit has been calculated.

In the Kirchhoff approximation this contribution is given by the diagram of
Fig. @ Each line in this figure corresponds to the free Green function

L eikl=si/a
Go(#,7) = ——, 116
o(Z, ') V8rkl (116)
where | = |# — Z| is the distance between two points #, Z’ and k = VE is

the momentum. Each circle at Fig. @ describes the convolution of two Green
functions and in the Kirchhoff approximation it gives the factor —2ik. The role
of the obstacles (corners) consists in the restriction of the integration over y; to
the half line.

In Ref. [ﬂ] it was demonstrated that the contribution to the trace formula
from such trajectories has the form

(dif f) EY=—— A ikin . 11
pIN(E) = e A, e, (117)
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Figure 12: Schematic representation of multiple diffraction near optical bound-
ary of n equally spaced obstacles.

where A,, is given by the following n-fold integral

4 71'71—71/4 [e’e] o) [e%e) [e%s) [e%e) o
A, = ¢ / dsy / dsy .. / ds, — / dsy .. / dsy, i)
/2 —o —o 0 0

(118)
with

() = (s1—52)° + (s2—83)° + ...+ (sn—1 = 50) + (sn —s1)°. (119)

The presence a discrete symmetry in this quadratic form permits the analytical
computation of this integral and [g]

=
== 120
S e
When n — oo the sum over ¢ can be substituted by the integral and
1 _dg
lim A, = — / =1 121
n—oo T / n — q ( )

and as it was noted in Ref. [j] the contribution ([L17) in this limit coincides with
the contribution from the boundary trajectory reflected from a straight mirror
with the Dirichlet boundary condition.

Let us consider this point in details. Assume that after each reflection with
a mirror a trajectory gets a reflection coefficient R. Then its contribution to
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the trace formula computed in the usual manner is

ethL— 3mi/4
p(boundary) (E) _ / / 12ky2(1/l+1/(L7l))
16mF \/
Le ik L+i®
+ cco= RW + c.c. (122)

Here L is the length of the trajectory and the factor 2 takes into account that
each trajectory can be passed in two directions. For simplicity we do not consider
the symmetry factor and consider the trajectory as being primitive.

Comparing this result with Egs. ([I7) and ([[21)) one concludes that these
equations can be interpreted as the reflection from a mirror with the effective
reflection coefficient R = —1 as from a boundary with the Dirichlet boundary
conditions.

To compute the behaviour of the reflection coefficient for large but finite n
it is convenient to use Eq. (67) from which it follows that when n — oo

2¢(3)
m/n

One can incorporate this result into the above picture of the reflection from
a straight mirror by assuming that the reflection coefficient R depends on the
reflection angle ¢ (or transverse momenta p, ~ k)

R(6) = —(1+ ). (124)

A, — 1+

(123)

As in the saddle point approximation ¢ =~ 2y/L, the only modification of the
above calculation is the following integral

\/Eei‘/r/él \/Qeiﬂ/ﬁl

> 2_y 2iy? /L _
/Ody(lJrﬂL)ey =) )

Because L = In one concludes from ([[23) that

8= \/ *”/‘% (126)

which up to notations agrees with Eq. @) obtained by the direct expansion of
the exact solution.

The above considerations demonstrate that small-angle singular reflection
from a periodic set of demi-plans can be interpreted as much simpler process of
the specular reflection from a straight mirror whose reflection coeflicient at small
angles has behavior as in Eqs. ([24) and (12d). Of course, at small distances
reflection fields for two processes are very different but at large distances they
are equivalent.

Similar (but simpler) considerations permit also to understand the approxi-
mation ) for the reflection (and transmission) at large angles.
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Figure 13: Schematic representation of the scattering at large angles. Black
circles are the corners of the scattering demi-plans. The dotted line represents
the scattering plane.

At Fig. B we represent schematically the configuration important for the
large-angle scattering. The rays reflect from small parts of the scattering demi-
plans restricted by the indicated corners. The width of each effective mirror
is

A =dsinp, (127)

where, as above, d is the distance between singular corners along the scattering
plane and ¢ is the scattering angle. After unfolding the amplitude of such
reflection can be calculated in the Kirchhoff approximation as the transmission
through a slit of the same width by the usual formula (an additional minus sign
is due to the reflection from a mirror)

A s 4 1
D(e) = Qik/ e~ thysineqy — —_ gin (k:A sin e> , (128)
—A/2 sin € 2

where € is the deviation of the scattering angle from the direction of the specular
reflection.
The total reflected field is the sum over all diffracted fields

ik R —37i /4

VBTkRy (129)

\Ij(ref)(x’y>: Z eikdmcosng(&p/)

m=—0o0

where R, = \/(z — md)? + y? is the distance between the mth diffractive cen-
ter and the point of observation with coordinates (z,y). Using the Poisson
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summation formula one gets

[} 0o —3mi/4
(ref) _ iS(m,n) e
BOeD (3, ) = n;m /_ eSS (130)
where
S(m,n) = —2mmn + k(dmcos ¢ + Ry,). (131)

When k — oo one can use the saddle point method. The saddle point is obtained
from the condition dS(m,n)/dm = 0 which gives the grating equation ([(). The
computation of the second derivative and the resulting integral leads to

(ref) _ D(Gn) ik(z cos ¢!, +ysin¢))
v (@) = zn: 2tkdsin <p’ne ’ (132)
where the reflected angle ¢/, is defined by Eq. ([L(]).
Using Eq. ([12§) for the diffraction coefficient of the reflection on a small
mirror and taking into account that in the important region ¢!, & 2w — 2 one
obtains the following expression for reflection coefficient R,

2

R,=————F—77——
" kd sin 2acsin €,

1
sin(ikdsingosin €n)- (133)

As ¢ =~ 2u/+/Q and €, = —2(uy + u)//Q with Q = kd/w, the last expression
equals

R, =

2 {sin 2mu(uy + U)] (134)

CV@sin2a | 27(uf + u)
whose modulus coincides with Eq. ([L04).

10 Summary

The exact transmission and reflection coefficients for the scattering on infinite
number of parallel demi-plans obtained in Ref. [ﬂ] are analyzed in semiclassical
limit of large momentum.

The most interesting (and difficult) case of small incident angle is consid-
ered. More precisely, the incident angle ¢ is chosen in such a manner that
approximately ¢ = 2u/+/@Q where Q is the dimensionless momentum. The limit
considered corresponds to ) — oo with fixed u.

It is demonstrated that at small final angles (of the order of u,/\/Q) the
transmission is always negligible. The modulus of reflection coefficients in this
case are independent of @ and the angle « of inclination of the demi-plans and
are given by Eq. (@) The reflection coefficients decay quickly with n (i.e. with
increasing of reflection angle) and Y \/n|R,|? converges. The largest reflection
coefficient corresponds to the smallest possible angle of reflection i.e. n = —[u?].
For very small incident angle the elastic scattering corresponded to the specular
reflection dominates.
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The large angle scattering is noticeable only close to the specular reflection
from the demi-plans. When 0 < o < 7/2 only the transmission is large and the
large-angle reflection can be neglected. The transmission coefficients have the
form t(uy,u)/(v/@sin2a) where |f(u,us)* = 2g(ur,u) and g(uy,u) is given
by Eq. ([03). Here uy is the deviation from the angle of mirror reflection
magnified by the factor v/Q/2 exactly as u is related with the incident angle.
For m/2 < av < 7 the transmission is small and the reflection coefficients have
similar asymptotics.

The exceptional case of demi-plans perpendicular to the scattering plane is
characterized by the dependence of the fractional part of the momentum. In
the limit {Q} fixed and [Q] — oo the reflection and transmission coefficients are
independent on [Q] and are given by Eqs. ([L0d) — (113).

The first two terms of expansion of the exact elastic reflection coefficient into
powers of small incident angle can also be obtained from the results of Ref. [H]
where the Kirchhoff approximation for multiple scattering was developed. The
large angle scattering is well described by the usual Kirchhoff approximation
when the initial parameter v > 1.
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