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Schemes for loading a Bose–Einstein condensate into a two-dimensional dipole trap
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We propose two loading mechanisms of a degenerate Bose gas into a surface trap. This trap
relies on the dipole potential produced by two evanescent optical waves far detuned from the atomic
resonance, yielding a strongly anisotropic trap with typical frequencies 40 Hz × 65 Hz × 30 kHz.
We present numerical simulations based on the time-dependent Gross–Pitaevskii equation of the
transfer process from a conventional magnetic trap into the surface trap. We show that, despite
a large discrepancy between the oscillation frequencies along one direction in the initial and final
traps, a loading time of a few tens of milliseconds would lead to an adiabatic transfer. Preliminary
experimental results are presented.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj

I. INTRODUCTION

Bose–Einstein condensates (BEC) of alkali atoms [1]
as sources of coherent matter waves are of considerable
interest in atom optics and interferometry. The first atom
interferometry experiment using a BEC was performed
in 1997 [2]. Since then, interferometry has been used
to probe the condensate coherence length [3], to give a
signature for the Mott insulator transition in an optical
lattice [4] and to test restricted geometry effects [5]. This
last example is a witness to the increasing interest in BEC
in reduced dimensions [6].

The 2DEG (two-dimensional electron gas) is a very
rich system in condensed matter physics, giving rise for
example to the fractional quantum Hall effect [7] and to
anyonic quasi-particles [8]. It is also a convenient medium
for electronic interferometry [9]. By analogy, a 2DAG
(two-dimensional atomic gas) would give access to a new
regime of quantum degeneracy [10]. Most of the theo-
retical work investigating this field predicts specific phe-
nomena not encountered in the 3D geometry, such as a
progressive coherence below a critical temperature and a
modification of the mean field interaction [11]. The real-
ization of a 2D condensate is also a preliminary step for
the production and the manipulation of anyonic quasi-
particles [12]. Finally integrated atom optics, where the
matter waves can be guided in an arbitrary way, repre-
sents an important technological challenge.

The most convenient ways to realize a 2D confine-
ment of alkali atoms use either Zeeman interaction [13]
or ac Stark optical potentials [14]. The Zeeman method
is based on the current-carrying micro wires technique
which has been used with success to produce BEC
in quasi-1D geometries [15, 16]. This technique may
be adapted to produce an exponentially decaying B
field [13]. The advantage is the use of a simple device
yielding a large energy spacing of the lowest-lying vibra-
tional levels. The main drawback is the heating produced
by proximity magnetic fields above the metallic surface,

due to thermal fluctuations. Atoms sitting at distances
below 1 micrometre will eventually suffer a high rate
of scattering [17]. To our knowledge, no experimental
demonstration of this suggested mechanism has yet been
realized.

On the other hand 2D trapping with dipole forces has
been performed in standing waves [18] or with atoms
stopped by an evanescent wave and transferred to the
nodes or anti-nodes of a far off-resonant standing wave
close to a metallic or dielectric surface [19, 20]. An in-
homogeneous trap in one direction is also naturally pro-
duced with two evanescent light waves and the resulting
Morse-like potential is conservative for sufficiently large
frequency detunings. This idea was proposed more than
ten years ago by Ovchinnikov et al. [21]. A good trap ge-
ometry is not the only issue for the realization of a 2D gas.
An efficient loading of this trap is also essential. A load-
ing scheme of a double evanescent wave trap (DEWT)
based on a dissipative transfer of cold atoms has been
previously proposed by Dalibard and Desbiolles [22] and
extended for larger frequency detunings [23]. Recently, a
group in Innsbruck succeeded for the first time in load-
ing a DEWT from a dense dipole trap with 20 000 Cs
atoms at a temperature as low as 100 nK [24]. All those
mechanisms deal with non-condensed atoms. Our paper
focuses on the loading of a DEWT from a BEC cloud. We
address here two types of loading process and compare
their advantages. Our approach is based on adiabatic
transformations of combined magnetic plus dipole traps
up to the final stage of a DEWT.

The paper is organized as follows: section II describes
the principle of the DEWT and gives our proposed pa-
rameters; section III explains the method of loading
starting from two different kinds of trap: (i) the usual
magnetic Ioffe–Pritchard trap or (ii) the anti-nodes of
a moving red-detuned standing wave as a conveyor belt
from the magnetic trap to the DEWT. Details are given
in this section about the numerical solutions of the time-
dependent Gross–Pitaevskii equation. In section IV, we
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present the experimental apparatus and give our prelimi-
nary results: production of a 87Rb BEC near a dielectric
surface and transportation of a thermal cloud to this sur-
face.

II. PRINCIPLE OF THE DOUBLE
EVANESCENT WAVE TRAP (DEWT)

Let us first recall briefly the criterion for reaching the
2D regime for atoms confined in a 3D harmonic trap,
with trapping frequencies ωx, ωy ¿ ωz. In the case of
a degenerate Bose gas, the chemical potential µ3D cal-
culated for the 3D geometry should fulfil the inequality
µ3D ¿ h̄ωz. This leads to a constraint on the atom num-

ber N ¿ N2D
BEC where N2D

BEC = γ ω
3/2
z /(ωxωy) [6]. With

the parameters of 87Rb one gets γ = 800
√

2π rad/s .
By contrast, a 2D classical gas is obtained if kBT ¿
h̄ωz. This makes sense if the transition temperature
kBTc ' h̄(ωxωyωzN)1/3 also fulfils this inequality. The
requirement on the atom number for a classical 2D gas
is thus N ¿ N2D

cl where N2D
cl = ω2

z/(ωxωy) whatever
the atom. N2D

cl is less than N2D
BEC as soon as ωz is less

than 2π × 640 kHz for 87Rb, which is the case in most
experiments including ours. We will discuss the validity
of the 2D regime in our case later in this section.

The quasi-2D trap we describe in this paper was first
proposed by Ovchinnikov et al. [21]. It consists in two
evanescent light waves produced by total internal reflec-
tion at the surface of a dielectric material (see figure 1).
One of the light fields is red-detuned by δr with respect
to the atomic transition whereas the other one is blue-
detuned by δb. The angles of incidence of both beams at
the dielectric–vacuum interface are chosen such that the
decay length of the red field 1/κr is larger than the decay
length of the blue field 1/κb. The light shift produced by
the two fields results in a Morse-like potential along z,
with a long-range attractive potential and a short-range
repulsive wall near the surface. A radial confinement (x
and y directions) is achieved with appropriate waists for
the red and the blue beams, typically choosing a smaller
waist for the red beam. The overall potential seen by the
atoms also includes the van der Waals attractive poten-
tial towards the dielectric surface.

As our goal is to load such a trap with a degenerate
Bose gas, we paid particular attention to keep the spon-
taneous emission rate as low as possible. The light shift
of a field of intensity I [30] detuned by δ scales as I/δ
whereas the spontaneous scattering rate scales as I/δ2.
At constant light shift, the use of larger detunings and
therefore larger intensities is thus preferable. The prac-
tical constraints on the availability of laser sources led us
to the choice of a YAG laser of a few watts at 1064 nm
for the red field and a laser source of a few hundred mil-
liwatts detuned by a few nanometres for the blue field,
typically a titanium–sapphire laser. Note that the Inns-
bruck group came to the same conclusions [24].

We now give the expression of the 2D trapping poten-

z

x
TE
blue

TM
red

FIG. 1: Principle of the 2D evanescent light trap. A red-
detuned evanescent wave produces a long range attractive
exponential potential towards the surface (z axis), and a
blue-detuned one prevents atomic adsorption through a short-
range repulsive potential. Also shown is our choice of polar-
izations of the incident beams (TE or TM).

tial for 87Rb atoms in the 5S1/2 F = 2 state. The two
trapping beams of wavelength λr and λb enter a dielec-
tric prism of refraction index n in the xz plane where z is
the direction orthogonal to the surface. The angles of in-
cidence at the dielectric–vacuum interface are θr and θb,
both above the critical angle for total internal reflection
θc = arcsin(1/n). The decay length of the red evanescent

wave is then κ−1
r =

√

n2 sin2 θr − 1 λr/2π. A similar ex-
pression holds for κ−1

b .
As the detuning of the YAG laser is large as compared

to the fine structure of the excited state ∆FS, we can
consider the transition as a J = 0 −→ J ′ = 1 transition.
The light shift of the ground state due to the red field is
always scalar, regardless of the polarization of the evanes-
cent light. Therefore, we choose a TM polarization for
this beam, which gives rise to a higher transmission co-
efficient at the dielectric–vacuum interface. We will note
δr the detuning of the YAG beam with respect to the D2
line at 780 nm. In the following, we do not differentiate
between δr and δr + ∆FS.

On the other hand, as the detuning between the blue
field and the D2 line is smaller than ∆FS we have to take
into account the contributions of both D1 (at 795 nm)
and D2 lines to the light shift. The detuning with respect
to the D2 line will be denoted as δb, whereas the detuning
with respect to the D1 line is δb +∆FS. As δb is different
from δb +∆FS, the light shift potential will be scalar only
if the polarization of the blue evanescent field is linear.
In order to ensure a uniform trapping potential for all
Zeeman sub-states, we choose a TE polarization for the
incoming blue wave, which ensures a linear polarization
along y for the evanescent field.

We denote by Pr and Pb the powers of the red and
blue beams respectively inside the dielectric medium,
while wr and wb are the beam waists. The correspond-
ing intensities inside the dielectric at the surface are
Ir,b = 2Pr,b cos θr,b/πw2

r,b. The intensity of each beam

at z = 0 in the vacuum depends on its polarization (TE
for the blue beam, TM for the red one).
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The light shift produced by both beams reads

HLS(r) = h̄Γ
[

Ar e−2κrz exp
(

−2x2 cos2 θr/w2
r − 2y2/w2

r

)

+ Ab e−2κbz exp
(

−2x2 cos2 θb/w2
b − 2y2/w2

b

)

]

(1)

where

Ar = t2TM

Ir

2Is

Γ

4δr
(2)

Ab = t2TE

Ib

2Is

(

2

3

Γ

4δb
+

1

3

Γ

4(δb + ∆FS)

)

(3)

Note that Ar < 0. The transmission coefficients for
the intensity are

t2TM =
4n2 cos2 θr

n2 − 1

2n2 sin2 θr − 1

(n2 + 1) sin2 θr − 1
(4)

t2TE =
4n2 cos2 θb

n2 − 1
(5)

Here, h̄Γ is the natural linewidth of the excited state
and Is = 1.6 mW/cm2 is the saturation intensity. The
terms in cos θr,b in the exponential appear because of the
projection of the beam profile onto the dielectric surface.

The total potential includes the van der Waals inter-
action with the surface. One has to go beyond Lennard-
Jones potential in 1/z3 because the distance to the sur-
face is comparable to λ = λ/2π. Therefore retardation
effects cannot be ignored. Landragin [25] gives an ana-
lytical correction to the Lennard-Jones potential which
approximates the exact result with a 0.6 % accuracy be-
tween 0 and 10 λ:

HvdW(z) ' f(z/λ) HLJ(z) (6)

with

f(u) = 0.987

(

1

1 + 1.098u
−

0.00493u

1 + 0.00987u3 − 0.00064u4

)

(7)

HLJ(z) =
n2 − 1

n2 + 1

1

4πε0

〈d2〉

12

1

λ

(

λ

z

)3

(8)

For rubidium in the ground state, the mean value of
electric dipole squared is 〈d2〉 = 28.2 e2a2

0 where a0 is the
Bohr radius and e the electron charge.

In the following we give the trap characteristics for a
reasonable choice of parameters for the evanescent light,
taking into account the available power of laser sources
near 780 nm. The proposed values of the parameters are
indicated in table I. The dielectric medium is chosen to
be BK7 glass which has a relatively low index of refrac-
tion n = 1.51 to minimize the van der Waals attraction
towards the surface. Using this material, the critical an-
gle for total internal reflection is θc = 41.5◦.
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FIG. 2: 2D trapping potential plotted with the values pre-
sented in table I. Top: cut along z for x = y = 0. The
red-detuned evanescent wave produces the long-range attrac-
tive potential, whereas the blue-detuned evanescent wave acts
as a repulsive wall at short distances. The attractive van
der Waals potential is dominant very close to the surface
(z < 100 nm). Bottom: contour plot in the yz plane. Sub-
sequent contours are spaced by 25 kHz; darker shades corre-
spond to lower energies. Horizontal confinment is achieved
due to the Gaussian transverse profile of the red incident
beam.

These values of the trap parameters lead to a very
anisotropic potential above the dielectric surface. A cut
of the potential along z for x = y = 0 is depicted in
figure 2, top. The atoms are trapped at a distance
z0 = 360 nm from the surface. The trap depth is 180 kHz
(or equivalently 9 µK) and is given by the energy dif-
ference between the bottom of the trap and the saddle
points at x = 0, y = ±195 µm, z = 300 nm (see the
contour plot in figure 2, bottom). We have checked with

TABLE I: Values of the 2D trap parameters.

Pr,b (W) wr,b (µm) λr,b (nm) θr,b (deg.) κ−1

r,b (nm)

red 4 150 1064 44.6 510

blue 0.5 170 778 50 220
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a 1D numerical calculation that the tunnelling from the
ground state to the dielectric surface is negligible. The
potential is essentially harmonic around the minimum
in the x and y directions where the trapping force re-
sults from the transverse profile of both beams. The os-
cillation frequency is smaller along x due to the angle
between the beam axis and the surface. In the z direc-
tion the trap deviates rapidly from the harmonic approx-
imation. However, the computed oscillation frequency
along z at the bottom of the trap gives a good indica-
tion of the anisotropy of the potential: ωx = 2π × 41 Hz,
ωy = 2π×67 Hz and ωz = 2π×28 kHz. The aspect ratio
is thus 690 along x and 420 along y. With these param-
eters, the value of N2D

BEC is 1.4 × 106 and we get either
µ3D/h = 10 kHz for 105 atoms or 4 kHz for 104 atoms,
to be compared to 28 kHz. The system is thus already
in the 2D regime for a reasonably high number of atoms.
However, N2D

cl = 3 × 105 is lower than N2D
BEC and the

transition temperature corresponds to about 20 kHz for
105 atoms and 9 kHz for 104 atoms, which means that
only thermal clouds close to the transition temperature
could be considered as 2D gases.

As this trap is intended to be loaded with a degenerate
Bose gas, the spontaneous scattering rate at the bottom
of the trap is an important parameter. It is given by the
formula

Γscatt = Γ

[

t2TM

Ir

2Is

Γ2

4δ2
r

e−2κrz0

+ t2TE

Ib

2Is

(

2

3

Γ2

4δ2
b

+
1

3

Γ2

4(δb + ∆FS)2

)

e−2κbz0

]

(9)

With our choice of parameters we get Γscatt = 5 s−1.
This gives a reasonable lifetime for a degenerate gas in-
side the trap.

III. LOADING THE 2D TRAP

The loading of the 2D trap with a degenerate Bose gas
is one of the major points to be addressed in this type of
experiment. Methods for loading similar traps with clas-
sical gases have been demonstrated before. They rely on
optical pumping by evanescent waves in the vicinity of
the surface [19, 24]. This kind of method is prohibited
when dealing with a degenerate gas. In fact, any interac-
tion of the atoms with resonant light should be avoided
in order to preserve coherence and reduce heating. In
this paper, we propose two different methods for loading
the atoms from a magnetic trap, centred a few millime-
tres above the dielectric surface, into the DEWT. The
magnetic trap we start with is a standard cigar-shaped
QUIC trap [26] with frequencies ω⊥ = 2π × 300 Hz and
ωx = 2π × 21 Hz (see section IV A). Both schemes rely
on the adiabatic transfer from the magnetic trap into the
surface trap. We give a brief description of the methods
and present results of numerical simulations of the two
transfer processes.

A. Scheme 1: magnetic to 2D trap transfer

The first method consists in deforming a translated
magnetic trap adiabatically by switching on the evanes-
cent light trap slowly. The atoms are first translated
inside a moving magnetic trap to the vicinity of the sur-
face. This is done by adding to the QUIC trap a pair
of Helmholtz coils with a vertical axis (see section IV B).
At the same time, the blue-detuned evanescent light field
is switched on in order to prevent the atoms from stick-
ing to the surface as they come very close to it. Sec-
ond, the condensate is transferred into the 2D dipole trap
by switching on the red-detuned evanescent wave slowly,
thus compressing the cloud strongly in the z direction.
Finally, the magnetic field has to be switched off and the
atoms remain trapped in the DEWT. The transfer is adi-
abatic if the variation of the trap frequency ω(t) verifies
along each direction the following inequality:

∂ω

∂t
¿ ω2 (10)

This implies that the ramping time of the evanescent
wave must be very large as compared to the oscillating
period of the atoms in the trap.

We present here a 3D numerical calculation of part of
this process using the time-dependent Gross–Pitaevskii
Equation (GPE) for the macroscopic wavefunction for a
condensate comprising 106 atoms. The starting point of
the calculation is the ground state of a hybrid trap con-
sisting of the blue-detuned evanescent light plus a mag-
netic harmonic trap centred at the surface (z = 0), see
figure 3(a). We then let the wavefunction evolve due to
the GPE, while switching on the red evanescent field and
the van der Waals potential with an exponential time
profile. The total ramping time is Tramp. The calcula-
tion ends at time tend > Tramp and does not include the
magnetic field extinction.

We use the splitting method to evaluate the effect of
the total Hamiltonian for a time interval dt: if dt is small
enough, one can let Hr dt and Hp dt commute, where Hr

is the part of the Hamiltonian diagonal in the position
basis (potential energy plus interactions) and Hp is diago-
nal in momentum (kinetic energy). The evolution during
dt leads to

ψ(t + dt) = T † exp

(

−iHp dt

h̄

)

T exp

(

−iHr dt

h̄

)

ψ(t)

(11)
where T represents a fast Fourier transform and T † its
inverse. We calculate the chemical potential µ and the
initial wavefunction by solving the time-dependent GPE
with the method of imaginary time; we propagate and
renormalize ψ(τ) at each step using the equation

∂ψ

∂τ
= −

1

h̄
Hψ (12)

to get a positive chemical potential as small as possible.
The corresponding wavefunction represents the ground
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FIG. 3: Integrated spatial density along x and y as a function of z ((a:z) to (c:z), thick curve) and along x and z as a function
of y ((a:y) to (c:y)). Note the scaling factor in figures (a:z) and (b:z). On figures (a:z) to (c:z), the potential is also represented
(thin curve). (a) shows the initial ground state at t = 0 with the red beam off. The other parts represent the atomic density
after evolution with the GPE for a time tend for two extreme values of Tramp: for (b) Tramp = 0.3 ms and tend = 2.3 ms whereas
for (c) Tramp = 32 ms and tend = 42 ms. In (c:z), a Gaussian fit of the density profile gives a 1/e2 radius of σ = 80 nm. The
radius R obtained by fitting the y profiles with a Thomas–Fermi distribution is Ra = 7.7 µm, Rb = 7.9 µm and Rc = 15.5 µm
for (a:y), (b:y), (c:y) respectively.

state of the GPE and is taken as initial state ψ(t = 0) be-
fore deformation. The subsequent evolution is calculated
using equation (11) (where Hr is a function of time).

The magnetic trap is chosen to be isotropic with an
oscillation frequency ω0 = 2π × 300 Hz (oscillation pe-
riod Tosc = 3.3 ms) to reduce the calculation time. The
2D trap results from evanescent waves with decay lengths
κ−1

r = 510 nm and κ−1
b = 220 nm. The light shift at the

surface is 5.4 MHz for the blue beam and −1.4 MHz for
the red one. The oscillation frequencies in the DEWT
alone are ωz = 2π × 30 kHz along the vertical axis,
ωx = 2π × 30 Hz and ωy = 2π × 64 Hz in the horizon-
tal plane. The position of the minimum of the potential
well along the vertical direction is about 350 nm above
the surface of the prism. As ωx and ωy are much smaller
than ω0, the frequency in the horizontal plane changes
only slightly from ω0 to e.g.

√

ω2
0 + ω2

x and the criterion
for adiabaticity is easily fulfilled horizontally.

The numerical results are shown in figure 3. Fig-
ures 3 (a:z) to 3 (c:z) represent the spatial atomic den-
sity integrated along x and y as a function of z together
with the trapping potential along z. Figures 3 (d:y) to
3 (c:y) show the density integrated along x and z and
plotted as a function of y. Figure 3 (a) represents the

initial atomic distribution (t = 0) of the 106 atoms, corre-
sponding to the ground state of the hybrid magnetic plus
blue evanescent wave trap. The atomic density along z
is not symmetrical due to the steep wall produced by the
blue beam. The spatial density for two different ramping
times Tramp of the red beam is given in figures 3 (b) and
3 (c).

We observe that almost all the condensate is trans-
ferred into the dipole trap for a ramping time Tramp =
32 ms much greater than the initial oscillation period
Tosc, figure 3 (c). We also note that, in this case, the
width of the spatial density along the horizontal direc-
tion is enlarged when adding the red beam, compare fig-
ure 3 (c:y) with figure 3 (a:y). Indeed when ramping up
the red beam intensity slowly, the atomic cloud is com-
pressed along the vertical axis, figure 3 (c:z), and expands
in the horizontal directions where the potential energy
increases more slowly with distance from the centre.

On the other hand, for a very short ramping time
(0.3 ms), only a few atoms are transferred into the 2D
dipole trap (figure 3 (b)). The integrated atomic density
along z presents three features: we observe two density
peaks with a large difference between their amplitude,
plus a broad background. The centre of the smaller peak
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FIG. 4: Transfer efficiency as a function of the ramping time.
The crosses represent numerical results. The dotted line rep-
resents 100 % efficiency.

corresponds to the minimum of the dipole trap and repre-
sents the atoms which were transferred successfully. The
larger peak sits at the extreme border of the dipole trap
well. One can understand this with a simple picture.
When we ramp up the red beam quickly, the atoms which
were localized at the bottom of the initial potential with
almost zero velocity suddenly acquire an energy equal to
the depth of the dipole potential. They populate a very
narrow band of excited states of the new well and are
essentially located at the turning points of the potential.
Towards the surface, the potential is very stiff and the
atomic velocity changes almost instantaneously. As a re-
sult, a single density peak is visible at the right turning
point where the potential is much shallower. Note that
the respective weight of the two peaks changes as the
loading time Tramp is increased: more atoms are trans-
ferred in the DEWT, see figure 4, and the second peak is
reduced. The background of the distribution represents
the atoms which are not much affected by the switching
on of the red beam. These atoms were out of the well in
the right-hand side of the potential when the red beam
was ramped up. The width of the spatial density along
the horizontal direction (figure 3 (b:y)) does not change
as compared to figure 3 (a:y) due to the poor compression
reached in the z direction.

The analysis of the transfer efficiency is presented in
figure 4. To estimate the number of transferred atoms,
we fit the peak in the z density profile corresponding to
the atoms trapped in the DEWT with a Gaussian pro-
file and compare its area to the total number of atoms.
The transfer efficiency increases non linearly with the
ramping time. For a ramping time Tramp = 32 ms, very
large as compared to Tosc, the difference between the fi-
nal density profiles and the ground state of the total trap
(DEWT + magnetic trap) is imperceptible and the trans-
fer is actually adiabatic. From figure 4 we infer that a
20 ms ramping time is quite enough to realize an adi-
abatic transfer. Note that in the adiabatic case, as we

ramp the magnetic trap off very slowly, the spatial den-
sity along the z axis becomes narrower while the horizon-
tal width becomes larger (not shown here). Indeed, the
horizontal frequencies of the dipole trap (ωx = 2π×30 Hz,
ωy = 2π×64 Hz) are smaller than those in the initial trap
(ωx = ωy = 2π×300 Hz), and the anisotropy is more pro-
nounced due to the strong confinement along z and the
interactions between atoms.

B. Scheme 2: the atomic lift

The second method makes use of a moving standing
wave to transport the atoms from the magnetic trap into
the DEWT. The idea is close to the principle of the con-
veyor belt recently realized on a micro chip [27]. At the
beginning of the loading process, the atoms are confined
in the magnetic trap and the laser fields producing the
DEWT are on. The process may be decomposed into
three steps: (i) The atoms are loaded at the anti-nodes
of a stationary wave into a series of horizontal planes
obtained by two red-detuned counter-propagating beams
along z. (ii) The magnetic field is switched off and the
atoms are lifted down towards the surface by changing
the phase of one of the beams with respect to the other.
The atoms accumulate in the 2D trap by continuous de-
formation of the potential (figure 5). (iii) Finally, when
all the atoms are in the last well near the surface, the
stationary wave is switched off and the atoms remain
trapped in the DEWT.

At each step, the different transfers have to remain adi-
abatic to avoid any heating of the atomic cloud. Step (i)
should not pose particular problems as transfer of con-
densates into optical lattices has already been demon-
strated [28]. Note that the atoms remain trapped hori-
zontally even after the magnetic field has been switched
off due to the Gaussian profile of the counter-propagating
beams, with corresponding horizontal oscillation fre-
quency ωh. One simply has to switch off the magnetic
field adiabatically, that is in a time larger than ω−1

h .
To realize this first step, one can typically use a λlift =

830 nm laser diode with a power of 15 mW in each beam
and a waist of 90 µm. This gives ωh = 2π × 60 Hz. Pro-
vided the populated anti-nodes are far from the evanes-
cent waves, the phase change may be very fast, and this
gives the atoms a large translational velocity, v1. When
the atoms approach the surface, the velocity must be
lowered, to v2 say, because the horizontal shape of the
trap changes. In fact the horizontal frequency seen by an
atom changes, in the x direction for example, from ωh to
ωmax = (ω2

h+ω2
x)1/2 when it is first loaded in the DEWT,

and then changes periodically between ωmax and ωx as
the phase evolves further to load the remaining atoms.
This gives the typical time constant for adiabaticity.

We tested this loading scheme qualitatively with a 3D
numerical simulation analogous to the one described in
the last section. We were interested mostly in the last
stage where the atomic cloud distributed in several planes
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 FIG. 5: Principle of the atomic lift. Three different stages are shown for three values of the relative phase ϕ between the two
beams of the standing wave. (a) ϕ = 0.6π; (b) ϕ = 1.5π; (c) ϕ = 1.8π.
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FIG. 6: Results of the numerical simulation of the atomic lift: integrated spatial density along x and y as a function of z (thick
curve), at three evolution times: (a) t = 5.8 ms; (b) t = 13.3 ms; (c) t = 22.3 ms. The potential is also represented (thin curve).

approaches the surface. The initial state of the calcula-
tion (t = 0) is the ground state of the GPE in the poten-
tial formed by the stationary wave with λlift = 800 nm
plus a 1D harmonic potential along z. This potential
mimics the situation immediately after the transfer from
the magnetic trap into the stationary wave. The 1D po-
tential is centred 3.4 µm above the surface and is switched
off at the beginning of the evolution through the time-
dependent GPE, while the 2D trap is switched on. At
this point (t = 1.1 ms), the atoms are spread over a
few planes. For an initial vertical oscillation frequency of
300 Hz and 105 atoms, typically 15 planes are populated.
However, to reduce the calculation time, we start from a
condensate in a harmonic trap with a vertical oscillation
frequency of 1.6 kHz. In this case, the atoms are spread
symmetrically over three planes (see figure 6). The rela-
tive phase between the two beams of the standing wave is
then allowed to evolve, resulting in the two successive ve-
locities v1 = 1.1 mm/s and v2 = 76 µm/s, as mentioned
above.

The results of the numerical calculation are shown in
figure 6. The column density integrated over x and y is
plotted as a function of z at three stages of the loading
process. At t = 5.8 ms (a) the first populated plane
reaches the rim of the last well, which coincides with
the 2D trap. At t = 13.3 ms (b) two populated planes

have melted into the last well. At t = 22.3 ms (c) the
atoms accumulate in the last well. However, it was not
possible to fulfil the condition for adiabatic transfer. As a
result, the final atomic density does not coincide with the
ground state of the GPE in the DEWT. We shall discuss
this point further in the conclusion. Moreover, when the
atoms are in the last well of the standing wave before
melting, they tunnel through the small barrier separating
them from the trap, as can be seen already in (a), thus
populating excited states of the DEWT. To limit this
phenomenon, both the depth and the typical size of the
wells of the standing wave must be adjusted to those of
the DEWT. This condition may be a difficult point to
address experimentally.

IV. PRELIMINARY EXPERIMENTAL RESULTS

In this section, we present some preliminary experi-
mental results towards loading of a degenerate Bose gas
into a DEWT.
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A. Experimental set-up

The experimental set-up, figure 7, consists of two
ultra-high vacuum chambers separated vertically by
75 cm. In the upper chamber (pressure 10−9 Torr) the
87Rb atoms are collected from a vapour in a standard
magneto-optical trap (MOT) by three retro-reflected
beams (1/e2-diameter 25 mm each, total power 45 mW).
This MOT acts as a reservoir for the second MOT in the
lower cell where the pressure is below 10−11 Torr. The
difference in vacuum pressure is ensured by a tube of
length 120 mm with an internal diameter of only 6 mm.
The lower MOT is set up with six independent laser
beams with a 1/e2-diameter of 10 mm each for a total
power of 45 mW.

The atoms are continuously transferred into the second
cell by an original method combining pushing and guid-
ing the atoms. The pushing beam has a power of 30 mW
and is detuned by 2.5 GHz on the red side of the MOT
5S1/2, F = 2 −→ 5P3/2, F ′ = 3 transition. It is focused
8 cm above the upper MOT to a waist of 220 µm such
that its radius is 250 µm at the upper MOT and 940 µm
at the lower MOT. This beam induces sufficiently large
light shifts (30 MHz) so that atoms inside the beam no
longer feel the MOT beams; the atoms are extracted from
the upper MOT with a radiation pressure about 25 times
smaller than that of a typical MOT. The advantage of
this method is that the velocity of atoms remains in the
capture range of the lower MOT (about 15 m/s). Fur-

thermore, the pushing beam acts as a dipole trap which
guides the atoms vertically near its axis inside the small
diameter tube. The depth of this guide is about 1.4 mK
at the upper MOT for the F = 2 state. A collinear
repumping beam, tuned to the F = 1 −→ F ′ = 2 tran-
sition, ensures that the atoms remain in F = 2. Due to
the divergence of the guiding beam the radiation pres-
sure at the position of the lower trap is negligible. The
fact that the atoms are guided while pushed towards the
lower cell renders the loading process very robust against
small changes in the parameters of the two MOTs.

After 30 s of loading time, the atoms are cooled
by molasses cooling, compressed and pumped into the
F = 2,mF = 2 state. They are then transferred into a
Ioffe–Pritchard, cigar-shaped magnetic trap. The coils
producing the magnetic field are placed following the
quadrupole and Ioffe configuration (QUIC) [26] and dis-
sipate a total electric power of 200 W. They are cooled
by thermal contact with water-cooled copper radiators.
Two independent current sources are used, one for the
Ioffe coil (43 A) and one for the quadrupole coils (30 A).
The resulting magnetic field has a minimum B0 of about
1 G with a field gradient b′ = 225 G/cm and a curvature
b′′ = 270 G/cm2. The resulting oscillation frequencies
are 21 Hz along the axis of the cigar (x direction) and
300 Hz in the transverse yz plane for the F = 2,mF = 2
state. We achieve Bose–Einstein condensation after 30 s
of RF evaporative cooling.

B. Results

The condensate contains typically 2 × 105 atoms and
is produced at the centre of the QUIC trap, just above
the prism which is the support for the 2D evanescent
light trap (see the bottom of figure 7). The vertical po-
sition of the prism with respect to the condensate may
be adjusted mechanically. However, it is limited to at
least 3 mm to maintain a correct loading efficiency of the
MOT. By adding to the QUIC trap a uniform vertical
magnetic field varying from 0 to 64 G the minimum of
the trapping potential is moved down to the surface of
the prism, as required by the first 2D-transfer scheme.
This field is produced by ramping up a current from 0 to
20 A in two additional horizontal coils separated by 4 cm,
having each 30 windings of mean diameter 16 cm. Dur-
ing the ramp, the current in the quadrupole coils of the
QUIC trap is lowered by about 5%; otherwise the trap
would cross a zero of the magnetic field and the atoms
would separate into two clouds. The resulting potential
near the centre of the trap remains essentially unaltered
apart from an increase of a factor of 1.6 in the oscillation
frequency along the slow axis (from 21 Hz to 33 Hz).
This axis is also slightly tilted, in agreement with the
magnetic field calculations. To illustrate the translation
process, we filled the initial QUIC trap with a sample of
thermal atoms at T = 9 µK centered 3.7 mm above the
prism and imaged the atomic cloud at several steps of its
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FIG. 8: Absorption images of a thermal cloud at temperature
9 µK approaching the prism. Each 2.5 mm × 5 mm image is
taken 4 ms after switching off the magnetic fields, at different
steps of a 1 s, 0 to 20 A current ramp in the additional coils.
The final values of the current are 0, 10, 15 and 18.4 A re-
spectively. When reaching 20 A, the atoms are lost by contact
with the surface in the absence of a blue-detuned evanescent
wave.

journey towards the surface, figure 8. When the current
in the additional coils reaches 20 A, the atoms are lost by
contact with the surface in the absence of a blue-detuned
evanescent wave.

As the experiment was performed with a non-
condensed cloud, the next step will be to extend it
to a BEC. The blue and red beams have then to be
added to the experimental set-up. Preliminary experi-
ments with a blue beam alone were realized: a bounce
of thermal atoms released from the QUIC trap 3.7 mm
above the prism was observed. However, the detuning
δb = 2π × 500 MHz was too small for the beam to be
used in a loading experiment and it will be replaced by
an appropriate laser source. This should allow us to test
experimentally the first transfer scheme.

V. CONCLUSION

In this paper, we studied two possible methods for
loading a degenerate Bose gas into a strongly anisotropic
trap. The first method is also the simpler one. We have
demonstrated experimentally with a thermal cloud the
first stage corresponding to the vertical translation of the
atomic cloud. We simulated the transfer from the trans-
lated QUIC trap into the DEWT. When the criterion
for adiabaticity is fulfilled the transfer efficiency is close
to 100%. The simulation assumed an isotropic magnetic
trap with oscillation frequency ω0 = 2π × 300 Hz. In the
experimental situation, one of the horizontal frequencies
is ω0x = 2π × 33 Hz only and the loading time may have
to be increased by a small factor. The last stage corre-
sponds to the extinction of the magnetic field and should

not pose particular problems providing that the switch-
ing time is much longer than the horizontal frequencies in
the DEWT. We believe that this loading method could be
implemented experimentally. The difficulty is to adjust
the horizontal position of the magnetic trap to the center
of the DEWT. This can be done by changing slightly the
balance between the currents in the QUIC coils.

The second method has the great advantage of com-
pressing the atomic cloud already in the QUIC trap be-
fore the atoms are loaded into the DEWT. The transla-
tion stage towards the surface (velocity v1) may be faster
than in the last method, as the vertical oscillation fre-
quency in the series of planes is on the order of a few
tens of kHz instead of 300 Hz. The accumulation stage
into the DEWT by a phase sweep seems to be an elegant
idea. However, the phase velocity v2 is strongly limited if
one tries to fulfil the adiabaticity condition. In fact, for
horizontal frequencies ωh = 2π × 60 Hz in the standing
wave and ωx = 2π × 30 Hz in the DEWT, the frequency
change between ωx and

√

ω2
h + ω2

x has to be slower than
ωx. Therefore the velocity v2 has to be much smaller
than λlift/4 × ωx/2π = 6 µm/s to avoid 2D breathing
mode excitation. The typical time to load 15 planes is
then a few seconds. This is still an order of magnitude
too large to be of interest for practical applications. To
reduce this time, one may either increase the horizontal
frequency during the loading process, or compress the
cloud initially to populate fewer horizontal planes. An-
other problem that will occur with this loading method
is the phase noise in the standing wave. The study of its
influence on the loading mechanism is out of the scope of
this paper. However, a recent work in Bonn showed that
it produces heating and reduces the lifetime in a standing
wave trap [29].

Finally, let us note that the second method may be
used in a reversed way to extract the 2DAG and study it
far from the surface: once the atoms are confined in the
DEWT, one can slowly switch on a standing wave and
change the relative phase to lift the atoms away from the
surface. It is then easier to produce a single 2D trap with
a very high aspect ratio with less laser power.
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Bloch I 2002 Nature 415 39

[5] Dettmer S, Hellweg D, Ryytty P, Arlt J J, Ertmer W,
Sengstock K, Petrov D S, Shlyapnikov G V, Kreutz-
mann H, Santos L and Lewenstein M 2001 Phys. Rev.

Lett.87 160406
[6] Görlitz A, Vogels J M, Leanhardt A E, Raman C, Gus-

tavson T L, Abo-Shaeer J R, Chikkatur A P, Gupta S,
Inouye S, Rosenband T and Ketterle W 2001 Phys. Rev.

Lett.87 130402
[7] Tsui D C, Störmer H L and Gossard A C 1982 Phys. Rev.

Lett.48 1559; Laughlin R B 1983 Phys. Rev. Lett.50 1395
[8] See e.g. the lecture by MacDonald A H 1995 in Meso-

scopic quantum physics, Les Houches 94 Summer session,
Akermans E et al.eds (Elsevier)

[9] See e.g. Buks E, Schuster R, Heiblum M, Mahalu D and
Umansky V 1998 Nature 391 871

[10] Bagnato V and Kleppner D 1991 Phys. Rev. A 44 7439
[11] Petrov D and Shlyapnikov G 2001 Phys. Rev. A 64

012706
[12] Paredes B, Fedichev P, Cirac J I and Zoller P 2001 Phys.

Rev. Lett.87 010402
[13] Hinds E A, Boshier M G and Hughes I G 1998 Phys. Rev.

Lett.80 645
[14] For an overview of these traps see: Grimm R, Wei-

demüller M and Ovchinnikov Y B 2000 Advances in

Atomic, Molecular and Optical Physics 42 95-170
[15] Hänsel W, Hommelhoff P, Hänsch TW and Reichel J 2001
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