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GEOMETRIC TOOLS OF THE ADIABATIC COMPLEX WKB METHOD

ALEXANDER FEDOTOV AND FRÉDÉRIC KLOPP

Abstract. The paper is devoted to the description of the main geometric and analytic tools of a
complex WKB method for adiabatic problem. We illustrate their use by numerous examples.

Résumé. L’article est consacré à la description des principaux outils géométriques et analytiques
d’une méthode WKB complexe pour des problèmes adiabatiques. Nous illustrons leur utilisation par
de nombreux exemples.

0. Introduction

In this paper, we study the asymptotic behavior of solutions of the one-dimensional Schrödinger
equation

−d2ψ

dx2
(x) + V (x)ψ(x) + W (εx)ψ(x) = E ψ(x), x ∈ R,(0.1)

where ε is a small positive parameter, and V (x) a real valued periodic function, V (x+1) = V (x). We
also assume that V ∈ L2

loc and that ζ 7→ W (ζ) is real analytic in some neighborhood of R ⊂ C.

The term W (εx) can be regarded as an adiabatic perturbation of the periodic potential V (x). The
analysis of perturbed periodic Schrödinger equations is a classical topic of mathematical physics. For
example, in solid state physics, such equations models behavior of electrons in crystals placed in
an external field ([2, 3]); in astrophysics, they model periodic motions perturbed by the presence
of massive objects ([1]). As in solid state physics, so in astrophysics, the perturbations can often
be regarded as very regular and slow varying with respect to the underlying periodic system. This
naturally leads to an equation of the form (0.1).

0.1. Asymptotic methods. The classical WKB methods are used for the analysis of equations of
the form

−d2ψ

dx2
+ W (εx)ψ(x) = Eψ(x).(0.2)

The potential W (ε·) can be regarded as an adiabatic perturbation of the free operator − d2

dx2
. In (0.1),

− d2

dx2
is replaced by the periodic Schrödinger operator

H0 = − d2

dx2
(x) + V (x), V (x + 1) = V (x), x ∈ R.(0.3)

In [2], to study solutions of (0.1), V. Buslaev has suggested an analog the classical real WKB method.
Both these methods do not allow to control important exponentially small effects (e.g. over barrier
tunneling coefficients, exponentially small spectral gaps). To study these effect for (0.2), one can use
the classical complex WKB method. And, in [8], we have developed an analog thereof to study such
exponentially small effects for equation (0.1).

In our method (as in the classical complex WKB method), one assumes that the adiabatic perturbation
W (·) is analytic and one tries to make the “slow” variable complex. But, in (0.1), as V can be rather
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singular, one has to “decouple” the “slow” and the “fast” variables. We do this by introducing an
additional parameter, say ζ, so that equation (0.1) takes the form

− d2

dx2
ψ(x) + (V (x) + W (εx + ζ))ψ(x) = Eψ(x), x ∈ R.(0.4)

The idea of our method is to study solutions of (0.4) on the complex plane of ζ and, then, to recover
information on their behavior in x along the real line.

There is a natural condition that can be imposed on solutions of (0.4) so as to relate their behavior
in x to their behavior in ζ:

ψ(x + 1, ζ) = ψ(x, ζ + ε) ∀ζ.(0.5)

We call it the consistency condition. On the complex plane of ζ, there are certain canonical do-
mains where the solutions satisfying the consistency condition have simple asymptotic behavior (see
section 3.3 and Theorem 3.1):

ψ(x, ζ) = e
i
ε

∫ ζ
ζ0

κdζ
(Ψ(x, E − W (ζ)) + o(1)) , ε → 0.(0.6)

Here, Ψ and κ are a Bloch (Floquet) solution and the Bloch quasi-momentum (see sections 1.2 and 1.3)
of the “unperturbed” periodic equation

−d2Ψ

dx2
+ V (x)Ψ = E Ψ, E = E − W (ζ), x ∈ R.(0.7)

Having constructed solutions having simple asymptotic behavior on a given canonical domain, one
studies them outside this domain using the transfer matrix techniques as in the classical complex
WKB method. The new asymptotic method has already been successfully applied to study spectral
properties of quasi-periodic equations. In [10, 9, 6, 11], using this method, we have obtained a series
of new results. However, trying to proceed as in the classical complex WKB method, one meets
numerous technical problems which makes the computations very long. In this paper, we present a
new geometric approach replacing or simplifying most of these computations.

0.2. Canonical domains. Canonical domains are defined in terms of κ(ζ), the complex momentum.
This function satisfies

E(κ) + W (ζ) = E,(0.8)

where E is the dispersion law of the periodic operator (0.3). In the classical case, i.e. for H0 = − d2

dx2
,

relation (0.8) takes the form κ2 + W (ζ) = E. The properties of the complex momentum in the
adiabatic case are discussed in section 2.
Canonical domains are unions of canonical curves connecting two given points in C (“two points”
condition). A canonical curve is roughly a smooth vertical curve (i.e. intersecting the lines Im ζ = 0

at non-zero angles) along which the function Im
∫ ζ

(κ − π)dζ decreases, and the function Im
∫ ζ

κdζ
increases for increasing Im ζ (see section 3.3 for the precise definition).
Recall that, in the classical case, in the definition of the canonical domains, there is no ”two points”

condition, and the canonical lines are characterized by a growth condition on the function Im
∫ ζ

κdζ.
In our case, the “verticality” condition arises as the periodicity V (x + 1) = V (x) singles out the
“horizontal” direction of the real line.
The basic fact of our method (established in [8]) is that, on any canonical domain, we can construct
a solution with the standard behavior (0.6) (see Theorem 3.1). It is analytic in {Y1 < Im ζ < Y2}, the
smallest strip containing the canonical domain.

0.3. The new geometric approach and its strategy. When applying the classical complex WKB
method, one first describes “maximal” canonical domains; then, to get the global asymptotics of a
solution having simple asymptotic behavior on a given canonical domain, one expresses it in terms of
the solutions having simple behavior on the other canonical domains. Therefore, one computes the
“transfer” matrices relating basis of solutions having simple asymptotic behavior on different overlap-
ping canonical domains.
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In the case of adiabatic perturbations of the periodic Schrödinger operator, the definition of the canon-
ical domains contains more conditions. In result, even “maximal” canonical domains are generally
quite “small” in the Re ζ-direction. Moreover, “maximal” canonical domains become rather difficult
to find. So, when computing the transfer matrices relating solutions with simple asymptotic behavior
on two given different canonical domains, one has to consider a “long” chain of auxiliary overlapping
canonical domains and to make many additional computations.
Fortunately, it appears that a solution having simple asymptotic behavior (0.6) on a canonical domain
K0 still has this behavior on domains which can be much larger than the maximal canonical domain
containing K0. Domains where a consistent solution f has the simple asymptotic behavior (0.6) are
called continuation diagrams of f . In this paper, we describe an elementary geometric approach to
computing continuation diagrams.

Instead of trying to find “maximal” canonical domains, we begin by constructing a “thin” canonical
domain. We use the following simple observation (see Lemma 4.1): any canonical line is contained in
a local canonical domain “stretched” along the canonical line. To construct a canonical line, we use
segments of some “elementary” curves described in section 4.1.2 (see also Proposition 4.1).
The main part of the work then consists in studying asymptotic behavior of the solution constructed
with Theorem 3.1 outside the local canonical domain. It appears that there are three general principles
allowing to compute the continuation diagram. We call these principles the main continuation tools.

So, to construct a solution with simple asymptotics on a large (not necessarily canonical) domain, we
begin with a local canonical domain, and then, step by step, at each step applying one of the three
continuation tools, we “extend” the continuation diagram, “continuing” (i.e. justifying) the simple
asymptotics of f to a larger domain.

0.4. The main continuation tools. There are three continuation tools: the Rectangle Lemma,
Lemma 5.1, the Adjacent Canonical Domain Principle, Proposition 5.1 and the Stokes Lemma,
Lemma 5.6. The first two principles were formulated and proved in [10] and [9]. The Stokes Lemma
is proved in the present paper. We now briefly explain the respective roles of these tools and show
how they complement one another when computing the continuation diagram.

The Rectangle Lemma. Roughly, the Rectangle Lemma says that a solution f has the standard
asymptotic behavior (0.6) along a horizontal line (i.e. a line Im ζ = Const) as long as the leading term
of its asymptotics is growing along that line. This result is in agreement with the standard WKB
heuristics saying that the asymptotics of a solution stays valid as long as its leading term is defined
and increasing.

The leading term of the asymptotics contains the exponential factor exp( i
ε

∫ ζ
κdζ). For small ε, this

factor determines the size of the solution. If Imκ > 0 in some domain D, then, f is increasing to
the left; if Imκ < 0 in D, then, f is increasing to the right. The Rectangle Lemma (Lemma 5.1) is
formulated in terms of the sign of the imaginary part of κ.

Let γ be the canonical line used to construct the solution f locally. If, along a segment of γ, Im κ > 0
(resp. Im κ < 0), then, f keeps its simple behavior in a domain contiguous to γ on its left (resp. right)
side.

A natural obstacle for “continuation” by means of the Rectangle Lemma is a vertical line where
Im κ = 0. So, usually, the domains where one justifies (0.6) by means of the Rectangle Lemma are
curvilinear rectangles (or unions thereof).

The Adjacent Canonical Domain Principle. Let γ0 be a curve canonical with respect to κ0,
some branch of the complex momentum. The Adjacent Canonical Domain Principle, Proposition 5.1,
says that, if a solution f has the simple behavior (0.6) in a domain adjacent to a canonical curve γ0

then, f keeps its simple behavior in any domain canonical with respect to κ0 and enclosing γ0.

The Adjacent Canonical Domain Principle is used to bypass the vertical curves which are obstacles
for the use of the Rectangle Lemma. These can be either segments of the canonical line used to start
the construction of f or vertical lines along which Imκ = 0. In both cases, the obstacles are curves
canonical with respect to some branch of the complex momentum.
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By means of the Adjacent Canonical Domain Principle, one justifies the standard behavior in A,
a domain the boundary of which contains the curve γ0 and the lines beginning at the ends of γ0

defined by equations of the form Im
∫ ζ

κ0dζ = Const and Im
∫ ζ

(κ0 − π)dζ = Const. Often these
two lines intersect one another, and the domain A has the shape of a curvilinear triangle. Otherwise,
one considers domains A of the form of a curvilinear trapezium; the fourth curve bounding such a
trapezium is one more canonical curve. The precise description of these two possible situations is the
subject of the Trapezium Lemma, Lemma 5.4.

The trapezium shaped domains are used to avoid the construction of “maximal” canonical domains
enclosing γ0 as this can be rather tricky. As the fourth boundary of the trapezium shaped domains,
one usually chooses a curve which can be bypassed either by means of the other continuation tools or
by applying The Adjacent Canonical Domain Principle once more.

The Stokes Lemma. Lemma 5.6 is akin to the results of the classical complex WKB method on
the behavior of solutions in a neighborhood of a Stokes line where, instead of decreasing, they start
to increase, see [5].
Consider ζ0 a branch point of the complex momentum. Assume W ′(ζ0) 6= 0. As in the classical
complex WKB method, such a point gives rise to three Stokes lines (i.e. lines starting at such a

branch point defined by Im
∫ ζ

(κ − κ(ζ0))dζ = 0).
Let σ be one of these lines that moreover is vertical. Consider V , a neighborhood of σ (more precisely,
of a segment of σ containing only one branch point, namely, ζ0). Assume that V is so small that the
Stokes lines divide it into three sectors (see Fig. 1). Let S1 and S3 be the sectors adjacent to σ, and
let S2 be the last sector. Roughly, the Stokes Lemma says that, if f has the standard behavior inside
S1 ∪ S2 and decreases as ζ ∈ S1 ∪ S2 approaches σ along the lines Re ζ = Const, then, f has the
standard behavior in V \ σ.
In result, to get the leading term of the asymptotics of f in the sector S3, one analytically continues
this term from S1 ∪ S2 to S3 inside V \ σ, i.e. around the branch point ζ0 avoiding the line σ.
The Stokes Lemma complements the Adjacent Canonical Domain Principle. Recall that the Adjacent
Canonical Domain Principle allows to bypass vertical curves where Im κ = 0. The ends of the curves
on which Imκ = 0 are branch points of the complex momentum. The Stokes lines beginning at
these points usually form the upper and the lower boundaries of the domains where one justifies
the standard behavior by means of the Adjacent Canonical Domain Principle. The Stokes Lemma,
Lemma 5.6, allows us to justify the standard behavior beyond these lines by “going around” the branch
points.

On the choice of the initial canonical line. For our construction to be successful, we have to
make a suitable choice for the canonical line we start with. The idea is that this line should be close
to the curve where the constructed solution is minimal: inside the continuation diagram, the factor
∣

∣

∣
exp( i

ε

∫ ζ
ζ0

κdζ)
∣

∣

∣
has to increase as ζ moves away from this curve (along the lines Im ζ = Const). To

achieve this, one builds the canonical line of segments of curves where Im κ = 0 and of segments of
curves close to Stokes lines. In section 4.2, we construct a canonical line of such curves. In section, 6,
we give a detailed example of the computation of a continuation diagram of a solution constructed on
a canonical domain enclosing such a canonical line.

0.5. Two-Waves Principle. Recall that a continuation diagram is a domain where f , a given so-
lution of (0.4) satisfying (0.5), has the simple behavior (0.6). In domains next to the continuation
diagram, the leading term of the asymptotics of the solution is of the form

A+ e
i
ε

∫ ζ
κdζΨ+(x, E − W (ζ)) + A− e−

i
ε

∫ ζ
κdζΨ−(x, E − W (ζ))(0.9)

with coefficients A± that depend non trivially on E. This dependence makes it impossible to describe
the solution by only one of the terms in (0.9) uniformly in E and ζ.
When studying a solution in domains adjacent to the continuation diagram one meets many different
cases. In this paper, we discuss only one typical case. One encounters it when studying the solution
in the domains “adjacent” to the local canonical domain where the construction of the solution was
started. The precise geometrical situation is described in section 7; the behavior of the solution is
governed by the Two-Waves Principle, Lemma 7.1, see also comments in section 7.3.
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Note that, in the case of the Two-Waves Principle, one of the coefficients A± rapidly oscillates as a
function of E (for ε → 0) and “periodically” vanishes. Its zeros are described by a Bohr-Sommerfeld
like condition. Recall that, when starting, we try to construct solutions along the lines where they
are minimal. The values of E for which one of the coefficients in (0.9) vanishes can be regarded as
some sort of “resonances”; when E takes a “resonant” value, the solution becomes minimal along a
new curve.

0.6. Examples. In all the examples we have treated so far ([9, 6, 11, 7]), we have seen that, for a
suitable choice for the initial canonical line, the continuation diagram of the solution can be effectively
computed by means of the continuation tools described above. In the present paper, instead of trying
to formulate and prove this observation as a general statement, we illustrate all our constructions by
detailed examples. In these examples, we assume that W (ζ) = α cos ζ, that all the gaps of the periodic
operator (0.3) are open, and that the energy E satisfies

(C): [E2n − δ, E2n+1 + δ] ⊂ [E − α, E + α] ⊂ (E2n−1, E2n+2),

where [E2n−1, E2n] and [E2n+1, E2n+2] are two neighboring spectral bands of the periodic opera-
tor (0.3). This case is of special interest in the sense that it will illustrate the use of all our tools.
From the quantum physicist’s point of view, this is the case when [E2n−1, E2n] and [E2n+1, E2n+2],
the spectral bands of H0, interact due “through” the adiabatic perturbation. In this case, one can
observe several new interesting spectral phenomena, see [7, 11]. The examples we consider in the
present paper are used to study these effects (see [7]).

0.7. The structure of the paper. In this text, we describe general constructions and results step
by step, illustrating each step with examples. More or less long proofs of general results are postponed
until the end of the paper.

Throughout the paper, we shall use a number of well known facts on the periodic Schrödinger oper-
ator (0.3). They are described in section 1. In subsection 1.4, we also introduce an analytic object
defined in terms of the periodic operator; it is playing an important role for the adiabatic construc-
tions.
In section 2, we define and study the complex momentum and related objects (e.g. Stokes lines). We
complete this section (subsection 2.4) with the analysis of the complex momentum and the Stokes line
for W (ζ) = α cos ζ.
In section 3, we introduce the concept of standard behavior and define canonical lines and canonical
domains; we also formulate Theorem 3.1 on the solutions having standard behavior on a given canon-
ical domain.
In section 4, we define local canonical domains and explain how to build canonical lines from segments
of “elementary curves”. Having presented general results, in subsection 4.2, as an example, we con-
struct a canonical line using this method.
Section 5 is devoted to the main continuation principles and related objects. The Trapezium Lemma,
Lemma 5.4, is proved in section 8. The Stokes Lemma, Lemma 5.6, is proved in section 9.
In section 6, we give a detailed example of the computation of a continuation diagram.
Section 7 is devoted to the Two-Waves Principle. In subsection 7.4, on a detailed example, we show
how to use it. The proof of the Two-Waves principle can be found in section 10.

1. Periodic Schrödinger operators

We first formulate well known results used throughout the paper. Their proofs can be found, for
example, in [4, 12, 13, 14]. In the end of the section, we discuss a meromorphic function constructed
in terms of the periodic operator. This function plays an important role for the adiabatic constructions.
Recall that the potential V in (0.3) is assumed to be a 1-periodic, real valued, L2

loc-function.

1.1. Gaps and bands. The spectrum of the periodic operator (0.3) is absolutely continuous and
consists of intervals of the real axis [E1, E2], [E3, E4], . . . , [E2n+1, E2n+2], . . . , such that

E1 < E2 ≤ E3 < E4 . . . E2n ≤ E2n+1 < E2n+2 ≤ . . . ,

En → +∞, n → +∞.
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The points Ej , j = 1, 2, 3 . . . , are the eigenvalues of the differential operator (0.3) acting on L2([0, 2])
with periodic boundary conditions. The intervals defined above are called the spectral bands, and the
intervals (E2, E3), (E4, E5), . . . , (E2n, E2n+1), . . . , are called the spectral gaps. If E2n < E2n+1, we
say that the n-th gap is open.

1.2. Bloch solutions. Let ψ be a solution of the equation

− d2

dx2
ψ (x) + V (x)ψ (x) = Eψ (x), x ∈ R,(1.1)

satisfying the relation ψ (x + 1) = λ ψ (x) for all x ∈ R with λ ∈ C independent of x. Such a solution
is called a Bloch solution, and the number λ is the Floquet multiplier. Let us discuss the analytic
properties of Bloch solutions as functions of the spectral parameter.

Consider S±, two copies of the complex plane of energies cut along the spectral bands. Paste them
together to get a Riemann surface with square root branch points. We denote this surface by S.
There exists a Bloch solution E 7→ ψ(x, E) of equation (1.1) meromorphic on S. We normalize it by
the condition ψ(0, E) ≡ 1. The poles of this solution are located in the spectral gaps. More precisely,
for each spectral gap, there is one and only one pole projecting into this gap. This pole is located
either on S+ or on S−. The position of the pole is independent of x.

Except at the edges of the spectrum (i.e. the branch points of S), the two branches of ψ are linearly
independent solutions of (1.1).

Finally, we note that, in the spectral gaps, both branches of ψ are real valued functions of x, and, on
the spectral bands, they differ only by complex conjugation.

1.3. The Bloch quasi-momentum. Consider the Bloch solution ψ(x, E). The corresponding Flo-
quet multiplier λ (E) is analytic on S. Represent it in the form λ(E) = exp(ik(E)). The function
k(E) is the Bloch quasi-momentum.

The Bloch quasi-momentum is an analytic multi-valued function of E. It has the same branch points
as ψ(x, E).
Let D be a simply connected domain containing no branch point of the Bloch quasi-momentum. In
D, one can fix an analytic single-valued branch of k, say k0. All the other single-valued branches of k
that are analytic in E ∈ D are related to k0 by the formulae

k±,l(E) = ±k0(E) + 2πl, l ∈ Z.(1.2)

Consider C+ the upper half of the complex plane. On C+, one can fix a single valued analytic
branch of the quasi-momentum continuous up to the real line. We can and do fix it by the condition
−ik(E + i0) > 0 for E < E1. We call this branch the main branch of the Bloch quasi-momentum and
denote it by kp.
The function kp conformally maps C+ onto the first quadrant of the complex plane cut at compact
vertical slits beginning at the points πl, l ∈ N. It is monotonically increasing along the spectral bands
so that [E2n−1, E2n], the n-th spectral band, is mapped on the interval [π(n−1), πn]. Inside any open
gap, Re kp(E) is constant, and Im kp(E) is positive and has only one non-degenerate maximum. If the
nth gap is open, in this gap, one has Re kp(E) = πn.
All the branch point of kp are of square root type: let El be a branch point; then, in a sufficiently
small neighborhood of El, the function kp is analytic in

√
E − El, and

kp(E) − kp(El) = cl

√

E − El + O(E − El), cl 6= 0.(1.3)

Finally, we note that the main branch can be analytically continued on the complex plane cut only
along the spectral gaps of the periodic operator.

1.4. A meromorphic function ω and the differential Ω. We now define a meromorphic function
on S, the Riemann surface associated to the periodic operator (0.3). First, we have to recall more
facts and to introduce some notations.
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1.4.1. Periodic component of the Bloch solution. At a given energy E, the Bloch solution ψ(x, E) can
be represented in the form

ψ(x, E) = eik(E)xp(x, E),(1.4)

where k(E) is the Bloch quasi-momentum of ψ(x, E) at E, and the function p(x, E) is 1-periodic in
x. The function p is called the periodic component of ψ with respect to the branch k(E).
Note that, as k(E) is defined modulo 2π, the function p(x, E) is defined up to the factor e2πimx, m ∈ Z.
The branches p and k are related by

k → k + 2πm ⇐⇒ p → e−2πimx p.(1.5)

1.4.2. Notations. For E ∈ S, let Ê be the other point in S having the same projection on C as E. We
let

ψ̂(x, E) = ψ(x, Ê), k̂(E) = −k(E), p̂(x, E) = e−ik̂(E)x ψ̂(x, E).(1.6)

The function ψ̂ is one more Bloch solution of the periodic Schrödinger equation that, for E outside
{El}, is linearly independent of ψ(x, E). The function k̂ is its quasi-momentum, and p̂ its periodic
component.

1.4.3. The sets P and Q. Introduce two discrete sets on S. Let P be the set of poles of the Bloch
solution ψ(x, E), and, Q be the set of the points where k′(E) = 0.
Recall that the points of Q are (projected) inside open gaps of the periodic operator (one point per
gap), and that the points of P are (projected) either inside open gaps or at their edges (also one point
per open gap).

1.4.4. Local construction of the function ω and the differential Ω. Let D ⊂ S \ {El} be a simply
connected domain. On D, fix k, an analytic branch of the Bloch quasi-momentum of ψ. Then, the
functions p and p̂ are meromorphic on D. We let

ω(E) = −
∫ 1
0 p̂(x, E) ∂p

∂E (x, E)dx
∫ 1
0 p(x, E) p̂(x, E)dx

, and Ω(E) = ω(E) dE.(1.7)

Note that the function ω was introduced and analyzed in the paper [9]. Using the differential Ω instead
of this function makes computations more transparent. We have

Lemma 1.1. Ω is a meromorphic differential on D. All its poles are simple; they are situated at
exactly the points of P ∪ Q. The residues are given by the formulae:

res pΩ = 1, ∀p ∈ P \ Q, res qΩ = −1/2, ∀q ∈ Q \ P, res rΩ = 1/2, ∀r ∈ Q ∩ P.(1.8)

Lemma 1.1 follows from the analysis made in [9] when proving Lemma 3.1. We omit the details.

1.4.5. Global properties of Ω. By means of (1.5), we see that, ω and Ω do not depend on the choice
of the branch k. Hence, ω and Ω are uniquely defined on S \ {El}. One can analyze Ω on the whole
Riemann surface S (∞ was not “included” in S). This gives

Lemma 1.2. Ω is a meromorphic differential on the whole Riemann surface S. Its poles and the
residues at these poles are described in Lemma 1.1.

Proof. In view of Lemma 1.1, it suffices to study Ω in Vn, a sufficiently small neighborhood of En,
an end of a spectral gap. Recall that k′ has zeros only inside open gaps. So, as Vn can be taken
arbitrarily small, there are two cases to consider:

• either P ∩ Vn = ∅,
• or En ∈ P .

We have to show that Ω is holomorphic in Vn with respect to the local variable τ =
√

E − En. Consider
the first case. Recall that k is analytic (holomorphic) in τ . So, p and p̂ are also holomorphic in τ ,

and we have only to check that the function f(τ) =
∫ 1
0 p p̂ dx =

∫ 1
0 ψ ψ̂ dx does not vanish at τ = 0.

At the end of any spectral gap, one has ψ̂ = ψ, and ψ is real. So, f(0) =
∫ 1
0 |ψ(x, En)|2dx > 0. This

completes the proof in the first case.
In the second case, one has to prove that Ω has a simple pole at τ = 0, and that res τ=0Ω = 1. Now, in
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Vn, ψ(x, τ) = ψ0(x)/τ + ( a holomorphic function). The function ψ0 is a (non-trivial) Bloch solution
of (0.7) at E = En. It is real valued. This and the definitions of p and p̂ imply that, in Vn, one
has Ω = dτ/τ + ( a holomorphic differential). This completes the analysis of the second case and,
therefore, the proof of Lemma 1.2.

1.4.6. Differential Ω and analytic Bloch solutions. Let us formulate a very important property of Ω.
Consider again a simply connected domain D ⊂ S. Pick E0 ∈ D \ (P ∪ Q). In a sufficiently small
neighborhood of E0, one can define the function

√

k′
E(E) e

∫ E
E0

Ω
ψ(x, E).(1.9)

It is also a Bloch solution of the periodic Schrödinger equation. Lemma 1.2 immediately implies that
it can be analytically continued on the whole domain D.

1.4.7. The function ω along gaps and bands. In applications, one uses the following observations:

Lemma 1.3. Along open gaps, the values of ω are real. Along bands, ω(E) and ω(Ê) only differ by
complex conjugation.

Proof. The statements follow from the facts that, along the gaps, ψ is real and k is purely imaginary
modulo 2π, and that along the bands, ψ and ψ̂ differ by complex conjugation, and k is real.

2. The complex momentum

The main analytic object of the complex WKB method is the complex momentum. We now
define and discuss it as well as some related objects (e.g. the Stokes lines). We complete this section
with an example: we discuss the complex momentum and the Stokes lines for W (ζ) = α cos ζ.

2.1. Definition and elementary properties.

Definition 2.1. For ζ ∈ D(W ), the domain of analyticity of the function W , the complex momentum
is defined by

κ(ζ) = k(E − W (ζ))(2.1)

where k is the Bloch quasi-momentum of (0.3).

Clearly, the complex momentum can also be interpreted the Bloch quasi-momentum for the periodic
Schrödinger equation (0.7) regarded as a function of the complex parameter ζ.

2.1.1. Branch points. The relation between k and κ shows that the complex momentum is a multi-
valued analytic function, and that its branch points are related to the branch points of the quasi-
momentum by the relations

Ej = E − W (ζ), j = 1, 2, 3, . . .(2.2)

Note that all of them are situated on W−1(R), the pre-image of the real line with respect to W .

Let ζ0 be a branch point of κ. Assume W ′(ζ0) 6= 0. Then, this branch point is of square root type: in
a neighborhood of ζ0, κ is analytic in

√
ζ − ζ0, and

κ(ζ) − κ(ζ0) ∼ κ1

√

ζ − ζ0, κ1 6= 0.(2.3)

2.1.2. Regular domains and branches of the complex momentum.

Definition 2.2. We say that a set is regular if it is a simply connected subset of the domain of
analyticity of W that contains no branch points of κ.

Let D be a regular domain. In D, one can fix an analytic branch of κ, say κ0. By (1.2), all the other
branches of κ analytic on D are described by the formulas

κ±
m = ±κ0 + 2πm,(2.4)

where ± and m are indexing the branches.

Fix a branch point ζ0 such that W ′(ζ0) 6= 0 and, let V be a neighborhood of ζ0. Let c be a smooth
curve beginning at ζ0 and such that V \ c is a regular domain. In V \ c, fix an analytic branch of the
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complex momentum. Then, by (2.3), κ1(ζ) and κ2(ζ), the values of this branch in V on the different
sides of c, are related by the formula

κ1(ζ) + κ2(ζ) = 2κ(ζ0), ζ ∈ c.(2.5)

2.2. Stokes lines and lines of Stokes type. In the constructions of the complex WKB method,

integrals of the form
∫ ζ

κ dζ and
∫ ζ

(κ − π) dζ play an important role. Their properties are described
in terms of lines of Stokes type and Stokes lines.

2.2.1. Lines of Stokes type. Let D be a regular domain. On D, fix an analytic branch of the complex
momentum. Pick ζ0 ∈ D.

Definition 2.3. The level curves of the harmonic functions Im
∫ ζ
ζ0

κ dζ and Im
∫ ζ
ζ0

(κ−π) dζ are called

lines of Stokes type.

Clearly, lines of Stokes type do not depend on the choice of ζ0.

To analyze the geometry of the lines of Stokes type, one uses the following lemma (where we identify
the complex numbers with vectors in R

2). One has

Lemma 2.1. The lines of the family Im
∫ ζ

κ dζ = Const are tangent to the vector field κ(ζ); the lines

of the family Im
∫ ζ

(κ − π) dζ = Const are tangent to the vector field κ(ζ) − π.

This lemma implies that the lines of Stokes type are trajectories of the differential equations
dζ

dt
= κ(ζ)

and
dζ

dt
= κ(ζ) − π. So, to study properties of the lines of Stokes type, one can use standard facts

from the theory of differential equations. In particular, we get

Corollary 2.1. The lines of Stokes type of each of the two families fibrate any regular domain D.

Proof. For sake of definiteness, consider the lines of the family Im
∫ ζ

κ dζ = Const. It suffices to

show that the vector field κ(ζ) does not vanish in D. But, we know, that κ takes values in πZ only
at branch points of the complex momentum. As D is regular, it does not contain any of these points.
This completes the proof of Corollary 2.1.

2.3. Stokes lines. Below, we always work in the domain of analyticity of W . Let ζ0 be a branch
point of the complex momentum. A Stokes line beginning at ζ0 is a curve γ defined by the equation

Im
∫ ζ
ζ0

(κ (ξ) − κ (ζ0))dζ = 0. Here, κ is a branch of the complex momentum continuous on γ.

It follows from (2.4) that the Stokes lines starting at ζ0 are independent of the choice of the branch
of κ in the definition of a Stokes line.
Assume that W ′(ζ0) 6= 0. Then, in a neighborhood of the branch point ζ0, one has (2.3). Hence, there
are three Stokes lines beginning at ζ0. At the branch point, the angle between any two of them is
equal to 2π/3.

One can always choose a branch of the complex momen-
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Figure 1: The Stokes lines in a neighbor-
hood of a branch point

tum (see (2.4)) continuous on a given Stokes line γ and
such that either κ(ζ0) = 0 or κ(ζ0) = π. We call this
branch natural. With respect to the natural branch, the
Stokes lines are lines of Stokes type.
Consider V , a neighborhood of ζ0. If V is sufficiently
small, the Stokes lines beginning at ζ0 divide V into three
domains called sectors, see Fig. 1.
Let κ(ζ0) = 0 (resp. κ(ζ0) = π). Then, each of the sec-
tors is fibrated by the lines of Stokes type of the family

Im
∫ ζ

κdζ = Const (resp. Im
∫ ζ

(κ − π)dζ = Const).
In particular, the part of the boundary of such a sector
formed by two Stokes lines can be approximated arbitrar-

ily well by a line of Stokes type Im
∫ ζ

κdζ = Const (resp. Im
∫ ζ

(κ− π)dζ = Const) intersecting this
sector, see Fig. 1.
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2.4. Example: complex momentum and Stokes lines for W(ζ) = α cos ζ. We now discuss the
complex momentum and describe the Stokes lines when W (ζ) = α cos ζ. We assume that all the gaps
of the periodic operator (0.3) are open, and that the spectral parameter E satisfies condition (C).

2.4.1. Complex momentum. 1. The set of branch points is 2π-periodic and symmetric with respect
both to the real line and to the imaginary axis. For E real, the branch points of the complex momentum
are situated on the lines of the set W−1(R). For W (ζ) = α cos ζ, this set consists of the real line and
the lines Re ζ = πl, l ∈ Z.

Define the half-strip

� �

��

��

�����

���
�����

���	�

���	�

Figure 2: (zl)l and (gl)l

Π = {ζ ∈ C : 0 < Re ζ < π, Im ζ > 0}.(2.6)

This half-strip is a regular domain. Consider the branch points
situated on ∂Π, the boundary of Π. ∂Π is bijectively mapped
by E : ζ → E−W (ζ) onto the real line. So, for any j ∈ N, there
is exactly one branch point described by (2.2). We denote this
point by ζj . Under condition (C), the branch points ζ2n and
ζ2n+1 are situated on the interval (0, π), i.e.

0 < ζ2n < ζ2n+1 < π;

the branch points ζ1, ζ2, . . . ζ2n−1 are situated on the imaginary
axis so that

0 < Im ζ2n−1 < · · · < Im ζ2 < Im ζ1;

the other branch points are situated on the line Re ζ = π so that

0 < Im ζ2n+2 < Im ζ2n+3 < . . .

In Fig. 2, we show some of the branch points.

2. The half-strip Π is mapped by E : ζ → E −α cos ζ on the upper half of the complex plane. So, on
Π, we can define a branch of the complex momentum by the formula

κp(ϕ) = kp(E − α cos ϕ),(2.7)

kp being the main branch of the Bloch quasi-momentum for the periodic operator (0.3). We call κp

the main branch of the complex momentum.

The main branch of the Bloch quasi-momentum was discussed in details in section 1.3. The properties
of kp are “translated” into properties of κp using formula (2.7). In particular, κp conformally maps Π
into C+. Fix l, a positive integer. The closed segment zl := [ζ2l−1, ζ2l] ⊂ ∂Π is bijectively mapped on
the interval [π(l − 1), πl], and, on the open segment gl := (ζ2l, ζ2l+1) ⊂ ∂Π, the real part of κ equals
to πl, and its imaginary part is positive. The intervals (zl)l and (gl)l are shown in Fig. 2.

2.4.2. Stokes lines. Let us discuss the set of Stokes lines for W (ζ) = α cos ζ. Due to the symmetry
properties of E , the set of the Stokes lines is 2π-periodic and symmetric with respect to both the real
and imaginary axes.

In Fig. 3, we have represented Stokes lines in Π by dashed lines. Consider the Stokes lines beginning
at the branch points ζl with l ≥ 2n. The other Stokes lines beginning at points of ∂Π are analyzed
similarly. We begin with properties following immediately from the definition of Stokes lines.

Elementary properties of Stokes lines. Consider the Stokes lines beginning at ζ2n+1. The interval
[ζ2n+1, π] is a part of zn+1. So, κp is real on this interval, and, therefore, this interval is a part of
a Stokes line beginning at ζ2n+1. The two other Stokes lines beginning at ζ2n+1 are symmetric with
respect to the real line, see Fig. 3. We denote by “a” the Stokes line going upward from ζ2n+1.

Consider the Stokes lines beginning at ζ2n+2. As κp(ζ2n+2) = π(n + 1), they satisfy Im
∫ ζ
ζ2n+2

(κp(ζ)−
π(n + 1))dζ = 0. Recall that, along the segment gn+1 = (ζ2n+2, ζ2n+3) of the line Re ζ = π, one has
Re κp = π(n + 1). So, this segment is a Stokes line beginning at ζ2n+2. The two other Stokes lines
beginning at ζ2n+2 are symmetric with respect to the line Re ζ = π, see Fig. 3. We denote by “b” the
Stokes line going to the left from ζ2n+2.
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The Stokes lines beginning at other branch points situated on the right part of ∂Π are analyzed
similarly to the ones beginning at ζ2n+2.

Global properties of “a”, ..., “d” and “e”. These Stokes lines shown in Fig. 3 are described by

Lemma 2.2. The Stokes lines “a”,..., “d” and “e” have the following properties:

• the Stokes lines “a” and “e” stay inside Π, are vertical and do not intersect one another;
• the Stokes line “c” stays between “a” and the line Re ζ = π (without intersecting them) and is

vertical;
• before leaving Π, the Stokes lines “b” stays vertical, and it intersects “a” first at a point with

positive imaginary part;
• before leaving Π, the Stokes lines “d” stays vertical and intersects “c” first above ζ2n+3, the

beginning of “c”.

Proof. The main tool in the proof is Lemma 2.1. Below, we
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Figure 3: The Stokes lines

use it without referring to it.
First, we note that, as Imκ 6= 0 in Π, the Stokes lines “a”,
“b”,..., “e” stay vertical as long as they stay in Π.
Second, one checks that the Stokes lines “a”,..., “d” cannot
leave Π by intersecting the line Re ζ = π (the right boundary of
Π), and that “e” cannot leave Π by intersecting the imaginary
axis (the left boundary of Π). We check this property for “a”
only; the analysis of the other lines is similar. Note that “a” is
tangent to the vector field κ(ζ)− πn. Consider this vector field
in a sufficiently small neighborhood of the line Re ζ = π (in Π).
There, we have Re κ > πn and Imκ > 0. Therefore, “a” can
intersect the line Re ζ = π only when coming from above to the
right. But, this is impossible as “a” begins at ζ2n+1 and stays
vertical while in Π.
To prove the first point of Lemma 2.2, it suffices to check that “a” and “e” do not intersect one

another while in Π. Therefore, we note that both lines belong to the family Im
∫ ζ

(κ−πn)dζ = Const.
Therefore, by Lemma 2.1, while in Π, “a” and “e” either stay disjoint or coincide. The second is
impossible as they begin at distinct points of the real line, and, inside Π, each of them is smooth and
vertical.
To prove the second point of Lemma 2.2, it suffices to check that “a” and “c” do not intersect one
another while in Π. Therefore, we note that “a” is tangent to the vector field v1(ζ) = κ(ζ) − πn, and

that “c” is tangent to the vector field v2(ζ) = κ(ζ) − π(n + 1). Pick ζ0 ∈ Π. As Im κ(ζ0) > 0, both
vectors v1(ζ0) and v2(ζ0) are oriented downward, and v1 is oriented to the right of v2. So, to intersect
“a”, the line “c” has to approach it going from left to right. But, this is impossible as “c” begins to
the right of “a”.
To prove the third point of Lemma 2.2, it suffices to check that “b” can not leave Π intersecting
the segment [ζ2n+1, π] of the real line. Therefore, we note that both this segment and “b” belong

to the family of lines Im
∫ ζ

(κ − π(n + 1))dζ = Const. So, by Lemma 2.1, “b” cannot intersect the
segment (ζ2n+1, π]. Finally, a local analysis using the Implicit Function Theorem shows that “b” can
not contain the point ζ2n+1.
The last point of Lemma 2.2 follows from the second one as we have seen that, in Π, “d” goes
downwards from ζ2n+3 and stays vertical; moreover, it cannot leave Π intersecting Π’s right boundary.
This completes the proof of Lemma 2.2

The analysis of the other Stokes lines situated inside Π is anal-
ogous to the one made in the proof of Lemma 2.2.

3. Standard behavior of solutions

Here, we introduce the concept of the standard behavior of solutions of (0.4) studied in the
framework of the complex WKB method. Then, we consider the canonical domains, an important
example of domains on the complex plane of ζ where one can construct solutions having standard
behavior.
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3.1. Canonical Bloch solutions. To describe the asymptotic formulae of the complex WKB method,
one needs Bloch solutions of equation (0.7) analytic in ζ on a given regular domain. We build them
using the 1-form Ω = ω dE introduced in section 1.4.

Pick ζ0 a regular point. Let E0 = E(ζ0). Assume that E0 6∈ P ∪ Q∪. Let U0 be small enough
neighborhood of E0 and let V0 be a neighborhood of ζ0 such that E(V0) ⊂ U0. In U0, we fix a branch

of the function
√

k′(E) and consider ψ±(x, E), two branches of the Bloch solution ψ(x, E), and Ω±,
two corresponding branches of Ω. For ζ ∈ V0, put

Ψ±(x, ζ) = q(E) e
∫

E

E0
Ω±ψ±(x, E), q(E) =

√

k′(E), E = E(ζ).(3.1)

The functions Ψ± are called the canonical Bloch solutions normalized at the point ζ0.

The properties of the differential Ω imply that the solutions Ψ± can be analytically continued from
V0 to any regular domain D containing ζ0.
One has

w(Ψ+(·, ζ), Ψ−(·, ζ)) = w(Ψ+(·, ζ0), Ψ−(·, ζ0)) = k′(E0)w(ψ+(x, E0), ψ−(x, E0))(3.2)

This formula is proved in [10]. It shows that the Wronskian is independent of ζ and depends only
on the normalization point ζ0 and the spectral parameter. As E0 6∈ Q ∪ {El}, the Wronskian
w(Ψ+(·, ζ), Ψ−(·, ζ)) is non-zero.

3.2. Solutions having standard asymptotic behavior. Here, we discuss behavior of solutions
to (0.4) satisfying (0.5). Speaking about a solution having standard behavior, first of all, we mean that
this solution has the asymptotics

f = eσ
i
ε

∫ ζ
κ dζ (Ψσ + o (1)), as ε → 0,(3.3)

where σ is either the sign “+” or “−”. The solutions constructed by the complex WKB method also
have other important properties. When speaking of standard behavior, we mean all these properties.
Let us formulate the precise definition.

Fix E = E0. Let D be a regular domain. Fix ζ0 ∈ D so that E(ζ0) 6∈ P ∪ Q. Let κ be a branch of
the complex momentum continuous in D, and let Ψ± be the canonical Bloch solutions defined on D,
normalized at ζ0 and indexed so that κ be the quasi-momentum for Ψ+.

Definition 3.1. We say that, in D, a solution f has standard behavior (or standard asymptotics)

f ∼ exp(σ i
ε

∫ ζ
κ dζ) · Ψσ if

• there exists V0, a complex neighborhood of E0, and X > 0 such that f is defined and satisfies (0.4)
and (0.5) for any (x, ζ, E) ∈ [−X, X] × D × V0;

• f is analytic in ζ ∈ D and in E ∈ V0;
• for any K, a compact subset of D, there is V ⊂ V0, a neighborhood of E0, such that, for

(x, ζ, E) ∈ [−X, X] × K × V , f has the uniform asymptotic (3.3);
• this asymptotic can be differentiated once in x retaining its uniformity properties.

3.3. Canonical domains. An important example of a domain where one can construct a solution
with standard asymptotic behavior is a canonical domain. Let us define canonical domains and
formulate one of the basic results of the complex WKB method.

3.3.1. Canonical lines. We say that a piecewise C1-curve γ is vertical if it intersects the lines {Im ζ =
Const} at non-zero angles θ, 0 < θ < π. Vertical lines are naturally parameterized by Im ζ.

Let γ be a C1 regular vertical curve. On γ, fix κ, a continuous branch of the complex momentum.

Definition 3.2. The curve γ is canonical if, along γ,

1. Im
∫ ζ

κdζ is strictly monotonously increasing with Im ζ,

2. Im
∫ ζ

(κ − π)dζ is strictly monotonously decreasing with Im ζ.

Note that canonical lines are stable under small C1-perturbations.
12



3.3.2. Canonical domains. Let K be a regular domain. On K, fix a continuous branch of the complex
momentum, say κ.

Definition 3.3. The domain K is called canonical if it is the union of curves that are connecting two
points ζ1 and ζ2 located on ∂K and that are canonical with respect to κ.

One has

Theorem 3.1 ([9, 10]). Let K be a bounded domain canonical with respect to κ. For sufficiently small
positive ε, there exists (f±), two solutions of (0.4), having the standard behavior in K so that

f± ∼ exp

(

± i

ε

∫ ζ

ζ0

κdζ

)

Ψ±.

For any fixed x ∈ R, the functions f±(x, ζ) are analytic in ζ in S(K) := {Y1 < Im ζ < Y2}, the
smallest strip containing K.

In [9], we haven’t discussed the dependence of f± on E: we have proved Theorem 3.1 without re-
quiring all the properties in the definition of the standard behavior; in particular, we did not impose
requirements in the behavior in E. In [10], we have formulated Definition 3.1 and observed that
f± (constructed in Theorem 5.1 of [9]) have the standard behavior on K. One easily calculates the
Wronskian of the solutions f±(x, ζ) to get

w(f+, f−) = w(Ψ+, Ψ−) + o(1).(3.4)

By (3.2), for ζ in any fixed compact subset of K and ε sufficiently small, the solutions f± are linearly
independent.

4. Local canonical domains

In this section, following [10], we present a simple approach to find “local” canonical domains.
We then give an example of a local canonical domain for the case of W (ζ) = α cos ζ.

Below, we assume that D is a regular domain, and that κ is a branch of the complex momentum
analytic in D. A segment of a curve is a connected, compact subset of that curve.

4.1. General constructions.

4.1.1. Definition. Let γ ⊂ D be a line canonical with respect to κ. Denote its ends by ζ1 and ζ2. Let
a domain K ⊂ D be a canonical domain corresponding to the triple κ, ζ1 and ζ2. If γ ⊂ K, then, K
is called a canonical domain enclosing γ.
As any line close enough in C1-norm to a canonical line is canonical, one has

Lemma 4.1 ([10]). One can always construct a canonical domain enclosing any given canonical
curve.

Canonical domains, whose existence is established using this lemma are called local.

4.1.2. Constructing canonical curves. To construct a local canonical domain we need a canonical line
to start with. To construct such a line, we first build pre-canonical lines made of some “elementary”
curves.
Let γ ⊂ D be a vertical curve. We call γ pre-canonical if it is a finite union of bounded segments of
canonical lines and/or lines of Stokes type. In section 4.2, we shall see that, in practice, pre-canonical
lines are easy to find. One has

Proposition 4.1 ([10]). Let γ be a pre-canonical curve. Denote the ends of γ by ζa and ζb.
Fix V ⊂ D, a neighborhood of γ and Va ⊂ D, a neighborhood of ζa. Then, there exists a canonical
line γ̃ ⊂ V connecting the point ζb to some point in Va.

Proposition 4.1 tells us that, arbitrarily close to any pre-canonical line, one can construct a canonical
line.
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4.2. Example: constructing a canonical line for W(ζ) = α cos ζ. We again turn to the case
W (ζ) = α cos ζ and assume that all the gaps of the periodic operator (0.3) are open, and that E
satisfies condition (C). Recall that, in this case, the branch points and the Stokes lines were studied
in section 2.4 (see Fig. 3). In the sequel, we assume that n in (C) is even. The case n odd is treated
similarly; only some details differ.

Let Y > 0. We now explain the details of the construction of a canonical line going from {Im ζ = Y }
to {Im ζ = −Y } (where Y can be taken arbitrarily large).
By Lemma 4.1 and Theorem 3.1, this canon-
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Figure 4: The construction of the canonical line

ical line enables us to construct a solution
of (0.4), analytic in SY = {|Im ζ| < Y }. In
later sections, we shall study the global asymp-
totics of this solution.

To find a canonical line, we first find a pre-
canonical line. Consider the curve β which is
the union of the Stokes line “a” (symmetric to
“a” with respect to R), the segment [ζ2n+1, π]
of the real line, the segment [π, ζ2n+3] of the
line Re ζ = π and the Stokes line “c”, see
Fig. 4, part A. We now construct α, a pre-
canonical line close to the line β.
When speaking of κp along α, we mean the
branch of the complex momentum obtained
from κp by analytic continuation along α (the analytic continuation can be done by means of for-
mula (10.10) relating the complex momentum to the Bloch quasi-momentum).

Actually, the line α is pre-canonical with respect to the branch of the complex momentum related to
κp by the formula:

κ = κp − πn.(4.1)

Note that, as n is even, πn ∈ 2πZ, and κ indeed is a branch of the complex momentum; it is the
natural branch for the points ζ2n, ζ2n+1, ζ2n+2 and ζ2n+3. We prove

Proposition 4.2. Fix δ > 0 and Y > ζ2n+3. In the δ-neighborhood of β, there exists α, a line
pre-canonical with respect to the branch κ having the following properties:

• at its upper end, one has Im ζ > Y ;
• at its lower end, one has Im ζ < −Y ;
• it goes around the branch points of the complex momentum as the curve γ shown in Fig. 4, part

C;
• it contains a canonical line which stays in Π, goes from a point in Π to the line Re ζ = π and,

then, continues along this line until it intersects the real line.

Proof. In Fig. 4, part B, we illustrate the construction of α. In this figure, we show the “elementary”
segments (1), (2),..., (6) we use to build α. Let us describe these segments in details. Below, we denote
by Vδ the left hand side of the δ-neighborhood of the line β.

The segment (1). It is a segment of l1, a line of Stokes type Im
∫ ζ

(κ−π)dζ = Const. Note that the

Stokes lines “b”, [ζ2n+2, ζ2n+3] and “c” are also level curves of the harmonic function Im
∫ ζ

(κ− π)dζ.
So, we choose l1 so that it go to the left of these three Stokes lines as close to them as needed (inside
a given compact set).
Note that the part of l1 situated in Π is vertical.
We choose l1 and a1 and a2, the upper and the lower ends of the segment (1) so that

• the segment (1) be situated in Vδ;
• the segment (1) be situated in Π and, thus, be vertical;
• Im a1 > Y , and Im a2 < Im ζ2n+2.

The precise choice of a2 will be described later.

The segment (2). It is a segment of l2, a line of Stokes type Im
∫ ζ

κdζ = Const which contains a,
14



a point of the line Re ζ = π such that 0 < Im a < Im ζ2n+2.
Let us show that

(a): the line l2 is horizontal (i.e. parallel to the real line) at the point a;
(b): having entered in Π at a, the line l2 becomes vertical and goes upward;
(c): the line l2 stays vertical in Π;
(d): above a, it intersects the Stokes line “b” staying inside Π.

Therefore, note that the line l2 is tangent to the vector field κ(ζ). As a ∈ zn+1, one has Im κ(a) = 0
which implies (a). In Π, near the line Re ζ = π and above a, one has Im κ > 0 and 0 < Re κ. This
implies (b). As Im κ 6= 0 inside Π, we get (c). Finally, if l2 does not intersect “b”, it has to come back
to the line Re ζ = π. It can come to this line going downwards to the right. This is impossible in view
of (c).
We assume that l1 is chosen close enough to the Stokes lines “c”, [ζ2n+2, ζ2n+3] and “b” so that l2
intersects l1 (after having intersected “b”).
As a2, the lower end of the segment (1) and the upper end of the segment (2), we choose the intersection
point.
We choose a3, the lower end of the segment (2), between a2 and a. Then,

• the segment (2) stays inside Π, and, thus, is vertical.

We choose a so to close ζ2n+2 that

• the segment (2) is inside Vδ.

We describe the precise choice of a3 later.
The segment (3), (4) and (5). They form a canonical line. To describe them, consider l3 an
internal subsegment of the segment (ζ2n+2, ζ2n+2) ⊂ {Re ζ = π}. We assume that l3 begins above the
point a and ends below the real line.
The segment l3 is a canonical line with respect to κ. Indeed, (ζ2n+2, ζ2n+2) is a part of a connected
component of the pre-image (with respect to E) of the (n + 1)-st spectral band of the periodic opera-
tor (0.3). So, along l3, one has 0 < κ < π. This implies that l3 is a canonical line.
Recall that any line C1-close enough to a canonical line is canonical. This enables us to choose the
“elementary segments (3), (4) and (5) so that

• they form a canonical line;
• the segment (3) connects in Π ∩ Vδ the point a3, an internal point of l2, to a4, a point of l3 such

that Im a4 > 0;
• the segment (4) goes along l3 from a4 to π;
• the segment (5) connects in Π (the domain symmetric to Π with respect to R) the point π to a6,

a point of Π.

We describe the precise choice of a6 later.

The segment (6). It is a segment of l4, a line of Stokes type Im
∫ ζ

κdζ = Const containing the
point a6.
To describe l4 more precisely, consider the Stokes line [ζ2n+1, π] and the Stokes line “a” symmetric to

“a” with respect to the real line. As l4, they are level curves of the function Im
∫ ζ

κdζ. So, we can

and do construct l4 and (6) so that l4 go below [ζ2n+1, π] and to the left of “a” as as close to these
lines as needed (inside any given compact set).
We choose a6 and a7 the upper and the lower ends of (6) so that

• the segment (6) be in the δ-neighborhood of β;
• the segment (6) be inside Π (and, so, be vertical);
• a7 be below the line Im ζ = −Y .

The curve α. It is made of the “elementary” segments (1) — (6); it is vertical and, by construction,
consists of segments of lines of Stokes type and a line canonical with respect to κ. So, it is pre-canonical
with respect to κ. By construction, it has all the properties described in Proposition 4.2.

Remark to the proof of Proposition 4.2. The lines l2 and l4 are not vertical at the points of intersection
with the line Re ζ = π (as there Im κ = Im κ0 = 0). The “elementary” segments (3) and (5) were
included into α to make it vertical.

Now, construct a canonical line close to α. One obtains:
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Proposition 4.3. In arbitrarily small neighborhood of the pre-canonical line α, there exists a canon-
ical line γ which has all the properties of the line α listed in Proposition 4.2.

Proof. Denote by γ0 the canonical line mentioned in the fourth point of Proposition 4.2. The proof
of Proposition 4.3 consists of two steps. Fix V , a neighborhood of α. First, using Proposition 4.1, we
construct γa and γb, two canonical lines situated in V and such that:

1. γa connects the upper end of γ0 to a point situated above the line Im ζ = Y ;
2. γb connects the lower end of γ0 to a point situated below the line Im ζ = −Y .

In the second step, one considers the line γ̃ = γa ∪γ0 ∪γb. It is vertical and consists of three canonical
lines. To get the desired canonical line, one smoothes γ̃ out near the ends of γ0.

5. The main continuation principles

This section is devoted to the main continuation principles, namely, the Rectangle Lemma, the Ad-
jacent Canonical Domain Principle and the Stokes Lemma. In section 6, we give a detailed example
explaining how to use them.

In the sequel, a set is called constant if it is independent of ε.

5.1. The Rectangle Lemma: asymptotics of increasing solutions. Fix ηm < ηM . Define the
strip S = {ζ ∈ C : ηm ≤ Im ζ ≤ ηM}. Let γ1 and γ2 be two vertical lines such that γ1 ∩ γ2 = ∅.
Assume that both lines intersect the strip S at the lines Im ζ = ηm and Im ζ = ηM , and that γ1 is
situated to the left of γ2.
Consider R, the compact set bounded by γ1, γ2 and the boundaries of S. Let D=R \ (γ1 ∪ γ2).

One has

Lemma 5.1 (The Rectangle Lemma [9]). Fix E = E0. Assume that the “rectangle” R is regular. Let
f be a solution of (0.4) satisfying (0.5). Then, for sufficiently small ε, one has

1: If Im κ < 0 in D, and if, in a neighborhood of γ1, f has standard behavior f ∼ exp( i
ε

∫ ζ
κdζ)·Ψ+,

then, it has standard behavior in a constant domain containing the “rectangle” R.

2: If Im κ > 0 in D, and if, in a neighborhood of γ2, f has standard behavior f ∼ exp( i
ε

∫ ζ
κdζ)·Ψ+,

then, it has the standard behavior in a constant domain containing the “rectangle” R.

Lemma 5.1 was proved in [9] where one can find more details and references.

5.2. Estimates of “decreasing” solutions. The Rectangle Lemma allows us to “continue” stan-
dard behavior as long as the leading term increases along a horizontal line. If the leading term
decreases, then, in general, we can only estimate the solution, but not get an asymptotic behavior.

Lemma 5.2 ([9]). Fix E = E0. Let ζ1 and ζ2 be fixed points such that

1. Im ζ1 = Im ζ2;
2. Re ζ1 < Re ζ2;
3. the segment [ζ1, ζ2] of the line Im ζ = Im ζ1 is regular.

Fix a continuous branch of κ on [ζ1, ζ2]. Assume that Im κ(ζ) > 0 on the segment [ζ1, ζ2]. Let ψ be a

solution having standard behavior ψ ∼ e
i
ε

∫ ζ

ζ1
κdζ

Ψ+ in a neighborhood of ζ1.
Then, there exists C > 0 such that, for ε sufficiently small, one has

∣

∣

∣

∣

dψ

dx
(x, ζ)

∣

∣

∣

∣

+ |ψ(x, ζ)| ≤ Ce
1
ε

∫ ζ
ζ1
|Im κ|dζ

, ζ ∈ [ζ1, ζ2].(5.1)

uniformly in E in a constant neighborhood of E0.

One also has the “symmetric” statement when Im κ < 0 and f has standard behavior f ∼ e
i
ε

∫ ζ

ζ2
κdζ

Ψ+

in a neighborhood of ζ2.

5.3. The Adjacent Canonical Domain Principle. The estimate we obtained in Lemma 5.2
can be far from optimal: the estimate only says that the solution ψ cannot increase faster than

exp
(

1
ε

∫ ζ
ζ1
|Imκ|dζ

)

whereas it can, in fact, decrease along [ζ1, ζ2]. The Adjacent Canonical Domain

Principle enables us to justify the asymptotics of decreasing solution.
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5.3.1. The statement. Let γ be a segment of a vertical curve. Let S be the smallest strip of the form
{C1 ≤ Im ζ ≤ C2} containing γ.

Definition 5.1. Let U ⊂ S be a regular domain. We say that U is adjacent to γ if γ ⊂ ∂U .

We have proved

Proposition 5.1 (The Adjacent Canonical Domain Principle [9]). Let γ be a segment of a canonical
line. Assume that a solution f has standard behavior in a domain adjacent to γ. Then, f has the
standard behavior in any bounded canonical domain enclosing γ.

To apply the Adjacent Canonical Domain Principle, one needs to describe canonical domains enclosing
a given canonical line. Therefore, we now discuss such domains.

5.3.2. General description of enclosing canonical domains. We work in a regular domain D. We
assume that κ is a branch of the complex momentum analytic in D. We discuss only lines pre-
canonical (e.g. canonical lines or lines of Stokes type) with respect to κ.
The general tool for constructing the enclosing canonical domains is

Proposition 5.2 ([9]). Let γ be a segment of a canonical line. Assume that K ⊂ D is a simply
connected domain containing γ (without its ends). The domain K is a canonical domain enclosing γ
if and only if it is the union of pre-canonical lines obtained from γ by replacing some of γ’s internal
segments by pre-canonical lines.

5.3.3. Adjacent canonical domains. It can be quite difficult to find the “maximal” canonical domain
enclosing a given canonical line. In practice, it is much more convenient to use “simple” canonical
domains obtained with Lemma 5.4. To make the formulation of this result more transparent, we first
list elementary properties of canonical lines and lines of Stokes type.

The following lemma is a simple corollary of Lemma 2.1 and of the definition of canonical lines:

Lemma 5.3. One has

• If Imκ 6= 0 in a regular domain U , then, all the lines of Stokes type inside U are vertical.
• Let γ be a canonical curve. Then, any line of Stokes type intersecting γ intersects it transversally.
• Let γ be a canonical curve. Any of its internal segment is a canonical curve. Moreover, γ is an

internal segment of another canonical curve.
• Let γ be a canonical curve. Let U be a domain adjacent to γ. Assume that Im κ 6= 0 in U .

Consider two lines of Stokes type (from the two different families) containing ζ0, an internal
point of γ. In U , one of these lines goes upward from ζ0, and the second one is going downward
from ζ0.

Now, we can formulate the statement about “simple” canonical domains.

Lemma 5.4 (The Trapezium Lemma). Let γ0 be a segment of a canonical line. Let U be a domain
adjacent to γ, a canonical line containing γ0 as an internal segment. Assume that Im κ 6= 0 in U .
Denote by σu ⊂ U (resp. σd ⊂ U), the line of Stokes type starting from the upper (resp. lower) end
of γ0 and going downwards (resp. upwards). One has:

• Pick γ̃, one more canonical line not intersecting γ0. If T ⊂ U is the simply connected domain
bounded by σu, σd, γ0 and γ̃, then, T is a part of a canonical domain enclosing γ0.

• Assume that σu intersects σd. Let T ⊂ U be the simply connected domain bounded by σu, σd and
γ0. Then, T is a part of canonical domain enclosing γ0.

We prove this lemma in section 8.

To use the second part of the Trapezium Lemma, one has to check that σd and σu intersect. Therefore,
in practice, one uses

Lemma 5.5. Inside any regular domain, a canonical line and a line of Stokes type can intersect at
most once. Two line of Stokes type from the different families also can intersect at most once. Two
lines of Stokes type from the same family either are disjoint or they coincide.

The first two statements of this lemma easily follow from the definitions. The last one follows from
Lemma 2.1. We omit the elementary details.
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5.4. The Stokes Lemma. Notations and assumptions. Assume that ζ0 is a branch point of the
complex momentum such that W ′(ζ0) 6= 0.
There are three Stokes lines beginning at ζ0. The angles between them at ζ0 are equal to 2π/3. We
denote these lines by σ1, σ2 and σ3 so that σ1 is vertical at ζ0 (see Fig. 1).
Let σ̃1 be a (compact) segment of σ1 which begins at ζ0, is vertical and contains only one branch
point, i.e. ζ0.
Let V be a neighborhood of σ̃1. Assume that V is so small that the Stokes lines σ1, σ2 and σ3 divide
it into three sectors. We denote them by S1, S2 and S3 so that S1 be situated between σ1 and σ2, and
the sector S2 be between σ2 and σ3 (see Fig. 1).

The statement. We prove

Lemma 5.6 (The Stokes Lemma). Let V be sufficiently small. Let f be a solution that has standard

behavior f ∼ e
i
ε

∫ ζ κdζΨ+ inside the sector S1 ∪ σ2 ∪ S2 of V . Moreover, assume that, in S1 near
σ1, one has Im κ(ζ) > 0 if S1 is to the left of σ1 and Im κ(ζ) < 0 otherwise. Then, f has standard
behavior inside V \ σ1, the leading term of the asymptotics being obtained by analytic continuation
from S1 ∪ σ2 ∪ S2 to V \ σ1.

We prove the Stokes Lemma in section 9.

6. Computing a continuation diagram: an example

We again consider the case of W (ζ) = α cos ζ, assuming that all the gaps of the periodic operator
are open and that E satisfies hypothesis (C). For sake of definiteness, we assume additionally that n
in (C) is even. In the case of n odd, one obtains similar results. In section 4.2, we have constructed
a canonical line γ going around the branch points of the complex momentum as in Fig. 4, part C.
Its properties are described by Proposition 4.3. By means of Theorem 3.1, we construct f , a solution

having the standard behavior f ∼ exp
(

i
ε

∫ ζ
π κdζ

)

· Ψ+ on K, a local canonical domain enclosing

γ. Here, κ is the branch of the complex momentum defined by (4.1). The solution f is analytic in
S(K) := {Y1 < Im ζ < Y2}, the smallest strip containing K. In this section, using our continuation
tools, we study the asymptotic behavior of f in S = S(K) outside K.

Let D = {|Im ζ| ≤ Y, 0 < Re ζ < 2π} (Y is as in Proposition 4.2). Con-
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Figure 5: The continuation
diagram

sider also D′, the domain obtained from D by cutting it along segments
of Stokes lines and along lines Re ζ = Const as shown in Fig. 5. Note
that, we have cut away (i.e. D′ does not contain) the part of D situated
to right of the Stokes line “c” (see Fig. 3). The domain D′ is simply
connected; thus, both the branch κ and the leading term of the standard
asymptotics of f can be analytically continued on D′ in a unique way.
Using the continuation principles, we prove

Proposition 6.1. If δ (from Proposition 4.2) is chosen sufficiently
small, then, inside D′, the solution f has the standard behavior

f ∼ exp

(

i

ε

∫ ζ

π
κdζ

)

Ψ+.

The rest of this section devoted to the proof of this proposition. The
proof is naturally divided into “elementary” steps. In each step, applying
just one of the three continuation tools (i.e. the Rectangle Lemma, the
Adjacent Canonical Domain Principle and the Stokes Lemma), we extend the continuation diagram,
justifying the standard behavior of f on a larger subdomain of D′. Fig. 5 shows where we use each
of the continuation principles. The full straight arrows indicate the use of the Rectangle Lemma, the
circular arrows, the use of the Stokes Lemma, and, the dashed arrows and the hatched zones, the use
of the Adjacent Canonical Domain Principle. When proving Proposition 6.1, one repeats the same
arguments quite often. So, we explain in details only the first few steps of the proof to show how to
use each of the continuation tools.
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6.1. Behavior of f between the lines γ and β: applying the Adjacent Canonical Domain
Principle. Recall that γ first goes downwards staying to the left of β, and, then, γ and β meet at
a point a, 0 < Im a < Im ζ2n+2. They coincide up to a point b, Im b < 0. Here, by means of the
Adjacent Canonical Domain Principle, we prove that f has the standard behavior inside a subdomain
of D situated above a between γ and β. Our strategy is the following. First, we use the Trapezium
Lemma, Lemma 5.4, to describe a part of a canonical domain enclosing to the upper part of γ, and,
then, we use the Adjacent Canonical Domain Principle.

6.1.1. Describing U , γ0, σu and σd. Let us describe the domain U and the curves γ0, σd and σu needed
to apply Lemma 5.4.

The domain U . It is the domain bounded by β, γ and the line Im ζ = Const containing the upper end
of γ. Inside U , one has Im κ > 0.

The line σu. As σu, we take the line which intersects β at ζ̃u, the point with the imaginary part equal

to Y , and belongs to the family Im
∫ ζ

κdζ = Const. Recall that γ is constructed in the δ-neighborhood
of β where δ can be fixed arbitrarily small. One has

Lemma 6.1. The line σu enters U at the point ζ̃u and goes upwards. If δ is sufficiently small, then,
σu intersects γ at ζu, an internal point of γ.

Proof. Recall that Y > Im ζ2n+3, and that, above ζ2n+3, β coincides with the Stokes line “c” tangent

to the vector field κ(ζ) − π. The line σu is tangent to the vector field κ(ζ). One has Imκ(ζ̃u) > 0.

Therefore, at ζ̃u, the tangent vector to β (oriented upwards) is directed to the left with respect to

the tangent vector to σu (oriented upwards). So, σu enters U at ζ̃u going upwards. As Imκ 6= 0 in
U , σu stays vertical (in U). As σu is independent of δ, if δ is sufficiently small, σu intersects γ. This
completes the proof of Lemma 6.1.

The line σd. It is the line which intersects β at ζ̃d, a point such that Im a < ζ̃d < Im ζ2n+2, and belongs

to the family Im
∫ ζ

(κ − π)dζ = Const. One has

Lemma 6.2. The line σd enters U at ζ̃d, goes downwards and then, staying in U , it intersects γ at a
point ζd. This point can be made arbitrarily close to a by choosing ζ̃d sufficiently close to a.

Proof. Recall that the segment [π, ζ2n+2] of the line Re ζ = π belongs to the pre-image (by E) of
the (n + 1)-st spectral band of the periodic operator. So, Imκ = 0 and 0 < Re κ < π on [π, ζ2n+2].
Moreover, in U , one has Im κ > 0. As σd is tangent to the vector field κ − π, arguing as usual, we
deduce from these properties of κ that

1. σd is orthogonal to β at ζ̃d, enters U at this point;
2. having entered U , it goes downwards and stays vertical while in U ;
3. it leaves U intersecting γ.

Being an integral curve of a smooth vector field, σd intersects γ as close to a as desired provided that
ζ̃d is sufficiently close to a. This completes the proof of Lemma 6.2.

The line γ0. We choose δ so that σu intersect γ. Then, γ0 is the segment of γ between its intersections
with σd and σu.

6.1.2. Describing the curve γ̃. We shall use the first variant of the Trapezium Lemma (i.e. the first
point of Lemma 5.4). Let us describe the canonical line γ̃ needed to apply it. In Proposition 4.3, we
have constructed γ by means of Proposition 4.2. In the same way, we can construct another canonical
line situated arbitrarily close to β. So, we can assume that it is strictly between γ0 and β. This
canonical line is the one we use as γ̃.
As σu and σd intersect γ and β, they also intersect γ̃.

6.1.3. Completing the analysis. By the Trapezium Lemma, the domain bounded by γ0, σu, σd and γ̃
is a part of a canonical domain enclosing γ0. So, by the Adjacent Domain Canonical Principle, f has
the standard behavior here.
As ζd can be chosen arbitrarily close to a and γ̃ can be constructed arbitrarily close to β, we conclude
that f has the standard behavior in the domain bounded by β, γ and the line Im ζ = Y .
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6.2. “Crossing” the segment [0, ζ2n+2] ⊂ β: another example of how to use the Adjacent
Canonical Domain Principle. Pick c so that 0 ≤ c < Im ζ2n+2. Let sc be the segment [0, ζ2n+2− c]
of the line β (i.e of the line Re ζ = π). We shall check

Lemma 6.3. For c > 0, sc is a canonical line.

This and the Adjacent Canonical Domain Principle will imply

Lemma 6.4. The solution f has standard behavior in a neighborhood of any internal point of s0 (i.e.
sc with c = 0).

Proof. Indeed, let c > 0. As, Ic is canonical, by Lemma 4.1, there is Kc, a canonical domain enclosing
sc. Moreover, by the previous step, see section 6.1.3, f has the standard behavior to the left of sc.
Applying the Adjacent Canonical Domain Principle, we prove that f has standard behavior in Kc.
As c can be taken arbitrarily small, we obtain Lemma 6.4.

Before proving Lemma 6.3, note that s0 contains the branch point ζ2n+2. So, s0 itself cannot be a
canonical line.

Proof of Lemma 6.3. Note that sc ⊂ zn+1, i.e. sc is a part of a connected component of the pre-
image of the (n + 1)-st spectral band of the periodic operator (0.3) with respect to the mapping
E : ζ → E −W (ζ). For c > 0, E maps sc strictly into the (n + 1)-st spectral band. This implies that,
along sc, one has 0 < k(ζ) < π. Now, Lemma 6.3 follows from the definition of canonical lines.

6.3. Behavior of f to the right of s0: using the Rectangle Lemma. Let R0 be the rectangle
bounded by the real line, the segment s0, the line Im ζ = Im ζ2n+2 and the line Re ζ = 2π. By means
of the Rectangle Lemma, we prove

Lemma 6.5. Inside R0, the solution f has the standard behavior.

Proof. First, we note that, in the interior of R0, one has Im κ < 0. Indeed, Imκ vanishes only at points
of the pre-image of the set of spectral bands of the periodic operator with respect to E . Therefore, in
the interior of R0, one has Imκ 6= 0. Furthermore, in Π, the imaginary part of κ is positive, and to
go from Π to R0 (while staying inside D′), one has to intersect s0, i.e. a connected component of the
pre-image of the (n+1)-st spectral band. So, in the interior of R0, the imaginary part of κ is negative.
Now, fix c, a sufficiently small positive constant. Consider the closed “rectangle” Rc ⊂ R0 delimited
by the lines Re ζ = π, Im ζ = c, the line Re ζ = 2π − c and the line Im ζ = Im ζ2n+2 − c. As Rc ⊂ R0,
the imaginary part of κ is negative in Rc. Moreover, by Lemma 6.4, the solution f has the standard

behavior f ∼ e
i
ε

∫ ζ

π
κdζΨ+ in a neighborhood of the left boundary of Rc. So, the rectangle Rc satisfies

the assumptions of the Rectangle Lemma, and, therefore, f has the standard behavior inside Rc. As c
can be taken arbitrarily small, this implies that f has standard asymptotics inside the whole rectangle
R0.

6.4. Applying the Stokes Lemma. Recall that the segment σ = [ζ2n+2, ζ2n+3] of the line Re ζ = π
is a Stokes line. By the previous steps, we know that, at least near σ, the solution f has the standard
behavior to the left of and below σ. To justify the standard behavior of f to the right of σ, one uses
the Stokes Lemma.
Let V be a neighborhood of σ. Pick c so that 0 < c < Im (ζ2n+3 − ζ2n+2). Let Vc = {ζ ∈ V, Im ζ <
Im ζ2n+3 − c}. We prove

Lemma 6.6. If V is sufficiently small, f has the standard behavior in Vc \ σ.

Proof. There are three Stokes lines beginning at ζ2n+2. These are the lines σ, “b” and the line “b̃”
symmetric to “b” with respect to the line Re ζ = π. Suppose that V is chosen sufficiently small. Then,

1. the three Stokes lines divide Vc into three sectors;
2. by the first three steps of the continuation process, we know that f has the standard behavior

outside the sector bounded by σ and “b̃”;
3. in Vc, to the left of σ, Im κ > 0.

So, the conditions of the Stokes Lemma are satisfied, and, therefore, f has the standard behavior in
Vc \ σ. This completes the proof of Lemma 6.6.
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6.5. Completing the analysis of f in D′. One completes the analysis of f using our continuation
tools as indicated in Fig. 5. Applying each of the continuation principles, one argues essentially as in
the previous steps. Let us outline the analysis concentrating only on the new elements.

6.5.1. The solution f in D′ ∩ C+. By means of the Rectangle Lemma, one justifies the standard
behavior of f first to the left of γ and, second, to the right of the line Re ζ = π.

6.5.2. Beginning the analysis of f in D′ ∩ C−: standard steps. 1. One begins with justifying the
standard behavior between the lines β and γ below the real line. Therefore, one uses the Adjacent
Canonical Domain Principle.
2. Then, one “continues the asymptotics” of f to the right of γ. First, one tries to use the Rectangle
Lemma. However, on the line Re ζ = π, one meets a problem: Im κ = 0 on the segments sn+1 =
[π, ζ̄2(n+1)] and sj = [ζ̄2j−1, ζ̄2j ] for j = n + 2, n + 3 . . . . Indeed, sj is a connected component of the
pre-image of the j-th spectral band of the periodic operator.
In result, one obtains standard behavior by means of the Rectangle Lemma only outside the domains

dj = {ζ = s + t, s ∈ sj , π ≤ t < 2π}, j = n + 1, n + 2 . . . .

3. Consider the hatched domains in Fig. 5. Each of them is adjacent to one of the segments sj and
bounded by Stokes lines. Denote by Tj the hatched domain adjacent to sj . One justifies the standard
behavior in Tj by means of the Adjacent Domain Principle and the second variant of the Trapezium
Lemma (second point of Lemma 5.4). Let us describe the domain U and the lines γ0, σu and σd

needed to apply the Trapezium Lemma to study f in Tj .
The line γ0. Let ζu and ζd be two internal points of sj such that Im ζd < Im ζu. The line γ0 is the
segment [ζd, ζu] of sj . We define the branch of the complex momentum with respect to which γ0 is a
canonical line. Therefore, we note that π(j − 1) < κ + πn < πj as ζ is inside sj and set

κj =

{

κ + πn − π(j − 1), if j is odd,
πj − πn − κ, otherwise.

(6.1)

As seen from the section 2.1.2, the function κj is a branch of the complex momentum. Along sj , one
has 0 < κj < π. This implies that γ0 is a canonical line with respect to κj .
For sake of definiteness, below, we assume that j is odd. The case j even is treated similarly.
The domain U . It is a subdomain of Tj . In Tj , one has Imκj > 0. Indeed, to go from Π to Tj , one has
to twice intersect connected components of the pre-image (with respect to E) of the set of the spectral
bands. So, in Tj , one has Im κ > 0. As j is odd, (6.1) implies that Imκj > 0 in Tj .

The lines σu and σd. They are respectively defined by the relations Im
∫ ζ
ζu

κjdζ = 0 and Im
∫ ζ
ζd

(κj −
π)dζ = 0. Note that, σd contains ζd, and σu contains ζu. So, if ζd and ζu would be respectively the
lower and the upper end of sj , then, the lines σu and σd are the lines of Stokes type bounding Tj .
By means of Lemma 2.1, one proves that, in Tj , the lines σu and σd are vertical, σu is going downward
from ζu, and σd is going upward from ζd.
Finally, one checks that, having entered in Tj , the lines σu and σd intersect one another before leaving
Tj . Indeed, Lemma 5.5 implies that the line σd (resp. σu) can leave Tj only intersecting its upper
(resp. lower) boundary.
Completing the analysis. The Trapezium Lemma implies that the domain bounded by γ0, σd and σu

is a part of a canonical domain enclosing γ0. Therefore, by Adjacent Canonical Domain Principle, f
has the standard behavior in this domain. Note that, as ζu and ζd approach the upper and lower ends
of sj , the curves σu and σd approach the upper and lower boundary of Tj . This implies that, in fact,
f has the standard behavior inside the whole domain Tj .
4. One justifies the standard behavior of f to the left of the hatched domains using the Stokes Lemma
and the Rectangle Lemma (see Fig. 5). We omit the details and note only that, to do this to the right
of Tn+1, one first has to check that f has the standard behavior along the interval (ζ2n+1, 2π − ζ2n+1)
of the real line (this was not done before!). We do this in the next subsection.

6.5.3. The analysis of f in D′ and along the interval (ζ2n+1, 2π − ζ2n+1) of the real line. First, as f
has the standard behavior in a neighborhood of γ, it has the standard behavior in a neighborhood
of ζ = π, the point of intersection of γ and the real line. Hence, there exists a point a such that
ζ2n+1 ≤ a < π such that f has the standard behavior in a neighborhood of any point situated between
π and a, but not at a. Assume that a > ζ2n+1. Let α be the segment of the line Re ζ = a connecting a

21



point a1 ∈ C− to a point a2 ∈ C+. One has 0 < κ(a) < π. So, if α is sufficiently small, it is canonical.
The solution f has the standard behavior to the right of α (this follows from the definition of a and the
previous analysis). So, we are in the case of the Adjacent Canonical Domain Principle; it implies that
f has the standard behavior in a local canonical domain enclosing α. Therefore, f has the standard
behavior in a constant neighborhood of a. So, we obtain a contradiction, and, thus a = ζ2n+1. This
completes the analysis of f along the interval (ζ2n+1, π). Similarly one studies f along (π, 2π− ζ2n+1).

6.5.4. Completing the proof. We still have to check that f has the standard behavior to the left of the
Stokes line “a” symmetric to “a” with respect to the real line. Therefore, one first uses the Stokes
Lemma to justify the standard behavior in the left hand side of a small neighborhood of “a”, and,
then, one uses The Rectangle Lemma to justify the standard behavior in the rest of the part of D′

situated to the left of “a”.
This completes the analysis of the behavior of f in the domain D′.

7. Behavior of solutions outside the continuation diagrams

In this section, we formulate and prove the Two-Waves Principle.

7.1. Formulation of the problem.

7.1.1. Geometry of the problem. Assume that for E = E0, one has the geometrical situation shown in
part a) of Fig. 6. There, ζ1 and ζ2 are two branch points of the complex momentum such that W ′(ζ1)
and W ′(ζ2) are non zero. The line σ1 is simultaneously a Stokes line beginning at ζ1 and at ζ2. The
line σ2 is a segment of a Stokes line beginning at ζ2. We assume that both σ1 and σ2 are vertical.
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Figure 6: The Two-Waves Principle

Let V be a neighborhood of σ1 ∪ σ2 containing only two branch points, precisely ζ1 and ζ2. Let
h = {ζ : Im ζ = ζ2, Re ζ > Re ζ2}. Also, denote by F the part of V situated above h and to the right
of σ2 , see Fig. 6, b).

7.1.2. Formulation of the problem. Pick ζ0 ∈ V so that E(ζ0) 6∈ P ∪ Q. Assume that a solution f has

the standard behavior f ∼ exp
(

i
ε

∫ ζ
ζ0

κ dζ
)

· Ψ+ in the domain D = V \ (F ∪ σ1). Assume, moreover,

that the imaginary part of κ is positive in D to the left of σ1 ∪ σ2. Our aim is then to describe f in
the domain F .

The problem described above comes about in the case studied in section 6. The lines σ1 and σ2 are
respectively the Stokes lines [ζ2n+2, ζ2n+3] and “c”, and the domain F is situated to the right of “c”
above the line Im ζ = Im ζ2n+3, see Fig. 5.

7.2. Two-Waves Principle. The natural idea is to try to represent f as a linear combination of
solutions having standard behavior in F . This leads to the following construction.

Consider D±, the subdomains of V shown in Fig. 6, parts c) and d). On each of them, fix the branch
of the complex momentum so that, in some neighborhood of ζ0, it coincide with the branch from the
asymptotics of f . It will be convenient to assume that ζ0 is to the right of σ1 ∪ σ2. One has
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Lemma 7.1 (Two-Waves Principle). Assume that there are two solutions h± having the standard

behavior h± ∼ exp(± i
ε

∫ ζ
ζ0

κ dζ) · Ψ± in D±. Then,

f(ζ) = g(ζ)h+(ζ) + G(ζ)h−(ζ), ζ ∈ F,(7.1)

where ζ 7→ G(ζ) and ζ 7→ g(ζ) are two ε-periodic functions. In F , these functions admit the asymptotic
representations
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Figure 7: The curves γ0 and γ0
−

G = e
2iκ(ζ2)

ε (ζ − ζ2) (A − 1 + o(1))

B
(1 + o(1)),

g = 1 + o(1),
(7.2)

where A and B are constants given by the formulae

A = exp

(

i

ε

∮

γ0

κdζ +

∮

γ0

Ω+ + ind (γ0)

)

,

B = exp

(

− i

ε

∮

γ0
−

κdζ +

∮

γ0
−

Ω− + ind (γ0
−)

)

.

(7.3)

Here, γ0 and γ0
− are loops going around the branch point as

shown in Fig. 7 and do not containing any points of E(P ∪ Q);

ind (α) denotes the increment of arg
(

√

k′(E(ζ))
)

along a closed

curve α. The representations (7.2) are uniform in ζ and E
provided that ζ is in a compact subset of F and E is in a sufficiently small neighborhood of E0.

7.3. Comments and remarks. Let us comment on the Two-Waves Principle.

7.3.1. Solutions h±. Recall that V is a neighborhood of σ1 ∪ σ2. If V is sufficiently small (and, thus,
“thin” and “stretched” along σ1 and σ2), the solutions h± can be easily constructed using our standard
techniques. However, in practice, one does not use these local constructions. Instead, one tries to
construct h± so that they have the standard behavior on domains as large as possible. Thus, their
construction is determined by the concrete geometry of the problem. Detailed examples can be found
in section 7.4.

7.3.2. A convenient representation for f . We have formulated the Two-Waves Principle in terms of
the solutions h± to simplify the exposition. However, to makes the results more transparent, let us
change the normalization of h−. Let

ho
− = e

2iκ(ζ2)
ε

(ζ−ζ2) B−1 h−.

It will follow from the proof of Lemma 7.1 that the solution ho
− has the standard behavior

ho
− ∼ e

i
ε

∫

γ̃−(ζ) κ dζ
Ψ+, ζ ∈ F,(7.4)

where the curve γ̃− is shown in Fig. 6, part e), and κ and Ψ+ are obtained by the analytic continuation
from ζ0 along γ̃−. In terms of the solutions h+ and ho

−, formula (7.1) takes the simplest form

f = h+(1 + o(1)) + [A − 1 + o(1)]ho
− (1 + o(1)).(7.5)

Note that, for small ε, the absolute values of h+ and ho
− are essentially determined by the factors

exp

(

i

ε

∫

γ+(ζ)
κ dζ

)

and exp

(

i

ε

∫

γ̃−(ζ)
κ dζ

)

,(7.6)

where γ+(ζ) is shown in Fig. 6, part e). The definition of Stokes lines implies that, along the Stokes
lines beginning at ζ2, the moduli of these factors are equal.
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7.3.3. The coefficient A. The coefficient A is defined in U , a sufficiently small constant neighborhood
of E0. Formula (7.5) shows that it is important to compare the modulus of A with 1. For ε small, the

modulus of A is essentially determined by the factor exp
(

−1
ε Im

∮

γ0
κdζ

)

. So, when ε → 0, depending

of E ∈ U , the coefficient A may become exponentially small or exponentially large. However, for some
E ∈ U , it always is of order O(1). Indeed, one proves

Lemma 7.2. Fix E ∈ U . Assume that the configuration of the Stokes lines corresponds Fig. 6, part
a). Then, one has Im

∮

γ0
κdζ = 0.

Proof. Fix E as in Lemma 7.2 and consider κ as a function of ζ ∈ V (V is the neighborhood of
σ1 ∪ σ2 defined in section 7.1.2). Cut V along σ1. First, we check that the branch of κ (defined in a
neighborhood of ζ0) is analytic V \ σ1. Consider the curve γ beginning at ζ0 and going to σ1 along a
straight line, then, going around σ1 just along it (infinitesimally close to it) and, finally, coming back
to ζ0 along the same straight line. Continue κ analytically along γ. Relation (2.5) implies that, near
ζ0, the values of κ and of its analytic continuation differ by the additive constant 2(κ(ζ1) − κ(ζ2)).
But, as σ1 is a Stokes line for both ζ1 and ζ2, one has κ(ζ1) = κ(ζ2). This implies the analyticity of κ.

As κ is single valued in V \ σ1, we can deform the integration contour γ0 from the definition of A
so that it go around σ1 just along it. Now, it follows from the definition of the Stokes lines that
Im

∮

γ0
κdζ = Im

∮

γ0
(κ(ζ) − κ(ζ1))dζ = 0.

7.3.4. Generalizations of the Two-Waves Principle. In the same way as we prove Lemma 7.1, one
obtains analogous statements for the “symmetric” geometries shown in Fig. 8.
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Figure 8: All the possible geometric situations

7.4. How to use the Two-Waves Principle: an example. Consider the solution f studied in
section 6. We now apply the Two-Waves Principle to obtain the asymptotics of f to the right of the
Stokes line “c”.

7.4.1. Comparing the notations. The points ζ1 and ζ2 are the branch points ζ2n+2 and ζ2n+3; the
Stokes lines σ1 and σ2 are the Stokes lines [ζ2n+2, ζ2n+3] and “c” (more precisely, its segment below
the line Im ζ = Y , Y > Im ζ2n+3). The domain F situated above the line Im ζ = Im ζ2n+3 and to the
right of “c”.

7.4.2. Checking the assumptions of the Two-Waves Principle. The assumptions of Lemma 7.1 are
satisfied: σ1 is a Stokes line both for ζ2n+2 and ζ2n+3; both σ1 and σ2 are vertical; f has the standard
behavior in V \ (F ∪ [ζ2n+2, ζ2n+3]); and, to the left of the Stokes lines “c” and [ζ2n+2, ζ2n+3], near
them, one has Im κ > 0.

7.4.3. The solution h+. To construct the solution h+, we first build π+, a pre-canonical line, as shown
in Fig. 9(a), part a). When speaking about κ on π+, we mean the branch of the complex momentum
obtained by analytic continuation of the branch κ from the asymptotics of f along π+ from D′.
Actually, π+ is pre-canonical with respect to κ1, the branch of the complex momentum equal to
2π − κ. The construction of π+ being standard, we omit details and note only that π+ consists of five
“elementary” segments. The first (the lower) “elementary” segment and the fourth one are segments

of lines of Stokes type Im
∫ ζ

(κ1 − π)dζ = Const. The second and the fifth ones are segments of lines

of Stokes type Im
∫ ζ

κ1dζ = Const. The third elementary segment is a canonical line.
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(a) The construction of h+
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(b) and of h−

Figure 9: Constructions of h±

Having constructed π+, we pick γ+, a canonical line close to π+, and, by Theorem 3.1, construct the

solution g ∼ e−
i
ε

∫ ζ

π
κ1dζ on K+, a canonical domain enclosing this canonical line.

We let h+ = exp
(

2πi(ζ−π)
ε

)

g. On K+, the function h+ has the standard behavior h+ ∼ e
i
ε

∫ ζ

π
κdζΨ+.

The computation of the continuation diagram of h+ is explained in Fig. 9(a), part b), where we show
only what happens in the domain 0 < Re ζ < 2π.
Note that we do not control the behavior of h+ in the domain denoted by F+ in Fig. 9(a), part b).

7.4.4. The solution h−. To construct h−, we build π−, a pre-canonical line similarly to π+. The only
difference is that, above the point ζ2n+3, instead of going along the line Re ζ = π to a neighborhood

of ζ2n+4 , the pre-canonical line π− goes along a line of Stokes type Im
∫ ζ

(κ1 − π)dζ = Const which
belongs to the same family as “c”, is situated to the right of “c” and is chosen sufficiently close to “c”.
On K−, a canonical domain enclosing γ−, a canonical line “approximating” π−, the solution h− has

the standard behavior h− ∼ e−
i
ε

∫ ζ

π
κdζΨ−.

The analysis of the continuation diagram of h− is explained in Fig. 9(b), where we show only what
happens in the domain 0 < Re ζ < 2π.
Note that we do not control the behavior of h− in the domain denoted by F− in Fig. 9(b).

7.4.5. Asymptotics of f . As in section 7.3.2, in terms of h−, we define the solution ho
−. By the Two-

Wave Principle, f admits the representation (7.5). This yields the asymptotics of f in F .
This leaves us with the following two questions:

• what is the asymptotics of f in the domain F ∩ F+ (where the asymptotics h+ is unknown)?
• how to get the asymptotics of f in the domain F ∩F− (where the asymptotics h− is unknown)?

Denote by α the Stokes line beginning at ζ2n+5 and going from it upwards to the left. To answer the
first question, one has to find the asymptotics of h+ in the domain F+ situated to the right of α and
above the line Im ζ = Im ζ2n+5. Therefore, one has just to apply the Two-Waves Principle once more
(now, to study h+).

Denote by β the Stokes line beginning at ζ2n+3 going upwards to the right. Denote by p the point
where it intersects the Stokes line beginning at ζ2n+4 going downwards to the right. The answer to
the second question is given by

Lemma 7.3. Let D1 = {π < Re ζ < 2π, ζ2n+2 < Im ζ < Im p}. Let D2 be the part of D1 situated to
the right of β. Then, D2 is in the continuation diagram of f i.e. in D2, f has standard asymptotics.

We only explain the idea guiding the proof of this lemma and omit the technical details. The idea is
the following. Both the solutions h+ and ho

− have the standard behavior inside D2 near l, the left part
of the boundary of D2. As l consists of segments of Stokes lines, along l, the absolute values of the
exponentials (7.6) determining the order of these solutions coincide. To the right of l, the exponential
term in the asymptotics of h+ becomes (exponentially) larger than the one in the asymptotics of ho

−.
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This and Lemma 7.2 imply that, in D2, near l (where both h+ and ho
− have the standard behavior),

the second term in (7.5) is negligible with respect to the first one so that, there, f has the standard
behavior f ∼ exp( i

ε

∫

γ+(ζ) κ dζ) · Ψ+. This and the Rectangle Lemma, then, imply the statement of

Lemma 7.3.

8. The proof of the Trapezium Lemma

In this section we prove the Trapezium Lemma, Lemma 5.4. We check only the first point. The second
one is proved similarly. We begin with studying the lines of Stokes type inside T .

Pick ζ0 ∈ T . By Corollary 2.1, ζ0 belongs to exactly one line of Stokes type from the same family as
σd and to exactly one line of Stokes type from the same family as σu. We denote these lines by σd(ζ0)
and σu(ζ0) respectively. One has

Lemma 8.1. One has

• The lines σd(ζ0) and σu(ζ0) stay vertical before leaving U .
• Above ζ0, the line σu(ζ0) leaves T intersecting γ0 at ζu, an internal point of γ0.
• Below ζ0, the line σd(ζ0) leaves T intersecting γ0 at ζd, an internal point of γ0.

Proof. As Im κ 6= 0 in U , the first point of Lemma 8.1 follows from Lemma 2.1.
Let us check the second one. First, we note that σu(ζ0) cannot leave T by intersecting σu, its “upper
boundary”, as both lines belong to one and the same family of line of Stokes type. Second, show that
it can not leave T intersecting γ̃ above ζ0. Consider the family {σu(t)}|t∈γ̃ . It contains σu, the “upper
boundary” of Tj , and, by assumption, σu(ζ0). By the second point of Lemma 5.3, each line from this
family intersects γ̃ transversally. So, we can orient the tangent vectors at the intersection points to
the right. As, in U , one has Im κ 6= 0, either all of these vectors are oriented upwards or all of them
are oriented downwards. Therefore, all the tangent vectors are directed to the right and downwards
as does the tangent vector to σu (the “upper boundary”). But, σu(ζ0) cannot go upward from ζ0, stay
vertical and leave T intersecting γ̃ in this way.
Finally, show that σu(ζ0) can not leave T by intersecting σd, the “lower boundary” of T . Therefore,
compare td(ζ0) and tu(ζ0), the tangent vectors to σd(ζ0) and σu(ζ0) at ζ0. As in U , one has Im κ 6= 0,
we orient both the vectors upwards. As σu(ζ0) and σd(ζu) belong to different families of Stokes lines,
either, for all ζ0 ∈ U , the vector td(ζ0) is directed to the left with respect to tu(ζ0) or, for all ζ0 ∈ U ,
it is directed to the right. Comparing the tangent vectors at the point of intersection of σd and γ̃ (the
lower and the right boundaries of T ), we see that we are in the second case i.e. for all ζ0 ∈ U , td(ζ0)
is directed to the right.
Assume that σu(ζ0) leaves T by intersecting σd, the “lower boundary” of T . As tu is oriented to the
left of td, we conclude that either σu(ζ0) intersects σd(ζ0) twice, or σd(ζ0) intersects σd. By Lemma 5.5,
both these events are impossible.
So, we see that, above ζ0, σu(ζ0) leaves T intersecting γ0. This is the second point of Lemma 8.1.
The third point is proved similarly.

To complete the proof of Lemma 5.4, we use Proposition 5.2. First, assume that Im κ 6= 0 along γ0.
For ζ0 ∈ T , consider the line α which consists of the segment of σu(ζ0) above ζ0 between γ0 and ζ0

and of the segment of σd(ζ0) below ζ0 between ζ0 and γ0. This line is a pre-canonical line containing
ζ0 and connecting two internal point of the canonical line γ0. As this line exists for any ζ0 ∈ T ,
Proposition 5.2 implies that T is part of a canonical domain enclosing γ0. This completes the proof
in the case under consideration. In general case, the line α may become horizontal (i.e. not vertical)
at its end points (recall that pre-canonical lines are supposed to be vertical). If this is the case, one
“corrects” α near its ends. For example, near the upper end, one replaces a small segment of α by
a small segment of a canonical line connecting an internal point of the “old” α to an internal point
of γ0 situated above the end of the “old” α. The required canonical line is obtained by a small C1

deformation of γ (as small C1 deformations preserve the property of being canonical). In result, the
“new” α becomes vertical. So, one again can apply Proposition 5.2. This completes the proof of
Lemma 5.4.

9. The proof of the Stokes Lemma

In this section we prove Lemma 5.6.
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9.1. Preliminaries. For sake of definiteness, we assume that σ1 is going downwards from ζ0 and
that the sector S1 is adjacent to σ1 from the left. All the other geometric situations are analyzed
similarly. Note that, by assumptions of the Stokes Lemma in the case we consider, in S1, near σ1, one
has Im κ > 0.
For sake of briefness, we shall justify only the uniform asymptotics of f on V ′ := V \ σ1, see Fig. 1.
The term “standard behavior” actually means more (see section 3.2). But, as our construction is
based on the analysis of solutions having standard behavior, reading the proof, one easily checks that,
in V ′, the solution f has standard behavior.
Recall that one can always choose κ0, a branch of the complex momentum analytic on V ′ and such
that either κ0(ζ0) = 0 or κ0(ζ0) = π (natural branch). Below, we assume that κ0(ζ0) = 0; the second
case is studied in a similar way.

9.1.1. The plan of the proof. Our plan is roughly the following. First, we find κ, a canonical line in
V going to the right of ζ0 and σ1, and staying close to σ1. The line κ will be canonical with respect
to κ0, the natural branch of the complex momentum. Then, by Lemma 4.1, we construct K, a local
canonical domain containing κ; Theorem 3.1 then, gives us f±, two solutions having standard behavior

f± ∼ e±
i
ε

∫ ζ

ζ∗
κ0dζΨ±(x, ζ, ζ∗), ζ ∈ K.(9.1)

Here, κ0 is the branch of the complex momentum with respect to which K is canonical, and ζ∗ ∈ V ′

is a normalization point (we assume that E(ζ∗) 6∈ P ∪ Q).
Recall that f± are analytic in ζ in the strip {Y1 < Im ζ < Y2}, the smallest “horizontal” strip containing
K (see Theorem 3.1).

Next, we express f in the basis f±

f(x, ζ) = a(ζ)f+(x, ζ) + b(ζ)f−(x, ζ).(9.2)

The coefficients a and b are independent of x; they can be expressed as

a(ζ) =
w(f, f−)

w(f+, f−)
and b(ζ) =

w(f+, f)

w(f+, f−)
.(9.3)

The Wronskians in this formula are analytic in the strip {Y1 < Im ζ < Y2} as the solutions f and
f± are. Moreover, as f and f± satisfy the condition (0.5), the Wronskians are ε-periodic in ζ. Fix
ν positive. For sufficiently small ε, |w(f+, f−)| is bounded away from zero uniformly in the strip
{Y1 + ν < Im ζ < Y2 − ν}, see (3.4). Returning to a and b, we conclude that, first, they are analytic
in this strip, second, they are ε-periodic in ζ.

Lemma 5.6 then, follows from the analysis of the coefficients a and b.

9.1.2. Choice of the branch κ0. Assume that V is so small that it contains only one branch point
ζ0. Consider κ, the branch of the complex momentum from the asymptotics of f in S1; continue it
analytically from S1 to V ′. Note that κ0, the natural branch, is defined up to the sign. We choose it
so that Im κ and Imκ0 have the same sign. We get

κ(ζ) = κ0(ζ) + 2πn0, ζ ∈ V ′,(9.4)

where n0 is a natural number independent of ζ.

9.1.3. Normalization of the solution f . As we express f in terms of f± described by (9.1), it is
convenient to assume that the solution f itself is normalized at ζ∗ and that, in S1 and S2, it has
standard behavior

f ∼ e
i
ε

∫ ζ

ζ∗
κ0dζΨ+(x, ζ, ζ∗).(9.5)

Note that, in (9.5) (as in (9.1)), we integrate κ0 but not κ. It is sufficient to consider this case. Indeed,
in view of (9.4), the solution f can always be represented in the form

f = f0e
2πin0(ζ−ζ∗)/εf̃ ,(9.6)

where f0 is constant, and f̃ has the standard behavior (9.5). Hence, it is sufficient to prove the Stokes

Lemma for f̃ . So that, from now on, we simply assume that f = f̃ , i.e. f is normalized at ζ∗ and
κ0 = κ (i.e. n0 = 0).

27



9.1.4. Three cases. Consider the angle α between the Stokes line σ1 and the line {Im ζ = Im ζ0, Re ζ ≥
Re ζ0} at the point ζ0. We measure this angle clockwise. As we consider the case where σ1 is going
downwards from ζ0, one has 0 < α < π.

When constructing the canonical line κ, we have to treat differently three cases:

a): 0 < α < 2π/3 (see Fig. 10);
b): α = 2π/3 (see Fig. 11);
c): 2π/3 < α < π (see Fig. 12).

However, having found the canonical line, in each of these cases, one completes the proof by doing
almost one and the same computation. Thus, we only give a detailed proof of the Stokes Lemma in the
case a). For the two remaining cases, we describe with detail only the construction of the canonical
line.

9.2. The proof of the Stokes Lemma in the case a).

9.2.1. Constructing the local canonical domain. Recall that the angle between σ1 and σ3 at ζ0 is equal
to 2π/3. So, the Stokes line σ3 goes upwards from ζ0. We assume that V is sufficiently small so that
σ3 ∩ V is vertical.

When constructing the canonical line, we shall need

Lemma 9.1. If V is sufficiently small and 0 < α < 2π/3, then, in V ′, Im κ vanishes only along
Z0, an analytic curve connecting ζ0 to a point of the boundary of V ; this curve goes inside the sector
S1 ∪ σ2 ∪S2 of V . In the part of this sector situated between σ1 and Z0, one has Imκ > 0. In the rest
of V ′ \ Z0, one has Im κ < 0.

Proof. The points where Im κ = 0 are points of Z, the pre-image of the set of the spectral bands of
the periodic Schrödinger operator (1.1) with respect to the mapping E : ζ → E − W (ζ). The ends
of the connected components of Z are exactly the branch points of κ. So, there exists a connected
component of Z beginning at ζ0, say Z0. Assume that 0 < α < π/3. Then, σ2 goes downward from
ζ0. By means of (2.3), one easily checks that, in a sufficiently small neighborhood of ζ0, Z0 goes
downward from ζ0 staying between σ1 and σ2. If α = π/3, the vectors tangent to σ2 and to Z0 at ζ0

are horizontal. In this case, Z0 and σ2 go to the left from ζ0. If π/3 < α < 2π/3, then, in a sufficiently
small neighborhood of ζ0, σ2 and Z0 are going upwards from ζ0, and Z0 stays between σ2 and σ3.

The lines of Stokes type Im
∫ ζ

κdζ = Const are tangent to the vector field

�

��

��

��

��

��
��

��

��

��

��

	


�

Figure 10: The geome-
try in case a)

κ(ζ) (as usual, we identify complex numbers with vectors in R
2). As σ1 is

vertical in V , it intersects Z (the set where Im κ = 0) in V only at ζ0. So,
all the connected components of Z except Z0 stay at a finite distance from
σ1 (in V ). Therefore, if V is sufficiently small, Z0 is the only connected
component of Z in V . Furthermore, as σ1 and σ3 are vertical in V , Z0 stays
inside the sector S1 ∪ σ2 ∪ S2.

In a neighborhood of σ1 to the left of σ1, the assumptions of the Stokes
Lemma guaranty that Imκ > 0. So, we see that Im κ remains positive in
the part of V situated between σ1 and Z0 and adjacent to σ1 from the left.
Also, Im κ does not vanish in the part of V situated between Z0 and σ1 and
adjacent to σ1 from the right. But as κ ∼ κ1

√
ζ − ζ0 for ζ ∼ ζ0, in this

sector, Im κ < 0. This completes the proof of Lemma 9.1.

Now, we construct a pre-canonical curve π, and use Proposition 4.1 to find a canonical line κ close to
π. The line π is situated in V ′ and is pre-canonical with respect to the branch κ. It consists of π1, π2

and π3, three segments of lines of Stokes type.

Begin with describing π1. Fix a1, a point on the boundary of V between Z0 and σ3 (see Fig. 10).

Consider l1, the line of Stokes type Im
∫ ζ
a1

κdζ = 0 passing through a1. Recall that σ2 and σ3 also are

the lines of Stokes type Im
∫ ζ

κdζ = Const. As this family fibrates S2, by making a1 close enough to
σ3, l1 can be made arbitrarily close to σ3 ∪ σ2. In addition, l1 does not intersect σ3 ∪ σ2. We assume
that a1 is so close to σ3 that l1 enters in V at a1 and goes downwards from a1. On l1, we pick a point
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a2 so that Im ζ0 < Im a2 < Im a1 and so that the segment of l1 between a1 and a2 is between σ3 and
Z0. This segment is the segment π1. Note that Imκ < 0 along π1 and that, as the line l1 is tangent
to the vector field κ, π1 is vertical. Let us underline also that, taking a1 close enough to σ3, one can
get a2 arbitrarily close to ζ0.

To describe π2, the second segment of π, consider l2, the line of Stokes type Im
∫ ζ
a2

(κ − π)dζ = 0

containing a2. As l2 is tangent to the vector field κ(ζ) − π, it transversally intersects l1 at a2. As
Im κ(a2) < 0, the line l2 intersects σ3 from the left to the right and going downwards. We make a1

and a2 so close to σ3 that l2 intersects σ3 in the same manner and staying vertical between a2 and σ3.
The segment π2 is just a segment of l2 connecting the point a2 to some point, say a3, in S3. Clearly,
π2 is vertical, and Im a3 < Im a2 (see Fig. 10). Note that a3 can be taken arbitrarily close to σ3.

The last segment of the pre-canonical line is a segment of l3, the line of Stokes type Im
∫ ζ
a3

κdζ = 0
containing a3. This line is tangent to the vector field κ. As Im κ 6= 0 in S3, l3 is vertical in S3. The
segment π3 is the connected component of l3 ∩ S3 beginning at a3 and going downwards. As the lines

of Stokes type Im
∫ ζ

κdζ = Const fibrate S3, the line π3 does not intersect neither σ3 nor σ1, and,
choosing a3 close enough to σ3, we can make π3 arbitrarily close to σ1 ∪ σ3. The segment π3 is shown
in Fig. 10.

The line π being pre-canonical, by Proposition 4.1, there exists a canonical line arbitrarily close to π,
say κ. We can and do assume that the line κ begins at a1 and that ζ0 and σ1 stay to the left of κ.
Fix δ positive. Choosing π close enough to σ1 ∪ σ3, we can assume that κ is in the δ-neighborhood of
σ1 ∪ σ3.

Let Y1 and Y2 denote the imaginary parts of the ends of κ so that Y1 < Y2.

By Lemma 4.1, there is a canonical domain K enclosing κ. We can (and do) assume that K is situated
in V ′ and in the δ-neighborhood of σ1 ∪ σ3. Note that, by construction, the point ζ0 and the Stokes
line σ1 are to the left of K.

The strip {Y1 < Im ζ < Y2} is the smallest “horizontal” strip containing K. Consider also the smallest

“horizontal” strip {Ỹ2 < Im ζ < Y2} containing K ∩ S2. As a2 can be made arbitrarily close to ζ0 in

the construction of the pre-canonical line π, Ỹ2 can also be made arbitrarily close to Im ζ0.

9.2.2. Asymptotics of a and b. Let z1 be the lower end of σ1∩V , and let z2 be the upper end of σ3∩V .
Fix δ1 > 0. If δ is sufficiently small, then, Y1 < Im z1 + δ1 and Y2 > Im z2 − δ1. We prove

Lemma 9.2. Fix δ1 positive. If δ is sufficiently small, then, for ε → 0,

a = 1 + o(1), and b = O

(

e−η/ε e
2i
ε

∫ ζ0
ζ∗

κdζ

)

, Im z1 + δ1 < Im ζ < Im z2 − δ1,(9.7)

where η is a positive constant (independent of ε). The estimates (9.7) are uniform in ζ.

Proof. In the proof of Lemma 9.2, C denotes different positive constants independent of ε and δ. The
proof of the asymptotics of a consists of three steps.

1. Recall that a is given by (9.3). So, we need to compute w(f, f−). Above ζ0, in the domain
K ∩ S2, all the solutions f and f± have standard asymptotic behavior. Moreover, in this region, the
asymptotics of f and of f+ coincide. Therefore, here, one has w(f, f−) = w(f+, f−)(1 + o(1)), and a
admits the asymptotics

a = 1 + o(1).(9.8)

It is locally uniform. As a is ε-periodic, this asymptotics remains true in the strip {Ỹ2 < Im ζ < Y2}.
2. Below ζ0, we can only estimate a. We use Lemma 5.2. To apply this lemma, we pick the points
ζ1 and ζ2 so that ζ1 ∈ S1 and ζ ∈ K (Im ζ1 = Im ζ2 < Im ζ0). Then,

|f(x, ζ)| ≤ C

∣

∣

∣

∣

∣

e
i
ε

∫ ζ1
ζ∗

κdζ
∣

∣

∣

∣

∣

· e
1
ε

∫ ζ
ζ1
|Imκ|dζ

, ζ ∈ [ζ1, ζ2].
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Here, the first integral is taken along a curve in V ′, and the second one is taken along [ζ1, ζ2]. Assume
that ζ1 and ζ2 are in the δ-neighborhood of σ1. Let ζb = [ζ1, ζ2] ∩ σ1. Then

|f(x, ζ)| ≤ C

∣

∣

∣

∣

∣

e
i
ε

∫ ζb

ζ∗
κdζ

∣

∣

∣

∣

∣

· e
Cδ
ε , ζ ∈ [ζ1, ζ2].

Using the Stokes line definition, we get finally

|f(x, ζ)| ≤ C

∣

∣

∣

∣

∣

e
i
ε

∫ ζ0
ζ∗

κdζ
∣

∣

∣

∣

∣

· e
Cδ
ε , ζ ∈ [ζ1, ζ2].

The derivative
∂f

∂x
satisfies an analogous estimate. Using the asymptotics of f−, we get also

|f−(x, ζ)| ≤ C

∣

∣

∣

∣

∣

e
− i

ε

∫ ζb

ζ∗
κdζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e
− i

ε

∫ ζ
ζb

κdζ
∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

e
− i

ε

∫ ζ0
ζ∗

κdζ
∣

∣

∣

∣

∣

e
Cδ
ε , ζ ∈ [ζ1, ζ2] ∩ K,

where the integral is taken along a curve in V ′. Again, an analogous estimate holds for
∂f−
∂x

. The

estimates for f and f− allow to estimate their Wronskian, and to get

|a| ≤ Ce
Cδ
ε .(9.9)

As a is ε-periodic, this estimate is valid and uniform along any fixed line Im ζ = Const in the strip
{Y1 < Im ζ < Im ζ0}.
3. Now, the statement of Lemma 9.2 concerning a follows from estimates of the Fourier coefficients of
a. Fix ν > 0 sufficiently small. Then, for sufficiently small ε, a is analytic in a strip {Y1 + ν ≤ Im ζ ≤
Y2 − ν}. So, here, we can expand a in a Fourier series with exponentially decreasing coefficients; for
any ζ ′ ∈ {Y1 + ν ≤ Imζ ≤ Y2 − ν}, one has

a(ζ) =
∑

n∈Z

ane2πin
ζ−ζ0

ε where an =
1

ε

∫ ζ′+ε

ζ′
a(ζ)e−2iπn

ζ−ζ0
ε dζ.(9.10)

To estimate Fourier coefficients (an)n≤0, one uses the estimate (9.8) and (9.10) with Im ζ ′ = Y2 − ν.
This gives

a0 = 1 + o(1), |an| ≤ Ce−2π|n| |Y2−ν−Im ζ0|/ε.(9.11)

To estimate (an)n>0, one uses (9.9) and (9.10) assuming that Y1 + ν = Im ζ ′. This yields

|an| ≤ CeCδ/εe−2π|n| |Im ζ0−Y1−ν|/ε.(9.12)

The estimates (9.11) and (9.12) are valid for sufficiently small ε. They imply the statement of
Lemma 9.2 concerning a.

The analysis of b is also done in three steps. Recall that b is given by (9.3). So, we need to study the
Wronskian w(f, f+).

1. First, we study b above ζ0. We choose ζ ∈ K∩S2. Then, both f and f+ have the same asymptotics.
So, we get

|w(f, f+)| ≤ C

∣

∣

∣

∣

e
2i
ε

∫ ζ

ζb
κdζ · e

2i
ε

∫ ζb
ζ0

κdζ · e
2i
ε

∫ ζ0
ζ∗

κdζ

∣

∣

∣

∣

,(9.13)

where ζb ∈ σ3 has the same imaginary part as ζ. In the first and the last integral, we integrate along

curves in V ′; in the second integral we can integrate along the Stokes line σ3, hence,

∣

∣

∣

∣

e
2i
ε

∫ ζb
ζ0

κdζ

∣

∣

∣

∣

= 1.

Consider the first integral. Let D0 be the domain situated between Z0 and σ3 where Im κ < 0.
For c > 0, let Dc be the domain D0 without the c-neighborhood of its boundary. In Dc, one has
∣

∣

∣

∣

e
2i
ε

∫ ζ

ζb
κdζ

∣

∣

∣

∣

≤ e−η/ε, where η = η(c) is positive. This implies that, in Dc , we have w(f, f+) =
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O(e−η/ε e
2i
ε

∫ ζ0
ζ∗

κdζ), and

b = O(e−η/ε e
2i
ε

∫ ζ0
ζ∗

κdζ).(9.14)

Recall that b is ε-periodic. Therefore, this estimate holds in S(Dc) := {y1 < Im ζ < y2}, the smallest
strip containing Dc. This and the construction of the domain K imply that, for any fixed δ3, and
sufficiently small ε, there is an η > 0 such that estimate (9.14) is uniform in the strip {Ỹ2 + δ3 <
Im ζ < Y2 − δ3}.

2. To get an estimate below ζ0, we proceed in the same way as for a and get |b| ≤ C

∣

∣

∣

∣

e
2i
ε

∫ ζ0
ζ∗

κdζ

∣

∣

∣

∣

·e
Cδ
ε .

This estimate is valid and uniform along any fixed line Im ζ = Const in the strip {Y1 < Im ζ < Im ζ0}
for sufficiently small ε.

3. The estimate for b given in Lemma 9.7 then follows from the analysis of the Fourier coefficients
of b and the estimates obtained in the steps 1. and 2. As it is similar to the analysis of a, we omit
it.

The asymptotics of f . We know the asymptotics of f±, of a and of b in the domain K ∩{Im z1 + δ1 ≤
Im ζ ≤ Im z2 − δ1}. Substituting them into (9.2), in K ∩ {Im z1 + δ1 ≤ Im ζ ≤ Im z2 − δ1}, we get

f = e
i
ε

∫ ζ

ζ∗
κdζ

(

Ψ+(x, ζ, ζ∗) + o(1) + O

[

e
−η/ε− 2i

ε

∫ ζ

ζ0
κdζ

])

.(9.15)

The term T = Im
∫ ζ
ζ0

κdζ is negative inside the sector S3 bounded by σ1 and σ3. Indeed, we can

integrate on the curve going first along either σ1 or σ3 to the point ζb with the same imaginary part

as ζ, and then, along the line Im ζ = Const to the point ζ. Hence, T = Im
∫ ζ
ζb

κdζ. As Im κ < 0 in

S3, the term T is negative. This implies that f ∼ e
i
ε

∫ ζ

ζ∗
κdζΨ+(x, ζ, ζ∗) both inside K ∩ S3 and, even,

in the part of a constant neighborhood of σ3 situated in K (because of the factor e−η/ε in (9.15)).

By assumption, in S1 ∪ σ2 ∪ S2, one has f ∼ e
i
ε

∫ ζ

ζ∗
κdζΨ+(x, ζ, ζ∗). So, we see that this asymptotics is

valid locally uniformly in the whole domain K ∩ {Im z1 + δ1 ≤ Im ζ}.
Let us discuss the behavior of f in V outside K. Both in K and to the right of it (inside V ), one has
Im κ < 0. Fix δ2 > δ1. Applying the Rectangle Lemma, one sees that the standard asymptotics holds
in the part of V ′ situated in the strip {Im z1 + δ2 ≤ Im ζ ≤ Im z2 − δ2} to the right of K.

We have to justify the standard behavior of f in the rest of S3∪ (σ3∩V ′). Therefore, instead of K, we

can consider a similar canonical domain constructed for a smaller value of the constant δ and for Ỹ2

closer to Im ζ0. As the constant δ (and, thus δ1 and δ2) can be made arbitrarily small and as Ỹ2 can be
made arbitrarily close to Im ζ0, we conclude that, locally uniformly, f has the standard asymptotics in
S3 ∪ (σ3 ∩V ′) and, therefore in the whole domain V ′. This completes the proof of The Stokes Lemma
in the case a).

9.2.3. The proof of the Stokes Lemma in the case b). Constructing the local canonical domain. In the
case b), the Stokes line σ3 goes to the right of ζ0; the tangent vector to σ3 at ζ0 is horizontal. The
tangent vector to σ2 at ζ0 is oriented upwards (see Fig. 11). We assume that V is sufficiently small so
that σ2 ∩ V is vertical.

Now, instead of Lemma 9.1, we get

Lemma 9.3. If V is sufficiently small, and α = 2π/3, then, in V ′, Imκ vanishes only along Z0, an
analytic curve beginning at ζ0. The tangent vector to Z0 at ζ0 is horizontal; Z0 is going to the right
from ζ0. In the sector of V ′ bounded by σ1 and Z0 and to the left of σ1, one has Im κ > 0. In the rest
of V ′ \ Z0, one has Im κ < 0.

Being similar to that of Lemma 9.1, the proof of Lemma 9.3 is omitted.

Now, we construct the pre-canonical curve π. It is situated in V ′ and consists of three segments of
lines of Stokes type, say π1, π2 and π3.
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The segment π2 is a segment of the line Re ζ = Const intersecting Z0 close enough to ζ0. The upper
end of π2, say a2, belongs to S2; a3, the other end of π2, is in S3. Choosing the intersection point
close enough to ζ0, we can make π2 arbitrarily small. If π2 is in a sufficiently small neighborhood of
ζ0, then, it is a canonical line. To justify this, one uses the fact that, in a neighborhood of ζ0, κ is
analytic in

√
ζ − ζ0 and admits the representation (2.3) with a non-zero constant κ1. Omitting the

elementary details, we only make a remark on the sign of this constant. Choose the branch of the
square root in (2.3) so that

√
ζ − ζ0 > 0 when Im (ζ−ζ0) = 0 and Re (ζ−ζ0) > 0. Then, κ1 is positive

(as Im κ > 0 above Z0, and Imκ = 0 along Z0).

Consider l1, the line of Stokes type Im
∫ ζ
a3

κdζ = 0 containing a3. As the
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Figure 11: The geome-
try in case b).

lines of Stokes type Im
∫ ζ

κdζ = Const fibrate S3, choosing π2 so that a3 be
close enough to σ3, we can make l1 arbitrarily close to σ3 ∪ σ1. Clearly, l1
does not intersect σ3 ∪ σ1. Recall that Im κ 6= 0 in V ′ below Z0. Therefore
l1 is vertical at a3. If a3 is close enough to ζ0 (and, thus, to σ3 ∪ σ1), then,
below a3, the line l1 stays below Z0. Then, Imκ 6= 0 along l1, and l1 is
vertical in V ′ also below a3. We assume that this is the case. The segment
π1 is the segment of l1 going downwards from a3 in S3 to a point of the
boundary of V ′.

Let l2 be the line of Stokes type Im
∫ ζ
a2

κdζ = 0 containing a2. If a2 is
close enough to ζ0, then, this line is arbitrarily close to σ3 ∪ σ2. It does not
intersect neither σ3 nor σ2 and is vertical in S2. It goes from a2 upwards
to a1, a point of the boundary of V . The segment π3 is just the segment of
this line between a2 and a1.

The line π being pre-canonical, by Proposition 4.1, arbitrarily close to π , there exists κ ⊂ S2∪σ3∪S3,
a canonical line. Fix δ positive. Choosing π close enough to σ1 ∪ σ2, we can assume that κ is in the
δ-neighborhood of σ1 ∪ σ2. By construction, σ1 ∪ σ2 stays to the left of κ. We denote by Y1 and Y2

the imaginary parts of the ends of κ in V so that Y1 < Y2 (see Fig. 11).

By Lemma 4.1, there exists K ⊂ S2 ∪ σ3 ∪ S3, a canonical domain enclosing κ situated in the δ-
neighborhood of σ1 ∪ σ2. By construction, σ1 ∪ σ2 is to the left of K. The strip {Y1 < Im ζ < Y2} is
the smallest “horizontal” strip containing K.

Asymptotics of a and b. Let z1 be the lower end of σ1 ∩ V ′, and let z2 be the upper end of σ2 ∩ V ′.
Fix δ1 > 0. With these notations, the “new” coefficients a and b are described by Lemma 9.2. Let us
discuss how the proof of Lemma 9.2 is modified.

The proof of the asymptotics of a remains the same. As about the asymptotics of b, only the step 1
(describing the asymptotics of b above ζ0) has to be modified. Let us give the details.

New step 1. To get estimate (9.7) for b, we choose ζ in K ∩ S2. There, both f and f+ have the same
asymptotics. Assuming in addition that Im ζ > Im ζ0, we again get (9.13) where ζb ∈ σ2 has the same
imaginary part as ζ, and in the second integral we integrate along the Stokes line σ2. Let us discuss

the exponentials in (9.13). As σ2 is a Stokes line,

∣

∣

∣

∣

e
2i
ε

∫ ζb
ζ0

κdζ

∣

∣

∣

∣

= 1. Assume that ζ is above Z0. Then,

Im κ > 0. Consider ζ such that, between the points ζ and ζb (along the horizontal segment connecting

them), one has Im κ > C > 0. Then

∣

∣

∣

∣

e
2i
ε

∫ ζ

ζb
κdζ

∣

∣

∣

∣

≤ e−2Cd/ε, where d = |ζ − ζb|. In result, we see that,

in K ∩ S2, above any fixed constant neighborhood of Z0,

b = O

(

e−η/ε e
2i
ε

∫ ζ0
ζ∗

κdζ

)

with a positive constant η independent of ε.
Pick a δ3 > 0. Making δ smaller if necessary, we can get that Z0 is below the line Im ζ = Im ζ0 + δ3.
As b is ε-periodic, we can conclude that, for sufficiently small ε, there exists η > 0 such that the last
estimate for b holds locally uniformly in the strip {Im ζ0 + δ3 < Im ζ < Y2}.
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The asymptotics of f . After having proved Lemma 9.2, the asymptotic of f is derived almost in the
same way as in case a). In the domain K ∩ {Im z1 + δ1 ≤ Im ζ ≤ Im z2 − δ1}, we again get the
representation (9.15). The new element is that the line Z0 (or a part of it) can now be situated in S3.
This requires a minor modification of the analysis.

Again one proves that, in (9.15), the term T (ζ) = Im
∫ ζ
ζ0

κdζ is negative in the sector S3. If Z0

does not enter the sector S3, the proof remains the same as in case a). Otherwise, arguing as in the
case a), one sees only that T is negative in S3 below Z0. Then, we note that in V ′ (if V is chosen
sufficiently small), T (ζ) vanishes only on the Stokes lines σ1, σ2 and σ3. These two observations imply
that T (ζ) < 0 in the whole sector S3. In result, as in case a), we again conclude that, in the domain
K ∩ {Im z1 + δ1 ≤ Im ζ ≤ Im z2 − δ1}, below σ3 and in a constant neighborhood of σ3, the solution f

has the asymptotics f ∼ e
i
ε

∫ ζ

ζ∗
κdζΨ+(x, ζ, ζ∗).

If Z0 is outside the sector S3, one completes the proof as in case a). Otherwise, arguing as in case a),
one sees only that f has the desired asymptotics

• (1) in S1 ∪ S2 (by the assumptions of the Stokes Lemma);
• (2) in the whole domain K ∩ {Im ζ1 + δ1 ≤ Im ζ} (by the previous analysis and by (1));
• (3) to the right of K below Z0 (by the Rectangle Lemma as in the case a)).
• (4) to the left of K and below the line Im ζ = Im ζ1 + δ1 (as in case a)).

This is sufficient. Indeed, one can reduce the size of V so that the new smaller V ′ be contained in the
union of the domains mentioned in the above list. Then, for this new V ′, the statement of the Stokes
Lemma has been proved.

9.2.4. The proof of the Stokes Lemma in the case c). Constructing the local canonical domain. Now,
starting from ζ0, the Stokes lines σ1 and σ3 go downwards, and σ2 goes upwards (see Fig. 12). We
assume that V is so small that all three Stokes lines be vertical in V . We use

Lemma 9.4. If V is sufficiently small, and 2π/3 < α < π, then, in V ′, Im κ vanishes only along Z0,
an analytic curve beginning at ζ0. The line Z0 is vertical; starting from ζ0, it goes downwards staying
in the sector S3. In the sector of V ′ bounded by σ1 and Z0 and to the left of σ1, one has Im κ > 0. In
the rest of V ′ \ Z0, one has Im κ < 0.

The proof of Lemma 9.4 is similar to the one of Lemma 9.1 and is omitted.

To construct the pre-canonical line π, first consider the line π̃ made of four segments of “elementary”
lines π1, π2, π3 and π4, see Fig. 12. Let us briefly describe these segments and their properties (the
detailed analysis is similar to the one done in the cases a) and b)).

The segment π1 begins at a1, a point of the common part of the boundary
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Figure 12: The geome-
try in case c).

of V and S3 situated strictly between σ1 and Z0 (close enough to σ1). This

segment is a segment of the line of Stokes type Im
∫ ζ
a1

κdζ = 0. It stays in
S3 and connects the point a1 to a2, a point of Z0. Below a2, it stays to the
left of Z0 and is vertical. Taking a1 close enough to σ1, we can make π1

arbitrarily close to σ1.

The segment π2 is a segment of Z0 between a2 and a3, an internal point of
Z0 such that Im a2 < Im a3 < Im ζ0. We assume that a2 and a3 are close
enough to ζ0. Then, Z0 is vertical above a2, and, 0 < κ < π on Z0. This
implies that the segment π2 is a canonical line.

We choose a3 close enough to ζ0 and construct the segment π3 in a suffi-
ciently small neighborhood of ζ0. It is a segment of l3, the line of Stokes

type Im
∫ ζ
a3

(κ − π)dζ = 0. Beginning at a3, it goes to the right of Z0. To

the right of a3, it is vertical and goes upward, at least, while staying in V ′ to the right of Z0. Above
a3, it can not come back to Z0 without leaving V ′ (this follows from the analysis of the vector field
κ − π near Z0 to the right of it). Therefore, in V ′, l1 stays vertical above a3. Moreover, if a3 is close
enough to ζ0, then, l1 intersects σ3 above a3. The segment π3 is the segment of l1 between a3 and a4,
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a point of S2. We underline that, above a3, π3 is vertical, goes inside S3 ∪σ3 ∪S2 staying to the right
of ζ0, and that it can be constructed in an arbitrarily small neighborhood of ζ0.

The segment π4 is a segment of the line of Stokes type Im
∫ ζ
a4

κdζ = 0. It goes upward from a4, is
vertical above a4 and, without intersecting σ3∪σ2, connects the point a4 to a5, a point of the boundary
of S2 (a5 6∈ σ3 ∪ σ2). Taking a4 close to σ3, we can make π4 arbitrarily close to σ3 ∪ σ2.

The line π̃ is the union of the lines π1, π2, π3 and π4. It is not pre-canonical as the tangent vectors
to π1 and π3 at the points of Z0 are horizontal. To get a pre-canonical line, we use the C1-stability
of canonical lines and replace π2 by a canonical line connecting an internal point of π1 to an internal
point of π3. This gives us a pre-canonical line that we call π.

By Proposition 4.1, arbitrarily close to π, there exists κ ⊂ S2 ∪ σ3 ∪ S3, a canonical line. It stays to
the right of σ1 ∪ σ2 and can be constructed inside any given neighborhood of σ1 ∪ σ2. After having
constructed the canonical line, we complete the proof of the Stokes Lemma in the case c) exactly as
in the case b).

This completes the proof of Lemma 5.6, the Stokes Lemma.

10. Proof of the Two-Waves Principle

First, we note that the Wronskian of h± is non-zero. Recall that ζ0 is to the right of σ1 ∪ σ2.
Computing the Wronskian at a point ζ ∈ D+ ∩ D− situated to the right of σ1 ∪ σ2 (see Fig. 6), we
get w(h+, h−) = w(Ψ+(x, ζ), Ψ−(x, ζ)) + o(1). By (3.2), the leading term in this formula equals to
w(Ψ+(x, ζ0), Ψ−(x, ζ0)), and, as ζ0 6∈ P ∪ Q, the leading term is non-zero. This implies that, for ζ in
any compact set of D+∩D− and sufficiently small ε, the solutions h± are linearly independent. So, we
can write (7.1) with some coefficients G and g independent of x. These coefficients can be expressed
in terms of the Wronskians of the solutions:

g(ζ) =
w(f, h−)

w(h+, h−)
, G(ζ) =

w(h+, f)

w(h+, h−)
.(10.1)

Recall that, the solutions having the standard behavior, they satisfy the consistency condition. This
implies that both G and g are periodic (as Wronskians of consistent solutions). Now, to get the
asymptotics of G and g, we have only to compute the Wronskians defining these functions.

Begin with computing g. First, one assumes that ζ is situated in ζ ∈ D \ F to the right of σ1. Here,
the leading terms of the asymptotics of f and h+ coincide and, as when computing w(h+, h−), one
gets w(f, h−) = w(Ψ+(x, ζ0), Ψ−(x, ζ0)) + o(1) = w(h+, h−) + o(1). This, the representation for g
in (10.1) and the periodicity of g imply that

g = 1 + o(1), Im ζm < Im ζ < Im ζ2,(10.2)

where ζm satisfies the inequality ζm < ζ0 and is determined by the position of the lower part of the
boundary of D−. To estimate g for Im ζ > Im ζ2, we take a point ζ ∈ D situated above the line
Im ζ = Im ζ2 in the δ-neighborhood of σ2 to the left of σ2. One has

|w(f, h−)| ≤ C

∣

∣

∣

∣

e
i
ε

∫

γ(ζ) κdζ
e
− i

ε

∫

γ−(ζ) κdζ
∣

∣

∣

∣

,(10.3)

where C is a positive constant independent of ε, γ(ζ) and γ−(ζ) are two curves connecting ζ0 to ζ in
respectively D\(F ∪σ1) and D−, and we integrate the analytic continuations of κ along the integration
curves. Now, we deform these two curves (without intersecting the branch points) so that each of them
go first from ζ0 to ζ2 (more precisely, to a point infinitesimally close to ζ2) and then, along the Stokes

lines σ2 and σ1 (infinitesimally close to them), to ζ̃, the point of σ2 (infinitesimally close to σ2) such

that Im ζ̃ = Im ζ, see Fig. 13. Now, discuss the right hand side in (10.3). First, consider the parts
of the two integration contours situated between ζ0 and ζ2. Their contributions to the integrals are

of opposite sign and, so, they cancels one another. Furthermore, as Im
∫ ζ

(κ − κ(ζ1,2))dζ is constant
along the Stokes lines, we see, that

Im

(

∫

γ(ζ)
κdζ −

∫

γ−(ζ)
κdζ

)

= Im

(

∫ ζ

ζ̃, along γ(ζ)
κ|γdζ −

∫ ζ

ζ̃, along γ−(ζ)
κ|γ−dζ

)

.(10.4)
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Here, κ|β(ζ) denotes the value at ζ ∈ β of the analytic continuation of κ along the curve β. As κ|γ(ζ)

and κ|γ−(ζ) are uniformly bounded, and as |ζ̃ − ζ| ≤ δ, we see that the right hand side of (10.4) is

bounded by Cδ. Therefore, |w(f, h−)| ≤ C eCδ/ε, and, so
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Figure 13: γ(ζ) and
γ−(ζ)

|g(ζ)| ≤ C eCδ/ε, Im ζ2 < Im ζ < Im ζM ,(10.5)

where ζM > ζ2 is defined by the position of the upper part of the boundary
of D. Let us underline that δ can be fixed arbitrarily small.

Note that, being obtained using the standard behavior of the solutions, each
of the estimates for g is uniform in ζ in a given compact set (of the strip
where the estimate was obtained) and in E provided E stays in a sufficiently
small constant neighborhood of E0.

Fix δ1 positive. As g is analytic and ε-periodic, from (10.2) and (10.5), we
conclude that, for sufficiently small ε, in the strip ζm +δ1 ≤ Im ζ ≤ ζM −δ1,
g admits the asymptotics described in (7.2).

Now, we compute the asymptotics of G. Assume that ζ is situated in
D ∩ D+ ∩ D− to the left of the line σ1 ∪ σ2. Then, as we shall see, up
to constant factors, all three solutions f , h− and h+ admit asymptotic
representations with one and the same leading term. So, to compute G, one has just to compare the
leading terms of the asymptotics in the right and the left hand sides of (7.1).

First, we compare the asymptotics of f and h+. Let γ(ζ) and γ+(ζ) be
curves connecting ζ0 to ζ inside D \ (F ∪ σ1) and D+ respectively. Define
a curve γ0 as shown in Fig. 7. We can write

γ(ζ) = γ0 + γ+(ζ),(10.6)

Consider κ, ω+ and ψ+ (the functions defining the leading term of the asymptotics of f) along γ0. The
curve γ0 begins and ends at ζ0 and, so, is closed. But, as we are dealing with multi-valued functions,
we shall distinguish between its end and its beginning. We note that

• as the functions ψ(x, ζ) and ω(ζ) are two-valued analytic functions, and as γ0 goes around exactly
two branch points, ζ1 and ζ2, the values of ω+ and ψ+ at the beginning and at the end of γ0

coincide;
• as, the branch points of κ are of square root type, and, as κ(ζ1) = κ(ζ2), the values of κ at the

beginning and at the end of γ0 coincide.

The above observations and relation (10.6) show that

q(ζ) e
i
ε

∫

γ(ζ) κdζ+
∫

γ(ζ) ω+dζ
ψ+(x, ζ)

∣

∣

∣

γ(ζ)
= A q+(ζ) e

i
ε

∫

γ+(ζ) κdζ+
∫

γ+(ζ) ω+dζ
ψ+(x, ζ)

∣

∣

∣

∣

γ+(ζ)

(10.7)

where A given by (7.3), and q and q+ are the branches of the function
√

k′(E(ζ)) from the formulas
defining the canonical Bloch solutions from the asymptotics of f and h+. Comparing this formula with
the asymptotics of f and h+, we see that, for the point ζ we consider, f admits the representation

f(x, ζ) = A h̃+(x, ζ),(10.8)

where h̃+ is a solution having the same asymptotic representation as h+ for the point ζ in consideration.

Second, we compare the asymptotics of h− and h+. Let γ±(ζ) be curves connecting ζ0 to ζ inside D±
respectively. Introduce the curve γ0

− shown in Fig. 7, part b). We can write

γ−(ζ) = γ0
− + γ+(ζ).(10.9)

Consider κ, ω− and ψ− (the functions in the asymptotics of h−) along γ0
−. Again, we shall distinguish

between the end and the beginning of this curve. We note that

• as the functions ψ(x, ζ) and ω(ζ) are two valued analytic functions, and as γ0
− goes around

exactly one branch point, after analytic continuation along γ0
−, the values of ω− and ψ− at the

end of γ0
− coincide with ω+ and ψ+ at its beginning;
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• as the branch points of κ are of square root type, the values of κ at the beginning and at the
end of γ0

−, say κb and κe, are related by the formula κb + κe = 2κ(ζ2).

The above observations and relation (10.9) show that

(10.10) q−(ζ) e
− i

ε

∫

γ−(ζ) κdζ+
∫

γ−(ζ) ω−dζ
ψ−(x, ζ)

∣

∣

∣

∣

γ−(ζ)

=

= e−
2iκ(ζ2)

ε
(ζ−ζ2)B q+(ζ) e

i
ε

∫

γ+(ζ) κdζ+
∫

γ+(ζ) ω+dζ
ψ+(x, ζ)

∣

∣

∣

∣

γ+(ζ)

with B given by (7.3). Comparing this formula with the asymptotics of h− and h+, we see that, in a
neighborhood of ζ, h− admits the representation

h−(x, ζ) = e−
2iκ(ζ2)

ε
(ζ−ζ2) B

˜̃
h+(x, ζ).(10.11)

where
˜̃
h+ is one more solution having the same asymptotic representation as h+ for the point ζ in

consideration.

Now, to compute the asymptotics of G, we substitute into (7.1) the asymptotic representations (10.8)
and (10.11) and the asymptotic (7.2) for g. This leads to

e−
2iκ(ζ2)

ε
(ζ−ζ2) G B = A(1 + o(1)) − 1 + o(1).(10.12)

This implies formula (7.2) for G and completes the proof of Lemma 7.1. The uniformity properties
of (7.2) follow from the fact that f , h+ and h− have the standard behavior.

Note that the representation (7.4) follows from (10.11). Indeed, the solution
˜̃
h+ has the standard

behavior in the same domain as h−, i.e. in D−. So, to compute the leading term of the asymptotics

of
˜̃
h+ in F , we have just to continue it analytically inside D− to F . This leads to the desired

representation.
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