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ON THE SINGULAR SPECTRUM FOR ADIABATIC QUASI-PERIODIC

SCHRÖDINGER OPERATORS ON THE REAL LINE

ALEXANDER FEDOTOV AND FRÉDÉRIC KLOPP

Abstract. In this paper, we study spectral properties of a family of quasi-periodic Schrödinger op-
erators on the real line in the adiabatic limit. We assume that the adiabatic iso-energetic curves are
extended along the momentum direction. In the energy intervals where this happens, we obtain an
asymptotic formula for the Lyapunov exponent, and show that the spectrum is purely singular.

Résumé. Cet article est consacré à l’étude du spectre d’une certaine famille d’équations de Schrödinger
quasi-périodiques sur l’axe réel lorsque les courbes iso-énergétiques adiabatiques sont non bornées
dans la direction des moments. Dans des intevralles d’énergies où cette propriété est vérifiée, nous
obtenons une formule asymptotique pour l’exposant de Lyapunov, et nous démontrons que le spectre
est purement singulier.

0. Introduction

In this paper, we continue our analysis of the spectrum of the ergodic family of Schrödinger equations

Hz,εψ = − d2

dx2
ψ(x) + (V (x − z) + W (εx))ψ(x) = Eψ(x), x ∈ R,(0.1)

where V (x) and W (ξ) are periodic and real valued, z ∈ R indexes the equations, and ε > 0 is chosen
so that the potential V (· − z) + W (ε·) be quasi-periodic. We study the spectral properties of the
operator Hz,ε acting in L2(R) in the limit as ε → 0. In the paper [8], we studied this operator near
the bottom of the spectrum when W is the cosine. In the paper [9], for a general analytic, periodic
potential W , we studied the spectrum located in the “middle” of a spectral band of the “unperturbed”
periodic operator

H0ψ(x) = −ψ′′(x) + V (x)ψ(x).(0.2)

In the present paper, we again consider a rather general analytic potential W ; we only assume that it
has exactly one maximum and one minimum in a period, and that these are non-degenerate. As about
V , it can be rather singular; for the sake of simplicity, we assume that it belongs to L2

loc. We study
the spectrum in an energy interval J such that, for all E ∈ J , the interval E − W (R) contains one or
more isolated spectral bands of the periodic operator (0.2) whereas the ends of the interval E −W (R)
are in the gaps, see Fig. 1. So, we are interested in the spectrum close to and inside relatively small
bands of the unperturbed periodic operator H0.

As in [8, 9], our main tool is the monodromy matrix. Most of the present paper is devoted to the
asymptotic study of the monodromy matrix for the family of equations (0.1). In the adiabatic limit
ε → 0, the monodromy matrix is asymptotic to a trigonometric polynomial; if the interval E −W (R)
contains only one isolated spectral band, this is a trigonometric polynomial of a first order. In result,
the analysis of (0.1) reduces to the analysis of a “simple” model difference equation.

Using the monodromy matrix asymptotics, we obtain asymptotic formulae for the Lyapunov exponent
for the equation family (0.1). They show that, in J , the energy region we study, the Lyapunov
exponent is positive. This implies that the spectrum of (0.1) in J is singular.
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Figure 1: The isolated band: two possible cases

The spectral results admit a natural semi-classical interpretation. Let E(κ) be the dispersion relation
associated to H0. Consider the real and the complex iso-energy curves ΓR and Γ defined by

ΓR : E(κ) + W (ζ) = E, κ, ζ ∈ R,(0.3)

Γ : E(κ) + W (ζ) = E, κ, ζ ∈ C.(0.4)

These curves are 2π-periodic as in ζ so in κ. Under our assumptions, the real branches of Γ (the
connected components of ΓR) are isolated continuous curves periodic in κ. In the case when the
interval E − W (R) contains only one spectral band, the iso-energy curve is shown in Fig. 2. The real
branches are represented by full lines. They are connected by complex loops (closed curves) lying on
Γ; the loops are represented by dashed lines.

The adiabatic limit can be regarded as a semi-classical

�

�
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Figure 2: The phase space picture

limit, and the expression E(κ) + W (ζ) can be interpreted as
a “classical” Hamiltonian corresponding to the operator (0.1).
Then, from the quantum physicist point of view (see [18, 19]),
a semi-classical particle should “live” near the real branches of
the iso-energy curve. In our case, these curves are “extended” in
momentum variable and “localized” in position variable. There-
fore, they have to correspond to localized states. The decay
of these states in the position variable is characterized by the
complex tunneling between the real branches along the complex
loops. So, the Lyapunov exponent is naturally related to the
tunneling coefficients. Our results justify this heuristics.

This naturally leads to the following conjecture: in a given en-
ergy interval, if the iso-energy curve has a real branch that is an
unbounded vertical curve, then, in the adiabatic limit, in this
interval, the Lyapunov exponent is positive and the spectrum is singular.

Note that, in [9], we have proved a dual result for the absolutely continuous spectrum: we have proved
that, if, in some energy region, the branches of the real iso-energy curve are unbounded horizontal
curves, then, this energy region, except for a set of exponentially small measure, is in the absolutely
continuous spectrum.

1. The results

We now state our assumptions and results.

1.1. Assumptions on the potential. About the functions V and W , we assume that

(H): • V and W are periodic,

V (x + 1) = V (x), W (x + 2π) = W (x), x ∈ R;(1.1)

• V is real valued and locally square integrable;
• W is real analytic in a neighborhood of R, say, in the strip {|Im z| < Y };
• W has exactly one maximum and one minimum in [0, 2π); they are non degenerate.
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To fix notations, assume that, on the interval [0, 2π), W is maximum at 0 and minimum at ζ∗.

In (0.1), ε is a positive parameter. For each fixed ε, we consider (0.1) as a family of equations indexed
by the parameter z ∈ R.

Note that, if 2π/ε 6∈ Q, the function V (x−z)+W (εx) is quasi-periodic in x, the ratio of the frequencies
of V and W being equal to 2π/ε; hence, (0.1) is an ergodic family of equations (see [15]).

1.2. The assumption on the energy region. To describe the energy regions where we study the
spectral properties of the family of equations (0.1), we consider the periodic Schrödinger operator H0

acting in L2(R) defined by (0.2).

1.2.1. Periodic operator. The spectrum of (0.2) is absolutely continuous and consists of intervals of
the real axis [E1, E2], [E3, E4], . . . , [E2n+1, E2n+2], . . . , such that

E1 < E2 ≤ E3 < E4 . . . E2n ≤ E2n+1 < E2n+2 ≤ . . . ,

En → +∞, n → +∞.

The points Ej , j = 1, 2, 3 . . . , are the eigenvalues of the differential operator (0.2) acting on L2([0, 2])
with periodic boundary conditions. The intervals defined above are called the spectral bands, and the
intervals (E2, E3), (E4, E5), . . . , (E2n, E2n+1), . . . , are called the spectral gaps. If E2n < E2n+1, we
say that the nth gap is open, and, if [E2n−1, E2n] is separated from the rest of the spectrum by open
gaps, we say that the n-th band is isolated.

1.2.2. The “geometric” assumption. Let us now describe the energy region where we study the family
of equations (0.1).

The spectral window centered at E is the interval W(E) = E − W (R). If W+ = maxx∈R W (x) and
W− = minx∈R W (x), then, W(E) = [E − W+, E − W−].

We assume that there exists J ⊂ R, a compact interval such that, for all E ∈ J , the window W(E)
contains exactly m + 1 isolated bands of the periodic operator. That is, we fix two integers n > 0 and
m and assume that

(A1): the bands [E2(n+j)−1, E2(n+j))], j = 0, 1, . . .m, are isolated;
(A2): for all E ∈ J , these bands are contained in the interior of W(E);
(A3): for all E ∈ J , the rest of the spectrum of the periodic operator is outside W(E).

Note that energies E satisfying (A1) – (A3) exist only if W+ −W−, the “amplitude” of the adiabatic
perturbation, is large enough; e.g., if m = 0, such energies exist if and only if W+ −W− is larger than
the size of the n-th spectral band, but smaller than the distance between the (n− 1)-st and (n + 1)-st
bands.
From now on, unless stated otherwise, we assume that our assumptions on V and W , and assumptions
(A1) – (A3) are satisfied.

1.3. Iso-energy curve. Our results are formulated in terms of the iso-energy curve Γ defined by (0.4).
The iso-energy curve is 2π periodic both in the ζ− and κ− directions (see Lemma 10.1).

1.3.1. The real branches. To describe the real branches of Γ, i.e. the connected components of the real
iso-energy curve ΓR, we define the following collection of subintervals of [0, 2π]. Consider the mapping

E : ζ → E − W (ζ).

It is monotonous on each of the intervals I− = [0, ζ∗] and I+ = [ζ∗, 2π] and maps each of them onto
the spectral window W(E). For n ≤ j ≤ n + m, let z

+
j ⊂ I+ (resp. z

−
j ⊂ I−) be the the pre-image

of the j-th spectral band in W(E). Let Z be the collection of these intervals. A “period” of the real
iso-energy curve is described by

Lemma 1.1. Let E ∈ J . The set ΓR ∩ {0 ≤ κ ≤ 2π} consists of 2(m + 1) curves {γ(z), z ∈ Z}.
Fix z ∈ Z. The curve γ(z) is the graph {(κ, ζ) : ζ = Zz(κ), κ ∈ R} of a function Zz which satisfies

1. it is continuous,
2. it is 2π-periodic and even in κ,
3. it is monotonous on the interval [0, π],
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4. it maps [0, π] onto z.

The curves γ(z) continuously depend on E ∈ J .

Lemma 1.1 is proved in section 10.1. For m = 0, the real iso-energy curve is shown in Fig. 2.

1.3.2. Complex loops. Now, we discuss loops, i.e. closed curves, situated on the iso-energy curve Γ
and connecting its real branches.

For j = n− 1, n, . . . , n+m, let g
+
j (resp. g

−
j ) be the subinterval of I+ (resp. I−) that is the pre-image

of the part of j-th spectral gap situated inside W(E). Let

gn−1 = (g+
n−1 − 2π) ∪ g

−
n−1 and gn+m = g

+
n+m ∪ g

−
n+m.

Then, gn−1 is an open interval containing zero, and gn+m is an open interval containing ζ∗. Let G be
the set consisting of gn−1, gn+m and the intervals g±j with j = n, n + 1, . . . , n + m − 1.

For g ∈ G, let V (g) ⊂ C be a sufficiently small complex neighborhood of the interval g. Let G(g) be
a smooth closed curve that goes once around the interval g in V (g) \ g. In Figure 3, we depicted the
curves G(g) when m = 0.

In section 10.2, we show that each of the curves G(g) is the projection of Ĝ(g), a closed curve on Γ.
This curve connects the real branches projecting onto the intervals adjacent to g.

1.3.3. Tunneling coefficients. To Γ, we associate the tunneling coefficients

t(g) = e−
1
2εS(g), g ∈ G,(1.2)

where S(g) are the tunneling actions given by

S(g) = i

∮

Ĝ(g)
κdζ, g ∈ G.(1.3)

In section 10.3, we show that, for E ∈ J , each of these actions is real and non-zero. By definition, we
choose the direction of the integration so that all the tunneling actions be positive.
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Figure 3: The curves G(g) for m = 0

1.4. Spectral results. One of the main objects of the spectral theory of quasi-periodic equations is
the Lyapunov exponent, see, for example, [15]. Our main spectral result is

Theorem 1.1. Let J be an interval satisfying the assumptions (A1)-(A3) for some n and m. Let
W and V satisfy the hypothesis (H), and let ε be irrational. Then, on the interval J , for sufficiently
small, irrational ε/2π, the Lyapunov exponent Θ(E) for the family of equations (0.1) is positive and
has the asymptotics

Θ(E) =
ε

2π

∑

g∈G

ln
1

t(g)
+ o(1) =

1

4π

∑

g∈G

S(g) + o(1).(1.4)

Note that, this theorem implies that, if ε is sufficiently small, then, the Lyapunov exponent is positive
for all E ∈ J .

Recall that, if 2π/ε is irrational, then Hz,ε is quasi-periodic. In this case, its spectrum does not depend
on z (see [1]); denote it by σ(Hz,ε). In [8], we have proved
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Theorem 1.2 ([8]). Let Σ = σ(H0) + W (R) = σ(H0) + [W−, W+]. Then, one has

• ∀ε ≥ 0, σ(Hz,ε) ⊂ Σ.
• for any K ⊂ Σ compact, there exists C > 0 such that for all ε sufficiently small and ∀E ∈ K,

one has

σ(Hz,ε) ∩ (E − Cε1/2, E + Cε1/2) 6= ∅.

By the Ishii-Pastur-Kotani Theorem [4, 15] and Theorem 1.5 in [12], Theorems 1.1 and 1.2 imply

Corollary 1.1. In the case of Theorem 1.1, for ε sufficiently small, for all z ∈ R, one has

σ(Hz,ε) ∩ J 6= ∅ and σac(Hz,ε) ∩ J = ∅,
where σac(Hz,ε) is the absolutely continuous spectrum of the family of equations (0.1).

1.5. The monodromy matrix and Lyapunov exponents. The main object of our study is the
monodromy matrix for the family of equations (0.1); we define it briefly (we refer to [7, 8] for more
details). The central result of the paper is its asymptotics in the adiabatic limit.

1.5.1. Definition of the monodromy matrix. Consider a consistent basis (ψ1,2) i.e. a basis of solutions
of (0.1) whose Wronskian is independent of z and that are 1-periodic in z i.e. that satisfy

ψ1,2(x, z + 1) = ψ1,2(x, z), ∀x, z.(1.5)

The functions ψ1,2(x + 2π/ε, z + 2π/ε) being solutions of equation (0.1), one can write

Ψ (x + 2π/ε, z + 2π/ε) = M (z)Ψ (x, z),(1.6)

where

• Ψ(x, z) =

(

ψ1(x, z)
ψ2(x, z)

)

,

• M (z) is a 2 × 2 matrix with coefficients independent of x.

The matrix M is called the monodromy matrix associated to the consistent basis (ψ1,2). Note that

detM (z) ≡ 1, M (z + 1) = M (z), ∀z.(1.7)

1.5.2. Monodromy equation and Lyapunov exponents. Set h = 2π
ε mod1. Let M be the monodromy

matrix associated to a consistent basis (ψ1,2). Consider the monodromy equation

Fn+1 = M(z + nh)Fn ∀n ∈ Z.(1.8)

There are several deep relations between the monodromy equation and the family of equations (0.1)
(see [9, 8]). We describe only one of them. Let 2π/ε be irrational, and let Θ(E) (resp. θ(E)) be the
Lyapunov exponent for (0.1) (resp. for (1.8)). One proves

Theorem 1.3 ([8]). The Lyapunov exponents Θ(E) and θ(E) satisfy the relation

Θ(E) =
ε

2π
θ(E).(1.9)

The passage to the monodromy equation is close to the monodromization idea developed in [2] for
difference equations with periodic coefficients.

1.5.3. The asymptotics of the monodromy matrix. As W and V are real on the real line, we construct
a monodromy matrix of the form

(

a(z, E) b(z, E)

b(z̄, Ē) a(z̄, Ē)

)

.(1.10)

In the adiabatic case, the asymptotics of a and b have very simple, model form. We first assume that
n in (A1) – (A3) is odd. Then, one has
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Theorem 1.4. Let E ∈ J . There exists Y > 0 and V0, a neighborhood of E0, such that, for sufficiently
small ε, the family of equations (0.1) has a consistent basis of solutions for which the corresponding
monodromy matrix M is analytic in (z, E) ∈ {|Im z| < Y/ε} × V0 and has the form (1.10). The
coefficients a and b admit the asymptotic representations

a = a−m e−2πimz(1 + o(1)), b = b−m e−2πimz(1 + o(1)), 0 < Im z < Y/ε,(1.11)

and

a = am+1 e2πi(m+1)z(1 + o(1)), b = bm+1 e2πi(m+1)z(1 + o(1)), −Y/ε < Im z < 0.(1.12)

The coefficients a−m, b−m, am+1 and bm+1 are independent of z. Moreover, there exists a constant
C > 1 (independent of ε and E) such that

1
C ≤ T · |aj | ≤ C, 1

C ≤ T · |bj | ≤ C, where T = T (E) =
∏

g∈G t(g),

E ∈ V0 ∩ R, j = −m, m + 1.
(1.13)

Pick Y1 and Y2 so that 0 < Y1 < Y2 < Y . There is V = V (Y1, Y2), a neighborhood of E0 such that the
asymptotics of a and b are uniform in (z, E) ∈ {Y1 < |Im ζ| < Y2} × V .

In sections 9.1 and 9.2, we give asymptotic formulae for am+1, a−m and bm+1, b−m.

In the case n even, one has a similar result. The only novelty is that, in this case, the formulae (1.11)
and (1.12) describe the asymptotics of the coefficients of the matrix related to M , the monodromy
matrix, by the following transformation

S−1(z + h)M(E, z)S(z), S(z) =

(

eiπz 0
0 e−iπz

)

.(1.14)

The asymptotics (1.11) and (1.12) are obtained by means of the new asymptotic method developed
in [7, 10].

1.5.4. Fourier coefficients. The coefficients am+1, a−m and bm+1, b−m are the leading terms of the
asymptotics of the (m + 1)-th and (−m)-th Fourier coefficients of the monodromy matrix coefficients.
Theorem 1.4 implies that, in the strip {|Im ζ| < Y }, the leading terms of the asymptotics of the
monodromy matrix are equal to the contribution of a few of its Fourier series terms.

1.5.5. The case m = 0. When m = 0 (and n odd), Theorem 1.4 imply that, in the whole strip
{|Im z| < Y }, the monodromy matrix coefficients a and b admit the asymptotics:

a = a0 (1 + o(1)) + a1 e2πiz(1 + o(1)), b = b0 (1 + o(1)) + b1 e2πiz(1 + o(1)).(1.15)

So, up to the error terms, the monodromy matrix becomes a first order trigonometric polynomial:

M ∼ M0 =

(

a0 + a1u b0 + b1u
b0 + b1/u a0 + a1/u

)

, u = e2πiz,(1.16)

with constant coefficients a0, a1, b0, b1 of order O(1/T (E)) (for real E).

We see that, for m = 0 the monodromy equation becomes a “simple” model equation.

1.5.6. Relation to the spectral results. In this paper, we use the asymptotics of the monodromy matrix
only to prove Theorem 1.1. However, we believe that these asymptotics can be used to get quite a
detailed information on the spectrum of (0.1) in the adiabatic limit. Therefore, we plan to study
the model equation with the matrix M0 in a subsequent paper. In particular, it seems reasonable
to believe that, under a Diophantine condition on 2π/ε, the spectrum of (0.1) is pure point and the
eigenvalues can be described by quantization conditions of Bohr-Sommerfeld type.
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1.5.7. Organization of the paper. Section 2 is devoted to the proof of Theorem 1.1 using Theorem 1.4.
In section 3, we recall some well known facts from the theory of periodic Schrödinger operators on the
real line. In section 4, we recall the main construction of the asymptotic method we use to compute
the monodromy matrix. In sections 5 and 6, using this method, we construct a consistent basis of
solutions having a simple “standard” asymptotic behavior in the complex plane of ζ = εz. In section 7,
we discuss the properties of the monodromy matrix for this basis. This is the monodromy matrix the
asymptotics of which are described in Theorem 1.4. Sections 8 and 9 are devoted to the computation
of the asymptotics of the monodromy matrix. In section 10, we study the geometry of the iso-energy
curve Γ and prove estimates (1.13).

2. The asymptotics for the Lyapunov exponent

In this section, we prove the asymptotics (1.4). We deduce these asymptotics from the asymptotics
of the monodromy matrix coefficients described by Theorem 1.4. First, we use a statement of [8]
and obtain a lower bound for the Lyapunov exponent. This statement is based on the ideas of [16]
generalizing Herman’s argument [11]. Then, using the asymptotics of the coefficients of the monodromy
matrix in the complex plane, we get estimates on the real line. This yields an upper bound for the
Lyapunov exponent. Comparing the upper and the lower bounds, we obtain (1.4).

Recall that, for equation (1.8), the Lyapunov exponent is defined by

θ(M) = lim
N→+∞

1

N
log ‖PN (z)‖,(2.1)

where PN is the matrix cocycle

PN (z) = M(z + Nh) · M(z + (N − 1)h) · · ·M(z + h) · M(z).

It is well known (see [3, 15, 16] and references therein) that, if h is irrational, and M(z) sufficiently
regular in z, then the limit (2.1) exists for almost all z and is independent of z.

2.1. The lower bound.

2.1.1. Preliminaries. Let (M(z, ε))0<ε<1 be a family of SL(2, C)-valued 1-periodic functions of z ∈ C.
Let h be an irrational number. One has

Proposition 2.1 ([8]). Pick ε0 > 0. Assume that there exist y0 and y1 satisfying the inequalities
0 < y0 < y1 < ∞ and such that, for any ε ∈ (0, ε0) one has

• the function z → M(z, ε) is analytic in the strip S = {z ∈ C; 0 ≤ Im z ≤ y1/ε};
• in the strip S1 = {z ∈ C; y0/ε ≤ Im z ≤ y1/ε} ⊂ S, M(z, ε) admits the representation

M(z, ε) = λ(ε)ei2πn0z · (M0(ε) + M1(z, ε)) ,

for some constant λ(ε), an integer n0 and a matrix M0(ε), all of them independent of z;

• M0(ε) =

(

1 β(ε)
0 α(ε)

)

;

• there exist constants β > 0 and α ∈ (0, 1) independent of ε and such that |α(ε)| ≤ α and
|β(ε)| ≤ β;

• supz∈S1
‖M1(z, ε)‖ ≤ m(ε), m(ε) → 0 as ε → 0.

Then, there exit C > 0 and ε1 > 0 (both depending only on y0, y1, α, β and m(·)) such that, if
0 < ε < ε1, one has

θ(M) > log |λ(ε)| − Cm(ε).(2.2)

In [8], we have assumed that n0 is a positive integer, but the proof remains the same for n0 ∈ Z.

We use this result and Theorem 1.4 to get the lower bound for the Lyapunov exponent. In the sequel,
n is the index introduced in assumptions (A1) – (A3). The cases n odd and n even are treated
separately.
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2.1.2. Obtaining the lower bound for n odd. In the sequel, we suppose that the assumptions of The-
orem 1.4 are satisfied; we use the notations and results from this theorem without referring to it
anymore. We assume that E ∈ V0 ∩ R.

Let σ =

(

0 1
1 0

)

. Show that the matrix σM(z)σ satisfies the assumptions of Proposition 2.1.

Fix y0 and y1 so that 0 < y0 < y1 < Y . The asymptotics of the monodromy matrix coefficients are
uniform in z in the strip S = {y0/ε ≤ Im z ≤ y1/ε} and in E ∈ V0 (reducing V0 if necessary). For
E ∈ V0 ∩ R and z ∈ S, formulae (1.11) and (1.12), and estimates (1.13) imply that

a(z) = am+1e
−2πi(m+1)z(1 + o(1)),

b(z)

a(z)
= c(E) (1 + o(1)),

a(z)

a(z)
= o(1),

b

a(z)
= o(1)

where c(E) is independent of z and bounded by a constant uniformly in ε and E. So, we have

σ M(z)σ = am+1 e−2πi(m+1)z

[(

1 c(E)
0 0

)

+ o(1)

]

.

We see that the matrix σM(z)σ satisfies the assumptions of Proposition 2.1.
Clearly, the Lyapunov exponents of the matrix cocycles associated to the pairs (M, h) and (σMσ, h)
coincide. So, Proposition 2.1 implies that θ(M), the Lyapunov exponents of the matrix cocycle
associated to (M, h), satisfies the estimate θ(M) ≥ log |a−m| + o(1).
The Lyapunov exponent Θ(E) for equation (0.1) is related to θ(M) by Theorem 1.3. Therefore,
Θ(E) ≥ ε

2π log |a−m| + o(ε). Hence, (1.13) clearly implies

Θ(E) ≥ ε

2π
log T−1 + O(ε).(2.3)

2.1.3. The lower bound when n is even. If n is even, then, formulae (1.11) and (1.12) give the asymp-
totics of the coefficients of the matrix (1.14). Obviously, the Lyapunov exponents for the matrix
cocycles generated by M(z) and by S−1(z + h)M(z)S(z) coincide. Arguing exactly as in subsec-
tion 2.1.2, we again obtain (2.3).

2.2. The upper bound. Let us first assume that n is odd. Let E ∈ V0 ∩ R. Fix 0 < y0 < Y . The
asymptotics (1.11) and (1.12) and estimates (1.13) imply the following estimates for the coefficients
of M(z), the monodromy matrix:

|a|, |b| ≤ C(y0)T
−1e2πmy0/ε, Im z = y0/ε,

|a|, |b| ≤ C(y0)T
−1e2π(m+1)y0/ε, Im z = −y0/ε.

(2.4)

Here, C(y0) is a positive constant independent of ε, Re z, and E. The estimates are valid for sufficiently
small ε. Recall that M is analytic and 1-periodic in z. Therefore, (2.4) and the Maximum Principle
imply that

|a|, |b| ≤ 2C(y0)T
−1 exp(2π(m + 1)y0/ε), z ∈ R.(2.5)

This leads to the following upper bound for the Lyapunov exponent for the matrix cocycle generated
by M

θ ≤ log T−1 + Const + 2π(m + 1)y0/ε

where Const is independent of E and ε. In view of Theorem 1.3, we finally get

Θ(E) ≤ ε

2π
log T−1 + εConst + 2π(m + 1)y0.(2.6)

The upper bound (2.6) remains true when n is even as the Lyapunov exponents for the matrix cocycles
generated by M(z) and by S−1(z + h)M(z)S(z) coincide.

2.3. Completing the proof. Recall that, in (2.6), y0 is an arbitrarily fixed positive number. So,

comparing (2.3) and (2.6), we get Θ(E) =
ε

2π
log T−1 + o(1). This and the formula (1.13) for T

imply (1.4) for all E ∈ V0 ∩ R.
Recall that V0 ∩ R is an open interval containing E0 ∈ J . The above construction can be carried out
for any E0 ∈ J . As the interval J is compact, this completes the proof of Theorem 1.1.
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3. Periodic Schrödinger operators

We now discuss the periodic Schrödinger operator (0.2) where V is a 1-periodic, real valued, L2
loc-

function. We collect known results needed in the present paper (see [5, 13, 14, 17, 10]).

3.1. Bloch solutions. Let ψ be a solution of the equation

− d2

dx2
ψ (x) + V (x)ψ (x) = Eψ (x), x ∈ R,(3.1)

satisfying the relation ψ (x+1) = λ ψ (x) for all x ∈ R with λ ∈ C independent of x. Such a solution is
called a Bloch solution, and the number λ is called the Floquet multiplier. Let us discuss the analytic
properties of E 7→ ψ(E , x) := ψ(x).

As in section 1.2, we denote the spectral bands of the periodic Schrödinger equation by [E1, E2],
[E3, E4], . . . , [E2n+1, E2n+2], . . . . Consider S±, two copies of the complex plane E ∈ C cut along the
spectral bands. Paste them together to get a Riemann surface with square root branch points. We
denote this Riemann surface by S.

One can construct a Bloch solution ψ(x, E) of equation (3.1) meromorphic on S. It is normalized by
the condition ψ(1, E) ≡ 1. The poles of this solution are located in the spectral gaps. More precisely,
each spectral gap contains precisely one simple pole. It is located either on S+ or on S−. The position
of the pole is independent of x.

For E ∈ S, we denote by Ê the point on S having the same projection on C as E . We let

ψ̂(x, E) = ψ(x, Ê), E ∈ S.

The function ψ̂(x, E) is another Bloch solution of (3.1). Except at the edges of the spectrum (i.e. the

branch points of S), the functions ψ and ψ̂ are linearly independent solutions of (3.1). In the spectral

gaps, ψ and ψ̂ are real valued functions of x, and, on the spectral bands, they differ only by complex
conjugation.

3.2. The Bloch quasi-momentum. Consider the Bloch solution ψ(x, E). The corresponding Flo-
quet multiplier λ (E) is analytic on S. Represent it in the form λ(E) = exp(ik(E)). The function k(E)
is the Bloch quasi-momentum.

The Bloch quasi-momentum is an analytic multi-valued function of E . It has the same branch points
as ψ(x, E).

Let D be a simply connected domain containing no branch point of the Bloch quasi-momentum. In
D, one can fix an analytic single-valued branch of k, say k0. All the other single-valued branches of k
that are analytic in D are related to k0 by the formulae

k±,l(E) = ±k0(E) + 2πl, l ∈ Z.(3.2)

Consider C+ the upper half plane of the complex plane. On C+, one can fix a single valued analytic
branch of the quasi-momentum continuous up to the real line. It can be fixed uniquely by the condition
−ik(E + i0) > 0 as E < E1. We call this branch the main branch of the Bloch quasi-momentum and
denote it by kp.

The function kp conformally maps C+ onto the first quadrant of the complex plane cut at compact
vertical slits starting at the points πl, l ∈ N. It is monotonically increasing along the spectral zones
so that [E2n−1, E2n], the n-th spectral band, is mapped on the interval [π(n − 1), πn]. Along any
open gap, Re kp(E + i0) is constant, and Im kp(E + i0) is positive and has only one non-degenerate
maximum.

All the branch point of kp are of square root type. Let El be a branch point. In a sufficiently small
neighborhood of El, the function kp is analytic in

√E − El, and

kp(E) − kp(El) = cl

√

E − El + O(E − El), cl 6= 0.(3.3)

Finally, we note that the main branch can be analytically continued on the complex plane cut only
along the spectral gaps of the periodic operator.
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3.3. A meromorphic function. Here, we discuss a function playing an important role in the adia-
batic constructions.

In [10], we have seen that, on S, there is a meromorphic function ω having the following properties:

• the differential Ω = ω dE is meromorphic; its poles are the points of P ∪Q, where P is the set of
poles of ψ(x, E), and Q is the set of points where k′(E) = 0.

• all the poles of Ω are simple;
• res pΩ = 1, ∀p ∈ P \ Q, res qΩ = −1/2, ∀q ∈ Q \ P , res rΩ = 1/2, ∀r ∈ P ∩ Q.
• if E ∈ S projects into a gap, then ω(E) ∈ R;

• if E ∈ S projects inside a band, then ω(E) = ω(Ê).

4. The complex WKB method for adiabatic problems

In this section, following [7, 10], we briefly describe the complex WKB method for adiabatically
perturbed periodic Schrödinger equations

− d2

dx2
ψ(x) + (V (x) + W (εx + ζ))ψ(x) = Eψ(x), x ∈ R.(4.1)

Here, V is 1-periodic and ε is a small positive parameter; one assumes that V ∈ L2
loc and that W is

analytic in D(W ), a neighborhood of the real line (W is not necessarily periodic).

The parameter ζ is an auxiliary parameter used to decouple the “slow variable” ξ = εx and the “fast
variable” x. The idea of the method is to study solutions of (4.1) on the complex plane of ζ and,
then to recover information on their behavior in x ∈ R. Therefore, one studies solutions satisfying the
condition:

ψ(x + 1, ζ) = ψ(x, ζ + ε) ∀ζ.(4.2)

On the complex plane of ζ, there are certain domains on which one can construct such solutions that,
moreover, have simple asymptotic behavior.

4.1. Standard behavior of solutions. We first define two analytic objects central to the complex
WKB method, the complex momentum and the canonical Bloch solutions. Then, we describe the
standard behavior of the solutions studied in the framework of the complex WKB method.

4.1.1. The complex momentum. The complex momentum κ is the main analytic object of the complex
WKB method. For ζ ∈ D(W ), the domain of analyticity of the function W , it is defined by the formula

κ(ζ) = k(E(ζ)), E(ζ) = E − W (ζ),(4.3)

Here, k is the Bloch quasi-momentum of (0.2). Relation (4.3) “translates” properties of k into prop-
erties of κ. Hence, κ is a multi-valued analytic function, and that its branch points are related to the
branch points of the quasi-momentum by the relations

El + W (ζ) = E, l = 1, 2, 3 . . .(4.4)

Let ζ0 be a branch point of κ. If W ′(ζ0) 6= 0, then ζ0 is a branch point of square root type.

If D ⊂ D(W ) is a simply connected set containing no branch points of κ, we call it regular. Let κp be
a branch of the complex momentum analytic in a regular domain D. All the other branches analytic
in D are described by the formulae:

κ±
m = ±κp + 2πm,(4.5)

where ± and m ∈ Z are indexing the branches.
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4.1.2. Canonical Bloch solutions. To describe the asymptotic formulae of the complex WKB method,
one needs Bloch solutions to the equation

− d2

dx2
ψ(x) + V (x)ψ(x) = E(ζ)ψ(x), E(ζ) = E − W (ζ), x ∈ R,(4.6)

that, moreover, are analytic in ζ on a given regular domain.

Pick ζ0 a regular point. Let E0 = E(ζ0). Assume that E0 6∈ P ∪ Q. Let U0 be a sufficiently small
neighborhood of E0, and let V0 be a neighborhood of ζ0 such that E(V0) ⊂ U0. In U0, we fix a branch

of the function
√

k′(E) and consider ψ±(x, E), two branches of the Bloch solution ψ(x, E), and Ω±,
the corresponding branches of Ω. Put

Ψ±(x, ζ) = q(E) e
∫

E

E0
Ω±ψ±(x, E), q(E) =

√

k′(E), E = E(ζ).(4.7)

The functions Ψ± are called the canonical Bloch solutions normalized at the point ζ0.

The properties of the differential Ω imply that the solutions Ψ± can be analytically continued from
V0 to any regular domain D containing V0.
One has (see [10])

w(Ψ+(·, ζ), Ψ−(·, ζ)) = w(Ψ+(·, ζ0), Ψ−(·, ζ0)) = k′(E0)w(ψ+(x, E0), ψ−(x, E0))(4.8)

As E0 6∈ Q ∪ {El}, the Wronskian w(Ψ+(·, ζ), Ψ−(·, ζ)) is non-zero.

4.2. Solutions having standard asymptotic behavior. Fix E = E0. Let D be a regular domain.
Fix ζ0 ∈ D so that E(ζ0) 6∈ P ∪Q. Let κ be a branch of the complex momentum continuous in D, and
let Ψ± be the canonical Bloch solutions defined on D, normalized at ζ0 and indexed so that κ be the
quasi-momentum for Ψ+.

Definition 4.1. Let σ be either + or −. We say that, in D, a solution f has standard behavior (or

standard asymptotics) f ∼ exp(σ i
ε

∫ ζ
κ dζ) · Ψσ if

• there exists V0, a complex neighborhood of E0, and X > 0 such that f is defined and satisfies (4.1)
and (4.2) for any (x, ζ, E) ∈ [−X, X] × D × V0;

• f is analytic in ζ ∈ D and in E ∈ V0;
• for any K, a compact subset of D, there is V ⊂ V0, a neighborhood of E0, such that, for

(x, ζ, E) ∈ [−X, X] × K × V , f has the uniform asymptotic

f = eσ
i
ε

∫ ζ
κ dζ (Ψσ + o (1)), as ε → 0,(4.9)

• this asymptotic can be differentiated once in x without loosing its uniformity properties.

4.3. Canonical domains. Canonical domains are important examples of domains where one can
construct solutions with standard asymptotic behavior. They are defined using canonical lines.

4.3.1. Canonical lines. A curve is called vertical if it is connected, piecewise C1, and if it intersects
the lines {Im ζ = Const} at non-zero angles θ, 0 < θ < π. Vertical curves are naturally parameterized
by Im ζ.

Let γ be a regular curve. On γ, fix κ, a continuous branch of the complex momentum.

Definition 4.2. The curve γ is canonical if it is vertical and such that, along γ,

1. Im
∫ ζ

κdζ is strictly monotonously increasing with Im ζ,

2. Im
∫ ζ

(κ − π)dζ is strictly monotonously decreasing with Im ζ.

Note that canonical lines are stable under small C1-perturbations.
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4.3.2. Canonical domains. Let K be a regular domain. On K, fix a continuous branch of the complex
momentum, say κ. The domain K is called canonical if it is the union of curves canonical with respect
to κ and connecting two points ζ1 and ζ2 located on ∂K.

One has

Theorem 4.1 ([10]). Let K be a bounded domain canonical with respect to κ. For sufficiently small
positive ε, there exists (f±), two solutions of (4.1), having the standard behavior in K:

f± ∼ exp

(

± i

ε

∫ ζ

ζ0

κdζ

)

Ψ±.

For any fixed x ∈ R, the functions f±(x, ζ) are analytic in ζ in the smallest strip {Y1 < Im ζ < Y2}
containing K.

One easily calculates the Wronskian of the solutions f±(x, ζ) to get

w(f+, f−) = w(Ψ+, Ψ−) + o(1).(4.10)

By (4.8), for ζ in any fixed compact subset of K and ε sufficiently small, the solutions f± are linearly
independent.

4.4. The strategy of the WKB method. Our strategy to apply the complex WKB method is
explained in great detail in [10]; we recall it briefly. First, we find a canonical line. Roughly, we
build it out of segments of some “elementary” curves described in section 4.6. Then, we find a “local”
canonical domain K “enclosing” this line, see section 4.5. For this domain, we construct the solutions
f± using Theorem 4.1.

Second, we describe the asymptotic behavior of f± outside the domain K. Therefore, we use three
general principles presented in section 4.7.

Having investigated the behavior of f± for −X ≤ x ≤ X and a sufficiently large set of ζ, we recover
the behavior of f± on the real line of x by means of condition (4.2).

Below, we assume that D is a regular domain, and that κ is a branch of the complex momentum
analytic in D. A segment of a curve is a connected, compact subset of that curve.

4.5. Local canonical domains. Let γ ⊂ D be a canonical line (with respect to κ). Denote its ends
by ζ1 and ζ2. Let a domain K ⊂ D be a canonical domain corresponding to the triple κ, ζ1 and ζ2. If
γ ∈ K, then, K is called a canonical domain enclosing γ. One has

Lemma 4.1 ([8]). One can construct a canonical domain enclosing any given canonical curve.

Canonical domains whose existence is a consequence of this lemma are called local.

4.6. Pre-canonical lines. To construct a local canonical domain we need a canonical line. To
construct such a line, we first build a pre-canonical line made of some “elementary” curves.

Let γ ⊂ D be a vertical curve. We call γ pre-canonical if it is a finite union of segments of canonical

lines and/or lines of Stokes type i.e. the level curves of the harmonic functions ζ 7→ Im
∫ ζ

κdζ or

ζ 7→ Im
∫ ζ

(κ − π)dζ. One has

Proposition 4.1 ([8]). Let γ be a pre-canonical curve. Denote the ends of γ by ζa and ζb.
For V ⊂ D, a neighborhood of γ and Va ⊂ D, a neighborhood of ζa, there exists a canonical line γ ⊂ V
connecting the point ζb to a point in Va.

When constructing pre-canonical lines, one uses lines of Stokes type. To analyze them, one uses

Lemma 4.2. The lines of Stokes type of the family Im
∫ ζ

κ dζ = Const are tangent to the vector field

κ(ζ); those of the family Im
∫ ζ

(κ − π) dζ = Const are tangent to the vector field κ(ζ) − π.

4.7. Tools for computing global asymptotics. A set is said to be constant if it is independent of
ε.
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4.7.1. The Rectangle Lemma: asymptotics of increasing solutions. The Rectangle Lemma roughly says
that a solution f preserve the standard behavior along a line Im ζ = Const as long as the leading term
of the standard asymptotics increases.

Fix ηm < ηM . Define S = {ζ ∈ C : ηm ≤ Im ζ ≤ ηM}. Let γ1 and γ2 be two vertical lines such that
γ1 ∩ γ2 = ∅. Assume that both lines intersect the strip S at the lines Im ζ = ηm and Im ζ = ηM , and
that γ1 is situated to the left of γ2.
Consider the compact R bounded by γ1, γ2 and the boundaries of S. Let D=R \ (γ1 ∪ γ2). One has

Lemma 4.3 (The Rectangle Lemma [9]). Assume that the “rectangle” R is contained in a regular
domain. Let f be a solution to (4.1) satisfying (4.2). Then, for sufficiently small ε, one has

1: If Im κ < 0 in D, and if f has standard behavior f ∼ e
i
ε

∫ ζ

ζ0
κdζ

Ψ+ in a neighborhood of γ1, then,
it has standard behavior in a constant domain containing the “rectangle” R.

2: If Im κ > 0 in D, and if f has standard behavior f ∼ e
i
ε

∫ ζ

ζ0
κdζ

Ψ+ in a neighborhood of γ2, then,
it has the standard behavior in a constant domain containing the “rectangle” R.

Lemma 4.3 was proved in [9] where one can find more details and references.

4.7.2. The Adjacent Canonical Domain Principle. This principle complements the Rectangle Lemma;
it allows us to obtain the asymptotics of decreasing solutions.

Let γ be a vertical curve. Let S be the minimal strip of the form {C1 ≤ Im ζ ≤ C2} containing γ. Let
U ⊂ S be a regular domain such that γ ⊂ ∂U . We say that U is adjacent to γ. One has

Proposition 4.2 (The Adjacent Canonical Domain Principle [9]). Let γ be a canonical line. Assume
that f , a solution to (4.1) satisfying (4.2) has standard behavior in a domain adjacent to γ. Then, f
has the standard behavior in any bounded canonical domain enclosing γ.

4.7.3. Adjacent canonical domains. To apply the Adjacent Canonical Domain Principle, one needs
to describe canonical domains enclosing a given canonical line. It can be quite difficult to find a
“maximal” canonical domain enclosing a given canonical line. In practice, one uses “simple” canonical
domains described in

Lemma 4.4 (The Trapezium Lemma [10]). Let γ0 be a canonical line.
Let U be a domain adjacent to γ, a canonical line containing γ0 as �

�
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�
�

�

�� ��

��

��

�	
�����

�� ��
��

�	�
����
an internal segment. Assume that, in U , Im κ 6= 0. Let σu (resp. σd)
be the line of Stokes type beginning at the upper (resp. lower) end of
γ0 and going in U downward (resp. upward) from this point.
One has:

Trapezium case: Let T ⊂ U be a regular domain bounded by σu, σd, γ0 and γ̃, one more canonical
line not intersecting γ0. Then, T is part of a canonical domain enclosing γ0.

Triangle case: Assume that σu intersects σd. Let T ⊂ U be a regular domain bounded by σu, σd

and line γ0. Then, T is part of a canonical domain enclosing γ0.

There always exists a canonical line containing γ0; moreover, if Imκ 6=
0 in U , then, the lines σd and σu described in the Trapezium Lemma
always exist (see Lemma 5.3 from [10]).

4.7.4. The Stokes Lemma. The domains where one justifies the standard behavior using the Adjacent
Canonical Domain Principle are often bounded by Stokes lines (see definition below) beginning at
branch points of the complex momentum. The Stokes Lemma allows us to justify the standard
behavior beyond these lines by “going around” the branch points.

Notations and assumptions. Assume that ζ0 is a branch point of the complex momentum such that
W ′(ζ0) 6= 0.

Definition 4.3. The Stokes lines starting at ζ0 are the
curves γ defined by

Im

∫ ζ

ζ0

(κ(ζ) − κ(ζ0))dζ = 0, ζ ∈ γ.
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The angles between the Stokes lines at ζ0 are equal to 2π/3. We denote them by σ1, σ2 and σ3 so
that σ1 is vertical at ζ0 (see Fig. 4).

Let σ̃1 be a (compact) segment of σ1 which begins at ζ0, is vertical and contains only one branch
point, i.e. the point ζ0.

Let V be a neighborhood of σ̃1. Assume that V is so small that the Stokes lines σ1, σ2 and σ3 divide
it into three sectors. We denote them by S1, S2 and S3 so that S1 be situated between σ1 and σ2, and
the sector S2 be between σ2 and σ3 (see Fig. 4).

The statement. In [10], we have proved

Lemma 4.5 (Stokes Lemma). Let V be sufficiently small.
Let f be a solution to (4.1) satisfying (4.2) that

�
��

����

��

��

�� ��

� 	
��� ����

� ���� �� 	
��� 
��

Figure 4: The Stokes lines in a neighbor-
hood of a branch point

has standard behavior f ∼ e
i
ε

∫ ζ κdζΨ+ inside the sector
S1 ∪ σ2 ∪ S2 of V . Moreover, assume that, in S1 near
σ1, one has Im κ(ζ) > 0 if S1 is to the left of σ1 and
Im κ(ζ) > 0 otherwise.
Then, f has standard behavior inside V \ σ1, the leading
term of the asymptotics being obtained by analytic contin-
uation from S1 ∪ σ2 ∪ S2 into V ′.

Comments and details on this lemma can be found
in [10].

5. A consistent solution

We now begin the construction of the consistent basis the monodromy matrix of which we compute.
Recall that V and W satisfy the hypothesis (H), and fix E = E0 ∈ J , an interval satisfying the
hypothesis (A1) – (A3),

In the present section, by means of the complex WKB method, we construct and study f a solution
of (0.1) satisfying the consistency condition (1.5).

To use the complex WKB method, we rewrite (0.1) in terms of the variables

x := x − z, and ζ = εz.(5.1)

It then takes the form (4.1). In the new variables, the consistency condition (1.5) becomes (4.2)

We first describe the complex momentum and Stokes lines. Then, we construct a local canonical
domain, hence, a consistent solution to (4.1) by Theorem 4.1. Finally, using the continuation tools,
we describe global asymptotics of this solution.

5.1. The complex momentum. We begin with the analysis of the mapping E : ζ → E − W (ζ).

5.1.1. The set W−1(R). As E ∈ R, E−1(R) coincides with W−1(R).

The set W−1(R) is 2π-periodic. It consists of the real line and of complex branches (curves) symmetric
with respect to the real line. There are complex branches separated from the real line, and complex
branches beginning at the real extrema of W . These do not return to the real line.

Consider an extremum of W on the real line, say ζ0. By assumption (H), it is non-degenerate. This
implies that, near ζ0, the set W−1(R) consists of a real segment, and of a “complex” curve symmetric
with respect to the real axis, intersecting the real axis at ζ0 only. This curve is orthogonal to the real
line at ζ0.

For Y > 0, we let SY = {−Y ≤ Im ζ ≤ Y }. We assume that Y is so small that

• SY is contained in the domain of analyticity of W ;
• the set W−1(R) ∩ SY consists of the real line and of the complex lines passing through the real

extrema of W ;

For such Y , and if m = 0, the set W−1(R) ∩ SY is shown in Fig. 5.
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5.1.2. Branch points. The branch points of the complex momentum are related to the branch points
of the Bloch quasi-momentum by equation (4.4). So, they lie on W−1(R), and form a 2π-periodic set.

Consider the branch points situated in the interval [0, 2π) of the real line. Recall that, by assumption,
the function ζ 7→ W (ζ) has two extrema in [0, 2π]: a maximum at ζ = 0 and a minimum at ζ∗,
0 < ζ∗ < 2π. The mapping E is monotonous on each of the intervals I− = [0, ζ∗] and I+ = [ζ∗, 2π] and
maps both I± onto the interval [E − W+, E − W−]. Under the hypotheses (A1) – (A3), the interval
[E − W+, E − W−] contains 2m + 2 branch points of the Bloch quasi-momentum, namely the points
Ej for j = 2n− 1, 2n . . . 2(n + m). Therefore, on [0, 2π], one has 4m + 4 branch points of the complex
momentum ζ±j , j = 2n − 1, 2n, . . . 2(n + m), such that ζ±j ∈ I± and E(ζ±j ) = Ej . They satisfy the
inequalities

0 < ζ−2n−1 < ζ−2n < · · · < ζ−2(n+m) < ζ∗ < ζ+
2(n+m) < ζ+

2(n+m)−1 < · · · < ζ+
2n−1 < 2π.(5.2)

The complex branch points all lie on W−1(R). Reducing Y , at no loss of generality, we from now on
assume that the strip SY contains only the real branch points of the complex momentum.

5.1.3. The sets Z and G. Consider the gaps and bands of the periodic operator (0.2). Let Z and G
respectively be the pre-image (with respect to E) of the bands and the pre-image of the gaps. Clearly,
Z ∪G = W−1(R), and Z ∩G = ∅. Connected components of Z and G are separated by branch points
of the complex momentum.

The set Z is 2π-periodic. Consider the part of Z situated in the inter-
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Figure 5: The branch
points when m = 0

val [0, 2π]. Consider Z, the collection of subintervals of [0, 2π] defined in
section 1.3.1. One has

z
−
j = [ζ−2j−1, ζ

−
2j ], z

+
j = [ζ+

2j , ζ
+
2j−1], j = n, n + 1, . . . n + m.(5.3)

Under our assumptions on Y , the set Z ∩ SY consists of the intervals of Z
and their 2π-translates.

Define the finite collection of intervals G as in section 1.3.2. One has

g
−
j = (ζ−2j , ζ

−
2j+1), g

+
j = (ζ+

2j+1, ζ
+
2j), j = n, n + 1, . . . n + m − 1,

gn−1 = (ζ+
2n−1 − 2π, ζ−2n−1), gn+m = (ζ−2(n+m), ζ

+
2(n+m)),

(5.4)

The set G ∩ SY consists of the following connected components:

• the intervals g
±
j , j = n, . . . n + m − 1;

• the connected component containing ζ = 0 (it is the union of the interval gn−1 and the complex
branch of W−1(R) ∩ SY passing through 0);

• the connected component containing ζ = ζ∗ (it is the union of the interval gn+m and the complex
branch of W−1(R) ∩ SY passing through ζ∗);

• all the 2π-translates of the curves mentioned above.

5.1.4. The main branch of the complex momentum. Introduce the main branch of the complex mo-
mentum. In the strip {0 < Im ζ < Y }, consider the domain Dp between the complex branches of
W−1(R) beginning at 0 and at ζ∗. It is regular and E = E −W (ζ) conformally maps it onto a domain
in the upper half of the complex plane. We define the main branch of κ by the formula

κp(ζ) = kp(E − W (ζ)), ζ ∈ Dp,(5.5)

where kp is the main branch of the Bloch quasi-momentum of the periodic operator (0.2) (see sec-
tion 3.2). Clearly, Imκp > 0 in Dp and the function κp is continuous up to the boundary of Dp. Its
behavior at the boundary of Dp reflects the behavior of kp along the real line. In particular, for each
j = n, n + 1 . . . , n + m, it is monotonously increasing on z

−
j and maps it onto [π(j − 1), πj].

15



5.1.5. The Stokes lines. Consider the Stokes lines beginning at ζ−2n−1 and ζ−2n. As κp is real on

z
−
n = [ζ−2n−1, ζ

−
2n], this interval is a Stokes line both for ζ−2n−1 and ζ−2n. Pick one of these points. As

W ′ 6= 0 at this point, the angles between the Stokes lines beginning at it are equal to 2π/3. So, one
of the Stokes lines is going upwards, one is going downwards. These two Stokes lines are symmetric
with respect to the real line.

Denote by σ1 the Stokes line starting from ζ−2n−1 going downwards, and denote by σ2 be the Stokes

line beginning at ζ−2n and going upwards (see Fig. 6).

The lines σ1 and σ2 are vertical in SY . Indeed, a Stokes line stays vertical as long as Imκ 6= 0; the
imaginary part of the complex momentum vanishes only on Z, and Z ∩ SY ⊂ R.

Reducing Y if necessary, we can assume that σ1 and σ2 intersect the boundaries of SY .

5.2. Local construction of the solution f . We construct f on a local canonical domain. To
construct a local canonical domain, we need a canonical line. To find a canonical line, we first build
a pre-canonical line.

5.2.1. Pre-canonical line. Consider the curve β which is the union of the Stokes lines σ1, [ζ−2n−1, ζ
−
2n]

and σ2. Let us construct α, a pre-canonical line close to the line β. It goes around the branch points
of the complex momentum as shown in Fig. 7.
When speaking of κp along α, we mean the branch of the complex momentum obtained of κp by
analytic continuation along this line (the analytic continuation can be done using formula (4.3)).

Actually, the line α will be pre-canonical with respect to the branch of the complex momentum related
to κp by the formula:

κ =

{

κp − π(n − 1) if n is odd
πn − κp if n is even

ζ ∈ Dp.(5.6)

In view of (4.5), κ is indeed a branch of the complex momentum. We prove

Lemma 5.1. Fix δ > 0. In the δ-neighborhood of β, to the left of β, there exists α, a line pre-canonical
with respect to the branch κ such that at its upper end Im ζ > Y , and at its lower end Im ζ < −Y .

Proof. We consider only the case n odd. The analysis of the case of n even is similar. Note that, for
n odd, formula (5.6) implies that κ(ζ−2n−1) = 0, and κ(ζ−2n) = π. So, the Stokes lines σ1 and σ2 satisfy

the equations Im
∫ ζ

ζ−2n−1

κ dζ = 0 and Im
∫ ζ

ζ−2n

(κ − π) dζ = 0.

The pre-canonical line is constructed of lu and ld, two ”elementary lines” that are segments of σu and
σd, two lines of Stokes type shown in Fig. 7. Let us describe them more precisely.

Pick ζu, a point of the line Im ζ = Y , to the left of β close enough

������
����

��

��

��

��

�

Figure 6: Stokes lines

to it. The line σu is the line of Stokes type Im
∫ ζ
ζu

(κ − π)dζ = Const

containing ζu. Note that all three curves, σu, σ2 and [ζ−2n−1, ζ
−
2n] ⊂ R,

belong to the same family of curves Im
∫ ζ

(κ−π)dζ = Const. This implies
that, if ζu is close enough to σ2, then, below ζu, σu goes arbitrarily close
to σ2 ∪ [ζ−2n−1, ζ

−
2n] staying to the left of σ2 and above [ζ−2n−1, ζ

−
2n]. We

omit elementary details.
Pick ζd, a point of the line Im ζ = −Y , to the left of β close enough to it.

The line σd is a line of Stokes type Im
∫ ζ
ζd

(κ − π)dζ = Const containing

ζd. Note that all the three curves σd, σ1 and σ1 belong to the same family

of curves Im
∫ ζ

κdζ = Const. This implies that, if ζd is close enough to
σ1, then, above ζd, σd goes arbitrarily close to the line σ1 ∪ σ1 and stays
to the left of it. We omit the details.
Note that, by Lemma 4.2, the curves σu and σd are tangent to the vector fields κ−π and κ respectively.
This implies in particular that each of the curves σu and σd stays vertical as long as it does not intersect
the set Z.
If σu and σd are chosen close enough to β, they intersect one another in a neighborhood of ζ−2n−1.
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Indeed, consider first σu. It goes from ζu downwards staying to the left of σ2 and above [ζ−2n1
, ζ−2n]. So,

staying vertical, it has to intersect the Stokes line σ1 above ζ−2n−1, the beginning of σ1. The intersection
is transversal (as, first, σ1 is tangent to the vector field κ, second, σu is tangent to the vector field
κ − π, and, third, at the intersection point, Imκ 6= 0). If σd is sufficiently close to σ1, then σu also
intersects σd transversally.

We choose the intersection point as the lower end of lu and the upper end of ld. As σu and σd are
defined and are vertical somewhat outside SY , we can assume that the upper end of lu is above the
line Im ζ = Y , that the lower end of ld is below the line Im ζ = −Y , and that both ld and lu are
vertical.
The lines lu and ld then form a pre-canonical line α; it can be chosen as close to the line β as desired
and, in particular, inside the δ-neighborhood of β. This completes the proof of Lemma 5.1.
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Figure 7: The construction of the pre-canonical curve

5.2.2. Local canonical domain and a solution f . By Proposition 4.1, as close to α as desired, one can
find a canonical line γ. We construct γ in the left part of the δ-neighborhood of β.

By Lemma 4.1, there is K a canonical domain enclosing γ. We can assume that it is situated in
arbitrarily small neighborhood of γ. So, we construct K in (the left part of) the δ-neighborhood of β.

By Theorem 4.1, on the canonical domain K, we construct f , a solution to (4.1) that has standard

behavior f ∼ exp
(

i
ε

∫ ζ
κdζ

)

Ψ+ in K. We fix the normalization of this solution later.

5.3. Asymptotics of f outside K. Recall that f is analytic in {Y1 < Im ζ < Y2}, the minimal strip
containing K.

5.3.1. The results. Denote by ζa and ζb the branch points situated on R and, respectively, closest to
ζ−2n−1 on its left and closest to ζ−2n on its right. Let D be a regular domain obtained by cutting SY

along the Stokes lines σ1, and σ2 and along the real intervals (−∞, ζa] and [ζb,∞), see Fig. 8. We
prove

Proposition 5.1. If δ is sufficiently small, then, f has standard behavior

f = e
i
ε

∫ ζ

ζ0
κdζ

(Ψ+(x, ζ, ζ0) + o(1))(5.7)

in the whole domain D.

The rest of this section is devoted to the proof of Proposition 5.1. The proof is naturally divided into
“elementary” steps. At each step, applying just one of the three continuation tools (i.e. the Rectangle
Lemma, the Adjacent domain principle and the Stokes Lemma), we justify the standard behavior of
f on one more subdomain of D. Fig. 8 shows where we use each of the continuation principles. Full
straight arrows indicate the use of the Rectangle Lemma, circular arrows indicate the use of the Stokes
Lemma, and, in the hatched domains, we use the Adjacent Canonical Domain Principle.

Again, the analysis of the cases n odd and n even are analogous. For sake of definiteness, we assume
that n odd and consider only this case. We shall use
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Lemma 5.2. If n is odd, then, in D \ [ζ−2n−1, ζ
−
2n],

• to the left of the Stokes lines σ1 and σ2, one has Imκ > 0;
• to the right of these Stokes lines, one has Im κ < 0.

Proof. The sign of Im κ remains the same in any regular domain not intersecting Z. Moreover, the
sign of Imκ changes to the opposite one as ζ intersects a connected component of Z at a point where
W ′ 6= 0. So, in the connected subdomain of D \ [ζ−2n−1, ζ

−
2n] to the left of σ1 ∪ [ζ−2n−1, ζ

−
2n] ∪ σ2, one

has Im κ = Im (κp − π(n − 1)) = Im κp > 0 (here, we have used (5.6) for n odd). To come from this
subdomain to the connected subdomain of D\ [ζ−2n−1, ζ

−
2n] to the right of σ1 ∪ [ζ−2n−1, ζ

−
2n]∪σ2, one has

to intersect the interval [ζ−2n−1, ζ
−
2n] which is a connected component of Z. So, in the right subdomain,

one has Im κ < 0.

5.3.2. Behavior of f between the lines γ and β. To justify the standard asymptotics of f in D between
the lines γ and β, we use the Adjacent Canonical Domain Principle. Therefore, we need to describe
a canonical domain enclosing γ (more precisely, the part situated between γ and β). We do this by
means of the Trapezium Lemma 4.4 (first statement).

Let us describe the domain U and the curves γ0, σd and

�����
��� ��
� �����

� ���

Figure 8: How to “continue” the
asymptotics of f

σu needed to apply the Trapezium Lemma 4.4.

The domain U . It is the domain bounded by β, γ and the lines
Im ζ = Const containing the ends of γ.

In view of Lemma 5.2, choosing the ends of γ closer to the lines
Im ζ = ±Y if necessary, we can assume that Im κ > 0 in the
domain U .

The line σu. As the line σu, we take the line which belongs to

the family Im
∫ ζ

κdζ = Const and intersects β at ζ̃u satisfying

Im ζ̃u = Y . Recall that γ is constructed in the δ-neighborhood
of β where δ can be fixed arbitrarily small. One has

Lemma 5.3. The line σu enters U at ζ̃u and goes upwards. If δ is sufficiently small, then, σu

intersects γ at an internal point of γ.

Proof. The main tool of this proof is Lemma 4.2. Below, we use it without further notice. Recall that,
above the real line, β coincides with the Stokes line σ2. So, it is tangent to the vector field κ(ζ) − π.

The line σd is tangent to the vector field κ(ζ). In U , and in particular at ζ̃u, one has Imκ > 0.

Therefore, at ζ̃u, the tangent vector to β (oriented upwards) is directed to the right with respect to

the tangent vector to σu (oriented upwards). So, σu enters U at ζ̃u going upwards. As Imκ 6= 0 in U ,
it stays vertical in U . Note that σu is independent of δ. So, if δ is small enough, then σu intersects
γ.

The line σd. It is the line of Stokes type Im
∫ ζ

κdζ = Const that intersects β at ζ̃d satisfying

Im ζ̃d = −Y . One has

Lemma 5.4. The line σd enters U at ζ̃d and goes downwards. If δ is sufficiently small, then σd

intersects γ at an internal point.

The proof of this lemma being similar to the proof of Lemma 5.3, we omit it.

The line γ0. We choose δ so that both σu and σd intersect γ. Then, γ0 is the segment of γ between
its intersection points with σd and σu.

5.3.3. Describing the curve γ̃. Let us describe the canonical line γ̃ needed to apply the first variant of
the Trapezium Lemma. As for γ, using Lemma 5.1, we can construct γ̃ so that it be arbitrarily close
to β and strictly between γ0 and β.

As σu and σd intersect γ and β, they also intersect γ̃.
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5.3.4. Completing the analysis. By the Trapezium Lemma, the domain bounded by γ0, σu, σd and γ̃
is a part of the canonical domain enclosing γ0. So, by the Adjacent Canonical Domain Principle, f
has the standard behavior here.

As γ̃ can be constructed arbitrarily close to β, we conclude that f has the standard behavior in the
whole domain bounded by β, γ and the lines |Im ζ| = Y .

5.4. Behavior of f to the left of γ. We justify the standard behavior of f in D to the left of γ by
means of the Rectangle Lemma.

Let us describe R, the rectangle used to apply Lemma 4.3: it is the part of D between the canonical
line γ1 = γ and a vertical line in D, say γ2, staying to the left of γ and going from Im ζ = −Y to
Im ζ = Y .

By Lemma 5.2, in R, the imaginary part of κ is positive. Moreover, f has standard behavior in a
neighborhood of γ. So, by the Rectangle Lemma, f has standard behavior in R.

Pick ζ ∈ D to the left of γ. As the vertical curve γ2 ⊂ D can be taken so that ζ ∈ R, we see that f
has standard behavior in the whole part of D situated to the left of γ.

5.5. Behavior of f to the right of σ1. First, by means of the Stokes Lemma, Lemma 4.5, we show
that f has standard behavior to the right of σ1 in its small neighborhood.

Let Ṽ1 be a sufficiently small constant neighborhood of σ1 and set V1 = Ṽ1 ∩ SY . Show that f has
standard behavior in V1 \ σ1. The Stokes lines σ1, σ1 and [ζ−2n−1, ζ

−
2n] divide V1 into three sectors. By

the previous steps, we know that f has the standard behavior in V1 outside the sector S bounded by
the Stokes lines σ1 and [ζ−2n−1, ζ

−
2n]. The Stokes line σ1 is vertical. By Lemma 5.2, in V1, to the left

of σ1, the imaginary part of the complex momentum is positive; thus, the Stokes Lemma implies that
f has standard behavior inside V1 \ σ1. Recall that the leading term of the asymptotics of f in S is
obtained by analytic continuation from the rest of V1 around the branch point ζ−2n−1 avoiding σ1.

Having justified the standard behavior of f to the right σ1 in a small neighborhood of σ1, we justify
it in in the rest of the subdomain of D ∩ {−Y < Im ζ < 0} situated to the right of σ1 by means of
the Rectangle Lemma. The argument is similar to that carried out in subsection 5.4. So, we omit the
details.

5.6. Behavior of f along the interval (ζ−2n−1, ζ
−
2n). In the previous steps, we have justified the

standard behavior of f both above and below the real interval (ζ−2n−1, ζ
−
2n). We show now that f has

standard behavior also in this interval.
By section 5.5, we know that f has standard behavior in a neighborhood of ζ−2n−1 cut along σ1.

Moreover, f can not have the standard behavior in a neighborhood ζ−2n (as ζ−2n is a branch point).
Hence, there exists a ∈ (ζ−2n−1, ζ

−
2n] such that f has the standard behavior in a neighborhood of any

point in (ζ−2n−1, a). Assume that a < ζ−2n. Let α be a segment of the line Re ζ = a connecting a point
a1 ∈ C− to a point a2 ∈ C+. One has 0 < κ(a) < π. This implies that, if α is small enough, then,
α is a canonical line. The solution f has the standard behavior to the left of α. By the Adjacent
Canonical Domain Principle, f has standard behavior in any local canonical domain enclosing α, thus,
in a constant neighborhood of a. So, we obtain a contradiction, and, thus, a = ζ−2n. This completes
the analysis of f along (ζ−2n−1, ζ

−
2n).

5.7. Behavior of f to the right of σ2. One studies f to the right of σ2 in the same way as we have
studied it to the right of σ1: first, using the Stokes Lemma, one justifies the standard behavior to the
right of σ2, in a small neighborhood of σ2, and, then, applying the Rectangle Lemma, one proves that
f has the standard behavior in the rest of the subdomain of D to the right of this neighborhood. We
omit further details.
The analysis of f to the right of σ2 completes the proof of the Proposition 5.1.

5.8. Normalization of f . To fix the normalization of the leading term of the asymptotics of f ,
we choose the normalization point ζ0 in D and, in a neighborhood of ζ0, we choose a branch of the
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function
√

k′(E(ζ)) in the definition of Ψ+.
As the normalization point, we take ζ0 such that

ζ−2n−1 < ζ0 < ζ−2n(5.8)

Inside any spectral band of the periodic operator, k′(E) does not vanish, and there are no poles of the
Bloch solution ψ(x, E). So, E(ζ0) 6∈ P ∪ Q, and the solution Ψ+ is well defined.

To fix the branch of
√

k′, we note that, inside any spectral band of the periodic operator, the main
branch of the Bloch quasi-momentum, kp, is real and satisfies k′

p > 0. So, we fix
√

k′ so that

√

k′(E(ζ)) > 0, ζ−2n−1 < ζ < ζ−2n.(5.9)

6. The consistent basis

Up to now, we have constructed f , one consistent solution to (4.1) with known asymptotic
behavior in the domain D. We now construct another consistent solution f∗ so that (f, f∗) form a
consistent basis.

6.1. Preliminaries. For ζ ∈ D∗, the symmetric to D with respect to the real line, we define

f∗(x, ζ, E) = f(x, ζ, E).(6.1)

As W is real analytic, the function f∗ is also a solution of (4.1); it satisfies the consistency condition
as f does. In the next subsections, we first study its asymptotic behavior; then, we compute the
Wronskian w(f, f∗). We show that, in SY , it has the form Const (1 + o(1)). Here, Const is a non-zero
constant, and o(1) is a function which can depend on ζ. Finally, we modify the solution f so that it
still have the standard behavior in D, and w(f, f∗) be constant.

6.2. The asymptotics of f∗. Note that D ∩D∗ contains the interval z = (ζ−2n−1, ζ
−
2n) ⊂ R. One has

Lemma 6.1. In D∗, the solution f∗ has the standard behavior

f ∼ e
− i

ε

∫ ζ

ζ0
κ∗dζ

Ψ−,∗(x, ζ, ζ0),(6.2)

where

• κ∗ is the branch of the complex momentum which coincides with κ on z and is analytic in D∗,
• Ψ−,∗ is the canonical Bloch solution which coincides with Ψ− (corresponding to Ψ+ from the

asymptotics of f) on z and is analytic in D∗.

Proof. Recall that, by Proposition 5.1, f has the standard behavior (5.7) in the domain D.
The statement of Lemma 6.1 follows from Proposition 5.1, the definition of f∗ and the relation

exp

(

i

ε

∫ ζ̄

ζ0

κdζ

)

Ψ+(x, ζ̄, ζ0) = exp

(

− i

ε

∫ ζ

ζ0

κ∗dζ

)

Ψ−,∗(x, ζ, ζ0). ζ ∈ D∗.(6.3)

Let us prove this relation. As both the right and left hand sides of (6.3) are analytic in ζ, it suffices
to check (6.3) along the interval z. Recall that the interval [ζ−2n−1, ζ

−
2n] is a connected component of

Z. This implies that

κ(ζ) = κ(ζ), ψ+(x, E(ζ)) = ψ−(x, E(ζ)), ζ ∈ z,(6.4)

where ψ±(x, E) are two different branches of the Bloch solution ψ(x, E).
As ζ0 satisfies (5.8), relation (6.3) follows from the first relation in (6.4) and the relation

Ψ+(x, ζ, ζ0) = Ψ−(x, ζ, ζ0), ζ ∈ z.(6.5)

To check (6.5), we recall that Ψ± are defined in section 4.1.2 by formula (4.7). Therefore, relation (6.5)
follows from (5.9), the second relation in (6.4) and the last property of ω listed in the section 3.3. This
completes the proof of Lemma 6.1.
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6.3. The Wronskian of f and f∗. The solutions f and f∗ are analytic in the strip SY . Here, we
study their Wronskian. As both f and f∗ satisfy condition (4.2), the Wronskian is ε-periodic in ζ.
One has

Lemma 6.2. The Wronskian of f and f∗ admits the asymptotic representation:

w(f, f∗) = w(Ψ+, Ψ−)|ζ=ζ0 + g, ζ ∈ SY .(6.6)

Here, g is a function analytic in SY , such that, along the real line, Re g = 0. Moreover, g = o(1)
locally uniformly in any compact of SY provided that E is in a sufficiently small complex neighborhood
of E0.

Remark 6.1. Note that

1. w(Ψ+, Ψ−)|ζ=ζ0 6= 0 (as E(ζ0) 6∈ P ∪ Q, see (5.8) and the comments to it);
2. w(Ψ+, Ψ−)|ζ=ζ0 ∈ iR (due to (6.5)).

Proof. The domain D ∩ D∗ contains the “rectangle” R bounded by the lines σ1 ∪ σ1, σ2 ∪ σ2 and
Im ζ = ±Y . So, in R, the solutions f and f∗ have the standard behavior (5.7) and (6.2). Consider
the functions κ∗ and Ψ−,∗ from (6.2). Their definitions, see Lemma 6.1, imply that

κ∗ = κ, Ψ−,∗ = Ψ−, ζ ∈ R.

Using this information and (5.7) and (6.2), one obtains

w(f, f∗) = w(Ψ+(·, ζ), Ψ−(·, ζ)) + g, g = o(1), ζ ∈ R.(6.7)

Being obtained using standard behavior, this estimate is uniform in ζ in any compact of R provided
E be in a sufficiently small neighborhood of E0. By (4.8), the first term in the left hand side of (6.7)
coincides with the first term in (6.6). So, we only have to check that g has all the properties announced
in Lemma 6.2. As w(f, f∗) is ε-periodic, so is g. Furthermore, ig is real analytic as iw(f, f∗) and
iw(Ψ+, Ψ−)|ζ=ζ0 are. This completes the proof of Lemma 6.2.

6.4. Modifying f . As g, the error term in (6.6) may depend on ζ, we redefine the solution f :

f := f/ν, ν =
√

1 + g/w(Ψ+, Ψ−)|ζ=ζ0 .

In terms of this new solution f , we define the new f∗ by (6.1). These are the basis solutions the
monodromy matrix of which we shall study. For these “new” functions f and f∗, we have

Theorem 6.1. The solutions f and f∗ satisfy the condition (4.2) and

w(f, f∗) = w(Ψ+, Ψ−)|ζ=ζ0 .(6.8)

Moreover, f has the standard behavior (5.7) in D, and f∗ has the standard behavior (6.2) in D∗.

Proof. Let ζ be in a fixed strip {y1 < Im ζ < y2} ⊂ SY , and let ε be sufficiently small. We use
Lemma 6.2 and Remark 6.1. Recall that g is ε-periodic in ζ. So, ν is ε-periodic, and f and f∗ remain
consistent. Furthermore, note that ν is real analytic. This implies (6.8). Finally, as ν = 1 + o(1), the
new solutions f and f∗ still have the “old” standard asymptotic behavior in D and D∗ respectively.

7. General properties of the monodromy matrix for the basis {f, f∗}
In the previous section (see Theorem 6.1), we have constructed (f, f∗), a consistent basis of solutions
of (4.1). If we return to the variables of the initial equation (0.1), we get a consistent basis of (0.1).
The matrix discussed in Theorem 1.4 is the monodromy matrix obtained for this basis. In this short
section, we check some of its properties.

Instead of coming back to the initial variables, we continue to work in the variables (5.1). The
definition of the monodromy matrix (1.6) takes the form

F (x, ζ + 2π) = M(ζ)F (x, ζ), F =

(

f(x, ζ)
f∗(x, ζ)

)

,(7.1)
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and the matrix M becomes ε-periodic in ζ.
As the basis solutions f and f∗ are related by (6.1), the monodromy matrix has the form (1.10).
The definition of the monodromy matrix (7.1) implies that

a(ζ) ≡ M11(ζ) =
w(f(x + 2π, ζ), f∗(x, ζ))

w(f(x, ζ), f∗(x, ζ))
, b(ζ) ≡ M12(ζ) =

w(f(x, ζ), f(x, ζ + 2π))

w(f(x, ζ), f∗(x, ζ))
.(7.2)

Finally, we note that the monodromy matrix is analytic in ζ in the strip SY and in E in a constant
neighborhood of E0. Indeed, as the solutions f and f∗ are analytic functions of both variables, so
are the Wronskians in (7.2). Moreover, by (6.8), the Wronskian in the denominators in (7.2) does not
vanish. Hence, we have proved the

Lemma 7.1. The monodromy matrix corresponding to the basis {f, f∗} satisfies (7.1), is analytic
and ε-periodic in ζ ∈ SY , analytic in E in a constant neighborhood of E0 and has the form (1.10). Its
coefficients are given by (7.2).

8. General asymptotic formulas

To compute the asymptotics of the monodromy matrix defined above, we only need to compute the
Wronskians in the numerators in (7.2). These Wronskians depend on ζ and have different asymptotics
in the lower and upper half planes. Rather than repeating similar computations many times, in the
present section, we obtain a general asymptotic formula for the Wronskian of two solutions having
standard behavior.

8.1. General setting. In this subsection, we do not suppose that W be periodic. Fix E = E0.
Assume that h and g are two solutions of (4.1) having the standard asymptotic behavior in regular
domains Dh and Dg:

h ∼ e
i
ε

∫ ζ

ζh
κhdζ

Ψh(x, ζ), g ∼ e
i
ε

∫ ζ

ζg
κgdζ

Ψg(x, ζ).(8.1)

Here, κh and κg are branches of the complex momentum analytic in Dh and Dg, Ψh and Ψg are
canonical Bloch solutions Ψ+ defined on Dh and Dg, and ζh and ζg are the normalization points for
h and g.
As the solutions h and g satisfy the consistency condition, their Wronskian is ε-periodic in ζ. We now
describe the asymptotics of this Wronskian and of its Fourier coefficients. We first introduce several
simple useful objects.
Below, we assume that Dg ∩ Dh contains a simply connected domain, say d.

8.1.1. Arcs. Let γ be a regular curve going from ζg to ζh in the following way: staying in Dg, it goes
from ζg to some point in d, then, staying in Dh, it goes to ζh. We say that γ is an arc associated to
the triple h, g and d.
As d is simply connected, all the arcs associated to one and the same triple can naturally be considered
as equivalent; we denote them by γ(h, g, d).

Let us continue κh and κg analytically along γ(h, g, d). The analysis performed in section 4.1.1,
see (4.5), yields, that, for V a small neighborhood of γ, one has

κg(ζ) = σκh(ζ) + 2πm, m ∈ Z, σ ∈ {−1, +1}, ζ ∈ V.(8.2)

We call σ = σ(h, g, d) the signature of γ, and m = m(h, g, d) the index of γ(h, g, d).

8.1.2. Meeting domains. Let d be as above. We call d a meeting domain, if, in d, the functions Imκh

and Imκg do not vanish and are of opposite sign.
Note that, for small values of ε, the increasing and decreasing of h and g is determined by the

exponential factors e
i
ε

∫ ζ κdζ . So, roughly, in a meeting domain, along the lines Im ζ = Const, the
solutions h and g increase in opposite directions.
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8.1.3. The amplitude and the action of an arc. We call the integral

S(h, g, d) =

∫

γ(h,g,d)
κgdζ

the action of the arc γ(h, g, d). Clearly, the action takes the same value for equivalent arcs.

Assume that E(ζ) 6∈ P ∪Q along γ = γ(h, g, d). Consider the function qg =
√

k′(E(ζ)) and the 1-form
Ωg(E(ζ)) in the definition of Ψg. Continue them analytically along γ. Put

A(h, g, γ) = (qg/qh)|ζ=ζh
e
∫ ζh

ζg
Ωg ,(8.3)

We call A the amplitude of the arc γ. The first three properties of Ω listed in section 3.3 imply

Lemma 8.1. The amplitudes of two equivalent arcs γ(h, g, d) coincide.

8.1.4. Fourier coefficients. Let S(d) be the smallest strip of the form {C1 < Im ζ < C2} containing
the domain d. One has

Proposition 8.1. Let d = d(h, g) be a meeting domain for h and g, and m = m(h, g, d) be the
corresponding index. Then,

w(h, g) = wm e
2πim

ε
(ζ−ζh)(1 + o(1)), ζ ∈ S(d),(8.4)

and wm is the constant given by

wm = A(h, g, d) e
i
ε

S(h,g,d) w(Ψ+(·, ζh), Ψ−(·, ζh)),(8.5)

where Ψ+ = Ψh and Ψ− is “complementary” to Ψ+. The asymptotics (8.4) is uniform in ζ and E
when ζ stays in a fixed compact of S(d) and E in a small enough constant neighborhood of E0.

Note that the factor wm is the leading term of the asymptotics of the m-th Fourier coefficient of
w(h, g).
Proof. For ζ ∈ Dg, let γg(ζ) be a curve in Dg from ζg to ζ. Similarly, define γh(ζ).
First, we check that, for ζ ∈ d, one has

e
i
ε

∫

γg(ζ) κg dζ
= e

i
ε

S(h,g,d) e
2πim

ε
(ζ−ζh)

(

e
− i

ε

∫

γh(ζ) κh dζ
)

,(8.6)

Ψg(x, ζ) = A(h, g, d)Ψ−(x, ζ),(8.7)

where Ψ− is the canonical Bloch solution “complementary” to Ψ+ = Ψh in a neighborhood of γh(ζ).
As d is a meeting domain, in a neighborhood of γ(h, g, d), one has

κg = −κh + 2π m(8.8)

This implies relation (8.6).
Check (8.7). Let γ = γ(h, g, d) be an arc such that E(γ) ∩ (P ∪ Q) = ∅. Continue qg, Ωg and ψg

analytically along the arc γ(h, g, d). Note that qg and qh are two different branches of the function
√

k′(E − W (ζ)). So, they differ at most by a constant factor. Therefore, in a neighborhood of ζh, we
get

Ψg(x, ζ) = A(h, g, d) qh(E(ζ))e
∫

γh(ζ) Ωgψg(x, E(ζ)).(8.9)

Now, recall that, in a neighborhood of ζh, there are only two branches of Ω and ψ. Denote them
by ψ± and Ω± so that ψ+ = ψh and Ω+ = Ωh. Then, either ψg = ψ− and Ωg = Ω− or ψg = ψ+

and Ωg = Ω+. To choose between these two variants, we recall that the Bloch quasi-momentum of
a Bloch solution is defined modulo 2π. Note that κh is the Bloch quasi-momentum of ψ+, and κg

is the Bloch quasi-momentum of ψg. By (8.8), we get κg = −κh mod 2π. So, κg must be the Bloch
quasi-momentum of ψ−. Thus, we have ψg = ψ− and Ωg = Ω−, and (8.9) implies relation (8.7) in a
neighborhood of ζh. By analyticity, it stays valid in d.
As d ⊂ Dh ∩ Dg, both h and g have standard behavior in d. Substituting the asymptotics of f and g
into w(f, g), and using (8.6) and (8.7), one easily obtains

w(h, g) = A(h, g, d) e
i
ε

S(h,g,d) e
2πim

ε
(ζ−ζh) (w(Ψ+(·, ζ), Ψ−(·, ζ)) + o(1)), ζ ∈ d.(8.10)
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As w(Ψ+(·, ζ), Ψ−(·, ζ)) is independent of ζ and ε and is non-zero (see (4.8) and comments to it), we
get (8.4). As this asymptotic was obtained using the standard behavior of h and g, it has all the
announced uniformity properties. This completes the proof of Proposition 8.1.

8.2. The index m and the periods when W is periodic. Here, we only assume that W is 2π-
periodic and real analytic in ζ (i.e. we do not assume anything on the critical points of W ), and that
E is fixed. We describe the computation of the index m in the special case that one encounters when
computing monodromy matrices.

8.2.1. Periods. Pick ζ0, a regular point. Consider a regular curve γ going from ζ0 to ζ0 + 2π. Fix κ,
a branch of the complex momentum that is continuous on γ. We call the couple (γ, κ) a period.
Let (γ1, κ1) and (γ2, κ2) be two periods. Assume that one can continuously deform γ1 into γ2 without
intersecting any branching point. This defines an analytic continuation of κ1 to γ2. If the analytic
continuation coincides with κ2, we say that the periods are equivalent.
Consider the branch κ along the curve γ of a period (γ, κ). In a neighborhood of ζ0, the starting point
γ, one has

κ(ζ + 2π) = σκ(ζ) + 2πm, σ ∈ {±1}, m ∈ Z.(8.11)

The numbers σ = σ(γ, κ) and m = m(γ, κ) are called the signature and the index of the period (γ, κ).
The numbers m (resp. σ) coincide for equivalent periods.
Recall that G is the pre-image with respect to E of the spectral gaps of H0. One has

Lemma 8.2. Let (γ, κ) be a period such that γ begins at a point ζ0 6∈ G. Assume that γ intersects
G exactly N times (N ∈ N∗) and that, at all intersection points, W ′ 6= 0. Let r1, r2, . . . , rN be the
values that Re κ takes consecutively at these intersection points as ζ moves along γ from ζ0 to ζ0 +2π.
Then,

σ(γ, κ) = (−1)N , m(γ, κ) =
1

π
(rN − rN−1 + rN−2 − · · · + (−1)N−1r1).(8.12)

Proof. The image E(γ) of γ by E : ζ 7→ E−W (ζ) is a closed curve that starts and ends at E0 = E(ζ0).
We consider the curve E(γ) as open at E0. Along γ, we can write κ(ζ) = k(E − W (ζ)) where k is a
fixed analytic branch of the quasi-momentum. So, κ(ζ0) and κ(ζ0 + 2π), the values of the complex
momentum at the ends of γ0, are related by the same formula as kb and ke, the values of k at the
beginning and the end of curve E(γ0).
Since W ′ 6= 0 at the points of intersection of γ0 and G, E(γ0) intersects exactly N times spectral gaps
of the periodic operator.
As the values for both m and σ coincide for equivalent periods, it suffices to construct ζ0 so that
Im E0 6= 0.
Assume that a continuous curve begins at E0, goes along a strait line to one of the ends of a gap, then
goes around this gap end along an infinitesimally small circle, and returns back to E0 along the same
strait line. We call such a curve a simple loop. We distinguish the end and the beginning of the loop
considering it as open at its endpoints. As Im E0 6= 0, any simple loop intersects only one gap, namely,
the gap around the end of which it goes.
Recall that the ends of the gaps coincide with the branching points of the Bloch quasi-momentum,
and that these branching points are of square root type. So, in a neighborhood of a branching point,
the corresponding branches of the Bloch quasi-momentum satisfy the relation

k1(E) + k2(E) = 2r,(8.13)

where r is the common value of these branches at the branching point. Note that r is equal to the
value of the real part of any of these branches on the spectral gap beginning at the branching point.
On a simple loop, fix a continuous branch of the quasi-momentum. Clearly, formula (8.13) also relates
the values of the quasi-momentum at the ends of the loop when r is the value of the quasi-momentum
at the branching point inside the loop.
Recall that k can be analytically continued onto the whole complex plane cut along the spectral
gaps of H0. Therefore, the value of k at the end of E(γ0) is equal to the value of k at the end of
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the curve consisting of N simple loops and going successively around the branch points of k with
k = r1, r2, . . . rN . So, taking (8.13) into account, we get

ke = (−1)Nkb + 2(rN − rN−1 + rN2 − . . . r1).

This implies (8.12) and completes the proof of Lemma 8.2.

8.2.2. Indices of periods. Let us come back to the computation of the index m(h, g, d). One has

Lemma 8.3. Let γ = γ(h, g, d) be an arc such that ζh = ζg + 2π. If, in a neighborhood of ζg,

κg(ζ) = s · κh(ζ + 2π),(8.14)

where s is either “+” or “-”, then,

σ(h, g, d) = s · σ(γ, κg), m(h, g, d) = m(γ, κg).(8.15)

Proof. The pair (γ(h, g, d), κg) is a period. So, in a neighborhood of ζg, one has κg(ζ + 2π) =
σ(γ, κg)κg(ζ) + 2πm(γ, κg). This and (8.14) imply that κg(ζ) = s σ(γ, κg)κh(ζ) + 2πm(γ, κg) in a
neighborhood of ζh. This implies the relations (8.15).

9. Asymptotics of the monodromy matrix

We now compute the asymptotics of the coefficients a and b of the monodromy matrix for the
basis {f, f∗}; in particular, we prove formulae (1.11) and (1.12). We concentrate on the case n odd.
The computations for n even being similar, we omit them.
Recall that a and b are expressed via the Wronskians by formulae (7.2). We compute these Wronskians
(and, thus, a and b) using the construction from section 8.

9.1. The asymptotics of the coefficient b. By (7.2), we have to compute w(f(·, ζ), f(·, ζ + 2π)).
One applies the constructions of section 8. Now, one has

h(x, ζ) = f(x, ζ), g(x, ζ) = (Tf)(x, ζ) where (Tf)(x, ζ) = f(x, ζ + 2π);(9.1)

Dh = D, Dg = D − 2π;(9.2)

ζh = ζ0, ζg = ζ0 − 2π;(9.3)

κh(ζ) = κ(ζ), κg(ζ) = κ(ζ + 2π).(9.4)

9.1.1. The asymptotics in the strip 0 < Im ζ < Y . Let us describe d0, the meeting domain, and
γ0 = γ(f, Tf, d0), the arcs used to compute w(f, Tf) in the strip {0 < Im ζ < Y }.
The meeting domain. d0 is the subdomain of the strip 0 < Im ζ < Y between the Stokes lines σ2 − 2π
and σ2. Indeed, it follows from Lemma 5.2 and (9.4) that, in d0, one has Im κg = −Im κh < 0.
The arc. γ0 connects the point ζg to ζh. In view of (9.3), it defines the period (γ0, κg).
The index m(f, Tf, d0). In view of (9.4), the arc γ0 satisfies the assumption of Lemma 8.3. So,
m(f, Tf, d0) = m(γ0, κg). Due to (9.4), m(f, Tf, d0) = m(γ0 + 2π, κ). To compute this integer, we
use Lemma 8.2. Therefore, we have to compute κ at the intersections of γ0 +2π and G, the pre-image
of the spectral gaps of H0. The set G ∩ SY is described in section 5.1.3 where we have listed all its
connected components.
Recall that m takes the same value for all the periods equivalent to (γ0 + 2π, κ). We can deform
γ0 + 2π into a curve, say γ ⊂ D, so that

• γ be to the left of the complex branch of W−1(R) starting at 2π and staying in the upper
half-plane,

• (γ, κ) be a period equivalent to (γ0 + 2π, κ),
• γ have the following intersections with the connected components of G (for m = 0, this curve is

shown in Fig. 9): it once intersects the complex branch of W−1(R) going upwards from 0, once
the interval (ζ−2n, ζb) (the point ζb is defined in section 5.3.1), and, once the complex branch of
W−1(R) going upwards from ζ∗.
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Figure 9: Curves equivalent to γ0 + 2π and γ1 + 2π (when m = 0)

Recall that Re κ(ζ) is constant on any connected component of G. Therefore,

m(γ0 + 2π, κ) = m(γ, κ) =
1

π

(

Re κ(ζ)|ζ−2n−1
− Re κ(ζ)|ζ−2n

+ Re κ(ζ)|ζ∈gn+m+i0

)

=
1

π

(

0 − π + Re κ(ζ)|ζ∈gn+m+i0

)

.

To compute the last term in this formula, we recall that, in Dp,left, the part of the domain Dp (see
section 5.1.4) situated to the left of the Stokes line σ2, one has κ = κp − π(n − 1). In the domain
Dp,right, the part of Dp situated to the right of σ2, κ is obtained by analytic continuation from Dp,left

around the branch point ζ−2n passing below this branch point. As κp(ζ
−
2n) = πn, for ζ ∈ Dp,right, one

has κ(ζ) = (2πn − κp(ζ)) − π(n − 1) = π(n + 1) − κp(ζ). Along gn+m, one has Re κp = π(n + m);
hence, we get

m(γ0 + 2π, κ) =
1

π
(0 − π + [π(n + 1) − π(n + m)]) = −m.(9.5)

The result. Now, Proposition 8.1, formula (7.2) for b and formula (6.8) imply formula (1.11) for b with

b−m = A(f, Tf, d0) e
i
ε
S(f,Tf,d0)+

2πimζ0
ε , (Tf)(x, ζ) = f(x, ζ + 2π).(9.6)

9.1.2. Asymptotics of b below the real line. Describe d1, the meeting domain, and compute the index
m(f, Tf, d1) needed to get the asymptotics of w(f, Tf) in the strip {−Y < Im ζ < 0}.
The meeting domain. d1 is the subdomain of the strip −Y < Im ζ < 0 situated between the Stokes
lines σ1 − 2π and σ1.
The index. The arc γ1 = γ(f, Tf, d1) again defines a period, and m(f, Tf, d1) = m(γ1 + 2π, κ). The
curve defining a period equivalent to (γ1+2π, κ) is shown in Fig. 9. As in the sequel of this computation
we only use this curve, we call it γ1 + 2π. To compute the index of this period, we compute Reκ at
the intersections γ1 + 2π and G.
We can assume that γ1 + 2π satisfies:

• it is situated to the left of the complex branch of W−1(R) in C− starting at 2π,
• it has the following intersections with G: it once intersects the complex branch of W−1(R)

going downward from 0, once the interval gn−1 and once the complex branch of W−1(R) going
downward from ζ∗.

We get

m(γ1 + 2π, κ) =
1

π
Re κ(ζ)|ζ∈gn+m−i0 .

We have used the fact that the interval gn−1 and the complex branch of W−1(R) going downward
from 0 belong to the same connected component of W−1(R). To finish the computation, we introduce
the domain D∗

p, the symmetric of Dp with respect to the real line. In D∗
p,right, the part of this domain

situated to the right of σ1, κ can be viewed as the analytic continuation of κp − π(n − 1) from Dp
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across the interval z
−
n . Along the interval z

−
n , κp is real. So, for ζ ∈ D∗

p,right, κ(ζ) = κp(ζ) − π(n − 1),
and

m(γ1 + 2π, κ) =
1

π

(

Re κp(ζ)|ζ∈gn+m+i0 − π(n − 1)
)

=
1

π
(π(n + m) − π(n − 1)) = m + 1(9.7)

The result. Now, Proposition 8.1, formula (7.2) for b and (6.8) imply formula (1.12) for b with

bm+1 = A(f, Tf, d1) e
i
ε
S(f,Tf,d1)−

2πi(m+1)ζ0
ε , (Tf)(x, ζ) = f(x, ζ + 2π).(9.8)
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Figure 10: Curves γ̃0 + 2π and γ̃1 + 2π (when m = 0)

9.2. The asymptotics of the coefficient a. The computations of the coefficient a following the
same scheme as those of b, we only outline them. Now,

h = f∗, g = Tf ; Dh = D∗, Dg = D − 2π;(9.9)

ζh = ζ0, ζg = ζ0 − 2π;(9.10)

κh(ζ) = −κ(ζ̄), ζ ∈ Dh, κg(ζ) = κ(ζ + 2π), ζ ∈ Dg.(9.11)

Recall that the complex momentum is real on z
−
n , and that ζ0 ∈ z

−
n . This and relations (9.11) imply

that

κg(ζ) = −κh(ζ + 2π), ζ ∼ ζg.(9.12)

9.2.1. The asymptotics of a above the real line. In this case, d̃0, the meeting domain, is the subdomain
of the strip {0 < Im ζ < Y } situated between the lines σ2 − 2π and σ1 (which is symmetric to σ1 with

respect to R). The arc γ(f∗, T f, d̃0) defines a period (γ̃0, κg); the curve γ̃0 + 2π is shown in Fig. 10.
In view of (9.12), one is again in the case of Lemma 8.14, and, by means of Lemma 8.2, one obtains

m(f∗, T f, d̃0) = m(γ̃0 + 2π, κ) = −m. This yields formula (1.11) for a with

a−m = A(f∗, T f, d̃0) e
i
ε

S(f∗,T f,d̃0)+
2πimζ0

ε .(9.13)

9.2.2. The asymptotics of a below the real line. In this case, d̃1, the meeting domain, is the subdomain
of the strip {−Y < Im ζ < 0} situated between the lines σ2 (symmetric to σ2 with respect to R) and

σ1 − 2π. The arc γ(h, g, d̃1) defines a period (γ̃1, κg); the curve γ̃1 + 2π is shown in Fig. 10. One

obtains m(f∗, T f, d̃1) = m + 1. This yields formula (1.12) for a with

am+1 = A(f∗, T f, d̃1) e
i
ε

S(f∗,T f,d̃1)−
2πi(m+1)ζ0

ε .(9.14)
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10. Iso-energy curve

The iso-energy curve Γ is defined by (0.4). In this formula, E(·) is the dispersion law for the periodic
operator (0.2) i.e. the function inverse to the Bloch quasi-momentum (E = E(k) if and only if k is the
value of one of the branches of k when the spectral parameter is equal to E). We begin with a simple
general observation:

Lemma 10.1. The iso-energy curve Γ is 2π-periodic in ζ- and κ-directions; it is symmetric with
respect to any of the lines κ = πm, m ∈ Z.

Proof. The periodicity in ζ follows from the one of W . Fix k0 ∈ C. The list (3.2) shows that E(k)
takes the same value for all k = σk0 +2πm, where σ ∈ {±1}, and m ∈ Z. This implies the periodicity
and the symmetries in κ.

Now, for W satisfying (H) and for E in J , an interval satisfying (A1) – (A3), we discuss the iso-energy
curves (0.3) and (0.4) and obtain the estimates (1.13).

10.1. Real iso-energy curve: the proof of Lemma 1.1. A point (ζ, κ) ∈ R2 belongs to ΓR if and
only if κ is the value of one of the branches of the complex momentum at ζ. Recall that the intervals
z ∈ Z are pre-images (with respect to E) of spectral bands. The complement of these intervals in
(0, 2π) is mapped by E into spectral gaps. So, on (0, 2π), κ(ζ) takes real values only on the intervals
of Z. Therefore, in the strip {0 ≤ κ ≤ 2π}, the connected components of ΓR are situated above the
intervals z ∈ Z (“above” refers to the projection Π : (ζ, κ) ∈ R2 → ζ ∈ R).
Pick j ∈ {n, n + 1 . . . n + m}, and σ ∈ {±}. Consider the part of ΓR above the interval z := z

σ
j .

Recall that E bijectively maps z onto the j-th spectral band of H0. So, there exists κ0, a branch of
the complex momentum, continuous on the interval z, and mapping it monotonously onto the interval
[π(j − 1), πj] so that κ0(ζ

σ
2j−1) = π(j − 1) and κ0(ζ

σ
2j) = πj.

On the interval [π(j − 1), πj], let Zz be the inverse of ζ 7→ κ0(ζ). We continue κ 7→ Zz to the real
line so that it be 2π periodic and even. Recall that all the values of all the branches of the complex
momentum at ζ ∈ z are given by the list (4.5). This and the definition of Zz imply that the points of
ΓR above z are points of the graph of Zz and reciprocally.
All the properties of the function Zz announced in Lemma 1.1 follow directly from this construction.

To prove that the connected components of ΓR depend continuously on E, it suffices to check that
each of the functions Zz depends continuously on E ∈ J . Pick z ∈ Z. As W ′(ζ) 6= 0 for all ζ ∈ z, the
continuity of E 7→ Zz immediately follows from the Local Inversion Theorem and the definition of the
iso-energy curve (0.3). This completes the proof of Lemma 1.1.

10.2. Loops on the complex iso-energy curve. Here, we discuss closed curves in Γ.

10.2.1. An observation. We define the intervals g ∈ G as in section 1.3.2. We shall use

Lemma 10.2. Pick g ∈ G. Let V (g) be complex neighborhood of g sufficiently small so that it contains
only two branch points of κ, namely, the ends of g. Let κ be a branch of the complex momentum analytic
in a sufficiently small neighborhood of a point of V (g) \ g. Then, κ can be analytically continued to
the domain V (g) \ g to a single valued function. The analytic continuation satisfies

κ(ζ) = κ(ζ), ζ ∈ V (g) \ g.(10.1)

Proof. We can continue κ to a branch of the complex momentum analytic in V ′(g) the simply
connected domain obtained from V (g) by cutting it, say, along R from the right end of g to +∞. It
suffices to check that the values of κ at the edges of the cut coincide.
The set (R ∩ V (g)) \ g consists of two intervals. Each of them belongs to Z (the pre-image of the
spectral bands with respect to E). So, κ is real both on the left of these two intervals and at the edges
of the cut. As κ is real on the left interval, one has (10.1) in V ′. So, the values of κ on the edges of the

cut satisfy κ(ζ + i0) = κ(ζ − i0), and, therefore, being real, coincide. This implies Lemma 10.2.
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10.2.2. The loops. Pick g ∈ G. On V (g) \ g, fix κ0, a single valued analytic branch of the complex
momentum. Consider G(g) ⊂ V (g) \ g, a curve going once around the interval g. One has

Lemma 10.3. For each σ ∈ {±1} and m ∈ Z, the curve

Ĝ(m,σ)(g) = {(ζ, κ) : κ = σκ0(ζ) + 2πm, ζ ∈ G(g)}, m ∈ Z,

is a closed curve on Γ. It connects the two connected components of ΓR that project onto the intervals
of Z ∩ R adjacent to g.

Proof. As κ0 is univalent on G(g), the curve Ĝ(0,0) is a closed curve on Γ. This and Lemma 10.1

imply that all the curves Ĝ(σ,m) are loops in Γ. As G(g) intersects the intervals of Z ∩ R adjacent to

g, Ĝ connects the two connected components of ΓR that project onto these intervals.

10.3. Tunneling coefficients. Pick g ∈ G. Fix an analytic branch κ of the complex momentum on
V (g). Define the action S(g) = i

∮

G(g) κdζ. To study its properties, we use

Lemma 10.4. Let E ∈ J . If G(g) is positively oriented, then

S(g) = ±2

∫

g±i0
Im κdζ,(10.2)

where, in the left hand side, one integrates in the increasing direction on the real axis.

Proof. Deform the integration contour G(g) so that it go around g just along it. Then, relation (10.2)
follows directly from (10.1).

This lemma immediately implies

Corollary 10.1. Let E ∈ J . Then,

1. S(g) is real and non-zero;
2. as a functional of the branch κ, it takes only two values that are of opposite sign.

Proof. Inside any spectral gap, the imaginary part of no branch of the Bloch quasi-momentum
vanishes. Hence, the first statement follows from (10.2). The second one follows from (4.5) listing all
the branches continuous on the integration contour.

In the sequel, we choose the branch κ so that, on J , S(g) be positive. S(g) is called the tunneling
action.

10.4. Obtaining estimates (1.13). All the estimates in (1.13) are obtained in the same way. So,
we prove only the estimate for b−m in the case of n odd. Recall that we work in V0, a small constant
neighborhood of a point E0 ∈ J .

The coefficient b−m is given by (9.6). The definition of the amplitude of an arc, formula (8.3), implies
that A(f, Tf, d1) is independent of ε, continuous in E and does not vanish. So, there are two positive
constants C1 and C2 such that

C1 ≤ |A(f, Tf, d0)| ≤ C2, E ∈ V0.(10.3)

Let us estimate the factor exp
(

i
εS(f, Tf, d0)

)

for E ∈ V0 ∩ R. Therefore, we choose the arc γ =
γ(f, Tf, d0) stretched along the real line and going around the branch points (between ζ0 − 2π and ζ0,
the beginning and the end of γ) along infinitesimally small circles. We compute

∣

∣

∣

∣

exp

(

i

ε
S(f, Tf, d0)

)∣

∣

∣

∣

= exp

(

−1

ε

∫

γ
Im κgdζ

)

= exp



−1

ε

∑

g∈G̃

∫

g

Im κgdζ



 ,(10.4)

where G̃ consists of all the connected components of G ∩ R between ζ0 − 2π and ζ0, i.e. of all the
intervals g

±
j − 2π, the interval gn+m − 2π and the interval gn−1.

Using (9.4), one easily checks that, in the right hand side of (10.4), Im κg < 0 inside each of the
intervals of integration (which are segments of the arc γ).
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Due to the periodicity of W , we can write

∣

∣

∣

∣

exp

(

i

ε
S(f, Tf, d0)

)∣

∣

∣

∣

= exp



−1

ε

∑

g∈G

∫

g

Im κdζ



 ,(10.5)

where, on each interval of integration, κ is any continuous branch of the complex momentum such that
Im κ < 0. By means of Lemma 10.4, we check that, up to the sign, the expression −2

∫

g
Im κdζ is equal

to S(g), the tunneling action. As both are positive, they coincide. Therefore,

∣

∣

∣

∣

exp

(

i

ε
S(f, Tf, d0)

)∣

∣

∣

∣

=
∏

g∈G

(t(g))−1. This and (10.3) imply the estimate for b−m announced in (1.13).
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local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2. Comment. Math. Helv., 58(3):453–502, 1983.

[12] Y. Last and B. Simon. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional
Schrödinger operators. Invent. Math., 135(2):329–367, 1999.

[13] V. Marchenko and I. Ostrovskii. A characterization of the spectrum of Hill’s equation. Math. USSR Sbornik, 26:493–
554, 1975.

[14] H. McKean and E. Trubowitz. The spectrum of Hill’s equation. Invent. Math., 30:217–274, 1975.
[15] L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992.
[16] E. Sorets and T. Spencer. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials.

Comm. Math. Phys., 142(3):543–566, 1991.
[17] E.C. Titschmarch. Eigenfunction expansions associated with second-order differential equations. Part II. Clarendon

Press, Oxford, 1958.
[18] M. Wilkinson. Critical properties of electron eigenstates in incommensurate systems. Proc. Roy. Soc. London Ser.

A, 391(1801):305–350, 1984.
[19] M. Wilkinson. Tunnelling between tori in phase space. Phys. D, 21(2-3):341–354, 1986.

(Alexander Fedotov) Department of Mathematical Physics, St Petersburg State University, 1, Ulia-

novskaja, 198904 St Petersburg-Petrodvorets, Russia

E-mail address: fedotov@mph.phys.spbu.ru
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