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The evolution of the Kolmogorov-Zakharov (K-Z) spectrum of weak turbulence is studied in the
limit of strongly local interactions where the usual kinetic equation, describing the time evolution
of the spectral wave-action density, can be approximated by a PDE. If the wave action is initially
compactly supported in frequency space, it is then redistributed by resonant interactions producing
the usual direct and inverse cascades, leading to the formation of the K-Z spectra. The emphasis
here is on the direct cascade. The evolution proceeds by the formation of a self-similar front which
propagates to the right leaving a quasi-stationary state in its wake. This front is sharp in the sense
that the solution remains compactly supported until it reaches infinity. If the energy spectrum has
infinite capacity, the front takes infinite time to reach infinite frequency and leaves the K-Z spectrum
in its wake. On the other hand, if the energy spectrum has finite capacity, the front reaches infinity
within a finite time, t∗, and the wake is steeper than the K-Z spectrum. For this case, the K-Z
spectrum is set up from the right after the front reaches infinity. The slope of the solution in the
wake can be related to the speed of propagation of the front. It is shown that the anomalous slope
in the finite capacity case corresponds to the unique front speed which ensures that the front tip
contains a finite amount of energy as the connection to infinity is made. We also introduce, for
the first time, the notion of entropy production in wave turbulence and show how it evolves as the
system approaches the stationary K-Z spectrum.

PACS numbers: 04.30.Nk, 47.35.+i, 92.10.Hm

I. INTRODUCTION AND MOTIVATION

Wave turbulence is concerned with the statistical description of an infinite sea of dispersive waves, which are
weakly coupled by nonlinear interactions and maintained away from equilibrium by interaction with sources and sinks
of energy. The theory has found practical application in many branches of physics including the description of surface
waves on fluid interfaces[3, 7, 8, 13], Alfven wave turbulence in astrophysical plasmas [6, 12], nonlinear optics[4] and
acoustics[10, 14] to name a few.

The central quantity of theoretical interest is the spectral wave action density, nk, which describes how the exci-
tations in the system are distributed among different wave-vectors, k. Under fairly weak assumptions[11], the long
time behaviour of nk is given by an equation known as the wave kinetic equation. For a system dominated by four
wave interactions this equation takes the form,

∂nk

∂t
= 4π

∫

|Tkk1k2k3
| 2 F4 [nk] δ(k+k1−k2−k3) dk1dk2dk3, (1)

where

F4 [nk] = nknk1
nk2

nk3

(

1

nk

+
1

nk1

− 1

nk2

− 1

nk3

)

δ(ωk+ωk1
−ωk2

−ωk3
). (2)

Equation (1) is the analogue for waves of the Boltzmann equation of classical statistical mechanics. In many applica-
tions, ωk and Tkk1k2k3

are homogeneous functions of their arguments. Their degrees of homogeneity shall be denoted
by α and γ respectively. Under rescaling, k → λk, they transform as follows :

ωλk = λαωk (3)

Tλkλk1λk2λk3
= λγTkk1k2k3

. (4)

It was shown by Zakharov[15] in the 60’s that if the energy sources and sinks are separated by an “inertial range”,
equation (1) has exact isotropic steady state solutions,

nk = c1P
1/3k−(2γ+3d)/3 (5)

nk = c2Q
1/3k−(2γ+3d−1)/3, (6)
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which carry constant fluxes of conserved densities, in this case energy flux, P , or wave action flux, Q, between sources
and sinks. These steady state spectra are the direct analogues of the direct and inverse cascades in hydrodynamic
turbulence and are referred to as Kolmogorov-Zakharov (K-Z) spectra. They have been well observed experimentally
in a variety of contexts.

In 1991 Falkovich and Shafarenko[5] addressed the question of how the K-Z spectrum is set up in time if nk is
initially compactly supported in wave-vector space. They used a self-similar solution of (1) and an assumption that,
for the direct cascade, the total energy increases linearly in time, to show that (5) is set up by a nonlinear front which
propagates towards k = ∞ and leaves the k−(2γ+3d)/3 spectrum in its wake.

However subsequent numerical simulations of the kinetic equation for Alfven wave turbulence performed by Galtier
et al. [6] suggested that the development of the K-Z spectrum may proceed by a different route. For the Alfven wave
system, the K-Z energy spectrum has finite energy capacity, meaning that on the K-Z spectrum,

∫

E(k) dk < ∞.
This implies that the nonlinear front must reach k = ∞ within a finite time, t∗. They noticed that the spectrum in
the wake of the front was significantly steeper than the K-Z value for times less than the singular time, t∗, and that
the K-Z spectrum then developed from right to left after the front reached k = ∞. Other work by Pomeau et al.[9] on
the inverse cascade in the Nonlinear Schrodinger equation suggested that there might be anomalous quasi-stationary
spectra associated with non-stationary solutions of kinetic equations. However no-one has yet made a specific attempt
to search for them.

One of the challenges in far-from-equilibrium systems is to understand the means by which stationary states are
reached and to ask if there are functionals analogous to the entropy in equilibrium systems. What we will show is
that while the entropy, which for wave turbulence is formally (see for example [2])

S =

∫

lnnk dk, (7)

is not well defined on the steady state solutions, spectra (5) and (6), its production rate is. We find that for 0 < t < t∗,
when the spectrum in the wake of the front is steeper than the K-Z spectrum, the entropy production is positive. At
t∗ the connection to k = ∞ is made and energy is no longer a conserved quantity. For t > t∗, the K-Z spectrum is
established via a front which travels back from k = ∞. During this stage, the entropy production rate, while still
positive, gradually decreases and asymptotes to zero, its value on the exact K-Z spectrum. We conjecture that this
scenario, established in this paper for the differential approximation to the kinetic equation, (1), will be widely valid
for finite capacity non-equilibrium systems, including three-dimensional hydrodynamic turbulence at large Reynolds
numbers.

This leads us to the topic of this article. We have made an extensive study of the non-stationary solutions of the
so-called differential kinetic equation of local wave turbulence. This model equation is obtained from (1) under the
assumption that the interaction co-efficient, Tkk1k2k3

is strongly localised in kk1k2k3 space. It has the advantage of
replacing the integro-differential kinetic equation with a PDE. We find that the qualitative bahaviour observed by
Galtier et al is present in this model in the finite capacity case. Since we are dealing with a PDE, we can go a lot
further in terms of understanding.

The organisation of the article is as follows. In section II we introduce the differential kinetic equation and describe
a few of its properties which make it a good model of wave turbulence. We also introduce exact expressions for
the fluxes of energy (P ), the flux of particles (Q), and the entropy production rate in terms of its flux (R) and
its bulk production rate (T ). The latter is always positive definite. We calculate each of these quantities on the
algebraic solutions, nk ∝ k−αx. Section III contains the details of some numerical simulations of the PDE. These
simulations suggest that the nonlinear front is “sharp” in the sense that nk remains compactly supported for t < t∗.
There is a singularity, a divergence in the second derivative in fact, at the front tip between the regions nk = 0 and
nk > 0. Next, in section IV, we construct a family of self-similar solutions of the differential kinetic equation which
are parameterised by a single free parameter. This free parameter can be interpreted as the asymptotic slope behind
the front. Following that, in section V, we use this self-similarity analysis to formulate a hypothesis which we call the
critical front speed hypothesis. This hypothesis is based on physical arguments and allows us to select a critical value,
xc, for the asymptotic slope, given by

xc = x0 +
2γ − 3α

12α
, (8)

where x0 denotes the usual K-Z exponent for the direct cascade. This formula is well supported by our numerical
simulations. In our conclusion, we attempt to make a connection with entropy production arguments. Two appendices
are provided. In the first, we analyse the mathematical structure of the similarity equation and try to understand how
the critical slope is related to the solution trajectories of the underlying ordinary differential equation. The second
appendix contains a brief outline of the numerical methods used.
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II. THE DIFFERENTIAL KINETIC EQUATION

We begin by briefly discussing the origin of the differential kinetic equation. Assuming that the wave-action
spectrum rapidly becomes isotropic, and averaging over angles, we can make a transformation from d-dimensional
wave-vector space to frequency space,

∂Nω

∂t
=

∫

Sωω1ω2ω3
F4 [nω] dω1dω2dω3 (9)

where

Sωω1ω2ω3
= 4π

∫

|Tkk1k2k3
| 2

δ(k+k1−k2−k3) (kk1k2k3)
d−1 dk

dω

dk1

dω1

dk2

dω2

dk3

dω3
dΩ (10)

and Nω is defined by requiring that
∫

φ(ω)Nωdω =

∫

φ(|k|α) nkdk, (11)

for any test function, φ. Here the volume element dΩ represents integration over the angular variables in k1k2k3

space and the wave-vector moduli are related to the frequency via the dispersion relation,

ωk = ckα. (12)

If we assume that the interaction coefficient, Tkk1k2k3
is strongly local in kk1k2k3 space then (9) can be approximated

by a differential equation [4],

∂Nω

∂t
= I

∂2

∂ω2

(

ωsn4
ω

∂2

∂ω2

(

1

nω

))

, (13)

where

nω(t) = n(k(ω), t) (14)

s = 3x0 + 2 (15)

x0 =
2γ + 3d

3α
. (16)

I is a pure number which comes from the angular integrations in (10). This equation is called the differential kinetic
equation.

The local approximation leading to the differential kinetic equation, (13), is rather drastic and is not justified for
many of the physical applications of weak turbulence. Nonetheless, it retains many of the qualitative features of the
full kinetic equation, (9). It provides an excellent model in the context of which these features can be easily studied.
In particular, the differential kinetic equation respects the conservation laws embodied within its integro-differential
precursor, namely the conservation of the total energy,

E =

∫

ωNω dω, (17)

and the total number of particles,

N =

∫

Nω dω. (18)

It also preserves the scaling and homogeneity properties of the kinetic equation. Consequently, the pure scaling
solutions of the kinetic equation, the equilibrium thermodynamic spectra and the non-equilibrium K-Z spectra, are
also solutions of the differential kinetic equation. These solutions are of the form nω = cω−x where x takes one of the
following values:

x = 1, x = 0, (thermodynamic)

or

x =
2γ + 3d

3α
, x =

2γ + 3d − α

3α
, (K-Z).
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FIG. 1: Plot of the bulk entropy production, T , the entropy flux, R, and the total entropy production, Ṡ, as a function of the
exponent, x, of the spectrum for power law spectra, nω = cω−x.

It is convenient to define

K [nω] = ω3x0+2n4
ω

∂2

∂ω2

(

1

nω

)

. (19)

The two conservation laws can be written as continuity equations :

∂Nω

∂t
− ∂Q

∂ω
= 0 (20)

∂Eω

∂t
+

∂P

∂ω
= 0, (21)

where

Q =
∂K
∂ω

(22)

is the local flux of particles,

P = K − ω
∂K
∂ω

(23)

is the local flux of energy and

Eω = ωNω (24)

is the energy density if frequency space. Note that P is defined to be positive when energy flows to the right in ω
space and Q is positive when particles flow to the left.

The entropy, S, of a wave system is formally
∫

lnnk dk. The production rate,

dS

dt
=

d

dt

∫

lnnk dk =

∫

1

nω

dNω

dt
dω, (25)

can readily be calculated to be

Ṡ = −∂R

∂ω
+ T. (26)
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The entropy flux, R, which is positive for entropy flow to large wave-numbers, is

R = − Q

n2
ω

∂

∂ω
(ωnω) − P

n2
ω

∂nω

∂ω
(27)

and the local bulk entropy production rate, T , is

T = Iω3x0+2n4
ω

(

∂2

∂ω2

(

1

nω

))2

. (28)

Note that T is positive definite and zero on the thermodynamic solution, nω = τ/(ω − µ) , τ being the temperature
and µ the chemical potential. Indeed if the system were isolated, say on the interval ω1 < ω < ω2, and P , Q and R
were identically zero, then the usual principles of equilibrium systems would apply.

On the solution nω = cω−x, the quantities K, Q, P , R, T and −∂R
∂ω + T are calculated. They are:

K = I c3ω3x0−3xx(x − 1) (29)

Q = 3Ic3x(x − 1)(x0 − x)ω3x0−3x−1 (30)

P = 3Ic3x(x − 1)(x − (x0 − 1

3
))ω3x0−3x (31)

T = c2 I x2(x − 1)2 ω3x0−2x−2 (32)

R = 3c2 I x(x − 1)(x0 − 4

3
x)ω3x0−2x−1, (33)

Ṡ = −∂R

∂ω
+ T = 9c2 I x(x − 1)(x − x0)(x − (x0 − 1

3
))ω3x0−2x−2. (34)

Similar expressions, which have the same zeros (as functions of x) obtain for the case when the differential approx-
imation is replaced by the full collision integral. In particular, we note that the entropy production rate is always
positive (we assume x0 > 4/3) for 1 < x < x0 − 1/3 and for x > x0, the K-Z exponents for particles and energy
respectively. The relevant functions are plotted in figure 1. For x0 − 1/3 < x < x0, the entropy production rate is
negative. This corresponds to a situation when the particle flux is building a condensate state [9].

III. NUMERICAL OBSERVATIONS OF NON-STATIONARY SPECTRA

Let us now turn our attention to non-stationary solutions of (13). In particular we are interested in how the K-Z
spectra are set up if we begin from an initial condition which is compactly supported at low frequencies. Early work
on this question focussing on the direct cascade by Falkovich and Shafarenko [5] suggested that the K-Z spectrum is
set up by a nonlinear front which propagates to the right leaving the K-Z spectrum in its wake. Recent numerical
studies by Galtier et al [6] suggest that this problem is more subtle. They found that in the case where the K-Z
energy spectrum has finite capacity, the approach to the steady state proceeds by a different mechanism. For this
system the nonlinear front reaches infinite frequency within a finite time, t∗. They found that the quasi-stationary
spectrum in the wake of this front was actually steeper than the K-Z spectrum. The K-Z spectrum was then set up
from right to left after the front reached infinity.

We investigated whether there was evidence of this behaviour in the solutions of the differential kinetic equation.
We solved the differential kinetic equation numerically and followed the evolution from an initial condition compactly
supported at low frequencies. The results presented in this section were obtained by allowing the initial data to decay
freely in the absence of forcing or damping. Some details of the numerical methods used are contained in appendix
B.

Let us first consider the situation in which the energy spectrum has infinite capacity, 2γ < 3α. Figure 2 shows a
sequence of snapshots of nω and the local slope at successive times for a system with parameter values α = 0.5, γ =
0, d = 1. We conclude that the slope tends to the K-Z value far behind the front in agreement with previous
expectations. The K-Z spectrum is set up asymptotically in time from the left of the window of transparency to the
right.

Now consider what happens when we increase the value of γ and bring the system into the finite capacity regime.
Figure 3 shows the absolute value of the local slope of nω at similar stages in the evolution for a sequence of values
of γ in the finite capacity regime. γ takes the values 2.0, 2.5, 3.0 and 3.5. Visually, it is clear that as γ increases,
the slope of the spectrum behind the front tends to a value which is increasingly steeper than the K-Z value. This
observation is supported by fitting power law functions to the numerical data. The “best fit” slopes are presented in
Table I along with the K-Z values for comparison. The slope given by equation (8) agrees well with the numerical
observations. The time, t∗, required for the front to reach infinity depends both on the parameters γ and α and on
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FIG. 2: Time evolution of the spectrum and the local slope for the parameter values α = 0.5, γ = 0, d = 1. The logarithmic
scales are to base 10.

FIG. 3: Snapshots of the non-stationary spectrum for a range of different values of the parameter γ, keeping α = 1/2 and
d = 1. The logarithmic scales are to base 10.

γ xKZ xnum xc

2.0 -4.67 -5.12 -5.08

2.5 -5.33 -5.93 -5.92

3.0 -6.00 -6.67 -6.75

3.5 -6.67 -7.50 -7.58

TABLE I: Numerical evidence for the anomaly. The table shows the values of the wake slopes obtained by fitting numerical
data for a range of values of γ in the finite capacity regime. These are to be compared to the K-Z values and the values of the
critical slope obtained from equation (8) : xc = xKZ + (2γ − 3α)/12α.
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FIG. 4: Log-log plot showing the initial stages of relaxation to the K-Z slope after the front reaches ωR. Parameter values are
γ = 7/2, α = 1/2 and d = 1. The absolute value of the local slope is plotted as a function of frequency for three different times,
just before t∗, approximately at t∗ and after t∗. There is a clear transition from the steeper slope, xc, to the shallower xKZ .

the initial energy distribution. We have not, in the present work, made any systematic attempt to understand this
aspect of the problem.

The next obvious question is that of how the system makes the transition from this quasi-steady anomalous regime
to the K-Z spectrum which we know to be the final steady state. For finite capacity systems this transition begins
once the front reaches infinity. Clearly we cannot easily treat the divergence of the front numerically. Instead we allow
the front to propagate into a regime of strong damping to the right of the window of transparency. This damping
region is intended to mimic the energy sink role provided by the point ω = ∞. Figure 4 shows the local slope of nω

for successive times after the front reaches the dissipation region. The results of Figure 4 are for γ = 3.5 where there
is a significant difference of about 0.9 between the anomalous slope and the K-Z slope. We see that the system begins
to relax towards the K-Z spectrum as soon as the dissipation scale is reached. Notice that the relaxation is occurring
from right to left.

Another issue which is crucial to our explanation of the finite capacity anomaly is the structure of the front itself.
From our numerical simulations we found that the front tip seems to be “sharp” in the sense that the spectral wave
action density remains on compact support during the time evolution. Such sharp fronts have been known to exist
in solutions of certain classes of nonlinear diffusion equations dating back to the work of Zel’dovich in the 50’s. [16]
Subsequent work by Lacey et al. [1] showed that such fronts can be stationary, moving or exhibit waiting time
behaviour where the tip remains stationary for a finite time before beginning to move.

Let us suppose that our system possesses a sharp tip located at ω∗(t) and

n(ω, t)

{

= 0 for ω ≥ ω∗(t)

> 0 for ω < ω∗(t).

To the left of ω∗(t), we look for a solution of equation (13) in the form of a power series,

n(ω, t) = A(t)
∑

i

ai(ω
∗(t) − ω)mi , (35)

where the constants ai and the exponents mi are to be determined by expanding equation (13) around ω = ω∗(t) and
substituting this representation for n(ω, t). The leading order term on the LHS is

Aω∗
d
α
−1m0a0(ω

∗ − ω)m0−1 dω∗

dt
. (36)

The leading order term on the RHS is

A3ω∗sm0(m0 + 1)(3m0 − 2)(3m0 − 3)a3
0(ω

∗ − ω)3m0−4. (37)
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FIG. 5: Inset shows a detailed view of the structure of the front tip seen in the evolution of a finite capacity spectrum. The
parameter values are γ = 7/2, α = 1/2 and d = 1. The line is a least squares fit of the numerical data to the functional form
n(ω) ∼ A(ω∗

− ω)c as suggested by equation (39). The fitted value of c is 1.52.

Comparing powers of ω∗ − ω immediately yields m0 = 3/2. We cannot fix the time dependence although we get the
following relation between A(t) and ω∗(t),

ω∗(t)
d
α
−1 dω∗

dt
= A2(t)ω∗(t)s, (38)

after choosing a−2
0 = (m0 + 1)(3m0 − 2)(3m0 − 3). The presence of a sharp tip and the structure

n(ω, t) ∼ A(t)a0(ω
∗(t) − ω)3/2, (39)

immediately behind the tip is well supported by our numerical simulations as shown in figure 5.

IV. SELF-SIMILAR SOLUTIONS OF THE DIFFERENTIAL KINETIC EQUATION

To study non-stationary solutions of (13) analytically, make the following self-similarity ansatz for the form of the
solution,

nω(t) = ω∗(t)−x F (η), (40)

where the self-similar variable, η, is defined by

η =
ω

ω∗(t)
. (41)

Under this change of variables the derivatives transform according to the relations,

∂

∂t
= ω̇∗

(

∂

∂ω∗
− ηω∗−1 ∂

∂η

)

(42)

∂

∂ω
= ω∗−1 ∂

∂η
, (43)

and equation (13) can be rewritten as

A η
d
α
−1

(

−xF − η
dF

dη

)

=
d2

dη2

(

ηsF 4 d2

dη2

(

1

F

))

, (44)
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where

A = ω̇∗ ω∗2x+d/α−3x0 . (45)

Here x0 = (2γ + 3d)/3α is the exponent of the K-Z energy spectrum. The free parameter, x, is the asymptotic slope
of the spectrum far behind the front. This is because we assume that there exists a quasi-stationary regime far behind
the front, which is a simple power law to leading order, nw ∼ ω−y. We must therefore have y = x in order to cancel
the time dependence from the leading order part of (40).

For a self-similar solution, A must be time independent. We are interested in situations where the system has finite
energy capacity and generates a singularity within a finite time which we shall denote by t∗. The appropriate solution
of (45) describing such situations is

ω∗(t) = (t∗ − t)b. (46)

It is convenient to define

κd =
2γ − 3α

3α
. (47)

The direct cascade has infinite energy capacity for κd < 0 and finite energy capacity for κd > 0. Upon substitution of
the form (46) into (45) it follows that

b = (2(x − x0) − κd)
−1

(48)

A = −b (49)

We can also define

κi =
2γ − α

3α
, (50)

such that the inverse cascade has infinite particle capacity for κi > 0 and finite particle capacity for κi < 0. Equation
(48) can be written in the equivalent form

b = (2(x − x0 + 1/3) − κi)
−1

(51)

which is more appropriate for studying the inverse cascade. Notice that the speed of propagation of the front at ω∗,
as measured by b, is related to the asymptotic slope, x, behind the front.

If we are interested in the direct cascade then ω∗ → ∞ as t → t∗. This corresponds to b < 0. Conversely, for the
inverse cascade, ω∗ → 0 as t → t∗, corresponding to b > 0.

Upon substitution of (48) and (49) into (44) we obtain

(2(x − x0) − κd)
−1 η−1+d/α

(

xF + η
dF

dη

)

=
d2

dη2

(

ηsF 4 d2

dη2

(

1

F

))

. (52)

Let us now consider the structure of the front tip in the self-similar variables. From our numerical simulations we
expect that there is a singularity in the solution as η → 1. For the direct cascade, we look for a singularity of the form
(1− η)m, approaching from the left. For the inverse cascade we expect a singularity of the form (η− 1)m approaching
from the right. Let us restrict our attention to the direct cascade.

Consider an expansion of the solution to the left of η = 1 in the form

F (η) = (1 − η)m
∞
∑

n=0

an(1 − η)n (53)

Taylor expand equation (44) to the left of η = 1 and substitute this expansion for F . Matching of the leading order
divergences fixes m = 3/2. In principle the coefficients, an, can be computed to arbitrary order by matching powers
of 1 − η. The first few of them, computed using Mathematica, are

a0 =
2

5

√

2

3

√
−b (54)

a1 =

√
−b

27
√

6 α
(−3 d + 7α s − 2α x) (55)

a2 =

√
−b

1075032
√

6 α2

(

18405 d2 − 6α d (4860 + 7931 s − 3490x)

+ α2
(

47117 s2 − 20x (1944 + 359x) − 28 s (−4374 + 833x)
))

(56)
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FIG. 6: Application of the similarity transformation, (40), to the direct cascade at three consecutive times We take a range
of values for the parameter x. Graph A takes x = 7.66, graph B takes x = 7.48, graph C takes x = 7.25. The self-similarity
of the direct cascade and the front tip is evident from graph B. For reference, graph D takes x = 6.66, corresponding to K-Z
scaling, and uses a log plot to display the entire function F (η). It is clearly not self-similar for this value of x.

So far, the slope behind the front, x, or equivalently by (48), the front speed, b, is a free parameter in the similarity
transformation. We wish to understand how the system picks the particular value for this parameter. If we are to
observe the Kolmogorov-Zakharov slope behind the front then b must have the value

bKZ = −1/κd, (57)

which follows from putting x = x0 in equation (48). In section III we presented numerical evidence that the slope
behind the front was anomalous. We can also confirm this anomaly and check the correctness of the self-similarity
argument outlined in this section by applying the transformations (40), (41) to the solution of the PDE. In figure 6 we
have taken a particular solution of (13) at a number of successive times and applied the similarity transformation for
a selection of values of the free parameter x. The data presented is for the case α = 1/2, d = 1 and γ = 7/2. It is clear
that the direct cascade is self-similar for x = 7.48 approximately. This is to be compared with the theoretical prediction
xc = 7.56. The corresponding transformation with K-Z value, x = 6.66 in this case, is clearly not self-similar.

The behaviour of the solution of the equation for the spectrum after the singular time, t∗, is an interesting question.
Let us consider what could be called the “bouncing back” of the spectrum from infinity after t = t∗. Our considerations
are inspired by [9]. Exactly at t = t∗ the spectrum becomes a pure power law, ω−xc , at large frequencies. This can be
understood as follows: any finite value of ω, however large, is in the wake part of the self-similar solution when t = t∗.
This wake is a pure power spectrum. Therefore at t = t∗, we have a well defined initial condition for the evolution
equation.

This spectrum is not a stationary solution (neither K-Z nor equilibrium) of the evolution equation. The subsequent
evolution should follow the same principles as just before t = t∗: the large frequency part of the spectrum has a
typical timescale which goes to zero as ω → ∞. This timescale is the timescale for relaxation to a stationary K-Z
spectrum with constant energy flux. Although the amplitude of this spectrum itself changes in the course of time, it
does so more and more slowly after t = t∗ so that the changes induced in the K-Z spectrum by the change of energy
flux become adiabatic relative to the infinitely short timescale for the large frequency evolution. This justifies our
consideration of the large time spectrum as a K-Z spectrum although it is not strictly speaking stationary in time.

Let assume now that the bouncing back of the K-Z spectrum from infinity is described by the same self-similar
equation as before t = t∗. One boundary condition is now different. The support of the self-similar spectrum now
goes from zero to infinity and as ω → ∞, nω ∼ ω−x0 with x0 being the K-Z exponent. Near small frequencies on
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this stretched scale, the spectrum keeps the same power behaviour as before t = t∗ since the timescale there is long
compared to the timescale t∗ − t at the high frequency end. We expect that arguments which we shall present in
section A are relevant here too, with the corresponding solution of the self-similar equation being unique and the free
parameter required to adjust the trajectory reaching the low frequency behaviour along the stable manifold being the
amplitude of the K-Z spectrum at infinity. The solution of the self-similar equation should then specify the shape
of the “bend” in the spectrum seen in figure 4 and its time evolution will be then given be the same scaling of the
frequencies in the similarity representation of the dynamical equations as we used before t = t∗. Some further work
will be required to make these statements more concrete.

V. DERIVATION OF THE ANOMALOUS SPECTRUM FROM THE CRITICAL FRONT SPEED

HYPOTHESIS

In this section we present a heuristic derivation of the formula (8) promised in the introduction. The program is as
follows. We first calculate the energy balance in the neighbourhood of the front tip. We will find that the condition
that energy is conserved by the motion of the tip is equivalent to the condition, (45), that the solution be self similar.
Next we calculate the amount of energy, E(t1, t2), which enters the the frequency interval [ω∗(t1), ω

∗(t2)] immediately
behind the tip in the time interval [t1, t2]. The critical front speed hypothesis is the following : the physical system

selects the unique value of the front speed such that limt2→t∗ E(t1, t2) is finite and nonzero for all t1 < t∗.
The basic energy balance equation for the front tip is as follows

∫ t2

t1

∫ ω∗(t2)

ω∗(t1)

(

∂E

∂t
+

∂P

∂ω

)

dω dt = 0 (58)

This can be expanded to read

∫ ω∗(t2)

ω∗(t1)

(E(ω, t2) − E(ω, t1)) dω = −
∫ t2

t1

(P (ω∗(t2), t) − P (ω∗(t1), t)) dt (59)

We observe that E(ω, t1) = 0 since ω∗(t1) < ω and P (ω∗(t2), t) = 0 since ω∗(t) < ω∗(t2). Hence we obtain the
fundamental balance equation for the front tip,

∫ ω∗(t2)

ω∗(t1)

E(ω, t2) dω =

∫ t2

t1

P (ω∗(t1), t) dt. (60)

Let us now calculate P and E near the front tip using the expansion (53) but keeping only the leading order term :

F (η) = a0(1 − η)3/2 + O((1 − η)5/2).

In terms of ω and t,

n(ω, t) = a0ω
∗(t)−x−3/2(ω∗(t) − ω)3/2 + O((ω∗(t) − ω)5/2).

We substitute this expression for nω(t) into equations (24) and (23) and keep only the leading power of ω∗(t) − ω.
For the energy, we obtain

E(ω, t) = Ωd a0 ω∗(t)−x−3/2 ωd/α (ω∗(t) − ω)
3/2

+O((ω∗(t) − ω)5/2). (61)

For the flux we obtain

P (ω, t) =
75

8
a3
0 ω3x0+3 ω∗(t)−3x−9/2 (ω∗(t) − ω)

3/2

+O((ω∗(t) − ω)5/2). (62)

In both these expressions we can write powers of ω as ωy = (ω∗(t) − (ω∗(t) − ω))y and perform a Taylor expansion
in (ω∗(t) − ω). Since we are keeping only terms to leading order in (ω∗(t) − ω), we can consistently replace ωy with
ω∗(t)y to yield the following expressions:

E(ω, t) = Ωd a0 ω∗(t)−x−3/2+d/α (ω∗(t) − ω)
3/2

+O((ω∗(t) − ω)5/2). (63)
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P (ω, t) =
75

8
a3
0 ω∗(t)3(x0−x)−3/2 (ω∗(t) − ω)

3/2

+O((ω∗(t) − ω)5/2). (64)

We now substitute these expressions into (60) and perform the integrals to leading order. Let us first consider the
LHS:

∫ ω∗(t2)

ω∗(t1)

E(ω, t2)dω = Ωd a0

∫ ω∗(t2)

ω∗(t1)

ω∗(t2)
−x−3/2+d/α (ω∗(t2) − ω)

3/2
dω + h.o.t.

=
2

5
Ωdω

∗(t2)
−x−3/2+d/α (ω∗(t2) − ω∗(t1))

5/2
+ h.o.t. (65)

Now consider the RHS:
∫ t2

t1

P (ω∗(t1), t) dt =
75

8
a3
0

∫ t2

t1

ω∗(t)3(x0−x)−3/2 (ω∗(t) − ω∗(t1))
3/2

dt + h.o.t.

Let us change integration variables t → ω∗(t):

=
75

8
a3
0

∫ ω∗(t2)

ω∗(t1)

ω∗(t)3(x0−x)−3/2 (ω∗(t) − ω∗(t1))
3/2

(

dω∗

dt

)−1

dω∗ + h.o.t.

We now use the self-similarity condition, (45), to express the derivative in terms of ω∗(t) and perform the Taylor
expansion trick again: for some power, y, we write : ω∗(t)y = (ω∗(t1) + (ω∗(t) − ω∗(t1)))

y = ω∗(t1)
y + h.o.t. This

gives

=
75

8
a3
0ω

∗(t1)
3(x0−x)−3/2 ω∗(t1)

−(3x0−2x−d/α)

∫ ω∗(t2)

ω∗(t1)

(ω∗ − ω)
3/2

dω∗ + h.o.t.

=
75

8
a3
0ω

∗(t1)
3(x0−x)−3/2

(

dω∗

dt1

)−1
2

5
(ω∗(t2) − ω∗(t1))

5/2
+ h.o.t.

(66)

Equating (65) and (66) and letting t1 → t2, we obtain energy balance criterion

dω∗

dt
ω∗2x−3x0+d/α = 1 (67)

which is equivalent to the self-similarity condition that (45) be time independent.
Now suppose we take t2 − t1 to be small but finite and allow t2 → t∗. It is clear that the energy flux, (66), entering

the region [ω∗(t1), ω
∗(t2)] in this last increment of time before the front reaches infinity is either infinite, a finite

quantity, or zero. Our hypothesis is that the flux is finite. It certainly cannot be infinite since the entire system has
finite energy. It seems unreasonable that it should be zero since the front presumably requires a supply of energy to
continue moving. A finite value for the integrated flux requires that the power of ω(t2) in (65) is zero. This hypothesis
leads to a unique value for the slope, which we shall denote by xc. From (65):

2

5
Ωdω

∗(t2)
−x−3/2+d/α (ω∗(t2) − ω∗(t1))

5/2
+ h.o.t.

= Ωdω
∗(t2)

−x−3/2+d/α

(

dω∗

dt2

)
5

2 2

5
(t2 − t1)

5

2 + h.o.t. (68)

= ω∗(t2)
−6(x−x0−

2γ−3α
12α ) Ωd

2

5
(t2 − t1)

5

2 + h.o.t.. (69)

In order that this remain finite but non-zero as ω∗(t2) → ∞, we require

x = xc = x0 +
2γ − 3α

12α
(70)

The physical intuition behind this hypothesis is the following. If x > xc, the front speed is slower than the critical
value. The power in (69) is positive and the energy in the tip diverges as ω∗(t2) → ∞. The front is moving too slowly
for the amount of flux flowing into it so that energy begins to pile up at the tip. On the other hand, if x < xc, the
front moves faster than the critical value. Then energy in the tip decays to zero as ω∗(t2) → ∞ which means that the
front is moving too fast for the amount of energy supplied to it. Physically we expect that the former situation would
tend to speed up the front and the latter would tend to slow it down thus providing the system with a self-regulatory
mechanism which selects the marginal slope, xc.
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VI. CONCLUDING REMARKS

From the work presented here, we are beginning to get a clearer understanding of how the K-Z spectrum is set
up in this model and the origins of the anomalous spectrum in the wake. The most obvious and important question
which we have not addressed at all here is that of whether any of this analysis is relevant for the full kinetic equation,
(1). It seems unlikely that the detailed structure of the nonlinear front would carry over to the integral version of the
kinetic equation. Indeed, it is difficult to see how a sharp front tip could co-exist with the k-space integrations on the
RHS of (1).

Nevertheless, anomalous behaviour has been observed [6] in numerical simulations of the full three-wave kinetic
equation as already mentioned. This gives us reason to hope that some of the qualitative ideas contained here can
be extended to more general kinetic equations. In particular, if the dynamics of the front is indeed regulated by a
critical speed hypothesis of the type proposed in section V, then there is hope that an analogue can be formulated
even in the absence of a sharp tip.

One might also speculate that this mechanism might occur in the evolution of the Kolmogorov spectrum of hy-
drodynamic turbulence since the direct cascade in this case is also of finite energy capacity. Unfortunately, in the
absence of a closed kinetic equation for hydrodynamic turbulence it is not clear how one would even begin to address
this question from a mathematical point of view. Nevertheless, for the purpose of stimulating debate, let us make
the following conjecture. In far from equilibrium situations with stationary states which have finite capacity, the
evolution towards the stationary spectrum takes place in two stages. In the first stage, 0 < t < t∗, which is rapid, the
system attempts to close the connection with the dissipative sink at very high (or very low) wave-numbers. In that
stage, entropy production is positive as the system attempts to explore all the available phase space subject to the
constraint of energy conservation. The wake spectrum is steeper (shallower if the sink is at k = 0) than that of the
final stationary state. This slope is determined by the requirement that a finite amount of energy per unit time is
delivered to the front tip at all times less that t∗. After t = t∗, energy is no longer conserved but entropy production
is still positive as the system now explores a larger volume of phase space. However, the entropy production now
decreases as a new front with the K-Z spectrum in its wake (between the front and k = ∞) moves towards lower
wave-numbers and invades the steeper spectrum set up during the first stage of evolution. While it may be difficult
to confirm these conjectures in a quantitative manner for the variety of situations to which we suggest these ideas
apply, it should not be too difficult to establish them (or prove them incorrect) qualitatively.
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Note Added in Proof

We have subsequently analysed a second order model equation whose structure is similar to that of the differential
kinetic equation studied in this paper but is analytically and numerically more tractable. We have found qualitatively
similar behaviour. However the value of the anomalous exponent appears to differ from that which would be predicted
by our critical front speed hypothesis.
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APPENDIX A: ANALYSIS OF THE SELF-SIMILARITY EQUATION AND THE CRITICAL FRONT

SPEED

In this appendix we shall analyse the similarity equation (44) further. We wish to check that it does indeed admit
solutions which reproduce the critical behaviour which we have ascribed to the solutions of its antecedent PDE in
section V. Specifically, we are interested in solutions which match the F (η) ∼ (1 − η)3/2 singularity at η = 1 to a
power law solution, F (η) ∼ η−x as η → 0.

Let us write (44) in the form

η−1+d/α

(

xF + η
dF

dη

)

= (2(x − x0) − κd)
d2

dη2

(

ηsF 4 d2

dη2

(

1

F

))

, (A1)

and look for solutions of the form F (η) = Aη−y. Substituting this form we obtain

(−y + x) η
d
α
−1−y = 3A2y(y − 1)(x0 − y)(3x0 − 3y − 1)

(2(x − x0) − κd) η3x0−3y−2 (A2)

We see that we can have the following solutions y = x where x takes one of the following values,

x = 0 (A3)

x = 1 (A4)

x = x0 (A5)

x = x0 − 1/3 (A6)

(A7)

The first pair are the thermodynamic spectra, the second pair are the K-Z energy and particle spectra respectively.
A fifth special value of y is

x = x0 + κd/2. (A8)

What we observe from numerical solution of the O.D.E. (A2), described below, is as follows. If we choose a value
of x which is not xc = x0 + κd/4, then the solution, η−x, makes a transition near η = 0 to the state η−y, where
y = x0 + κd/2. This behaviour near η = 0 balances the leading order divergences on both sides of equation (A2) as
η → 0. It might be noted, although it may have no relevance to the problem under consideration, that this value
for the exponent, y, leads to front dynamics, ω∗(t) = (t∗ − t)b with zero b. This spectrum was never observed in the
solutions of the P.D.E.

To find solutions of (44) which do not exhibit the x0 + κd/2 scaling as η → 0, we decided to perform a set of
numerical experiments. Let us write out the RHS explicitly so that we can see exactly the equation which we wish to
solve:

1

2(x − x0) − κd
η−1+ d

α

(

xF + η
dF

dη

)

= −ηsF 2 d4F

dη4
− 2sηs−1F 2 d3F

dη3
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+2ηsF

(

d2F

dη2

)2

+ 8ηs

(

dF

dη

)

d2F

dη2
(A9)

+4sηs−1

(

dF

dη

)3

+ 4sηs−1F
dF

dη

d2F

dη2

+2s(s − 1)ηs−2F

(

dF

dη

)

− s(s − 1)ηs−2F 2 d2F

dη2

The problem with integrating (A9) on a computer is that for generic initial conditions, the strong power law depen-
dences of the right hand side on the independent variable render the numerics very susceptible to round-off error and
numerical instability. For example, to study the system with γ = 7/2, α = 1/2, d = 1, to which we gave a lot of
consideration in section III due to its relatively large anomaly, we are required to take 3x0 + 2 = 22.

To get around this difficulty, and to aid visualisation of the global properties of the equation, we make the following
change of variables :

F (η) = ηaf(τ)

dF

dη
= ηa−1g(τ) (A10)

d2F

dη2
= ηa−2h(τ)

d3F

dη3
= ηa−3k(τ),

where τ = log(η). By choosing

a =
1

2

(

d

α
− s + 3

)

= −x0 −
κd

2
, (A11)

we can cancel all the power dependence from the system and eventually recast (A9) as the the following autonomous
fourth order system:

df

dτ
= g − af

dg

dτ
= h − (a − 1)g

dh

dτ
= k − (a − 2)h (A12)

f2 dk

dτ
= − 1

2(x − x0) − κd
(g + xf) − (a + 2s − 3)f2k + 2fh2

+8g2h + 4sg3 + 4sfgh + 2s(s − 1)fg2 − s(s − 1)f2h.

Only the region, f ≥ 0 makes physical sense since nω, and hence F , cannot be negative. This system is singular on
the hyperplane f = 0. This system is much easier to integrate numerically and has the added advantage that we can
determine the presence of fixed points which are not obvious in the original differential equation. Let us determine
these points. It is obvious that the RHS of (A12) has a trivial zero at (f, g, h, k) = (0, 0, 0, 0) = O but this is clearly a
singular point due to the factor of f2 on the LHS. A second pair of nontrivial (and nonsingular) fixed points can be
shown after quite a bit of algebra to exist at the points P± = (f0, af0, a(a − 1)f0, a(a − 1)(a − 2)f0), where

f0 = ± (18a(a + 1)(a + (s − 2)/3)(a + (s − 3)/3))
−

1

2 . (A13)

We are naturally only interested in the point P+ since P− lies in the negative f region. The factors (a + (s − 2)/3)
and (a + (s − 3)/3) are interesting for the following reason. If we substitute back in s = 3x0 + 2 and the value of a
from (A11), these two factors are simply −κd/2 and −κi/2 respectively. At the transition points between finite and
infinite capacity the fixed point runs away to infinity which suggests that it has a central role to play in organising
the critical solution in the finite capacity case.

Let us now look for a numerical solution of this system which mirrors the solutions of the differential kinetic
equation. All the simulations in this section were done using the transformed system, (A12), for which a standard
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out-of-the-box adaptive Runge-Kutta routine seemed to work fine. Suppose we want a solution for the wake of the
form F (η) ∼ η−x as η → 0. In the new variables this is equivalent to demanding

f(η) ∼ Aη−a−x

g(η) ∼ −xf(η)

h(η) ∼ x(x + 1)f(η)

k(η) ∼ −x(x + 1)(x + 2)f(η)

as η → 0 or as τ → ∞. If x < −a = x0 + κd/2, which is the case, then we observe that the wake is described by a
trajectory for which (f, g, h, k) → (0, 0, 0, 0) as τ → −∞. The wake is the singular point, O, of the system, (A12).
As we approach η → 1 we must reproduce the front structure described in section IV. Thus we require a trajectory
for which (f, g, h, k) → F as τ → 0, where F = (0, 0,∞,∞). We require a trajectory which links these two singular
points.

In our numerical simulations we rescaled the variables as follows,

f → f

f0

g → g

af0

h → h

a(a − 1)f0

k → k

a(a − 1)(a − 2)f0

This maps the point P+ → (1, 1, 1, 1) for ease of visualisation. The only difference is that since a < 0, the signs of
g and k are swapped so that the wake part of the solution must now approach O from the direction (0+, 0+, 0+, 0+)
and the front tip, F , is now at (0+, 0+,∞,−∞).

It turns out to be difficult to find a trajectory linking F → O. We performed a series of experiments integrating
backwards from 1 − η = ε, with ε << 1, towards η = 0. Because we cannot specify initial data exactly at the
singular point, F , we were required to manually tune the initial conditions quite a bit in order to to reproduce the
F (η) ∼ (1 − η)3/2 structure near the tip. The remaining adjustable parameter is the equation is x. We again choose
to study the case γ = 7/2, α = 1/2, d = 1. Two generic types of trajectory emerge as we vary x. We visualise these
trajectories in 4 dimensional phase space as a pair of projections of the actual trajectory onto the (f, g) and (h, k)
planes respectively, hence the apparent intersections.

FIG. 7: Trajectory in (f, g, h, k) space for x = 7.56275, which is less than the critical value.

Figure 7 shows what happens when x is slightly less than xc. The trajectory leaves the front tip and heads towards
the fixed point, P , but deflects to the right and is quickly attracted onto the line corresponding to F (η) ∼ η−x0−κd/2.
Figure 8 shows the corresponding trajectory when x is slightly greater than xc. This time the trajectory deflects to
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FIG. 8: Trajectory in (f, g, h, k) space for x = 7.56975, which is greater than the critical value.

FIG. 9: Trajectory in (f, g, h, k) space for x = 7.56875 ≈ xc. Since it is impossible to specify the data exactly, if we integrate
for long enough in τ this trajectory eventually deflects away from O.

the left as it approaches the fixed point, P , and is attracted towards the singular point, O. Before it reaches there
however, it is deflected and is rapidly attracted back onto the F (η) ∼ η−x0−κd/2 solution again. The transition point
between these two trajectories is illustrated in figure 9. Further analysis is required to determine the exact nature of
the critical trajectory. It is not clear whether it will eventually deflect away from O for sufficiently small η. Of course,
in practical terms there is a limit placed on the extent of the scaling region by the left boundary of the inertial range
which cannot extend all the way to 0 in a real experiment.

The system is very sensitive to the value of x. The values of x for the trajectories shown differ only in the
fourth decimal place. In figure 10, the form of the function F (η) is shown for the three cases discussed above, after
transforming back from the (f, g, h, k), τ variables. The integration was again done for the case γ = 7/2, α = 1/2,
d = 1. Despite the small difference in the values of x in the equation the difference in asymptotic slopes is 7.56 for
the critical slope versus 8.5 for the other two.
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FIG. 10: Plots of the F (η) associated with the trajectories in figures 7, 8 and 9 after converting from the (f, g, h, k) and τ
variables back to F and η variables. The scales are log-log.

APPENDIX B: OUTLINE OF NUMERICAL METHODS

In order to study how the K-Z spectrum is set up from some given initial condition we wrote some code to solve
(13) numerically. In this appendix we briefly outline the approach used. Write equation (13) in the form

∂nω

∂t
= f [nω]

∂4nω

∂ω4
+ g [nω]

∂3nω

∂ω3
+ h [nω] + F [nω] − ν [nω] , (B1)

where

f [nω] = −Λ−1
ω ωsn2 (B2)

g [nω] = −2Λ−1
ω sωs−1n2 (B3)

h [nω] = Λ−1
ω

{

ωs

(

2n

(

∂2n

∂ω2

)2

+ 8

(

∂n

∂ω

)2
∂2n

∂ω2

)

+2sωs−1

(

2

(

∂n

∂ω

)3

+ 2n
∂n

∂ω

∂2n

∂ω2

)

+s(s − 1)ωs−2

(

2n

(

∂n

∂ω

)2

− n2 ∂2n

∂ω2

)}

(B4)

Λω =
Ωk

α
ω

d
α
−1 (B5)

s = 3x0 + 2. (B6)

We are now including forcing and damping terms, F [nω] and ν [nω] which can be chosen as appropriate. We performed
the following implicit time discretisation,

nω(t + ∆t) − nω(t)

∆t
= f [nω(t)]

∂4nω(t + ∆t)

∂ω4
+ g [nω(t)]

∂3nω(t + ∆t)

∂ω3

+h [nω(t)] + F [nω(t + ∆t)] − ν [nω(t + ∆t)] , (B7)

with the aim of enhancing the stability of the higher order derivatives. This can be rearranged to yield a time stepping
algorithm in the form

nω(t + ∆t) = L−1 [nω(t)] B [nω(t)] , (B8)
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where

L [nω] = 1 + ∆t f [nω]
∂4

∂ω4
+ ∆t g [nω]

∂3

∂ω3
(B9)

B [nω] = nω + ∆t h [nω] + ∆t F [nω] . (B10)

The time evolution operator, L [nω], and source, B [nω], are approximated using centred difference representations for
the derivatives and a standard linear solver used to perform the inversion at each time-step. Implementing consistent
boundary conditions is a tricky task. For all of the simulations presented here, the equation was solved from a
compactly supported initial condition either in a frequency interval sufficiently large that the solution does not reach
the boundary within the time allotted or with the damping chosen sufficiently strong to prevent the solution from
ever reaching the boundary.

Most of the simulations presented here are of a freely decaying initial energy distribution so F [nω] = 0. The damping
was chosen to be zero over most of the interval but increasing strongly for ω < ωL and ω > ωR to produce regions
of strong dissipation at large and small scales. We typically used approximately 10 grid points per unit frequency
interval in our discretisation. The simulations presented here used up to 20000 grid-points. The number of grid
points is practically limited by the fact that one must recompute and invert the time evolution operator, (B9), at each
time-step. Lacking any reliable stability criteria for the nonlinear discretisation scheme described above, the choice of
time-step was essentially made by trial and error. Once a time-step was found for which the evolution seemed stable,
we ran with it. We were aided in choosing this time-step by monitoring the two conservation laws associated with the
total energy and total particle number. Typically, and unsurprisingly, the numerics become unstable most easily at
the front tip. This instability is worse for steeper spectra when the front travels faster. The necessity of reducing the
time-step to resolve this structure as the tip increases in speed also put practical limits on the time interval we could
simulate for. Retrospectively, we would like to do the numerics using an adaptive grid which tracks the front. Such
a method would probably yield great increases in efficiency and stability. Unfortunately at the outset, we did not
really appreciate that the code would be required to tackle this problem. We settled for validating our computations
by checking that our final results remained unchanged when the time-step was reduced by a factor of two.


