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Abstract: We associate to certain symmetric or antisymmetric functions
on the set

( E
d+1

)

of (d + 1)−subsets in a finite set E an equivalence relation
on E and study some of its properties.

1 Definitions and main results

We consider a finite set E and denote by
(E

d

)

the set of subsets containing
exactly d elements of E. In the sequel we move often freely from sets to
sequences: we identify a subset {x1, . . . , xd} ∈

(E
d

)

with the finite sequence
(x1, . . . , xd) where the order of the elements is for instance always increasing
with respect to a fixed total order on E.

A function ϕ :
(E

d

)

−→ R is symmetric if

ϕ(x1, . . . , xi, xi+1, . . . , xd) = ϕ(x1 . . . , xi−1, xi+1, xi, xi+1, . . . , xd)

for 1 ≤ i < d and all {x1, . . . , xd} ∈
(E

d

)

.

Similarly, such a function ϕ :
(E

d

)

−→ R is antisymmetric if

ϕ(x1, . . . , xi, xi+1, . . . , xd) = −ϕ(x1 . . . , xi−1, xi+1, xi, xi+2, . . . , xd)

for 1 ≤ i < d and all x1, . . . , xd ∈ E.
ϕ is generic if ϕ(x1, . . . , xd) 6= 0 for all subsets {x1, . . . , xd} ∈

(E
d

)

of d

distinct elements in E.
In the sequel of this paper all functions will be generic. We will mainly

be concerned with sign properties of generic symmetric or antisymmetric
functions: Given any symmetric generic function σ :

(E
d

)

−→ R>0 and

a symmetric or antisymmetric generic function ϕ :
(E

d

)

−→ Rd, the two
functions

(x1, . . . , xd) 7−→ ϕ(x1, . . . , xd)

and
(x1, . . . , xd) 7−→ σ(x1, . . . , xd)ϕ(x1, . . . , xd)

1



behave similarly with respect to all properties adressed in this paper.
We have also an obvious sign rule: symmetric or antisymmetric func-

tions on
(E

d

)

behave with respect to multiplication like the elements of the
multiplicative group {±1} with symmetric functions corresponding to 1 and
antisymmetric functions corresponding to −1.

We fix now a generic symmetric or antisymmetric function ϕ :
( E
d+1

)

−→

R. Consider two elements a, b ∈ E. A subset {x1, . . . , xd} ∈
(E\{a,b}

d

)

not
containing a and b separates a from b with respect to ϕ if

ϕ(x1, . . . , xd, a) ϕ(x1, . . . , xd, b) < 0

(this definition is of course independent of the particular linear order (x1, . . . , xd)
on the set {x1, . . . , xd}).

We denote by n(a, b) = nϕ(a, b) the number of subsets in
(E\{a,b}

d

)

sepa-
rating a from b (with respect to the function ϕ).

Proposition 1.1 (i) If ϕ :
( E
d+1

)

−→ R is symmetric and generic then

n(a, b) + n(b, c) + n(a, c) ≡ 0 (mod 2)

for any subset {a, b, c} of 3 distinct elements in E.
(ii) If ϕ :

( E
d+1

)

−→ R is antisymmetric and generic then

n(a, b) + n(b, c) + n(a, c) ≡

(

](E) − 3

d − 1

)

(mod 2)

for any subset {a, b, c} of 3 distinct elements in E.

Proof. Consider first a subset {x1, . . . , xd} not intersecting {a, b, c}.
Such a subset separates no pair of elements in {a, b, c} if

ϕ(x1, . . . , xd, a), ϕ(x1, . . . , xd, b) and ϕ(x1, . . . , xd, c)

all have the same sign. Otherwise, consider a reordering {a′, b′, c′} = {a, b, c}
such that ϕ(x1, . . . , xd, a

′) ϕ(x1, . . . , xd, b
′) < 0 and ϕ(x1, . . . , xd, a

′) ϕ(x1, . . . , xd, c
′) <

0. The subset {x1, . . . , xd} contributes in this case 1 to n(a′, b′), n(a′, c′) and

0 to n(b′, c′). Such a subset {x1, . . . , xd} ∈
(E\{a,b,c}

d

)

yields hence always an
even contribution (0 or 2) to the sum n(a, b) + n(a, c) + n(b, c).

Consider now a subset {x1, . . . , xd−1} ∈
(E\{a,b,c}

d−1

)

. We have to under-
stand the contributions of the sets

{x1, . . . , xd−1, c} to n(a, b) ,

{x1, . . . , xd−1, b} to n(a, c) ,

{x1, . . . , xd−1, a} to n(b, c) .
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Since the product of the six factors

ϕ(x1, . . . , xd−1, c, a) ϕ(x1, . . . , xd−1, c, b)
ϕ(x1, . . . , xd−1, b, a) ϕ(x1, . . . , xd−1, b, c)
ϕ(x1, . . . , xd−1, a, b) ϕ(x1, . . . , xd−1, a, c)

is always positive (respectively negative) for a generic symmetric (respec-
tively antisymmetric) function, such a subset {x1, . . . , xd−1} yields an even
contribution to n(a, b) + n(a, c) + n(b, c) in the symmetric case and an odd
contribution in the antisymmetric case.

Proposition 1.1 follows now from the fact that
(E\{a,b,c}

d−1

)

has
(](E)−3

d−1

)

elements. 2

Given a generic symmetric or antisymmetric function ϕ :
( E
d+1

)

−→ R

on some finite set E we set x ∼ y if either x = y ∈ E or if

n(x, y) ≡ 0 (mod 2) for symmetric ϕ

respectively

n(x, y) ≡

(

](E) − 3

d − 1

)

(mod 2) for antisymmetric ϕ .

We call the relation ∼ defined in this way on the set E the Orchard relation.

Theorem 1.2 The Orchard relation is an equivalence relation having at
most two classes.

Proof. Reflexivity and symmetry are obvious. Transitivity follows easily
from Proposition 1.1.

If a 6∼ b and b 6∼ c then n(a, b) + n(b, c) is even. It follows then from
Proposition 1.1 that a ∼ c. 2

Example. A tournament is a generic antisymmetric function
( E
1+1

)

−→
{±1}. It encodes for instance orientations of all edges in the complete graph
with vertices E and can be summarized by an antisymmetric matrix A with
coefficients in {±1}.

Given such a matrix A with coefficients ai,j , 1 ≤ i, j ≤ n, we have

nA(i, j) =
n − 2 −

∑

k aikajk

2
.

This implies i ∼A j if and only if

∑

k

aikajk ≡ n (mod 4)

for i 6= j. In the language of tournaments (cf. for instance [4]), this result
can be restated in terms of score vectors: Two elements i and j are Orchard
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equivalent if and only if the corresponding coefficients of the score vector
(counting the number of 1’s in line i respectively j) have the same parities.

Main Example. A finite set P = {P1, . . . , Pn} ⊂ Rd of n > d points
in real affine space Rd is generic if the affine span of any subset containing
(d + 1) points in P is all of Rd. Such a generic set P is endowed with a
generic antisymmetric function by restricting

ϕ(x0, . . . , xd) = det(x1 − x0, x2 − x0, . . . , xd − x0)

to
( P
d+1

)

. The Orchard relation partitions hence a generic subset P ⊂ Rd

into two (generally non-empty) subsets. Its name originates from the fact
that the planar case (d = 2) yields a natural rule to plant trees of two
different species at specified generic locations in an orchard, see [1] and [2].

Proposition 1.3 Given a finite set E let ϕ and ψ be two generic symmetric
or antisymmetric functions on

( E
d+1

)

.
(i) If the numbers

ϕ(x0, . . . , xd) ψ(x0, . . . , xd)

have the same sign for all {x0, . . . , xd} ∈
( E
d+1

)

then the two Orchard rela-
tions ∼ϕ and ∼ψ induced by ϕ and ψ coincide.

(ii) If there exists exactly one subset F = {x0, . . . , xd} ∈
( E
d+1

)

such
that

ϕ(x0, . . . , xd) ψ(x0, . . . , xd) < 0

then the restrictions of ∼ϕ and ∼ψ to the two subsets F and E \F coincide
but a ∼ϕ b ⇐⇒ a 6∼ψ b for a ∈ F and b ∈ E \ F .

We call two symmetric or antisymmetric functions ϕ and ψ satisfying
the condition of assertion (ii) above flip-related. Coulouring the equiva-
lence classes of an Orchard relation with two distinct coulours, one can
express assertion (ii) by the statement that changing a generic (symmetric
or antisymmetric) function by a flip switches the coulours in the flip-set
F = {x0, . . . , xd} and leaves the coulours of the remaining elements un-
changed.

Assertion (i) shows that we can restrict our attention to symmetric or
antisymmetric functions from

( E
d+1

)

into {±1} when studying properties of
the Orchard relation.

Proof of Proposition 1.3. Assertion (i) is obvious.
For proving assertion (ii) it is enough to remark that the numbers nϕ(a, b)

and nψ(a, b) of separating sets (with respect to ϕ and ψ) are identical if either
{a, b} ⊂ F or {a, b} ⊂ E \F and they differ by exactly one in the remaining
cases. 2
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2 An easy characterisation in the symmetric case

In this section we give a different and rather trivial description of the Or-
chard relation in the symmetric case.

Given a generic symmetric function ϕ :
( E
d+1

)

−→ R on some finite set
E we consider the function

µ(x) = ]({{x1, . . . , xd} ∈

(

E \ {x}

d

)

| ϕ(x, x1, . . . , xd) > 0})

from E to N.

Theorem 2.1 Two elements x, y ∈ E are Orchard equivalent with respect
to ϕ if and only if µ(x) ≡ µ(y) (mod 2).

Proof. The result holds if ϕ is the constant function

ϕ(x0, . . . , xd) = 1

for all {x0, . . . , xd} ∈
( E
d+1

)

.
Given two generic symmetric functions ϕ, ψ related by a flip with respect

to the set F = {x0, . . . , xd} ∈
( E
d+1

)

we have

µϕ(x) = µψ(x)

if x 6∈ F and
µϕ(x) = µψ(x) ± 1

otherwise. Proposition 1.3 implies hence the result since any generic sym-
metric function can be related by a finite number of flips to the constant
function. 2

3 Reducing d

Let ϕ :
( E
d+1

)

−→ R be a generic symmetric or antisymmetric function.
Consider the function

Rϕ :

(

E

d

)

−→ R

defined by

Rϕ(x1, . . . , xd) =
∏

x∈E\{x1,...,xd}

ϕ(x, x1, . . . , xd) .

Rϕ is generic symmetric if ϕ is generic symmetric.
For ϕ generic antisymmetric, the function Rϕ is generic symmetric if

](E) ≡ d (mod 2) and Rϕ is generic antisymmetric otherwise.
Dependencies of the Orchard relations associated to ϕ and Rϕ are de-

scribed by the following result.
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Proposition 3.1 Let ϕ :
( E
d+1

)

−→ R be a generic symmetric or antisym-
metric function.

(i) If d ≡ 0 (mod 2) then the Orchard relation of Rϕ is trivial (i.e.
x ∼Rϕ y for all x, y ∈ E).

(ii) If d ≡ 1 (mod 2) then the Orchard relations ∼ϕ and ∼Rϕ coincide
on E.

The main ingredient of the proof is the following lemma.

Lemma 3.2 Let ϕ, ψ :
( E
d+1

)

−→ R be two generic symmetric or an-
tisymmetric functions which are flip-related with respect to the set F =
{x0, . . . , xd} ∈

( E
d+1

)

. Then

Rϕ(y1, . . . , yd) Rψ(y1, . . . , yd) < 0

if {y1, . . . , yd} ⊂ F and

Rϕ(y1, . . . , yd) Rψ(y1, . . . , yd) > 0

otherwise.

Proof of Lemma 3.2. If {y1, . . . , yd} 6⊂ F then ϕ(x, y1, . . . , yd) =
ψ(x, y1, . . . , yd) for all x ∈ E \ {y1, . . . , yd} and hence Rϕ(y1, . . . , yd) =
Rψ(y1, . . . , yd). Otherwise, exactly one factor of the product yielding Rψ(y1, . . . , yd)
changes sign with respect to the factors yielding Rϕ(y1, . . . , yd). 2

Proof of Proposition 3.1. We consider first the case where ϕ :
( E
d+1

)

−→ R is generic and symmetric.
Proposition 3.1 holds then for the constant symmetric application ϕ :

( E
d+1

)

−→ {1}.

Two generic symmetric functions ϕ, ψ on
( E
d+1

)

which are flip-related
with respect to F = {x0, . . . , xd} give rise to Rϕ and Rψ which are related
through d + 1 flips with respect to all d + 1 elements in

(F
d

)

by Lemma
3.2. Proposition 1.3 implies hence the result since an element of E \ F is
contained in no element of

(F
d

)

and since all elements of F are contained in
exactly d such sets.

Second case: ϕ :
( E
d+1

)

−→ R generic and antisymmetric. This case is
slightly more involved. As in the symmetric case, we prove the result for
a particular function ϕ and use the fact that flips of ϕ affect the Orchard
relation ∼Rϕ only for odd d. This shows that it is enough to prove that ∼Rϕ

is trivial for a particular function ϕ in the case of even d and that ∼Rϕ and
∼ϕ coincide (for a particular generic antisymmetric function ϕ) in the case
of odd d.

We consider now the set E = {1, . . . , n} endowed with the generic anti-
symmetric function ϕ :

( E
d+1

)

−→ {±1} defined by

ϕ(i0, . . . , id) = 1

6



for all 1 ≤ i0 < i1 < . . . < id ≤ n.
Each element of

(E\{i,i+1}
d−1

)

separates then i from i + 1 with respect to
the generic function Rϕ. We have indeed

Rϕ(j1, . . . , jd−1, i)

= ϕ(i + 1, j1, . . . , jd−1, i)
∏

j∈E\{j1,...,jd−1,i,i+1}

ϕ(j, j1, . . . , jd−1, i)

= −ϕ(i, j1, . . . , jd−1, i + 1)
∏

j∈E\{j1,...,jd−1,i,i+1}

ϕ(j, j1, . . . , jd−1, i + 1)

= −Rϕ(j1, . . . , jd−1, i + 1)

showing that the number nRϕ(i, i + 1) of sets separating i from i + 1 equals
(n−2
d−1

)

.
The proof splits now into four cases according to the parities of n and d.
If n ≡ d ≡ 0 (mod 2), then Rϕ is symmetric and

(n−2
d−1

)

is even (recall
that

(

∑

i=0 νi2
i

∑

i=0 κi2i

)

≡
∏

i

(

νi

κi

)

(mod 2)

for νi, κi ∈ {0, 1}, cf. for instance Exercice 5.36 in Chapter 5 of [3]). Since
nRϕ(i, i + 1) =

(n−2
d−1

)

is even for all i < n, the Orchard relation ∼Rϕ associ-
ated to the symmetric function Rϕ is trivial.

If n ≡ 1 (mod 2), d ≡ 0 (mod 2), then Rϕ is antisymmetric. We have
then

(n−3
d−1

)

≡ 0 (mod 2) and thus
(n−3
d−2

)

≡
(n−3
d−2

)

+
(n−3
d−1

)

=
(n−2
d−1

)

(mod 2)
which implies again the triviality of the Orchard relation ∼Rϕ since we have
nRϕ(i, i + 1) =

(n−2
d−1

)

≡
(n−3
d−2

)

(mod 2) which shows i ∼Rϕ (i + 1) for all i.

If n ≡ d ≡ 1 (mod 2) then Rϕ is symmetric. Since
(n−3
d−2

)

≡ 0 (mod 2)

we have
(n−2
d−1

)

=
(n−3
d−2

)

+
(n−3
d−1

)

≡
(n−3
d−1

)

(mod 2) proving that the Orchard
relations ∼ϕ and ∼Rϕ coincide.

If n ≡ 0 (mod 2), d ≡ 1 (mod 2), then Rϕ is antisymmetric. The
equality

(n−2
d−1

)

=
(n−3
d−2

)

+
(n−3
d−1

)

implies
(n−3
d−1

)

≡
(n−3
d−2

)

+
(n−2
d−1

)

(mod 2).
This shows hat the Orchard relations ∼ ϕ and ∼Rϕ coincide. 2

4 Homology

We recall that Rϕ :
(E

d

)

−→ R is defined by

Rϕ(x1, . . . , xd) =
∏

x∈E\{x1,...,xd}

ϕ(x, x1, . . . , xd)

for a given generic symmetric or antisymmetric function ϕ :
( E
d+1

)

−→ R.

Lemma 4.1 We have

R(Rϕ)(x1, . . . , xd−1) ∈ ε(
](E)−d+1

2 )R>0
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where ε = 1 if ϕ is generic and symmetric and ε = −1 if ϕ is generic and
antisymmetric.

Proof. Setting S = {x1, . . . , xd−1} we have

R(Rϕ)(x1, . . . , xd−1)
=

∏

y∈E\S Rϕ(y, x1, . . . , xd−1) =
∏

x 6=y∈E\S ϕ(x, y, x1, . . . , xd−1)

=
∏

{x,y}∈(E\S
2 ) ϕ(x, y, x1, . . . , xd−1)ϕ(y, x, x1, . . . , xd−1)

which is positive if ϕ is symmetric or if
(](E)−d+1

2

)

is even and negative
otherwise. 2

Writing as in the beginning [n] = {1, . . . , n}, the set {±1}(
[n]

d+1) (endowed
with the the usual product of functions) of all symmetric generic functions
( [n]
d+1

)

−→ {±1} is a vector space of dimension
( n
d+1

)

over the field F2 of
2 elements. The map R considered above defines group homomorphisms
between these vector spaces and the above Lemma allows to define homology
groups. These groups are however all trivial except for d = 0 since one
obtains the ordinary (simplicial) homology with coefficients in F2 of an
(n − 1) dimensional simplex.

5 Increasing d

This section is a close analogue of section 3.
Given a generic symmetric or antisymmetric function

( E
d+1

)

−→ R we

define a function Aϕ :
( E
d+2

)

−→ R by setting

Aϕ(x0, . . . , xd+1) =
d+1
∏

i=0

ϕ(x0, . . . , xi−1, xi+1, . . . , xd+1) .

The function Aϕ is generic symmetric if ϕ is symmetric. For ϕ antisym-
metric it is generic symmetric if d ≡ 0 (mod 2) and generic antisymmetric
otherwise.

The dependency between the Orchard relations ∼ϕ and ∼Aϕ for a generic
symmetric or antisymmetric function ϕ :

( E
d+1

)

−→ R is described by the
following result.

Proposition 5.1 Let ϕ :
( E
d+1

)

−→ R be a generic symmetric or antisym-
metric function.

The Orchard relation ∼Aϕ of Aϕ is trivial if ](E) ≡ d (mod 2). Oth-
erwise, the Orchard relations ∼ϕ and ∼Aϕ of ϕ and Aϕ coincide.

The main ingredient of the proof is the following lemma whose easy proof
is left to the reader.
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Lemma 5.2 Let ϕ, ψ :
( E
d+1

)

−→ R be two generic symmetric or an-
tisymmetric functions which are flip-related with respect to the set F =
{x0, . . . , xd}. Then

Aϕ(y0, . . . , yd+1) Aψ(y0, . . . , yd+1) > 0

if F 6⊂ {y0, . . . , yd+1} and

Aϕ(y0, . . . , yd+1) Aψ(y0, . . . , yd+1) < 0

otherwise.

Proof of Proposition 5.1. Lemma 5.2 shows that ∼Aϕ is independent
of ϕ if ](E) ≡ d (mod 2). Otherwise, the Orchard relations of ϕ and Aϕ

behave in a similar way under flips. Indeed, given ψ which is flip-related
with flipset F = {x0, . . . , xd} to ϕ the functions Aψ and Aϕ are related
through (](E)− (d+1)) flips with flipsets F ∪{x}, x ∈ E \F . Each element
of E \F is hence flipped once and each element of F is flipped ](E)− (d+1)
times.

Proposition 1.3 implies hence that ∼Aϕ is independent of ϕ if 1 ≡ ](E)−
(d + 1) and that ∼ϕ and ∼Aϕ behave similarly under flips otherwise. It is
hence enough to proof Proposition 5.1 in a particular case.

If ϕ is symmetric, then Proposition 5.1 clearly holds for the constant
application ϕ :

( E
d+1

)

−→ {1}.
In the antisymmetric case we set E = {1, . . . , n} and we consider the

generic antisymmetric function ϕ :
( E
d+1

)

−→ {±1} defined by

ϕ(i0, . . . , id) = 1

for all 1 ≤ i0 < i1 < . . . < id ≤ n. The function Aϕ :
( E
d+2

)

−→ {±1} is now
given by

Aϕ(i0, . . . , id, id+1) = 1

for all 1 ≤ i0 < i1 < . . . < id < id+1 ≤ n. The numbers nAϕ(i, i + 1) of

subsets in
(E\{i,i+1}

d+1

)

separating i from i + 1 are hence all 0 and we split the
discussion into several cases according to the parities of n = ](E) and d.

n ≡ d ≡ 0 (mod 2) implies Aϕ symmetric and hence ∼Aϕ trivial.
n ≡ 1 (mod 2), d ≡ 0 (mod 2) implies Aϕ symmetric and hence ∼Aϕ

trivial. Since then
(n−3
d−1

)

≡ 0 (mod 2) we have also ∼ϕ trivial.
n ≡ 0 (mod 2), d ≡ 1 (mod 2) implies Aϕ antisymmetric. We have

then
(n−3
d−1

)

+
(n−3

d

)

=
(n−2

d

)

≡ 0 (mod 2) proving equality of the two Or-
chard relations ∼ϕ and ∼Aϕ.

n ≡ d ≡ 1 (mod 2) implies Aϕ antisymmetric and
(n−3

d

)

≡ 0 (mod 2)
thus proving triviality of the Orchard relation ∼Aϕ. 2
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Remark 5.3 One sees easily that the function A(Aϕ) is strictly positive for
a generic symmetric or antisymmetric function ϕ :

( E
d+1

)

−→ R.
This allows the definition of cohomology groups on the set of generic

symmetric functions
( E
d+1

)

−→ {±1}. The resulting groups are of course
not interesting since this boils down once more to the cohomology groups
of the (](E) − 1)−dimensional simplex with coefficients in the field F2 of 2
elements.
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