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Abstract

The phase diagram of nuclear matter is quite rich - it shows such

phenomena as phase-transitions, formation of condensates, clustering,

etc. From the analysis of the spinodal instability, one can learn about

the region of liquid-gas coexistence in nuclear matter at low densi-

ties and finite isospin asymmetries. In a recent paper, we have shown

that asymmetric nuclear matter at sub-nuclear densities should un-

dergo only one type of instability. The associated order parameter is

dominated by the isoscalar density and so the transition is of liquid-

gas type. The instability goes in the direction of a restoration of the

isospin symmetry leading to a fractionation phenomenon.

The nuclear interaction is very similar to the Van der Waals potential
which acts between molecules. For this reason, below saturation density,
the nuclear interaction is also expected to lead to a liquid-gas phase transi-
tion [1]. Recently, a converging ensemble of experimental signals seems to
have established the phase transition. One is the spinodal decomposition [2]
which consider volume instabilities (domain of negative incompressibility).
One expect that the system which enter in such a forbiden region will fa-
vorably breakup into nearly equal-sized “primitive” fragments in relation to
the wavelengths of the most unstable modes [3]. How this simple picture is
modified by the asymmetry charge ? Can we expect new signals related to
the collision of very asymmetric nuclei ?
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1 Stability analysis

Let us consider asymmetric nuclear matter (ANM) characterized by a proton
and a neutron densities ρi = ρp, ρn. These densities can be transformed in
a set of 2 mutually commuting charges ρi = ρ1, ρ3 where ρ1 is the density of
baryons, ρ1 = ρn +ρp, and ρ3 the asymmetry density ρ3 = ρn−ρp. In infinite
matter, the extensivity of the free energy implies that it can be reduced to a
free energy density : F (T, V,Ni) = V F(T, ρi). The system is stable against
separation into two phases if the free energy of a single phase is lower than the
free energy in all two-phases configurations. This stability criterium implies
that the free energy density is a convex function of the densities ρi. A local
necessary condition is the positivity of the curvature matrix :

[Fij] =

[

∂2F
∂ρi∂ρj

|T
]

≡
[

∂µi

∂ρj

|T
]

(1)

where we have introduced the chemical potentials µj ≡ ∂F
∂Nj

|T,V,Ni
= ∂F

∂ρj
|T,ρi6=j

.

We represent in Fig. 1 the energy surface as a function of ρn and ρp, de-
duced from SLy230a Skyrme interaction [10]. In the symmetric case (ρn =
ρp), one can see the negative curvature of the energy which defines the spin-
odal area, whereas in pure neutron matter (ρp = 0), no negative curvature
and so no spinodal instability are predicted. We can also notice that the
isovector density dependence is almost parabolic illustrating the positivity of
F33.

We show in Fig. 2 several aspects of the spinodal contour defined as
the region where the matrix [Fij] is negative. In the left part is plotted the
spinodal contour in ANM for several forces. It exhibits important differences.
In the case of SLy230a force (as well as SGII, D1P), the total density at which
spinodal instability appears decreases when the asymmetry increases whereas
for SIII (as well as D1, D1S) it increases up to large asymmetry and finally
decreases. We observe that all forces which fulfill the global requirement
that they reproduce symmetric nuclear matter (SNM) equation of state as
well as the pure neutron matter calculations, leads to the same curvature of
the spinodal region. We can appreciate the reduction of the instability when
we go away from SNM. However, large asymmetries are needed to induce a
sizable effect. The temperature dependence of the spinodal contour can be
appreciated in the right part of Fig. 2. As the temperature increases the
spinodal region shrinks up to the critical temperature for which it is reduced
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Figure 1: This figure represents the energy surface as a function of the den-
sities ρn and ρp for the SLy230a interaction. The contour delimitate the
spinodal area.
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Figure 2: This two figures are a projection of the spinodal contour in the
density plane : left, for Skyrme (SLy230a [10], SGII [11], SIII [12]) and
Gogny models (D1 [9], D1S [13], D1P [14]) ; right, temperature dependence
of the spinodal zone computed for the SLy230a case.
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to SNM critical point. However, up to a rather high temperature ( 5 MeV)
the spinodal zone remains almost identical to the zero temperature one.

Almost all theoretical predictions has been made with simplified Skyrme
interactions : in medium nucleonic masses are taken as the free masses and
spin exchange terms proportionnal to xi are not explicitly treated. In our
case, we have included the standard terms of the interactions that we refer
to. Fig. 3 shows a comparison between our calculation and one of those
simplified interactions (used by Baran et al [8]). In SNM (y=0.5), exploring
high temperatures means exploring the k dependance of the single particle
potential, hence the k-effective mass of the nucleons in the medium. On the
counter part, increasing the asymmetry means being sensitive to the isospin
dependance of the effective mass. As the k-effective mass used by Baran
et al is independant of the asymmetry parameter but is only a function
of the total density, we can conclude that the effective mass (according to
SLy230b) reduces the critical temperature in SNM by about 1 MeV while
it increases the critical temperature by 1 MeV in very asymmetric matter.
This comparison shows that for qualitative predictions, a simple interaction
is enough but quantitative predictions requires the standard interaction.
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Figure 3: Comparison between the results obtained by Skyrme simplified
Baran et al interaction [8] and the one obtained with SLy230b Skyrme inter-
action.
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2 Analysis of the curvature matrix [Fij]

In the considered two-fluids system, the [Fij] is a 2 ∗ 2 symmetric matrix, so
it has 2 real eigenvalues λ± [8] :

λ± =
1

2

(

Tr [Fij] ±
√

Tr [Fij]
2 − 4Det [Fij]

)

(2)

associated to eigenvectors δρ± defined by (i 6= j)

δρ±

j

δρ±

i

=
Fij

λ± −Fjj

=
λ± −Fii

Fij

(3)

Eigenvectors associated with negative eigenvalue indicate the direction of the
instability. It defines a local order parameter since it is the direction along
which the phase separation occurs. The eigen values λ define sound velocities,
c, by c2 = 1

18m
ρ1 λ. In the spinodal area, the eigen value λ is negative, so the

sound velocity, c, is purely imaginary and the instability time τ is given by
τ = d/|c| where d is a typical size of the density fluctuation.

The requirement that the local curvature is positive is equivalent to the
requirement that both the trace (Tr[Fij] = λ+ + λ−) and the determinant
(Det[Fij] = λ+λ−) are positive

Tr[Fij] ≥ 0, and Det[Fij] ≥ 0 (4)

The use of the trace and the determinant which are two basis-independent
characteristics of the curvature matrix clearly stresses the fact that the sta-
bility analysis should be independent of the arbitrary choice of the thermody-
namical quantities used to label the state e.g. (ρp, ρn) or (ρ1, ρ3). If Eq. 4 is
violated the system is in the unstable region of a phase transition. Two cases
are then possible : i) only one eigenvalue is negative and one order parameter
is sufficient to describe the transition or ii) both eigenvalues are negative and
two independent order parameters should be considered meaning that more
than two phases can coexist. For ANM below saturation density, the case
ii) never occurs since the asymmetry energy has always positive curvature
(F33). A complete discussion is presented in [4].

Let us now focus on the direction of the instability. If δρ− is along y=cst
then the instability does not change the proton fraction. For symmetry rea-
sons pure isoscalar (δρ3 = 0) and isovector (δρ1 = 0) modes appears only
for SNM so it is interesting to introduce a generalization of isoscalar-like and
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Figure 4: On the left, we illustrate the generalization of the definition of
isoscalar and isovector modes. Various contour of equal imaginary sound
velocity are also represented for SLy230b and D1P interactions. The more
internal curve correspond to the sound velocity i0.09c, after comes i0.06c,
i0.03c and finally 0, the spinodal boarder. We observe that in almost all
the spinodal region the sound velocity is larger than 0.06c. The arrows indi-
cate the direction of instability. The mechanical instability is also indicated
(dotted line).

isovector-like modes by considering if the protons and neutrons move in phase
(δρ−

n δρ−

p > 0) or out of phase (δρ−

n δρ−

p < 0). We propose a generalization
of the definition of isoscalar and isovector modes in ANM. According to the
left graph of Fig. 4, the instability is of isoscalar type if its direction points
in the direction of the first bissectix with an absolute value angle less that 45
degrees, while it is of isovector kind if its directions points in the direction
of the second bissectrix with an absolute value angle less that 45 degrees.
The two figures on the rigth part of Fig. 4 shows the direction of instabilities
along the spinodal boarder and some iso-instability lines. We observed that
instability is always almost along the ρ1 axis meaning that it is dominated
by total density fluctuations even for large asymmetries. This shows that
the unstable direction is of isoscalar nature as expected from the attractive
interaction between proton-neutron [8, 4]. The total density is therefore the
dominant contribution to the order parameter showing that the transition
is between two phases having different densities (i.e. liquid-gas phase tran-
sition). The angle with the ρ1 axis is almost constant along a constant y
line. This means that as the matter enters in the spinodal zone and then
dives into it, there are no dramatic change in the instability direction which
remains essentially a density fluctuation. Moreover, the unstable eigenvec-
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tor drives the dense phase (i.e. the liquid) towards a more symmetric point
in the density plane. By particle conservation, the gas phase will be more
asymmetric leading to the fractionation phenomenon. Those results are in
agreement with recent calculation for ANM [8] and nuclei [15].

3 Are they new signals in asymmetric mat-

ter ?

A frequent discussion can be found in the literature [5, 7]. It is argued that
asymmetric nuclear matter do not only present a mechanical instability for
which the density is the order parameter but also a broader chemical instabil-
ity associated with fluctuations of the matter isospin content [5]. Indeed, it is
usually argued that it exists a region in which the compressibility at constant
isospin asymmetry is negative (see Fig.1 of [6]) leading to the interpretation
that the system is mechanically unstable. Above a maximum asymmetry the
isotherms at constant asymmetry does not presents any back bending leading
to the idea that the system is mechanically stable. However, looking at the
equilibrium of the chemical potentials one can see that above this maximum
asymmetry for mechanical instabilities the system may amplify fluctuations
in the proton neutron concentration leading to a second instability region
usually called chemical instabilities.

However, we have recently shown that this splitting of the spinodal region
into two types of instabilities, a mechanical and a chemical one, is not correct
and that ANM present only one type of instability [4] (hereafter called the
first argument). This result is robust because it can be related to the den-
sity dependance of the asymmetry energy reproduced by several models of
the nuclear interaction (Skyrme, Gogny, Brueckner). In a recent proceeding
[6], we have discussed that figures like Fig.1 of [6] may lead to the unphys-
ical separation of two area in the spinodal. Indeed, these two regions are
artefact in the sense that it comes from a 2-dimensionnal projection of the
3-dimensionnal representation of the free energy (see for instance Fig.1). At
the entrance of the spinodal region, only one direction is unstable (the direc-
tion pointed out by the eigen vector, see Fig.4). The further the system sink
inside the spinodal, the wider become the unstable directions and each point
in the spinodal is a saddle point. Deep inside the spinodal, the particuliar
direction y = ρp/ρ =const becomes also unstable but the system do not enter
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inside a new phase as it is often claimed.
Here, we will give a third argument against the artifical separation of

chemical and mechanical instabilities. This argument is based on the rela-
tions first demonstrated by Baran et al [8]. It rely the eigen modes to the
chemical and mechanical definitions. It reads:

∂P

∂ρ1

|T,y =
λ−

√
t
(t cos β + sin β)2 +

λ+

√
t
(t sin β − cos β)2 (5)

∂µp

∂y
|T,P = ρnλ

+λ−

(

∂P

∂ρ1

|T,y

)−1

(6)

where β = 1/2 arctanFnp/(Fpp − Fnn) and t = ρnN
n
0 /ρpN

p
0 . In SNM, t = 1

and β = π/4. Then, the relation between the eigen values λ+, λ− and the
definition of mechanical and chemical instabilities is trivial: below saturation
density, SNM is unstable toward density fluctuations which means that λ−

or ∂P
∂ρ1

|T,y become negative. Beyond saturation density, some interactions
manifest an instability in the isospin channel, and once again, it can be
associated to the negativity of λ+ or ∂µp

∂y
|T,P . Hence, it is totally equivalent

to discuss the negativity og the eigen values λ+, λ− or the onset of a chemical
and mechanical instability. But, in ANM, the simplicity of this equivalence
is not preserved as it is shown by Eq. 5 and Eq. 6. Hence, one should trust
only the eigen analysis of the curvature matrix [Fij] and this analysis have
shown that only one of the two eigen values (λ−) changes its sign. Then,
there is one unstable mode in ANM below saturation density.

4 Conclusion

Finally, we have presented three arguments in favor of the fact that ANM
does not present two types of spinodal instabilities, a mechanical and chem-
ical, but only one which is dominantly of isoscalar nature. This means that
the instability is always dominated by density fluctuations and so can be
interpreted as a liquid-gas separation. The instabilities tend to restore the
isospin symmetry for the dense phase (liquid) leading to the fractionation of
ANM. We have shown that changing the asymmetry up to ρp < 3ρn does not
change quantitatively the density at which instability appears, neither the
imaginary sound velocity compared to those obtained in SNM. The quanti-
tative predictions concerning the shape of the spinodal zone as well as the
instability times depends upon the chosen interaction but converge for the
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various forces already constrained to reproduce the pure neutron matter cal-
culation.
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