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We present a detailed experimental study of the velocityitligion of atoms cooled in an optical lattice. Our
results are supported by full-quantum numerical simufeticEven though the Sisyphus effect, the responsible
cooling mechanism, has been used extensively in many ootd experiments, no detailed study of the velocity
distribution has been reported previously. For the expenial as well as for the numerical investigation, it
turns out that a Gaussian function is not the one that bestdape the data for all parameters. We also fit the
data to alternative functions, such as Lorentzians, Bsaifictions and double Gaussians. In particular, a double
Gaussian provides a more precise fitting to our results.

PACS numbers: 32.80.Pj, 42.50.Vk, 05.10.Ln, 05.70.Ce

I. INTRODUCTION For a multilevel atom, population transfer and coherences
between degenerate levels open up the possibility for more
subtle cooling mechanisms. These are not limited by the ra-

Laser cooling is now a well established technique to> "™ »-~"
9 q diative lifetimes of the upper levels, and can therefore lea

produce narrow velocity distributions for dilute samplds o distributi | ticular. Sisvoh i
atomic gases (see e.g. [1]). The interaction between thBarrower distributions. in paricuiar, SISyphus coolidg ]

atoms and the radiation modes removes kinetic energy fror? based on a laser beam configuration that results in a peri-

the atoms, and extremely cold samples can be obtained. I:ﬁdl'lc mo%“'?tt'og of :he Ipolan;atmn %ftkt]e Iljght,ta?d thga-s;t)
the standard context of Doppler or sub-Doppler laser cgolin lally modulated optical pumping and steady-state po_mria
istribution between different degenerate substates lighe

atom-atom interactions are neglected and hence athermodr%’l_ft Il also b iodi d will differ for diff )
namic temperature cannot be defined. Nevertheless, measu It Wil aiSo be periodic, and witl difier for difteren .
states. The combination of hamiltonian motion and optical

v_elocity di_stributions are _general_ly very well fitted by ausa pumping cycles transfers atomic energy to the vacuum modes
stan f_unc_tlon, and assigning a k|net|(_: temperature todh;e [4, 5, 8]. A rule of the thumb for Sisyphus cooling tells us
tribution is a useful way to characterize a laser cooled atom - =~ , . yp g 1€
sample. that the ‘temperatures’ obtained correspond to kinetia-ene

0 f the simolest th ical dels of | i gies that are of the order of the light shift. This behavics ha

ne ot the simp ?S | eolre lca r_n? est.o a;tﬁr coo ;ngbeen experimentally verified [9-12] down to kinetic tempera

assumes a moving two-level atom interacting with Countery,, o5 of 5 few recoil energies. A seminal analysis of Sisgphu
propagating pairs of laser beams, tned sllghtly beIO\_N th(?:ooling, by Dalibard and Cohen-Tannoud;ji [4], is again loase
gtom||c rers]_(]ztnance (Dopzpler .;?O“ng (52]3' Tlh's.tw'"”ﬁrl]d on spatially averaged friction and diffusion coefficiersen

OPPIEr SNIltS, asymmetric with regards to velocity, a though the final regime corresponds to a situation where one
a damping force (friction). Doppler cooling is counteratte [;cﬂan no longer assume atoms moving at constant velocity over

b% Tomer|1f'cum dlf;f_ulsmn due to ?bksorpnfo(;]_ﬁan(_j emlssm?l 0 any wavelengths, the scaling law obtained by this approach
photons. If a spatial average is taken of diffusion as well as, )o7< 15 pe excellent.

friction, one obtains a stationary Gaussian velocity distr ) ) ]
tion. This is valid since, in steady-state, most atoms have v IN more rigorous full quantum mechanical analyses, Castin
locities well above spatial modulations in the light shiften- €t @l- [13, 14] find that Sisyphus cooling ought to lead to non-
tial (caused by the interaction between the induced dipale m Gaussian distributions. In particular, for irradiancessel to
ment and the light), and thus the dynamics can be described e lower limit for efficient laser cooling, the effects of-re
terms of a Fokker-Planck equation with constant frictiod an C0ils due to absorbed and emitted photons become prominent.
diffusion coefficients. High irradiance results in lightifsh ~ Then, atomic trajectories become very irregular and theosel

of the involved energy levels that can be comparable to thY cannot be assumed to be constant. Therefore one cannot
kinetic energy, and one can no longer assume a constant ve9mpute a spatially averaged velocity dependent forcen,Als
locity as atoms travel over a wavelength. Spatial averaging'® atoms will be trapped in microscopic potential minima
can still be performed, but one does not obtain the standardorming optical lattices [15, 16]), and the ensemble stoul
description of laser cooling in terms of competition betwee D€ characterized by a distribution of vibrational modes and
a friction force and a diffusion effect, since these are imts Unbound modes, rather than by a velocity distribution.

ply functions of velocity. The resulting velocity distrition Essentially all experimental investigations of Sisyphus
will in this case not be Gaussian and different distribusion cooling result in distributions that are well fitted by Gaus-
have been proposed [3]. However, for practical Doppler-coolsians. The reason for this is probably a combination of séver
ing configurations, this effect is negligible, and there mpe facts. Many experiments are done in a regime where an aver-
known observations of clearly non-Gaussian distributions  age friction coefficient seems adequate (sufficiently l¢ioie



shift). The deviations from Gaussian distributions aretlsub with M being the atomic mass. In the linear regime for the
and are mainly hidden in the noisy wings of the recorded disatomic velocity, one finds [8]:

tribution. Furthermore, it is difficult to set-up an expeental

velocity probe with the required resolution. Neverthelelss F (v) = —av (2)
viations from Gaussian velocity distributions for laseolenl D, =DM + D@

atoms have been reported in one recent paper [17]. However, Y Y

to our knowledge, there has been no systematic experimentg this context,w and D, depend on the lattice parameters

study of the non-Gaussian distributions, nor any attenpts t_ 4 4re independent of the velocit@,gl) corresponds to the

approach the observed distributions with more precise-func . .
tigﬁs P random absorption and emission of photons wifiig’ rep-

. ) ~ resents the fluctuations of the light-shift induced forcg [8
In this work, we report a detailed study of velocity dis- The steady-state solution of Eq. (1) with vanishing proligbi
tributions, as a function of the irradiance (and thus thtlig cyrrent (- F (v) W + M D, (v) 9,W = 0) is thus a Gaussian

shift) for a three dimensional Sisyphus cooling configamti  ¢,nction with rms widtho.. — \/m:
We also perform a one-dimensional numerical simulation of Y Y

velocity distributions, based on a full-quantum MontedGar av?

wave function technique. This is applied for the atomic an- W (v) = Wp exp (_W) 3
gular momentum which is relevant in our experiment. We fit v

the recorded data, the experimental as well as the numerical |,  Tgajlis function Beyond the linear regime for atomic

to different functions and compare the outcomes. velocity, the friction force and the velocity diffusion déie
cients have to be refined into [13, 20]:

— QU

= 4
L+ (v/ve)” @

F(v)
[1. FITTING FUNCTIONSAND MOTIVATIONS @
D, ('U):DS)I)"" Dy PR
The main purpose of this paper is to present more details 1+ (v/ve)
about the velocity distributions of atomic samples cooled a
trapped in optical lattices, where the Sisyphus coolingitye
is expected to apply. A further step is to provide a function
that gives a good approximation of the velocity distribatio
The choice of a fitting function is made difficult by the com- 21
plex dynamics of the atoms in the lattice. Indeed, even if thé ]
seminal process described in [4] gives very good insights in S
the dynamical behavior of the atoms, it is not sufficient in W(v) =Wy [1-5(1—q)v*]T" ()
regimes relevant for typical experimental situations, relthe
intercombination of hamiltonian motion in the modulated po W
tentials and optical pumping cycles, with time scales of the g=1+ 2MDs " g 5= a/2M (©6)
same order, makes it difficult to perform analytical caleula avg DV 4+ p@°
tions [13]. Along the following lines we justifya priori the
choice of three types of functions (Gaussian, Tsallis and do The function in Eq. (5) is the so-called Tsallis function and
ble Gaussian) that we used to fit the experimental and the niis in fact very general. It particularly provides a broadssla
merical recorded data. As we will see, these choices arelbasef fitting functions including Gaussian functionsgpproach-
on simple considerations about well-known generalizatimfn  ing one), Lorentzian functions; (= 2) and inverted parabo-
the model presented in [4]. las (¢ = 0). At this stage, it is interesting to note that the
Tsallis function has been introduced in the context of non-
extensive thermodynamics [22, 23]. The large amount of lit-
erature in this context allows one to find many papers dealing
with problems already addressed in laser cooling; in partic
ular anomalous diffusion in the presence of external forces
[24—-26], multiplicative noise problems, and the relatiortte

g‘dge of chaos in mixed phase space dynamics [27, 28]. Itis

whereu, is the capture velocity which corresponds to the typ-
ical atomic velocity above which the Sisyphus process tweak
down. Now, it is straightforward to show that the steadyesta
solution with vanishing probability current of Eq. (1) read

a. Gaussian function In the standard description of 1D-
Sisyphus cooling, the internal atomic state is adiabdyical
eliminated in such a way that the atomic dynamics is de
scribed in simple terms of a forde (v) and fluctuating forces
of momentum diffusion coefficienb,, (v). F (v) accounts
for the optical pumping-assisted Sisyphus cycles Bpdv)
corresponds, on the one hand, to the random recoils due

absorption and emission of photons, and on the other hand, Osion [29, 30, in particular for shallow optical potertia

changes of potential curves. The velocity distributidn), where an atom can fravel over many wavelengths before be-
's thus governed by a Fokker-Planck equation (FPE) [18, 19]|'ng trapped again. Even though we do not have a detailed
analysis of the dynamics of the atoms in an optical lattioe, f
parameters corresponding to our situation, one cannoouile
anomalous diffusion and/or chaotic behavior.

own that Sisyphus cooling can give rise to anomalous dif-

QW = —0, <%F(v) W> + 0y (Dy ()0 W): (1)



c. Double Gaussian functionAs Sisyphus cooling re- z
sults in a situation where the kinetic energies of the atoms a
of the order of the light shift potential, one can neitherlaeg
atoms with lower energy (‘trapped’ in the potential wellgyn
those moving more or less freely above the potential modula-
tion (as in a ‘conduction band’). This leads to a descriptibn
the atomic sample in terms of a bimodal dynamics. Note that ~ X
such a bimodal description has been shown to be relevant for
the prediction of the diffusive properties of atoms in aricgit
lattice [31]. The kinetic equation of the *high energy’ atem
might very well be described by spatially averaged friction
and diffusion coefficients resulting in a Gaussian distidu €
as shown previously. The ‘low energy’ atoms will be trapped,
and subject to a different kinetic equation, and we assuate th 20
their velocity distribution is again a Gaussian. Our trizh¢-
tion is thus the sum of two Gaussian distributions with diffe
ent widths (double Gaussian). One corresponding to ‘trdppe
atoms and the other one to ‘high energy’ atoms.
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HI. EXPERIMENTS FIG. 1: Beam configuration of the 3D lih lin optical lattice. Two

. beam pairs propagate in the- andyz-planes, and are orthogonally
A. Experimental setup polarized along theg- andz-axes respectively. They form an angle
of = 45° with the z-axis.

The experimental setup has been described in detail previ-
ously (see e.g. [11, 12]). Briefly, we first accumul&téCs
atoms in a magneto-optic trap (MOT). We adjust the irradi-
ance and the detuning, then we turn off the magnetic field and
leave the atoms in an optical molasses with even further re-
duced irradiance. Thus we cool the atoms to a temperature
of 3-4 uK. The atoms are transfered to a three-dimensional
optical lattice, which is based on four laser beams of equal i method (TOF) [7]. After the lattice period the trapping field
radiance and detuning (for a review of optical lattice se$;u is turned off, and the atoms are released in the gravitdtiona
see e.g. [15] or [16]). The detuning is a few tend'dfelow field; approximately 5 cm below the trap region a thin sheet
the (Fy = 4 — F.=5) resonance for the*Cs D2 line at 852  of resonant laser light crosses the vertical axis along khic
nm (' = 27 - 5.21 MHz is the linewidth of the excited state). the atoms fall, and the induced fluorescence is recorded with
The detuningq\) and irradiancel) of the beams can be easily a photo-diode. Each vertical velocity component at the tifne
changed in order to control the depth of the light shift peten release will correspond to a specific arrival time at the prob
tial Uy < I/|A|. The beams are aligned as in Fig. 1: two beam. The probe beam is carefully spatially filtered and fo-
laser beams are linearly polarized along:thaxis and propa- cussed by a cylindrical lens. The interaction region isfleas
gate in theyz-plane symmetrically with respect to theaxis, 50 pm thick, and the trapped cloud of atoms is approximately
whereas the other two beams are polarized along,theis 400 um in diameter. This gives a velocity resolution of 0.05
and propagate in thez-plane symmetrically with respect to mm/s, or 0.01%r (wherevg = 3.5 mm/s is the velocity cor-
z. This yields a tetragonal pattern of points with pure ciacul responding to the recoil from one absorbed photon resonant
polarization, alternately™ ando~. These points correspond with the D2-line). Our statistics is good enough not to con-
to potential wells where the atoms are trapped and opticallyribute to this resolution. The optical lattice beams are¢d
pumped into the extreme r--levels (+4 and -4 respectively in 0ff, by switching an acousto-optic modulator, faster thami-&a
oT-ando~-wells). crosecond. This is fast enough to avoid adiabatic releatseof
For high atomic velocities, this configuration will corre- atoms in the lattice, which could greatly influence the viioc
spond to a three-dimensional version of the Sisyphus cgolindistribution, in particular in the high velocity tails
model. As the atoms approach equilibrium, their kinetic en-
ergies will get lower than the modulation depth of the optica
potential, and thus atoms become trapped in lattice sitesy T
will get distributed in bound states, where the lowest state ! If the optical lattice beams are turned off too slowly, thenas may par-
cIoser resemble harmonic oscillator states. tial_ly eq_uilibra?e in the gradually decreasing potentFﬁ_he_re may also be
I two diferent sets of runs, we Ie the atorms equilbrate in_ 42221 017 631 i boh hesecoses e coongpua s
the optical lattice for 25 ms and 50 ms respectively. Theaelo  yelocity tails. Such adiabatic switching is often used ideprto achieve
ity distribution is then recorded with a standard time-agHt lower ‘temperatures’.



B. Experimental results 6
g O

We recorded the velocity distributions for several modula- 5 o 5o}
tion depths and we fitted them with the functions introduced i oo, o, 0. ° *
section Il with a slight modification that accounts for atomi 4 g e’ -
losses. During the long optical lattice phase, we have a con- Nﬂ,&w
stant loss of atoms, probably due to spatial diffusion. €her 2 3 i
fore, the baseline is higher for atoms with a downward ve- ©”~
locity (short times,u < 0) than it is for atoms with a up- 5. |
ward one ¢ > 0). We compensate for this by adding a sharp
step function to the fit, with the amplitude of the step as a
free parameter. The amplitude of this step function is found 1 i
to increase sharply for decreasing potential depths betwee
Uop = 200ER and100ER. A probable reason is that spatial dif- 0 ‘ ‘ ‘ ‘
fusion increases rapidly when the potential depth fallewel 50 100 150 200 250 300
some threshold, which takes place for higher potentialltept U, / E,

than the threshold for cooling (usually called ‘décroakiag

[20]. This is consistent Wlth Previous StUdI.eS [32]. !n B FiG. 2: (Color online) The rms widtkw,, ) of the measured velocity
ple, we could haye used a Imearl_y decreasing funCt'onmte_distributions (filled circles) as a function of the modutetidepth
of the step function, but then this would have had be termiyf the potential. Also shown is numerically simulated daspefn

nated by a sharp step. We avoied this in order to minimizgquares) in the same range (c.f. chapter IV).
the number of free parameters and also because we wanted to
simplify as much as possible in the absence of detailed knowl
edge of the loss of atoms.

In Fig. 2, we show the rms width of the distributions, as
a function of the depth of the optical potentid), as derived
from the fits to single Gaussian functions. The width, which i
normally associated with a kinetic temperature, increfses

25 ms. The other data set has the same features. For deep po-

tentials, all fits are essentially equally good. At more kival

potentials, a Tsallis function reproduces the data belttzn t

. a Gaussian. For the whole range, a double Gaussian gives

deepe.r potential depths as usual. o the best fit. For the most shallow potentials, the fitted step
In Figs. 3 and 4, typical recorded velocity distributiors, t  pacomes too important for? in order to draw any major con-

gether with Gaussian fits, are shown for low and high mod+,sion from this analysis.

ulation depths. Figure 3 shows data taken with an equili- _

bration time of 25 ms, and for Fig. 4 the equilibration time  The parametey in Eq. (5) can be regarded as a measure of
was 50 ms. This corresponds to typically® radiative life- ~ the shape of the distribution. Aapproaching 1 will be iden-
times. The plots with low irradiance are averages of twentyical to a Gaussian distribution, whereps: 2 corresponds to
measurements and those of high irradiance of five measur@-Lorentzian distribution. In Fig.6, we show a plot of thesfitt
ments. For high values of the irradiance, a Gaussian fumctiovalueq, for 25 ms equilibration time. For decreasing irradi-
fits the velocity distribution extremely well. However, fow ~ @NCesq increases smoothly from one, and eventually reaches

iradiance, it is clear that the wings of the distributiomizt & value higher thap = 1.6. For the longer equilibration time,
so well fitted. For the short equilibration time, this is more the same trend is evident, but it is much less pronounced, and
pronounced. g dose not reach higher than=1.3.

For all data, even below ‘décrochage’, the attempt with The good fit to a double Gaussian can be interpreted as
Lorentzian fits worked very poorly. Fits to double Gaussians sign of a bimodal velocity distribution. In Fig. 7a, we
and Tsallis functions, however, reproduced recordedibistr  show the fitted widths of the two Gaussians for both data
tions better than single Gaussians. In insets in figs. 3a anskts. This should correspond to the ‘temperatures’ of tle tw
4b we show fits to double Gaussians for shallow potentialsmodes. Both these ‘temperatures’ increase linearly with po
In Fig. 5, we compare the errors from the fits for these thregential depths. The areas of the two Gaussians should be a
types of functions. When the irradiance is varied, the digna measure of the fraction of atoms being in one or the other
to-noise changes substantially, and so does the magnifude of the modes. In Fig. 7b is the calculated relative popula-
the loss pedestal at short times, and the width and shape tibns. The ‘cold mode’ with narrow velocity distribution-al
the distribution. This makes it very hard to achieve a censisways contains most of the atoms, but the relative number of
tent normalization of the quality of the fits. The valuexgf  atoms in the ‘hot mode’ gets larger for decreasing potential
(x? = S(yi — =1)?, wherey; is the measured and the fitted ~ depths. For potentials deeper thdn = 250Er there is no
value) for an individual fit includes information about both measurable portion of atoms in the ‘hot modes’. The thermal
noise and systematic deviation from the fit function, whichenergy of the ‘hot mode’ is of the same order (whithin the
are difficult to separate. The data displayed in Fig. 5 are ralarge uncertainties) as the energy barrier of the optictmpo
tios between unnormalized values pf for the different fit  tial, i.e. the modulation depth (shown in the dashed line in
functions. The displayed data are for the equilibratioretmh  Fig. 7a).
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FIG. 3: (Color online) Experimentally recorded velocitystlibu-  FIG. 4: (Color online) Experimentally recorded velocitystlibu-
tions with fits to simple Gaussians. This data is recordedh @it tions with fits to simple Gaussians. This data is recordeth @it
equilibration time of 25 ms. For a the modulation depth of the equilibration time of 50 ms. For a the modulation depth of the
optical potential wad/o = 78Er and the shown data is an aver- optical potential wad/s = 78Fr and the shown data is an aver-
age of 20 TOF measurements. For b the corresponding facts weage of 20 TOF measurements. For b the corresponding facts wer
Uo = 285ER and an average of 5 TOF measurements. The insets i/, = 285Er and an average of 5 TOF measurements. The insets in
the top right corners show magnifications of portions of tliegs of  the top right corners show magnifications of portions of tlegs of

the distributions. The inset in the top left corner of a shbersame  the distributions. The inset in the top left corner of a shbe $ame
data with a fit to a double gaussian. data with a fit to a double gaussian.

IV. NUMERICAL SIMULATIONS

In order to further analyze the results of our experimen-
tal data, we performed numerical simulations for the quantu
dynamics of atoms undergoing Sisyphus cooling. We con-
sider the case of & = 4 — J = 5 transition, as for thé*3Cs
atoms used in the experiments, and for the sake of simplicity
we restrict the motion of the atoms into one dimension (1D)similar for both 1D- and 3D- configurations (See the com-
The laser configuration is the well-known 1D-lifin config-  parison between 3D-experimental and 1D-numerical results
uration [4] which in fact corresponds to thedirection in our  in Fig. 2. The slight deviation can partly be attributed te th
three dimensional (3D) experimental setup (Fig. 1) withfa di difference in dimensionality). We first describe the numeri
ferent lattice spacing. This restriction is legitimate d@®e, cal method for the integration of the dynamics equations-(se
first, the temperature has been shown to be independent of thien IV A) and then we present the results of the simulations
lattice spacing [31, 32] and, second, the temperature i ver(section IV B).
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Consider a two level atom, with Zeeman degeneracy, inter-
acting with a laser field

EN%”:%{ET()'”+E ()%M}

(7)

because of the coupling to the vacuum mo@s,, the atom

is an open quantum system for which the evolution has to be
treated in the density matrix formalism. The evolution o th
atom is thus governed by the generalized optical Bloch equa-

The laser light is strong enough to be treated as a classicgbns (OBE) [34, 35]. In the regime of low saturation, where
field so that we can separate the coupling between the atofe experiments are performed, the excited state relaxek mu
and the electromagnetic field into a coupling to the lased fiel faster than the typical evolution time of the ground state an
and a coupling to vacuum. The coupling to the lalgr in-
duces a hamiltonian evolution for the atom. On the contrarylution of the system then reduces to a master equation,for

thus it can be adiabatically eliminated from the OBE. The-evo



the atomic density matrix restricted to the ground state [8] [38]: at any time,

do A~ A R _ L
Iﬁd—f = Heffo — QHgﬁ + Erelax(@) (8) <7/}| (@) |’l/)> =Tr (Q O) . (12)
~9 =5 _ /\+
i p Var Val
e - 2M ! h(A+iT/2) ®) B. Resultsof thesimulations

Here,p is the momentum operatal is the detuning between

the laser and the atomic transitia¥. is the mass of one atom In this work, we are interested in the particular observable

o+ ' that represents the momentum distribution of the atoms. We
andVy = —D - E[ are the raising and lowering parts of have performed the full guantum Monte-Carlo integration of
the dipole interaction operator respectively. In Eq. @)y thedynamics equations for a sebof) wave functions for var-

is a non-hermitian operator describing the atom-laseraste 10U lattice parameters (detuning and modulation depts). B
tion2 and Lyeiax is an operator describing the coupling to the cause the width of the momentum distributions are typically
vacuum field, i.e. spontaneous emission of photons. The ineroader than severak, the spontaneous emission pattern can
tegration of the master equation is performed via a full qguanP€ approximated by photons emitted along the 3D coordinate
tum Monte-Carlo wave function method [36, 37] in whigh ~@x€sz, y or z. With such an approximation, all operators in
is substituted with a set of stochastic wave functions. Thd=ds. (9) and (11) couple states of the fofm, p) to states
pseudo-hamiltonian evolution (first term in Eq. (8)) of eachOf the form|m’, p + k) (wherem andm’ represent the in-
wave function) is governed by a Schrodinger-like equation ternal sub-level of the atomic ground state). It is then esnv

involving the non-hermitian hamiltoniaf..«: nient to perform the integration in thp)l-representation. The
g ef state|t) is decomposed onto the basis of thi states (with
dfy)
t

~ p = nhk, with n an integer positive or negative). Finally, for
Ihd— = Heit [¢) - (10)  usual situations considered in this work, the typical motaen
are smaller than 2@k, so that we takén| < 100. From the
Since equation (10) does not include the filling terms of thesimulations, we determined the mean kinetic energy as a func
ground state from the excited state due to spontaneous emigon of time. After a thermalization period, the energy ftees
sion, |¢) is not normalized and the instantaneous spontaneous steady-state during which the momentum distribution was
emission rate is given by:—%_ To take into account recorded and averaged. The thermalization period was nhose

the emission of photons, the pseudo-hamiltonian evolutioio be1/T', corresponding to a time in the order of a millisec-
(Eq (10)) is inte”'upted by quantum jumpS, whose repetitio ond. Since the calculation is performe(_i In-lD,-thIS tlme can-
rate is determined with accordance to the spontaneous emigot be directly compared to the thermalization times in the 3
sion rate. It follows from the emission of a photon of wave €xperiment. . o
vector’v and polarizatione that the wave function is instan-  In order to identify whether the momentum distribution
taneously changed into is compatible with a Gaussian curve or not, we first com-
pare the root-mean-square (rms) momenjyp defined by
) — W? 2) =% ?|17AV (|tbe) @ [0)) (11) Ek= p2ns/2M (Where Ex [s the mean kinetic energy of the
’ ’ atomic sample) ange which represents half the width at
with relative probabilitieus?_?)\Q. Here the excited state 1/+v/ Of the stationary momentum distribution. For a Gaus-
. Ty ) _ sian distribution, those two values are equal.
wave function|ie) = 78%r/5; is determined by the adia- e plot in Fig. 8, the numerical results fpjns andpe as a
batic elimination procedure of the excited state &dand  function of the potential deptti, for three different detunings
|1 =) represent the electromagnetic field states respectivelh. We find that these values are independent of the detuning
without any photon, and with one photon of wave vectorwithin the numerical errors. Several points for lower valoé
& and polarizatione. The Monte-Carlo integration then U, have also been calculated but the atomic cloud was found
provides a set of time dependent stochastic wave functionsot to thermalize. For those cases, the temperature ireseas
|4)), which represent the atomic state through the averagenore or less linearly and the velocity distribution becomes
@, of the density matrices associated to the wave functionslmost flat. It is also clear in Fig. 8 thatys and pe have
o = |[¢) (¢|. Itis then straightforward to show that the quan- different behaviors.pims reproduces the well known depen-
tum master equation far is the same as the master equationdence of the kinetic energy versus the modulation degth:
for the actual density matrix (Eq. 8). Hence, the value of scales as/Uj for high values of/, and abruptly increases as
any observabl@ for the quantum system representeddiy U reaches very low values, typically lower than 15@ (the
equal to the ensemble average of the value of the same oboint of décrochage). The minimum value @f;s is found
servable for each stochastic wave function represented)oy to be of the order ofpms),,i, = 4.1hk. On the contrary, we
find thatp, increases monotonically verstig for low values
as well as for high values df,,. The minimum value ope
is obtained for the minimum value &f, for which a steady-
2 The non-hermitian part offe comes from the relaxation of the excited State velocity distribution can be obtaindd, (2 78 Er) and
state. is found to be of the order ofpe),,, =~ 3.47k. We iden-
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FIG. 8: Comparison between the rms momentum and the width at -100 _5'0 (') 5'0 100
1/+/e of the momentum distribution as a function of the potential viv
depthU) for three different detuningd = —10I", —20T", —30T". L
b)
tify two different regimes that can be distinguished: Egr 0.08 4
above décrochagd/(; = 150ER), both pe and pims increase ’
andpe is slightly larger thamms that is to say that the momen- -
tum distribution is wider than a Gaussian distribution wiita 2 0064 \
sameprms. For Uy below décrochagdly < 150FR), pe de- ; tF
creases whilems increases rapidly as, decreases; the mo- 8 004
mentum distribution has large wings and becomes narrower E
than a Gaussian distribution. These different charatiesis 2 0024
are illustrated in Fig. 9 where we plot the simulated velpcit ’
distributions together with Gaussian fits in the two regimes
Uy S 150FER andUO Z 150FkR. 04 B
One should note that this result is in disagreement with 100 -50 0 50 100
earlier calculations performed for atoms with a theoreti- viv
R

cal J=1/2 — J = 3/2 transition for which Castin et al.
find that prms > pe for any value of the potential depth

Up [13]. In fact, when running our simulation for the £ o (color online) Numerically recorded velocity distitions

J =1/2 — J = 3/2 transition, we were able to reproduce yjth fits to simple Gaussians. For a, the modulation depthefip-
the results of [13] and we thus conclude that the discrepancy tical potential wad/o = 78Er. For b, it waslUp = 235Er. The

due to the different atomic transitions considered in [18] a insets show magnifications of portions of the wings of théritis-
in the present work. We finally conclude that in general, thetions.

momentum distribution significantly differs from a Gaussia

distribution. Moreover, we find that the threshold g#s at

low values ofU, do not affecipe.

We now turn to a more detailed analysis of the momentunf3aussians. For the deep potentid) = 293 ER), the profile is
distributions. We first fit the velocity distributions to Tém  essentially parabolic and thus corresponds to a Gausssan di
functions. The dependence of the Tsallis paramgtam the  tribution. For the shallow potentialy = 78 Er), we clearly
modulation depth is also shown in Fig. 10 and show a lineaidentify two contributions: in addition to a narrow paraigol

dependence af versuslj. profile (corresponding to low energetic atoms), a broad one
For all numerical data differs from1 only by less thas %  (corresponding to high energetic atoms) appears.
and is less thah. Moreovery is found to tend td for shallow This supports the interpretation of the dynamics in terms

potentials indicating that the best Tsallis fit is close toau&  of a bimodal atomic distribution, with each mode correspond
sian curve in disagreement with the previous discussioe. Thing to ‘trapped’ atoms and to nearly ‘free’ atoms. The whole
discrepancy between numerical simulations and exper@hentdistribution is well fitted by a double Gaussian function. We
measurements may be caused by the different dimensionalifyot in Fig. 12a the widths of both the modes as functions of
considered in the experiments and in the simulations. Uy. The numerical results are in good agreement with experi-

Consider now fits to double Gaussians. We plot in Fig. 11mental ones (see Fig. 7). For shallow potentials, we find two
numerically recorded velocity distributions in logarittm Gaussian components with widths that both increase with the
scale for potential depths in the two regimes correspondingotential depti/y, whereas for deep potentials, the ‘hot com-
to shallow and deep potentials, together with fits to doubleponent’ is almost undetectable.Thus the route to ‘déageh
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FIG. 10: Theg-parameter as a function of modulation depth of the
potential, obtained from fitting the numerically computeatadto
Tsallis functions.

for shallower potentials can be interpreted as a transéen fr
the cold mode to the hot mode. This is supported by the re-
sults for the populations of the two Gaussian contributions
the velocity distribution plotted in Fig. 12b. We actuallpdi
that the cold mode is largely dominant even for very shallow
potentials close to ‘décrochage’.

Finally, we compare the numerical and experimental re-
sults. A direct quantitative comparison is not adequateesi
the simulations are done in 1D. However, qualitatively, the
experimental data are reproduced excellently. Figure 9-1

show numerical data corresponding to the experimental ones

in Figs. 3-7. The single Gaussian works for high irradiance
but fails to fit the wings of the distribution for low irradiaes.
A Tsallis function does not fit the distribution any betteautta
single Gaussian for the numerical data. Again, the digtiobu
is best fitted by a double Gaussian and this is particulady pr

nounced for shallow potentials. The fits to double Gaussians

also reproduce the signature of one ‘hot’ and one ‘cold’ mod
for shallow potentials. This strongly supports assumjstioh
a bimodal distribution.

We find that the ‘cold’ mode is largely dominant even
for very shallow potentials close to ‘décrochage’in bdik t
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FIG. 11: (Color online) Numerically computed velocity dibtition
for a) Up = 78 Er and b)Uy = 293 ER together with fits to Double
Gaussians.

%ound states), then

H ay ZplD(Eju>1Eju<Emam :

(14)

1<p<d  j

experimental 70 %) and the numericaldQ %) results (see Hence, assuming thatall directions are equivalent, theifra
Fig. 7b and 12b). The quantitative discrepancy between th8f atoms in non-bound states reads

limit population of the ‘hot’ and ‘cold’ modes results fromet
different dimensionnalities (3D experiments versus 1@wcal
lations). Indeed, the fraction of bound atoms idx dimen-
sion situation can be estimated by

dD
ngou%d =« Z pdD(EJ) H 1Ej“ < Emax
J

1<u<d

(13)

wherepgp(E;) represents the population of a state of energy
E;, o in a normalization factor anfimay, stands for the max-
imum energy of bound states in the potential wells along the
directiony. (Emay, is of the order of the potential depth). Now,

n

dD 1D,
r(won)bound = 1- H (1 - nrﬁon%i)unc)
1<p<d
(1D
~ dnnon)bound' (15)

Therefore, the limit populations of the ‘hot’ mode at
‘décrochage’ are consistent in the experimer® % and
d = 3) and in the simulationsl() % andd = 1).

V. CONCLUSIONS

if the space directions are separated (which is the casesin th In this work, we have studied the velocity distributions of
harmonic approximation that one can assume to be valid focold atomic samples obtained by Sisyphus cooling both in ex-
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that the non-Gaussian behavior of the velocity distrimgis
a} certainly not a trivial effect in Sisyphus cooling.
235 : D' : : :
© A. Summary of our results
20 % -
Our results (experiments as well as numerical simulations)
N 15 r show that the velocity distributions are compatible withu&a
- sian functions for deep enough potentials (typically &Gr
b’ 10- | larger than a hundred recoil energies). Note that in thie,cas
the atoms are trapped in the potential wells (i.e. the kineti
energy of the atomic cloud is significantly smaller than tbe p
34 amnmn"" "t tential depth). The deviation of the velocity distributifsom
oo 2 % ¥ Gaussian functions become more prominent for shallow light
0 shift potentials. We tested several types of functions ttebe

fit the shape of the velocity distributions in the range of pa-
rameters corresponding to deeper potentials. We found that
a better fit (corresponding to smallg?) can be obtained by
using a Tsallis function or a double Gaussian.

Tsallis functions - The use of a Tsallis function is related
to the details of the dynamics of atoms cooled by the Sisy-
phus mechanism which is known to be slightly more compli-
- cate than a Brownian motion. The Tsallis function introduce
a new parametear which deviation froml measures the de-
viation of the velocity distribution from a Gaussian furocti
The parametey can be calculated in the ‘jumping regime’
[39] and it is straightforward to show thatends tol for high
values of the potential depth (thus corresponding to a weak
deviation from a Gaussian), and increase for shallow poten-
tials. Anab initio calculation ofq is more tricky in the ‘os-
cillating regime’ which correspond to the domain of parame-
ters for shallow potentials, near the point of ‘décroch{@.

G?% a Nevertheless we can plot the valuego€orresponding to the
ooe o000 @ oo o best fit of the measured velocity distributions as a functibn
' ; ; ; ; modulation depth. For large modulation depths, we find that
50100 150 200 250 300 q approaches, which corresponds to a Gaussian distribution,
UD / ER in agreement with the analytical calculation (see sectiand
[21]). When reducing the potential depth, we clearly obsdrv
an increase ig and this corresponds to a velocity distrubution
with wings larger than in a Gaussian function. In our case the
maximumyg is close to 1.6 and this corresponds in our exper-

0 50 100 150 200 250 300
quEn

\C2

relative populations
s =2 =2
A M

=
ra
1

T

L=}

FIG. 12: a) Widths of the two Gaussians (cold mode: squarats, h

mode: circles) as obtained from a fit of the numerical datadoldle . : -
Gaussians, as a function of modulation depth of the potebid he iments to a potential depttiy ~ 60ER. ForUy < 60ER, the

relative population of the two modes of the velocity digttibns, gtomi.c _CIOUd does npt .reach a steady state and the op_tical lat
obtained from the areas under the two Gaussians. The cole modiC€ disintegrates. Itis interesting to note that the rmeaity

(squares) corresponds to the large fraction whereas tiadute (cir-  Of Tsallis distributions withy aboveger = 5/3 diverge [40]. If
cles) corresponds to the small fraction. one would plot rms ‘temperatures’ of the atoms using the rms

velocity, this would correspond to a diverging temperatéie

one is often limited by noise in the wings of the velocity dis-

tribution, one has a tendency to restrict the analysis tmato
periments with!33Cs and in full quantum numerical simula- with velocities several times below the 1/e value of therdist
tions performed for the actudl— 5 transition of'33Cs. We  bution. Any divergence is hence avoided. Note also that such
stressed in particular the deviation from a Gaussian distri  divergences are very familiar: the wings of a Lorentz distri
tion. This has already been forecasted via semi-classical dution are also known to cause a divergence of the rms value
well as quantum simulations for a simplified2 — 3/2tran-  of the distribution. One can also recall that in the case of na
sition showing the difference of the rms velocity,s and the  row line cooling, the rms velocity diverges [41, 42] when one
velocity ve corresponding to half the width af /e of the dis-  approaches the atomic resonance, and that for very small de-
tribution [13]. We recovered such a property but with a sig-tunings one can no longer even have a normalized distributio
nificantly different behavior of the ratioms/ve. This shows  function [41].
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Double Gaussian functions -Fitting the recorded (exper- tion should depend linearly on irradiance, which is coesist
imental or numerical) distribution functions to double Gau with previous experiments [44, 45]. In contrast, the stadda
sians works even better than the Tsallis function. On the on8isyphus cooling theory predicts a cooling rate indepetafen
hand, it is not surprising that a fitting procedure with moeef  irradiance [4]. An interesting experimentwould be to measu
parameters gives better fits. On the other hand, the velocitthe velocity distribution as a function of time after a sudde
distribution in logarithmic scale in Fig. 11a clearly exitsbh change of the light shift potential, and see if the two popula
two components with very different widths. For deep po-tions would evolve differently.
tentials, one recovers a Gaussian distribution of ‘colarego Figures 3 and 4 seem to indicate a time dependence of the
bound in in the potential wells as expected from the abovexperimentally recorded velocity distribution. Howewsith
discussion. When decreasing the potential depth, a fraofio the current data set (using only the two cooling times 25 ms
‘hot atoms’ grows up (fot/y < 120ER). These atoms have an and 50 ms), and with the current experimental uncertainties
energy larger than the potential depth and are not trapped e cannot draw any quantitative conclusion for the time de-
the potential wells. We found that the fraction of ‘hot atoms pendence of the velocity distributrion. In future work, wi w
can be significant for very shallow potentials. It reacB@$c  study the velocity distribution as a function of time.
in 3D experiments and % in 1D numerical simulations just |t would also be interesting to extend the test functionsluse
above ‘décrochage’ df, ~ 60Er (the discrepancy between in this paper to a narrow-line cooling scheme, which become
the eXperimentS and the simulations is due to the different d more and more used with the laser Coo|ing of earth-alkaline
mensions as shown at the end of section IV B). This resulltoms. At this stage, one can however note, that a non normal-
strongly supports assumptions that an optical lattice Hzs a jzed distribution function will have as an effect that thisrao
modal velocity distribution A straightforward interpretation steady state distribution and thatin this case atoms Wilist
would be that some atoms are bound at lattice SiteS, Where@@|arge velocities. This will appear inan experiment asskle
others have enough energy to move around on top of the mogge rate of the atoms from the optical lattice. The backgioun
ulated potential. An interesting results of our work is @8  observed in our experiment become more and more dominant
phenomenon of ‘décrochage’ does not correspond to a shafgr shallow potential wells. One might expect this to have a
increase of the width of the velocity distributions corresg-  contribution from a diffusion of the atoms beyond the captur
ing to each mode but to a continuous transfer from the ‘coldange of the optical lattice corresponding in practice toa-n
mode’ to the ‘hot mode’. We found that when décrochage ocnormalized distribution function. A detailed analysis bét
curs, the fraction of atoms in the ‘hot mode’ does not exceegyelocity distribution of atoms in optical lattices thus aps
a few tens percent. as a promising tool to study new statistical effects.

Experiments as well as full quantum simulations (in 1D
and 3D) should allow one to get new insights in the dynamics
of such systems. Apart from the suggestions above, future
work could e.g. focus on the phase space dynamics of atoms

The results shown in this paper stronlgy suggest that théy optical lattices and of quantum transport properties of
simple picture for Sisyphus cooling, based on a competitionyltra-cold atoms or even Bose-Einstein condensates.
between a diffusion and a friction (see Eq. 4), is not adexjuat
to describe the ‘coldest’ velocity distributions. Even tigh
one has to be careful before generalizing the conclusions of
this paper to other situations of laser cooling and/or tiragpp
the existence of two velocity modes might provide a useful
guide to understand the dynamics and limits of laser cooling
One can note e.g. that for shallow potentials, one has fewer LSP thanks the swedish group for warm hospitality during
bound states, and the fraction of atoms in the conductiod barthe period when a part of this work was achieved. He also
gets more prominent, as shown in Figs. 7 and 12. acknowledges financial support from the Swedish Foundation

These atoms will experience a friction force correspondindor International Cooperation in Research and Higher Edu-
to the classical Sisyphus cooling model. The route to ggwili cation (STINT). RK thanks the Wenner-Gren foundation for a
rium for the bound atoms is less clear. One hypothesis [43mavel grant. We would like to thank Dr. Peter Olsson at Umea
is that bound levels are uniformly ‘watered’ from the conduc University for letting us use the LINUX cluster and also for
tion band, whereas high lying levels are more likely to escap support during the simulations at the theoretical physes d
Thus, the route to equilibrium is not quite a competition be-partment at Umeéa University. We also thank Eric Lutz and
tween cooling and heating. A drawback with this theory isPhilippe Verkerk for fruitful discussions.
that it would not yield Gaussian velocity distributions. wio This work has been supported by the Carl Trygger founda-
ever, this theory has the advantage that the rate of ecaulibr tion and the Knut & Alice Wallenberg foundation.
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