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We present a detailed experimental study of the velocity distribution of atoms cooled in an optical lattice. Our
results are supported by full-quantum numerical simulations. Even though the Sisyphus effect, the responsible
cooling mechanism, has been used extensively in many cold atom experiments, no detailed study of the velocity
distribution has been reported previously. For the experimental as well as for the numerical investigation, it
turns out that a Gaussian function is not the one that best reproduce the data for all parameters. We also fit the
data to alternative functions, such as Lorentzians, Tsallis functions and double Gaussians. In particular, a double
Gaussian provides a more precise fitting to our results.

PACS numbers: 32.80.Pj, 42.50.Vk, 05.10.Ln, 05.70.Ce

I. INTRODUCTION

Laser cooling is now a well established technique to
produce narrow velocity distributions for dilute samples of
atomic gases (see e.g. [1]). The interaction between the
atoms and the radiation modes removes kinetic energy from
the atoms, and extremely cold samples can be obtained. In
the standard context of Doppler or sub-Doppler laser cooling,
atom-atom interactions are neglected and hence a thermody-
namic temperature cannot be defined. Nevertheless, measured
velocity distributions are generally very well fitted by a Gaus-
sian function, and assigning a ‘kinetic temperature’ to thedis-
tribution is a useful way to characterize a laser cooled atomic
sample.

One of the simplest theoretical models of laser cooling
assumes a moving two-level atom interacting with counter-
propagating pairs of laser beams, tuned slightly below the
atomic resonance (Doppler cooling [2]). This will yield
Doppler shifts, asymmetric with regards to velocity, and thus
a damping force (friction). Doppler cooling is counteracted
by momentum diffusion due to absorption and emission of
photons. If a spatial average is taken of diffusion as well as
friction, one obtains a stationary Gaussian velocity distribu-
tion. This is valid since, in steady-state, most atoms have ve-
locities well above spatial modulations in the light shift poten-
tial (caused by the interaction between the induced dipole mo-
ment and the light), and thus the dynamics can be described in
terms of a Fokker-Planck equation with constant friction and
diffusion coefficients. High irradiance results in light shifts
of the involved energy levels that can be comparable to the
kinetic energy, and one can no longer assume a constant ve-
locity as atoms travel over a wavelength. Spatial averaging
can still be performed, but one does not obtain the standard
description of laser cooling in terms of competition between
a friction force and a diffusion effect, since these are not sim-
ply functions of velocity. The resulting velocity distribution
will in this case not be Gaussian and different distributions
have been proposed [3]. However, for practical Doppler cool-
ing configurations, this effect is negligible, and there areno
known observations of clearly non-Gaussian distributions.

For a multilevel atom, population transfer and coherences
between degenerate levels open up the possibility for more
subtle cooling mechanisms. These are not limited by the ra-
diative lifetimes of the upper levels, and can therefore lead to
narrower distributions. In particular, Sisyphus cooling [4–7]
is based on a laser beam configuration that results in a peri-
odic modulation of the polarization of the light, and thus spa-
tially modulated optical pumping and steady-state population
distribution between different degenerate substates. Thelight
shift will also be periodic, and will differ for different sub-
states. The combination of hamiltonian motion and optical
pumping cycles transfers atomic energy to the vacuum modes
[4, 5, 8]. A rule of the thumb for Sisyphus cooling tells us
that the ‘temperatures’ obtained correspond to kinetic ener-
gies that are of the order of the light shift. This behavior has
been experimentally verified [9–12] down to kinetic tempera-
tures of a few recoil energies. A seminal analysis of Sisyphus
cooling, by Dalibard and Cohen-Tannoudji [4], is again based
on spatially averaged friction and diffusion coefficients.Even
though the final regime corresponds to a situation where one
can no longer assume atoms moving at constant velocity over
many wavelengths, the scaling law obtained by this approach
appears to be excellent.

In more rigorous full quantum mechanical analyses, Castin
et al. [13, 14] find that Sisyphus cooling ought to lead to non-
Gaussian distributions. In particular, for irradiances close to
the lower limit for efficient laser cooling, the effects of re-
coils due to absorbed and emitted photons become prominent.
Then, atomic trajectories become very irregular and the veloc-
ity cannot be assumed to be constant. Therefore one cannot
compute a spatially averaged velocity dependent force. Also,
the atoms will be trapped in microscopic potential minima
(forming optical lattices [15, 16]), and the ensemble should
be characterized by a distribution of vibrational modes and
unbound modes, rather than by a velocity distribution.

Essentially all experimental investigations of Sisyphus
cooling result in distributions that are well fitted by Gaus-
sians. The reason for this is probably a combination of several
facts. Many experiments are done in a regime where an aver-
age friction coefficient seems adequate (sufficiently largelight



2

shift). The deviations from Gaussian distributions are subtle
and are mainly hidden in the noisy wings of the recorded dis-
tribution. Furthermore, it is difficult to set-up an experimental
velocity probe with the required resolution. Nevertheless, de-
viations from Gaussian velocity distributions for laser cooled
atoms have been reported in one recent paper [17]. However,
to our knowledge, there has been no systematic experimental
study of the non-Gaussian distributions, nor any attempts to
approach the observed distributions with more precise func-
tions.

In this work, we report a detailed study of velocity dis-
tributions, as a function of the irradiance (and thus the light
shift) for a three dimensional Sisyphus cooling configuration.
We also perform a one-dimensional numerical simulation of
velocity distributions, based on a full-quantum Monte-Carlo
wave function technique. This is applied for the atomic an-
gular momentum which is relevant in our experiment. We fit
the recorded data, the experimental as well as the numerical,
to different functions and compare the outcomes.

II. FITTING FUNCTIONS AND MOTIVATIONS

The main purpose of this paper is to present more details
about the velocity distributions of atomic samples cooled and
trapped in optical lattices, where the Sisyphus cooling theory
is expected to apply. A further step is to provide a function
that gives a good approximation of the velocity distribution.
The choice of a fitting function is made difficult by the com-
plex dynamics of the atoms in the lattice. Indeed, even if the
seminal process described in [4] gives very good insights in
the dynamical behavior of the atoms, it is not sufficient in
regimes relevant for typical experimental situations, where the
intercombination of hamiltonian motion in the modulated po-
tentials and optical pumping cycles, with time scales of the
same order, makes it difficult to perform analytical calcula-
tions [13]. Along the following lines we justifya priori the
choice of three types of functions (Gaussian, Tsallis and dou-
ble Gaussian) that we used to fit the experimental and the nu-
merical recorded data. As we will see, these choices are based
on simple considerations about well-known generalizations of
the model presented in [4].

a. Gaussian function In the standard description of 1D-
Sisyphus cooling, the internal atomic state is adiabatically
eliminated in such a way that the atomic dynamics is de-
scribed in simple terms of a forceF (v) and fluctuating forces
of momentum diffusion coefficientDv (v). F (v) accounts
for the optical pumping-assisted Sisyphus cycles andDv (v)
corresponds, on the one hand, to the random recoils due to
absorption and emission of photons, and on the other hand, to
changes of potential curves. The velocity distribution,W (v),
is thus governed by a Fokker-Planck equation (FPE) [18, 19]:

∂tW = −∂v
(

1

M
F (v)W

)
+ ∂v (Dv (v) ∂vW ) ; (1)

with M being the atomic mass. In the linear regime for the
atomic velocity, one finds [8]:

F (v) = −αv (2)

Dv = D(1)
v +D(2)

v .

In this context,α andDv depend on the lattice parameters
and are independent of the velocity.D(1)

v corresponds to the
random absorption and emission of photons whileD

(2)
v rep-

resents the fluctuations of the light-shift induced force [8].
The steady-state solution of Eq. (1) with vanishing probability
current (−F (v)W +MDv (v) ∂vW = 0) is thus a Gaussian
function with rms widthσv =

√
MDv/α:

W (v) = W0 exp

(
− αv2

2MDv

)
. (3)

b. Tsallis function Beyond the linear regime for atomic
velocity, the friction force and the velocity diffusion coeffi-
cients have to be refined into [13, 20]:

F (v) =
−αv

1 + (v/vc)
2 (4)

Dv (v) = D(1)
v +

D
(2)
v

1 + (v/vc)
2 ,

wherevc is the capture velocity which corresponds to the typ-
ical atomic velocity above which the Sisyphus process breaks
down. Now, it is straightforward to show that the steady-state
solution with vanishing probability current of Eq. (1) reads
[21]

W (v) = W0

[
1 − β (1 − q) v2

] 1
1−q (5)

q = 1 +
2MD

(1)
v

αv2
c

and β =
α/2M

D
(1)
v +D

(2)
v

. (6)

The function in Eq. (5) is the so-called Tsallis function and
is in fact very general. It particularly provides a broad class
of fitting functions including Gaussian functions (q approach-
ing one), Lorentzian functions (q = 2) and inverted parabo-
las (q = 0). At this stage, it is interesting to note that the
Tsallis function has been introduced in the context of non-
extensive thermodynamics [22, 23]. The large amount of lit-
erature in this context allows one to find many papers dealing
with problems already addressed in laser cooling; in partic-
ular anomalous diffusion in the presence of external forces
[24–26], multiplicative noise problems, and the relation to the
edge of chaos in mixed phase space dynamics [27, 28]. It is
known that Sisyphus cooling can give rise to anomalous dif-
fusion [29, 30], in particular for shallow optical potentials,
where an atom can travel over many wavelengths before be-
ing trapped again. Even though we do not have a detailed
analysis of the dynamics of the atoms in an optical lattice, for
parameters corresponding to our situation, one cannot ruleout
anomalous diffusion and/or chaotic behavior.
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c. Double Gaussian functionAs Sisyphus cooling re-
sults in a situation where the kinetic energies of the atoms are
of the order of the light shift potential, one can neither neglect
atoms with lower energy (‘trapped’ in the potential wells) nor
those moving more or less freely above the potential modula-
tion (as in a ‘conduction band’). This leads to a descriptionof
the atomic sample in terms of a bimodal dynamics. Note that
such a bimodal description has been shown to be relevant for
the prediction of the diffusive properties of atoms in an optical
lattice [31]. The kinetic equation of the ‘high energy’ atoms
might very well be described by spatially averaged friction
and diffusion coefficients resulting in a Gaussian distribution
as shown previously. The ‘low energy’ atoms will be trapped,
and subject to a different kinetic equation, and we assume that
their velocity distribution is again a Gaussian. Our trial func-
tion is thus the sum of two Gaussian distributions with differ-
ent widths (double Gaussian). One corresponding to ‘trapped’
atoms and the other one to ‘high energy’ atoms.

III. EXPERIMENTS

A. Experimental setup

The experimental setup has been described in detail previ-
ously (see e.g. [11, 12]). Briefly, we first accumulate133Cs
atoms in a magneto-optic trap (MOT). We adjust the irradi-
ance and the detuning, then we turn off the magnetic field and
leave the atoms in an optical molasses with even further re-
duced irradiance. Thus we cool the atoms to a temperature
of 3-4 µK. The atoms are transfered to a three-dimensional
optical lattice, which is based on four laser beams of equal ir-
radiance and detuning (for a review of optical lattice set-ups,
see e.g. [15] or [16]). The detuning is a few tens ofΓ below
the (Fg = 4 → Fe = 5) resonance for the133Cs D2 line at 852
nm (Γ = 2π · 5.21 MHz is the linewidth of the excited state).
The detuning (∆) and irradiance (I) of the beams can be easily
changed in order to control the depth of the light shift poten-
tial U0 ∝ I/|∆|. The beams are aligned as in Fig. 1: two
laser beams are linearly polarized along thex-axis and propa-
gate in theyz-plane symmetrically with respect to thez-axis,
whereas the other two beams are polarized along they-axis
and propagate in thexz-plane symmetrically with respect to
z. This yields a tetragonal pattern of points with pure circular
polarization, alternatelyσ+ andσ−. These points correspond
to potential wells where the atoms are trapped and optically
pumped into the extrememF -levels (+4 and -4 respectively in
σ+- andσ−-wells).

For high atomic velocities, this configuration will corre-
spond to a three-dimensional version of the Sisyphus cooling
model. As the atoms approach equilibrium, their kinetic en-
ergies will get lower than the modulation depth of the optical
potential, and thus atoms become trapped in lattice sites. They
will get distributed in bound states, where the lowest states
closely resemble harmonic oscillator states.

In two different sets of runs, we let the atoms equilibrate in
the optical lattice for 25 ms and 50 ms respectively. The veloc-
ity distribution is then recorded with a standard time-of-flight

FIG. 1: Beam configuration of the 3D lin⊥ lin optical lattice. Two
beam pairs propagate in thexz- andyz-planes, and are orthogonally
polarized along they- andx-axes respectively. They form an angle
of θ = 45◦ with thez-axis.

method (TOF) [7]. After the lattice period the trapping field
is turned off, and the atoms are released in the gravitational
field; approximately 5 cm below the trap region a thin sheet
of resonant laser light crosses the vertical axis along which
the atoms fall, and the induced fluorescence is recorded with
a photo-diode. Each vertical velocity component at the timeof
release will correspond to a specific arrival time at the probe
beam. The probe beam is carefully spatially filtered and fo-
cussed by a cylindrical lens. The interaction region is lessthan
50µm thick, and the trapped cloud of atoms is approximately
400µm in diameter. This gives a velocity resolution of 0.05
mm/s, or 0.015vR (wherevR = 3.5 mm/s is the velocity cor-
responding to the recoil from one absorbed photon resonant
with the D2-line). Our statistics is good enough not to con-
tribute to this resolution. The optical lattice beams are turned
off, by switching an acousto-optic modulator, faster than ami-
crosecond. This is fast enough to avoid adiabatic release ofthe
atoms in the lattice, which could greatly influence the velocity
distribution, in particular in the high velocity tails1.

1 If the optical lattice beams are turned off too slowly, the atoms may par-
tially equilibrate in the gradually decreasing potential.There may also be
adiabatic cooling [33]. In both these cases, the cooling during a slow turn
off can greatly influence the velocity distribution, in particular in the high
velocity tails. Such adiabatic switching is often used in order to achieve
lower ‘temperatures’.
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B. Experimental results

We recorded the velocity distributions for several modula-
tion depths and we fitted them with the functions introduced in
section II with a slight modification that accounts for atomic
losses. During the long optical lattice phase, we have a con-
stant loss of atoms, probably due to spatial diffusion. There-
fore, the baseline is higher for atoms with a downward ve-
locity (short times,v < 0) than it is for atoms with a up-
ward one (v > 0). We compensate for this by adding a sharp
step function to the fit, with the amplitude of the step as a
free parameter. The amplitude of this step function is found
to increase sharply for decreasing potential depths between
U0 = 200ER and100ER. A probable reason is that spatial dif-
fusion increases rapidly when the potential depth falls below
some threshold, which takes place for higher potential depths
than the threshold for cooling (usually called ‘décrochage’)
[20]. This is consistent with previous studies [32]. In princi-
ple, we could have used a linearly decreasing function instead
of the step function, but then this would have had be termi-
nated by a sharp step. We avoied this in order to minimize
the number of free parameters and also because we wanted to
simplify as much as possible in the absence of detailed knowl-
edge of the loss of atoms.

In Fig. 2, we show the rms width of the distributions,σv, as
a function of the depth of the optical potentialU0, as derived
from the fits to single Gaussian functions. The width, which is
normally associated with a kinetic temperature, increasesfor
deeper potential depths as usual.

In Figs. 3 and 4, typical recorded velocity distributions, to-
gether with Gaussian fits, are shown for low and high mod-
ulation depths. Figure 3 shows data taken with an equili-
bration time of 25 ms, and for Fig. 4 the equilibration time
was 50 ms. This corresponds to typically106 radiative life-
times. The plots with low irradiance are averages of twenty
measurements and those of high irradiance of five measure-
ments. For high values of the irradiance, a Gaussian function
fits the velocity distribution extremely well. However, forlow
irradiance, it is clear that the wings of the distribution isnot
so well fitted. For the short equilibration time, this is more
pronounced.

For all data, even below ‘décrochage’, the attempt with
Lorentzian fits worked very poorly. Fits to double Gaussians
and Tsallis functions, however, reproduced recorded distribu-
tions better than single Gaussians. In insets in figs. 3a and
4b we show fits to double Gaussians for shallow potentials.
In Fig. 5, we compare the errors from the fits for these three
types of functions. When the irradiance is varied, the signal-
to-noise changes substantially, and so does the magnitude of
the loss pedestal at short times, and the width and shape of
the distribution. This makes it very hard to achieve a consis-
tent normalization of the quality of the fits. The value ofχ2

(χ2 = Σ(yi − xi)
2, whereyi is the measured andxi the fitted

value) for an individual fit includes information about both
noise and systematic deviation from the fit function, which
are difficult to separate. The data displayed in Fig. 5 are ra-
tios between unnormalized values ofχ2 for the different fit
functions. The displayed data are for the equilibration time of

FIG. 2: (Color online) The rms width(σv) of the measured velocity
distributions (filled circles) as a function of the modulation depth
of the potential. Also shown is numerically simulated data (open
squares) in the same range (c.f. chapter IV).

25 ms. The other data set has the same features. For deep po-
tentials, all fits are essentially equally good. At more shallow
potentials, a Tsallis function reproduces the data better than
a Gaussian. For the whole range, a double Gaussian gives
the best fit. For the most shallow potentials, the fitted step
becomes too important forχ2 in order to draw any major con-
clusion from this analysis.

The parameterq in Eq. (5) can be regarded as a measure of
the shape of the distribution. Aq approaching 1 will be iden-
tical to a Gaussian distribution, whereasq = 2 corresponds to
a Lorentzian distribution. In Fig.6, we show a plot of the fitted
valueq, for 25 ms equilibration time. For decreasing irradi-
ances,q increases smoothly from one, and eventually reaches
a value higher thanq = 1.6. For the longer equilibration time,
the same trend is evident, but it is much less pronounced, and
q dose not reach higher thanq = 1.3.

The good fit to a double Gaussian can be interpreted as
a sign of a bimodal velocity distribution. In Fig. 7a, we
show the fitted widths of the two Gaussians for both data
sets. This should correspond to the ‘temperatures’ of the two
modes. Both these ‘temperatures’ increase linearly with po-
tential depths. The areas of the two Gaussians should be a
measure of the fraction of atoms being in one or the other
of the modes. In Fig. 7b is the calculated relative popula-
tions. The ‘cold mode’ with narrow velocity distribution al-
ways contains most of the atoms, but the relative number of
atoms in the ‘hot mode’ gets larger for decreasing potential
depths. For potentials deeper thanU0 = 250ER there is no
measurable portion of atoms in the ‘hot modes’. The thermal
energy of the ‘hot mode’ is of the same order (whithin the
large uncertainties) as the energy barrier of the optical poten-
tial, i.e. the modulation depth (shown in the dashed line in
Fig. 7a).
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FIG. 3: (Color online) Experimentally recorded velocity distribu-
tions with fits to simple Gaussians. This data is recorded with an
equilibration time of 25 ms. For a the modulation depth of the
optical potential wasU0 = 78ER and the shown data is an aver-
age of 20 TOF measurements. For b the corresponding facts were
U0 = 285ER and an average of 5 TOF measurements. The insets in
the top right corners show magnifications of portions of the wings of
the distributions. The inset in the top left corner of a show the same
data with a fit to a double gaussian.

IV. NUMERICAL SIMULATIONS

In order to further analyze the results of our experimen-
tal data, we performed numerical simulations for the quantum
dynamics of atoms undergoing Sisyphus cooling. We con-
sider the case of aJ = 4 → J = 5 transition, as for the133Cs
atoms used in the experiments, and for the sake of simplicity
we restrict the motion of the atoms into one dimension (1D).
The laser configuration is the well-known 1D-lin⊥lin config-
uration [4] which in fact corresponds to thez-direction in our
three dimensional (3D) experimental setup (Fig. 1) with a dif-
ferent lattice spacing. This restriction is legitimate because,
first, the temperature has been shown to be independent of the
lattice spacing [31, 32] and, second, the temperature is very

FIG. 4: (Color online) Experimentally recorded velocity distribu-
tions with fits to simple Gaussians. This data is recorded with an
equilibration time of 50 ms. For a the modulation depth of the
optical potential wasU0 = 78ER and the shown data is an aver-
age of 20 TOF measurements. For b the corresponding facts were
U0 = 285ER and an average of 5 TOF measurements. The insets in
the top right corners show magnifications of portions of the wings of
the distributions. The inset in the top left corner of a show the same
data with a fit to a double gaussian.

similar for both 1D- and 3D- configurations (See the com-
parison between 3D-experimental and 1D-numerical results
in Fig. 2. The slight deviation can partly be attributed to the
difference in dimensionality). We first describe the numeri-
cal method for the integration of the dynamics equations (sec-
tion IV A) and then we present the results of the simulations
(section IV B).
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FIG. 5: (Color online) Comparisons between different fits ofthe
measured distribution for 25 ms equilibration time shown asratios
between unnormalized values ofχ2 as a function of modulation
depth of the potential. The circles areχ2

1Gauss/χ2

Tsallis and the squares
areχ2

1Gauss/χ2

2Gauss.

FIG. 6: (Color online) The fitted Tsallisq-parameter as a function of
modulation depth of the potential for 25 ms equilibration time.

A. Integration of the dynamics equations

Consider a two level atom, with Zeeman degeneracy, inter-
acting with a laser field

−→
E L (z, t) =

1

2

{−→
E+

L (z) e−iωt +
−→
E−

L (z) e+iωt
}
. (7)

The laser light is strong enough to be treated as a classical
field so that we can separate the coupling between the atom
and the electromagnetic field into a coupling to the laser field
and a coupling to vacuum. The coupling to the laserV̂AL in-
duces a hamiltonian evolution for the atom. On the contrary,

FIG. 7: (Color online) a) The widths of the two Gaussians as obtained
from a fit of the data to double Gaussians, as a function of modulation
depth of the potential. The dashed line shows the modulationdepth
in units of velocity. b) The relative population of the two modes of
the population, obtained from the areas under the two Gaussians. For
both a) and b), filled symbols correspond to data taken with 50ms
equilibration time and open symbols to 25 ms. Circles are ‘temper-
atures’ and relative population of the ‘hot mode’, and square to the
‘cold mode’.

because of the coupling to the vacuum modes,V̂AV , the atom
is an open quantum system for which the evolution has to be
treated in the density matrix formalism. The evolution of the
atom is thus governed by the generalized optical Bloch equa-
tions (OBE) [34, 35]. In the regime of low saturation, where
the experiments are performed, the excited state relaxes much
faster than the typical evolution time of the ground state and
thus it can be adiabatically eliminated from the OBE. The evo-
lution of the system then reduces to a master equation for̺,
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the atomic density matrix restricted to the ground state [8]:

i~
d̺̂
dt

= Ĥeff ̺̂− ̺̂Ĥ†
eff + Lrelax(̺̂) (8)

where Ĥeff =
p̂2

2M
+

V̂ −
AL V̂

+
AL

~ (∆ + iΓ/2)
. (9)

Here,p̂ is the momentum operator,∆ is the detuning between
the laser and the atomic transition,M is the mass of one atom,

andV̂ ±
AL = −−̂→

D
±

· −→E±
L are the raising and lowering parts of

the dipole interaction operator respectively. In Eq. (8),Ĥeff

is a non-hermitian operator describing the atom-laser interac-
tion2 andLrelax is an operator describing the coupling to the
vacuum field, i.e. spontaneous emission of photons. The in-
tegration of the master equation is performed via a full quan-
tum Monte-Carlo wave function method [36, 37] in which̺
is substituted with a set of stochastic wave functions. The
pseudo-hamiltonian evolution (first term in Eq. (8)) of each
wave function|ψ〉 is governed by a Schrödinger-like equation
involving the non-hermitian hamiltonian̂Heff:

i~
d |ψ〉

dt
= Ĥeff |ψ〉 . (10)

Since equation (10) does not include the filling terms of the
ground state from the excited state due to spontaneous emis-
sion,|ψ〉 is not normalized and the instantaneous spontaneous
emission rate is given by:− d〈ψ|ψ〉/dt

〈ψ|ψ〉 . To take into account
the emission of photons, the pseudo-hamiltonian evolution
(Eq. (10)) is interrupted by quantum jumps, whose repetition
rate is determined with accordance to the spontaneous emis-
sion rate. It follows from the emission of a photon of wave
vector−→κ and polarization−→ǫ that the wave function is instan-
taneously changed into

|ψ〉 →
∣∣ψ−→κ ,−→ǫ

〉
= 〈1−→κ ,−→ǫ |V̂AV (|ψe〉 ⊗ |0〉) (11)

with relative probabilities
∣∣∣∣ψ−→κ ,−→ǫ

〉∣∣2. Here the excited state

wave function|ψe〉 =
V̂ +

AL |ψ〉

~(∆+iΓ/2) is determined by the adia-
batic elimination procedure of the excited state and|0〉 and
|1−→κ ,−→ǫ 〉 represent the electromagnetic field states respectively
without any photon, and with one photon of wave vector−→κ and polarization−→ǫ . The Monte-Carlo integration then
provides a set of time dependent stochastic wave functions
|ψ〉, which represent the atomic state through the average,
σ, of the density matrices associated to the wave functions,
σ = |ψ〉 〈ψ|. It is then straightforward to show that the quan-
tum master equation forσ is the same as the master equation
for the actual density matrix̺ (Eq. 8). Hence, the value of
any observablêO for the quantum system represented by̺ is
equal to the ensemble average of the value of the same ob-
servable for each stochastic wave function represented by|ψ〉

2 The non-hermitian part of̂Heff comes from the relaxation of the excited
state.

[38]: at any time,

〈ψ| Ô |ψ〉 = Tr
(
̺̂ Ô

)
. (12)

B. Results of the simulations

In this work, we are interested in the particular observable
that represents the momentum distribution of the atoms. We
have performed the full quantum Monte-Carlo integration of
the dynamics equations for a set of200 wave functions for var-
ious lattice parameters (detuning and modulation depth). Be-
cause the width of the momentum distributions are typically
broader than several~k, the spontaneous emission pattern can
be approximated by photons emitted along the 3D coordinate
axesx, y or z. With such an approximation, all operators in
Eqs. (9) and (11) couple states of the form|m, p〉 to states
of the form|m′, p± ~k〉 (wherem andm′ represent the in-
ternal sub-level of the atomic ground state). It is then conve-
nient to perform the integration in the|p〉-representation. The
state|ψ〉 is decomposed onto the basis of the|p〉 states (with
p = n~k, with n an integer positive or negative). Finally, for
usual situations considered in this work, the typical momenta
are smaller than 20~k, so that we take|n| ≤ 100. From the
simulations, we determined the mean kinetic energy as a func-
tion of time. After a thermalization period, the energy reaches
a steady-state during which the momentum distribution was
recorded and averaged. The thermalization period was chosen
to be1/Γ, corresponding to a time in the order of a millisec-
ond. Since the calculation is performed in 1D, this time can-
not be directly compared to the thermalization times in the 3D
experiment.

In order to identify whether the momentum distribution
is compatible with a Gaussian curve or not, we first com-
pare the root-mean-square (rms) momentumprms defined by
EK = p2

rms/2M (whereEK is the mean kinetic energy of the
atomic sample) andpe which represents half the width at
1/

√
e of the stationary momentum distribution. For a Gaus-

sian distribution, those two values are equal.
We plot in Fig. 8, the numerical results forprms andpe as a

function of the potential depthU0 for three different detunings
∆. We find that these values are independent of the detuning
within the numerical errors. Several points for lower values of
U0 have also been calculated but the atomic cloud was found
not to thermalize. For those cases, the temperature increases
more or less linearly and the velocity distribution becomes
almost flat. It is also clear in Fig. 8 thatprms and pe have
different behaviors.prms reproduces the well known depen-
dence of the kinetic energy versus the modulation depth:prms

scales as
√
U0 for high values ofU0 and abruptly increases as

U0 reaches very low values, typically lower than 150ER (the
point of décrochage). The minimum value ofprms is found
to be of the order of(prms)min ≃ 4.1~k. On the contrary, we
find thatpe increases monotonically versusU0 for low values
as well as for high values ofU0. The minimum value ofpe

is obtained for the minimum value ofU0 for which a steady-
state velocity distribution can be obtained (U0 & 78ER) and
is found to be of the order of(pe)min ≃ 3.4~k. We iden-
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FIG. 8: Comparison between the rms momentum and the width at
1/

√
e of the momentum distribution as a function of the potential

depthU0 for three different detunings∆ = −10Γ,−20Γ,−30Γ.

tify two different regimes that can be distinguished: ForU0

above décrochage (U0 & 150ER), both pe andprms increase
andpe is slightly larger thanprms that is to say that the momen-
tum distribution is wider than a Gaussian distribution withthe
sameprms. ForU0 below décrochage (U0 . 150ER), pe de-
creases whileprms increases rapidly asU0 decreases; the mo-
mentum distribution has large wings and becomes narrower
than a Gaussian distribution. These different characteristics
are illustrated in Fig. 9 where we plot the simulated velocity
distributions together with Gaussian fits in the two regimes
U0 . 150ER andU0 & 150ER.

One should note that this result is in disagreement with
earlier calculations performed for atoms with a theoreti-
cal J = 1/2 → J = 3/2 transition for which Castin et al.
find that prms > pe for any value of the potential depth
U0 [13]. In fact, when running our simulation for the
J = 1/2 → J = 3/2 transition, we were able to reproduce
the results of [13] and we thus conclude that the discrepancyis
due to the different atomic transitions considered in [13] and
in the present work. We finally conclude that in general, the
momentum distribution significantly differs from a Gaussian
distribution. Moreover, we find that the threshold forprms at
low values ofU0 do not affectpe.

We now turn to a more detailed analysis of the momentum
distributions. We first fit the velocity distributions to Tsallis
functions. The dependence of the Tsallis parameterq on the
modulation depth is also shown in Fig. 10 and show a linear
dependence ofq versusU0.

For all numerical dataq differs from1 only by less than5 %
and is less than1. Moreover,q is found to tend to1 for shallow
potentials indicating that the best Tsallis fit is close to a Gaus-
sian curve in disagreement with the previous discussion. The
discrepancy between numerical simulations and experimental
measurements may be caused by the different dimensionality
considered in the experiments and in the simulations.

Consider now fits to double Gaussians. We plot in Fig. 11
numerically recorded velocity distributions in logarithmic
scale for potential depths in the two regimes corresponding
to shallow and deep potentials, together with fits to double

FIG. 9: (Color online) Numerically recorded velocity distributions
with fits to simple Gaussians. For a, the modulation depth of the op-
tical potential wasU0 = 78ER. For b, it wasU0 = 235ER. The
insets show magnifications of portions of the wings of the distribu-
tions.

Gaussians. For the deep potential (U0 = 293ER), the profile is
essentially parabolic and thus corresponds to a Gaussian dis-
tribution. For the shallow potential (U0 = 78ER), we clearly
identify two contributions: in addition to a narrow parabolic
profile (corresponding to low energetic atoms), a broad one
(corresponding to high energetic atoms) appears.

This supports the interpretation of the dynamics in terms
of a bimodal atomic distribution, with each mode correspond-
ing to ‘trapped’ atoms and to nearly ‘free’ atoms. The whole
distribution is well fitted by a double Gaussian function. We
plot in Fig. 12a the widths of both the modes as functions of
U0. The numerical results are in good agreement with experi-
mental ones (see Fig. 7). For shallow potentials, we find two
Gaussian components with widths that both increase with the
potential depthU0, whereas for deep potentials, the ‘hot com-
ponent’ is almost undetectable.Thus the route to ‘décrochage’
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FIG. 10: Theq-parameter as a function of modulation depth of the
potential, obtained from fitting the numerically computed data to
Tsallis functions.

for shallower potentials can be interpreted as a transfer from
the cold mode to the hot mode. This is supported by the re-
sults for the populations of the two Gaussian contributionsto
the velocity distribution plotted in Fig. 12b. We actually find
that the cold mode is largely dominant even for very shallow
potentials close to ‘décrochage’.

Finally, we compare the numerical and experimental re-
sults. A direct quantitative comparison is not adequate, since
the simulations are done in 1D. However, qualitatively, the
experimental data are reproduced excellently. Figures 9-12
show numerical data corresponding to the experimental ones
in Figs. 3-7. The single Gaussian works for high irradiance
but fails to fit the wings of the distribution for low irradiances.
A Tsallis function does not fit the distribution any better than a
single Gaussian for the numerical data. Again, the distribution
is best fitted by a double Gaussian and this is particularly pro-
nounced for shallow potentials. The fits to double Gaussians
also reproduce the signature of one ‘hot’ and one ‘cold’ mode
for shallow potentials. This strongly supports assumptions of
a bimodal distribution.

We find that the ‘cold’ mode is largely dominant even
for very shallow potentials close to ‘décrochage’in both the
experimental (70 %) and the numerical (90 %) results (see
Fig. 7b and 12b). The quantitative discrepancy between the
limit population of the ‘hot’ and ‘cold’ modes results from the
different dimensionnalities (3D experiments versus 1D calcu-
lations). Indeed, the fraction of bound atoms in adD dimen-
sion situation can be estimated by

n
(dD)
bound= α

∑

j

pdD(Ej)
∏

1≤µ≤d

1Ejµ<Emaxµ (13)

wherepdD(Ej) represents the population of a state of energy
Ej , α in a normalization factor andEmaxµ stands for the max-
imum energy of bound states in the potential wells along the
directionµ (Emaxµ is of the order of the potential depth). Now,
if the space directions are separated (which is the case in the
harmonic approximation that one can assume to be valid for

FIG. 11: (Color online) Numerically computed velocity distribution
for a) U0 = 78ER and b)U0 = 293ER together with fits to Double
Gaussians.

bound states), then

n
(dD)
bound=

∏

1≤µ≤d

αµ
∑

j

p1D(Ejµ)1Ejµ<Emaxµ . (14)

Hence, assuming that all directions are equivalent, the fraction
of atoms in non-bound states reads

n
(dD)
non bound = 1 −

∏

1≤µ≤d

(
1 − n

(1Dµ)
non bound

)

∼ dn
(1D)
non bound. (15)

Therefore, the limit populations of the ‘hot’ mode at
‘décrochage’ are consistent in the experiments (30 % and
d = 3) and in the simulations (10 % andd = 1).

V. CONCLUSIONS

In this work, we have studied the velocity distributions of
cold atomic samples obtained by Sisyphus cooling both in ex-
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FIG. 12: a) Widths of the two Gaussians (cold mode: squares, hot
mode: circles) as obtained from a fit of the numerical data to Double
Gaussians, as a function of modulation depth of the potential. b) The
relative population of the two modes of the velocity distributions,
obtained from the areas under the two Gaussians. The cold mode
(squares) corresponds to the large fraction whereas the hotmode (cir-
cles) corresponds to the small fraction.

periments with133Cs and in full quantum numerical simula-
tions performed for the actual4 → 5 transition of133Cs. We
stressed in particular the deviation from a Gaussian distribu-
tion. This has already been forecasted via semi-classical as
well as quantum simulations for a simplified1/2 → 3/2 tran-
sition showing the difference of the rms velocityvrms and the
velocityve corresponding to half the width at1/

√
e of the dis-

tribution [13]. We recovered such a property but with a sig-
nificantly different behavior of the ratiovrms/ve. This shows

that the non-Gaussian behavior of the velocity distributions is
certainly not a trivial effect in Sisyphus cooling.

A. Summary of our results

Our results (experiments as well as numerical simulations)
show that the velocity distributions are compatible with Gaus-
sian functions for deep enough potentials (typically forU0

larger than a hundred recoil energies). Note that in this case,
the atoms are trapped in the potential wells (i.e. the kinetic
energy of the atomic cloud is significantly smaller than the po-
tential depth). The deviation of the velocity distributionfrom
Gaussian functions become more prominent for shallow light
shift potentials. We tested several types of functions to better
fit the shape of the velocity distributions in the range of pa-
rameters corresponding to deeper potentials. We found that
a better fit (corresponding to smallerχ2) can be obtained by
using a Tsallis function or a double Gaussian.

Tsallis functions - The use of a Tsallis function is related
to the details of the dynamics of atoms cooled by the Sisy-
phus mechanism which is known to be slightly more compli-
cate than a Brownian motion. The Tsallis function introduces
a new parameterq which deviation from1 measures the de-
viation of the velocity distribution from a Gaussian function.
The parameterq can be calculated in the ‘jumping regime’
[39] and it is straightforward to show thatq tends to1 for high
values of the potential depth (thus corresponding to a weak
deviation from a Gaussian), and increase for shallow poten-
tials. An ab initio calculation ofq is more tricky in the ‘os-
cillating regime’ which correspond to the domain of parame-
ters for shallow potentials, near the point of ‘décrochage’ [39].
Nevertheless we can plot the value ofq corresponding to the
best fit of the measured velocity distributions as a functionof
modulation depth. For large modulation depths, we find that
q approaches1, which corresponds to a Gaussian distribution,
in agreement with the analytical calculation (see section II and
[21]). When reducing the potential depth, we clearly observed
an increase inq and this corresponds to a velocity distrubution
with wings larger than in a Gaussian function. In our case the
maximumq is close to 1.6 and this corresponds in our exper-
iments to a potential depthU0 ≃ 60ER. ForU0 < 60ER, the
atomic cloud does not reach a steady state and the optical lat-
tice disintegrates. It is interesting to note that the rms velocity
of Tsallis distributions withq aboveqcr = 5/3 diverge [40]. If
one would plot rms ‘temperatures’ of the atoms using the rms
velocity, this would correspond to a diverging temperature. As
one is often limited by noise in the wings of the velocity dis-
tribution, one has a tendency to restrict the analysis to atoms
with velocities several times below the 1/e value of the distri-
bution. Any divergence is hence avoided. Note also that such
divergences are very familiar: the wings of a Lorentz distri-
bution are also known to cause a divergence of the rms value
of the distribution. One can also recall that in the case of nar-
row line cooling, the rms velocity diverges [41, 42] when one
approaches the atomic resonance, and that for very small de-
tunings one can no longer even have a normalized distribution
function [41].
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Double Gaussian functions -Fitting the recorded (exper-
imental or numerical) distribution functions to double Gaus-
sians works even better than the Tsallis function. On the one
hand, it is not surprising that a fitting procedure with more free
parameters gives better fits. On the other hand, the velocity
distribution in logarithmic scale in Fig. 11a clearly exhibits
two components with very different widths. For deep po-
tentials, one recovers a Gaussian distribution of ‘cold atoms’
bound in in the potential wells as expected from the above
discussion. When decreasing the potential depth, a fraction of
‘hot atoms’ grows up (forU0 < 120ER). These atoms have an
energy larger than the potential depth and are not trapped in
the potential wells. We found that the fraction of ‘hot atoms’
can be significant for very shallow potentials. It reaches30 %
in 3D experiments and10 % in 1D numerical simulations just
above ‘décrochage’ atU0 ≃ 60ER (the discrepancy between
the experiments and the simulations is due to the different di-
mensions as shown at the end of section IV B). This result
strongly supports assumptions that an optical lattice has abi-
modal velocity distribution. A straightforward interpretation
would be that some atoms are bound at lattice sites, whereas
others have enough energy to move around on top of the mod-
ulated potential. An interesting results of our work is thatthe
phenomenon of ‘décrochage’ does not correspond to a sharp
increase of the width of the velocity distributions correspond-
ing to each mode but to a continuous transfer from the ‘cold
mode’ to the ‘hot mode’. We found that when décrochage oc-
curs, the fraction of atoms in the ‘hot mode’ does not exceed
a few tens percent.

B. Perspectives

The results shown in this paper stronlgy suggest that the
simple picture for Sisyphus cooling, based on a competition
between a diffusion and a friction (see Eq. 4), is not adequate
to describe the ‘coldest’ velocity distributions. Even though
one has to be careful before generalizing the conclusions of
this paper to other situations of laser cooling and/or trapping,
the existence of two velocity modes might provide a useful
guide to understand the dynamics and limits of laser cooling.
One can note e.g. that for shallow potentials, one has fewer
bound states, and the fraction of atoms in the conduction band
gets more prominent, as shown in Figs. 7 and 12.

These atoms will experience a friction force corresponding
to the classical Sisyphus cooling model. The route to equilib-
rium for the bound atoms is less clear. One hypothesis [43]
is that bound levels are uniformly ‘watered’ from the conduc-
tion band, whereas high lying levels are more likely to escape.
Thus, the route to equilibrium is not quite a competition be-
tween cooling and heating. A drawback with this theory is
that it would not yield Gaussian velocity distributions. How-
ever, this theory has the advantage that the rate of equilibra-

tion should depend linearly on irradiance, which is consistent
with previous experiments [44, 45]. In contrast, the standard
Sisyphus cooling theory predicts a cooling rate independent of
irradiance [4]. An interesting experiment would be to measure
the velocity distribution as a function of time after a sudden
change of the light shift potential, and see if the two popula-
tions would evolve differently.

Figures 3 and 4 seem to indicate a time dependence of the
experimentally recorded velocity distribution. However,with
the current data set (using only the two cooling times 25 ms
and 50 ms), and with the current experimental uncertainties,
we cannot draw any quantitative conclusion for the time de-
pendence of the velocity distributrion. In future work, we will
study the velocity distribution as a function of time.

It would also be interesting to extend the test functions used
in this paper to a narrow-line cooling scheme, which become
more and more used with the laser cooling of earth-alkaline
atoms. At this stage, one can however note, that a non normal-
ized distribution function will have as an effect that thereis no
steady state distribution and that in this case atoms will diffuse
to large velocities. This will appear in an experiment as a leak-
age rate of the atoms from the optical lattice. The background
observed in our experiment become more and more dominant
for shallow potential wells. One might expect this to have a
contribution from a diffusion of the atoms beyond the capture
range of the optical lattice corresponding in practice to a non-
normalized distribution function. A detailed analysis of the
velocity distribution of atoms in optical lattices thus appears
as a promising tool to study new statistical effects.

Experiments as well as full quantum simulations (in 1D
and 3D) should allow one to get new insights in the dynamics
of such systems. Apart from the suggestions above, future
work could e.g. focus on the phase space dynamics of atoms
in optical lattices and of quantum transport properties of
ultra-cold atoms or even Bose-Einstein condensates.
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