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General elements of an m-primary ideal on a
normal surface singularity

Romain Bondil

Abstract

In this papelﬂ, we show how to apply a theorem by Lé D.T. and the
author about linear families of curves on normal surface singularities to
get new results in this area. The main concept used is a specific definition
of general elements of an ideal in the local ring of the surface. We make
explicit the connection between this notion and the elementary notion
of general element of a linear pencil, through the use of reduction. This
allows us to prove the invariance of the generic Milnor number (resp. of
the multiplicity of the discriminant), between two pencils generating two
ideals with the same integral closure (resp. the projections associated).
We also show that our theorem, applied in two special cases, on the one
hand completes a theorem by Snoussi on the limits of tangent hyperplanes,
and on the other hand gives an algebraic p-constant theorem in linear
families of planes curves.

Introduction

Let (S5,0) be a germ of normal complex-analytic surface, with local ring Og g
corresponding to the germs of holomorphic functions on (S,0), and maximal
ideal m, formed by the germs taking the value 0 at 0.

To any couple (f,g) of elements of m, one may associate three related ob-
jects : the linear pencil of the curves Cy g : aof + 3g = 0 with (a, 3) € C?, the
ideal J = (f,g) in Og, and the projection :

p:(S,0) — (C%0),
z— (f(2),9(z)).

We will always assume that the curves f = 0 and g = 0 share no common compo-
nent (in other words : the corresponding linear system has no fized component,
the ideal J is m-primary, and the projection p is finite).

Denoting by (A,,0) C (C2,0) the discriminant of the projection p (see § ),
one may define a general element of the pencil (Cy, 5) as the inverse-image by p
of any line ax + By = 0 in C? which does not lie in the tangent cone of (Ap,0).

IM.S.C. 32515, 32525 and 14J17, 14H20.



One may in turn define an element h = af 4+ bg € J with a,b € Og9 to be
general iff a(0)f + b(0)g defines a general element of the pencil (Cy g).

In fact, we define here, for any m-primary ideal I in Og ), a notion of general
element which has the following property : take any pair (f, g) of elements of I
such that the ideal J = (f,g) is a reduction of I (see § []), then the general
elements of J (in the “pencil” sense) will be general elements of I, and conversely
any general element of I will be obtained as an element of such a reduction.

However, this will not be our first definition of the general elements of I since
we rather define them purely by their behaviour on the normalized blow-up of T
(cf. def. R.1)).

In a previous paper, we proved that these elements are characterized by their
Milnor number (theorem E) Here, we focus on the applications of this result :

In§ E, we show how it covers both the study of limit of hyperplanes tangent
to a normal surface, and the study of linear systems of plane curves, proving
on one side a complement to a theorem by J. Snoussi, and on the other side an
algebraic p-constant theorem for linear systems of plane curves (also obtained
by other means by E. Casas).

In§ , we prove the relation between our definition of general elements of I
and the one for pencils as claimed above. As a corollary, for two pencils (f, g)
and (f’,¢’) defining a reduction of I, the general elements of both pencils have
the same Milnor number, and the discriminants of the corresponding projections
have the same multiplicity, which is apparently new.

1 Geometry of a theorem by Samuel

In this section only, we consider a germ (X,0) of complex analytic space with
arbitrary dimension d. We let O := Ox o be the corresponding local analytic
ring. In fact, the content of this section would work with any local noetherian
ring with infinite residue field (see e.g. [Li] or [BJ] Chap. 2.3).

We recall that an element f € O is said to be integrally dependant on an
ideal I of O if it satisfies an equation :

ffHafr "+ +a,=0,
with the condition a; € I' for alli =1,...,n.

The theory of integral dependance on ideals was initiated by O. Zariski (see
[E] Appendix 4) and under the influence of H. Hironaka was developed in
the seminar } where several characterizations are given. In the hands of
B. Teissier, it became a cornerstone in the theory of equisingularity (see e.g.
[ Chap. 1). More recently, the theory was extended to modules under the
impulse of T. Gaffney (see the survey [Ga-Mal).

Let us just mention that the set T of the elements of O integrally dependant
on [ is an ideal, called the integral closure of I in O, and that the definition of
integral closure finds a natural expression on the blow-up X; of the germ (X, 0)
along T (see [[le-2)).

For the sake of simplicity, we restrict here to the case of a reduced germ (X, 0)

(cf. [@] loc. cit. for the general case). Then one may take the normalization X



of the blow-up X;, and following [ (Chap. 1, (1.3.6) et seq.), one proves
that the equality I = J of integral closures of ideals in O is equivalent to the
equality :

1.Og = J.O%, (1)

for the corresponding sheaves on the normalized blow-up X;.

We now take I to be an m-primary ideal of O i.e. containing a power m?® of
the maximal ideal of O.

Denoting by by : X; — (X,0) the normalized blow-up, we write D1, ..., D
for the irreducible components of the reduced exceptional divisor |(b7)~1(0)],
and vp, for the valuation along D;.

Then we define (cf. [B-L-1] déf-prop. 1) an element f € I to be v-superficial
if, and only if,

vp,(f) =vp,(I) :=inf{vp,(g),g € I} forall i=1,...,s. (2)

Denoting by Dy := Y7 | vp,(f)D;, the total transform (f)* := (f o bs) on X
may be written as a sum of divisors :

(f)"=(f)+ Dy,
with (f)’ the strict transform of f on X7.
The first part of the following proposition is an avatar of a theorem by
P. Samuel. The second part is the geometric version announced in the title :

Proposition 1.1. i) Let O be a local noetherian ring of dimension d with infi-
nite residue field O/m. Let I be an m-primary ideal of O. There exist a d-tuple
(f1,..., fa) of elements of I such that the ideal (f1,..., f4) is a reduction of I,
i.e. has the same integral closure as I.

il) In our setting, let O be the local ring of a reduced analytic germ (X,0).
The d-tuple in i) are characterized by the two conditions that first, all the f; are
v-superficial in I and secondly, the intersection of their strict transforms (f;)’
on the exceptional divisor D werifies :

(SN (f2) NN (fa) ND=0.
We call such a d-tuple a good d-tuple of v-superficial elements in I.

We will not give the proof here, but the reader should understand that ii)
also easily gives the proof of i) thanks to the characterization on (f]) above. In
fact, the same “geometric proof” works under the general hypotheses of i) but
one has to work on the non normalized blow-up (see [Bd] Chap. 2).

The original theorem by Samuel was formulated in terms of multiplicities (cf.
[B-2] Chap. VIII thm. 22) so that it seems relevant to mention the following :

Proposition 1.2. Let O be analytic local integral domain, and I an m-primary
ideal of O. The multiplicity e(I/(f), O/(f)) = e(I,O) if, and only if, f is v-
superficial.

This result can be deduced from a general formula for e(I/(f), O/(f)) due
to Flenner and Vogel in [[F1-Vd] (for any noetherian local ring).



2 General elements of an ideal

From now on, we restrict ourselves to a two-dimensional normal germ (S, O)ﬂ

Definition 2.1. Let O be the local ring of a germ of normal surface (S,0) and
let I be an m-primary ideal of O. Adapting the notation from section é, Sr
denotes the normalized blow-up of I on (S,0). We define an element f € I to
be general if, and only if,

(i) f is v-superficial in I (cf. § m (E)%

(ii) the strict transform (f)" is a smooth curve transversal to the exceptional
divisor D in St, which means that (f)" does not go through singular points
either of St or of D and that the intersection is transverse.

Consider any resolution 7 : X — S7 of the singularities of S7, good in
the sense that, denoting by 7 = by or : X — (,0), the exceptional divisor
Z = m~1(0) has only normal-crossing singularities.

Denote by (fon) = (f) +Zy the decomposition of the total transform of (f)
on X into an exceptional (compact) part Z; and its strict transform denoted
again (f)’.

Denoting Z; the divisor defined by I.Ox on X, we easily get the following :

Proposition 2.2. With the notation as above, f € I is general if, and only if,
its total transform on X is such that :

a) its exceptional part is the generic one for the elements of I i.e. Zy = Zy,
B) its strict transform is a (multi-germ of ) smooth curves transversal to Z.

As a corollary of this proposition, it is possible (either by a computation
of Euler-Poincaré characteristic of covering spaces as indicated in [B | § 4,
which followed [[G], or by an algebraic derivation from a Riemann-Roch formula
as in [Md] 2.1.4) to compute the Milnor number (in the sense of [Bu-G1]) of the

complex curve defined by any general element f € I. We then get :
uw(f) = pr:=1=(Z1.(Z1 = |Z;1| = K)), (3)

on any good resolution as defined before the proposition, where |Z;| (resp. K)
denote the reduced divisor associated to Z; (resp. the numerically canonical
cycle) and () denotes the intersection product (see [B-L-1]).

The main theorem in ||B | is the converse implication :
Theorem 2.3. Let (S,0) a germ of normal surface singularity, and I an m-
primary ideal of Ogo. An element f € I is general in the sense of@ if, and
only if, the Milnor number u(f) has the value py prescribed by formula (B'),
which is also the minimum Milnor number for the elements of I.

2For the elementary properties of normal surfaces we use here, see [E] § 2.6, and [



Remark 2.4. Thanks to the algebraic computation of the Milnor number for
general elements which follows from [Md] (see before formula (f)), theorem p.3
is proved without any topological argument, so that the proof fits to the setting
of algebraic geometry over any algebraically closed field of characteristic zero.

3 Two special cases

3.1 The case when (S5,0) is arbitrary but I =m

For a germ (S, 0) of normal surface, given an embedding (5,0) C (C",0) defined
by N generators of the maximal ideal m of Og o, we may consider the elements
f € m as hypersurface sections of S. From this point of view, J. Snoussi
studies in [E] what he called the general hyperplanes with respect to (S,0). An
hyperplane H > 0 in CV is said to be general for (S,0) if, and only if, it is not
the limit of hyperplane tangents to the non singular locus of a small representant
of (8,0) in CV (loc. cit. déf. 2.2). He then proves (loc. cit. thm. 4.2.) :

Theorem 3.1 (Snoussi). If (5,0) is a normal surface singularity embedded
in (CN,0), and if H is an hyperplane which does not contain an irreducible
component of the tangent cone Cgq of (S,0), then H is general if, and only
if, the Milnor number u(H N S,0) is minimum among the Milnor numbers of
hyperplane sections of (.S,0).

From the definition of v-superficial elements given in § m (E), it is clear that
the equation of an hyperplane H defines a v-superficial element of the mazximal
ideal of Og if, and only if, H does not contain an irreducible component of
Cs,0. Hence, our theorem P.3 improves theorem B.1 as follows (see (ii)) :

Corollary 3.2 (of our theorem [2.3).

(i) The equation of a general hyperplane in the sense of Snoussi defines a general
element of m in the sense of definition @ Conversely, if one takes a general
element f € m and any embedding of (S,0) C (CN,0) such that f is induced by
a coordinate function, f =0 defines a general hyperplane.

(ii) In theorem [3.1, one may remove the hypothesis “H does not contain an
irreducible component of the tangent cone Csg of (S,0)” since theorem [2.3
proved that elements with p minimum necessarily have this property.El

3.2 The case when (S,0) = (C?,0) and [ is arbitrary

Since the definition of general element of an ideal given in def @ was the same
for an ideal I and its integral closure I we consider only integrally closed ideals
in the following discussion i.e. ideals such that I = I.

These ideals were first studied by O. Zariski (see [ App. 5, where they
are rather called complete) as the algebrization of Enriques’theory of clusters of
points. For all this, we refer to the nice survey [@], and the book @] :

3Note that this is exactly the tricky part of the argument in [




A cluster K = (0;,14); is a set of points 0; infinitely near 0 ie. lying
above 0 in a sequence of point blow-up starting from (C2,0), with ascribed
multiplicities v;. There is a one-to-one correspondence between the integrally
closed ideals of (C2,0) and the clusters (O;, v;) satisfying the so-called prozimity
relations of Enriques (see [LJ] 5.1), also called consistent clustersin [Cd] (p. 124).

For such a cluster K = (0;,v;);, the corresponding ideal I is defined as the
set of f such that wvirtual multiplicity of the curve defined by f at the point 0;
is at least v; (cf. loc. cit.) ]

Now f € Ik is said to go sharply through K if, and only if, f goes through
the 0; with effective multiplicity equal to the v; and has no singular points
outside K (cf. [Cd] p. 127).

Remark 3.3. It is easy to see that two germs going sharply through K are
equisingular (cf. [[Cd] p. 127), in the sense of the well-known equisingularity
theory of germs of plane curves.

The careful study in @], compared to our proposition @, yields :

Lemma 3.4. For an integrally closed m-primary ideal I of Oc2 o, correspond-
ing to a (consistent) cluster K, an element f € I is general in the sense of our
def. @ if, and only if, f goes sharply through K in the sense above.

Proof. The proof of (ii)<(ii’) in [EJ] p. 360-361, gives exactly the equivalence
between the fact that f goes through the O; with effective multiplicity v; and
the fact that Zy = Z; on the minimal resolution of the blow-up of (C2,0) along I
(notation of prop. .9).

Now the fact that f has no singular points outside K gives that the strict
transform of f on S is transversal to the exceptional divisor by the argument of
[@], proof of 6.1. (applied to each branch of f corresponding to a simple ideal
in the decomposition of I) . The converse is clear. O

With this, we get from our theorem E and rem. @ the following :

Corollary 3.5. For an integrally closed m-primary ideal I of Ocz g, all the
elements f € I such that u(f) has the generic value pur are equisingular.

Note that this g-constant result for linear systems of plane curves is obtained
without using topology (cf. rem. @) Another algebro-geometric proof of the
same result is derived from the theory of clusters in [[Cd] § 7.3. No such algebraic
proof exists for the much more general theorem of Lé (in [Lé-1]) on arbitrary
(non-linear) family of germs of plane curves (cf. the remark on p. 361 in [Te-7)).

4 General elements and discriminants
We go back to our general setting i.e. (5,0) is any germ of normal surface

singularity, I any m-primary ideal of Og o and we take (f,g) a good couple of
v-superficial elements in I (cf. prop. EI) so that J = (f, g) is a reduction of I.

4In @} Chap. 1, we explain how, once Ix is known, the virtual multiplicities of the
elements of I coincide with the multiplicities of their weak transforms (cf. loc. cit. 1.1.6).



Let p : (S,0) — (C2,0) be the projection corresponding to f,g as in the
introduction, whose degree deg(p) is by definition the multiplicity e(f, g) = e(I).

Following Teissier (cf. [[le-1]), one defines the critical space (Cyp,0) of p
by the ideal I¢, = Fo(Q,) in O(g,0), where €2, denotes the module of relative
differentials, and Fy the zeroth Fitting ideal. Then, denoting Oc, o = (’)570/1(;?,
one constructs the discriminant space (A,,0) as the image of (C),0) by p,
defined in (C2,0) by the ideal :

IAp = Fo(p*OCmo).
Now the space (Ap,0) may be both non-reduced at a generic point of one of its
components, and have an embedded component at 0. We denote Ay;,, the divi-
sorial part of (A,,0) i.e. we do not consider the possible embedded component
at 0 (the reader will find more detail on all this in [B-L-J § 3).
The following lemma was called Lé-Greuel formula in [ 3.9 :

Lemma 4.1. With the notation as above, for any line L : ax + By = 0 in C2,
denoting by (- ) the intersection number at 0, we have the following equality :

(Agiv - L)o = p(p~" (L), 0) + deg(p) — 1, (4)
where p s the Milnor number in the sense of [Bu-Gij.

Remark 4.2. From the definition .1 of general elements applied to .J = (£, g),
and Bertini’s theorem, it is easy to see that for generic values of the numbers
(o, B) € C? the element o f + B¢ of the linear pencil defined by f,g is a general

element of the ideal J (cf. also [B-L-1]).

Now with the formula (f]) above, one deduces the following :

Corollary 4.3 (of theorem R.3). Let J = (f,g) be an m-primary ideal of
Oso. The elements af + (g with (o, ) € C? which are general elements of
J (in the sense of def. [P-1) are ezactly the inverse-images p~*(L) of the lines
L : ax+ By = 0 transversal to the discriminant in lemma Y. 1.

Proof. The formula (H) gives the equivalence between minimal Milnor number
in the pencil and minimal intersection number (Ag;, - L); by remark @ we
already know that the minimum Milnor number in J is obtained by elements of
the pencil, and we conclude by theorem @ O

Now, we may also compare two projections p = (f, g) and p’ = (f’, g’) such
that the corresponding ideals (f, g) and (f’, ¢') have the same integral closure I.
We then know that deg(p) = deg(p’) = e(I) and from the foregoing, the generic
Milnor numbers in the two pencils defined by (f,g) and (f/,g’) are both equal
to the same number p; as defined in formula (é) Then formula ({) yields :

Corollary 4.4. Let (f,g) and (f',¢') be two m-primary ideals on Og o having
the same integral closure I, the multiplicity of the discriminant of the projections
p defined by f,g and p’ defined by f', g onto C? are the same, equal to :

e(Ap,0) = pr + e(I) — 1, (5)



In the special case of any projection p = (f,g) with deg(p) equal to the
multiplicity e(S,0) of the germ (S,0) (which is by definition the multiplicity
e(m)), by a theorem of Rees (cf. [[[e-d] p. 340), (f,g) is a reduction of m.
Hence, for any such projection we have the following formula :

e(Ap,0) = pi® + ', (6)

where p? is the generic Milnor number pu,, in m, and u* = ¢(S,0) — 1. The
notation p follows Teissier (cf. [Te-3] ex. 2.2 p. 423) where the ;*(X,0) denote
in general the Milnor number of the intersection of a hypersurface (X,0) with
a “general enough” linear subspace of dimension 7. Here our (5,0) is no longer
an hypersurface so that the Milnor number is in the sense of [Bu-Gi]. Note also
that even in the case of an hypersurface of C3, we obtain our formula (f) for a
broader class of projections than the corresponding formula in [ loc. cit.
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