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Abstract

Let g2 be the Hochschild complex of cochains onC∞(Rn) andg1 be the space
of multivector fields onRn. In this paper we prove that given anyG∞-structure
(i.e. Gerstenhaber algebra up to homotopy structure) ong2, and any morphismϕ
of Lie algebra up to homotopy betweeng1 andg2, there exists aG∞-morphism
Φ betweeng1 andg2 that restricts toϕ. In particular, the morphism constructed
by Kontsevich can be obtained using Tamarkin’s method for any G∞-structure on
g2. We also show that any two of suchG∞-morphisms are homotopic in a certain
sense.
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Let M be a differential manifold andg2 = (C·(A,A),b) be the Hochschild cochain
complex onA = C∞(M). The classical Hochschild-Kostant-Rosenberg theorem states
that the cohomology ofg2 is the graded Lie algebrag1 = Γ·(M,∧·TM) of multivector
fields onM. There is also a graded Lie algebra structure ong2 given by the Gersten-
haber bracket. In particularg1 andg2 are also Lie algebras up to homotopy (L∞-algebra
for short). In the caseM = R

n, using different methods, Kontsevich ([Ko1] and [Ko2])
and Tamarkin ([Ta]) have proved the existence of Lie homomorphisms “up to homo-
topy” (L∞-morphisms) formg1 to g2. Kontsevich’s proof uses graph complex and is
related to multizeta functions whereas Tamarkin’s construction uses the existence of
Drinfeld’s associators. In fact Tamarkin’sL∞-morphism comes from the restriction of
a Gerstenhaber algebra up to homotopy homomorphism (G∞-morphism) fromg1 to
g2. TheG∞-algebra structure ong1 is induced by its classical Gerstenhaber algebra
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structure and a far less trivialG∞-structure ong2 was proved to exist by Tamarkin [Ta]
and relies on a Drinfeld’s associator. WhenM is a Poisson manifold, Kontsevich and
Tamarkin homomorphisms imply the existence of a star-product (see [BFFLS1] and
[BFFLS2] for a definition). A connection between the two approaches has been given
in [KS] but the morphisms given by Kontsevich and Tamarkin are not the same. The
aim of this paper is to show explicitelly that Kontsevich’s homomorphism can be ob-
tained using Tamarkin’s method, hence can be extended into aG∞-morphism. More
precisely, we show that given anyG∞-structure ong2, and anyL∞-morphismϕ between
g1 andg2, there exists aG∞-morphismΦ betweeng1 andg2 that restricts toϕ .

In the first section, we fix notations and recall the definitions of L∞ andG∞-structures.
In the second section we state and prove the main Theorem. In the last section we
show that any twoG∞-morphisms given by Tamarkin’s method are homotopic in a
certain sense.

Remark : in the sequel, unless otherwise is stated, the manifoldM is supposed to beRn

for somen≥ 1. Most results could be generalized to other manifolds using techniques
of Kontsevich [Ko1] (also see [TS], [CFT]).

1 L∞ and G∞-structures

For any graded vector spaceg, we choose the following degree on∧·g : if X1, . . . ,Xk

are homogeneous elements of respective degree|X1|, . . . |Xk|, then

|X1∧·· ·∧Xk|= |X1|+ · · ·+ |Xk|−k.

In particular the componentg = ∧1
g ⊂ ∧·g is the same as the spaceg with degree

shifted by one. The space∧·g with the deconcatenation cobracket is the cofree cocom-
mutative coalgebra ong with degree shifted by one. Any degree one mapdk : ∧k

g→ g

(k≥ 1) extends into a derivationdk : ∧·g→ ∧·g of the coalgebra∧·g (by cofreeness
property).

Definition 1.1. A vector spaceg is endowed with a L∞-algebra (Lie algebras “up to
homotopy”) structure if there are degree one linear maps m1,...,1 : ∧k

g→ g such that if
we extend them to maps∧·g→∧·g, then d◦d = 0 where d is the derivation

d = m1 +m1,1+ · · ·+m1,...,1 + · · · .

For more details onL∞-structures, see [LS]. It follows from the definition that aL∞-
algebra structure induces a differential coalgebra structure on∧·g and that the map
m1 : g→ g is a differential. Ifm1,...,1 : ∧k

g→ g are 0 fork ≥ 3, we get the usual
definition of (differential ifm1 6= 0) graded Lie algebras.

For any graded vector spaceg, we denoteg⊗n the quotient ofg⊗n by the image of all
shuffles of lengthn (see [GK] or [GH] for details). The graded vector space⊕n≥0g

⊗n is
a quotient coalgebra of the tensor coalgebra⊕n≥0g

⊗n. It is well known that this coalge-
bra⊕n≥0g

⊗n is the cofree Lie coalgebra on the vector spaceg (with degree shifted by
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minus one). For any spaceg, we denote∧·g⊗· the graded space ⊕
m≥1, p1+···+pn=m

g
⊗p1∧

·· ·∧g
⊗pn. We use the following grading on∧·g⊗·: for x1

1, · · · ,x
pn
n ∈ g, we define

|x1
1⊗·· ·⊗xp1

1 ∧·· ·∧x1
n⊗·· ·⊗xpn

n |=
p1

∑
i1

|xi1
1 |+ · · ·+

p1

∑
in

|xin
n |−n.

Notice that the induced grading on∧·g ⊂ ∧·g⊗· is the same than the one introduced
above. The cobracket on⊕g

⊗· and the coproduct on∧·g extend to a cobracket and a
coproduct on∧·g⊗· which yield a Gerstenhaber coalgebra structure on∧·g⊗·. It is well
known that this coalgebra structure is cofree (see [Gi], Section 3 for example).

Definition 1.2. A G∞-algebra (Gerstenhaber algebra “up to homotopy”) structure on
a graded vector spaceg is given by a collection of degree one maps

mp1,...,pn : g
⊗p1∧·· ·∧g

⊗pn→ g

indexed by p1, . . . pn ≥ 1 such that their canonical extension:∧·g⊗·→∧·g⊗· satisfies
d◦d = 0 where

d = ∑
m≥1, p1+···pn=m

mp1,...,pn
.

Again, as the coalgebra structure of∧·g⊗· is cofree, the mapd makes∧·g⊗· into a dif-
ferential coalgebra. If the mapsmp1,...,pn are 0 for(p1, p2, . . . ) 6= (1,0, . . . ), (1,1,0, . . .)
or (2,0, . . . ), we get the usual definition of (differential ifm1 6= 0) Gerstenhaber alge-
bra.

The space of multivector fieldsg1 is endowed with a graded Lie bracket[−,−]S called
the Schouten bracket (see [Kos]). This Lie algebra can be extended into a Gerstenhaber
algebra, with commutative structure given by the exterior product:(α,β ) 7→ α ∧β

Settingd1 = m1,1
1 + m2

1, wherem1,1
1 : ∧2

g1→ g1, andm2
1 : g

⊗2
1 → g1 are the ex-

tension of the Schouten bracket and the exterior product, wefind that (g1,d1) is a
G∞-algebra.

In the same way, one can define a differential Lie algebra structure on the vector space
g2 = C(A,A) =

⊕
k≥0Ck(A,A), the space of Hochschild cochains (generated by dif-

ferential k-linear maps fromAk to A), whereA = C∞(M) is the algebra of smooth
differential functions overM. Its bracket[−,−]G, called the Gerstenhaber bracket, is
defined, forD,E ∈ g2, by

[D,E]G = {D|E}− (−1)|E||D|{E|D},

where

{D|E}(x1, . . .,xd+e−1) = ∑
i≥0

(−1)|E|·iD(x1, . . .,xi ,E(xi+1, . . .,xi+e), . . .).

The spaceg2 has a grading defined by|D |= k⇔D ∈Ck+1(A,A) and its differential is
b = [m,−]G, wherem∈C2(A,A) is the commutative multiplication onA.
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Tamarkin (see [Ta] or also [GH]) stated the existence of aG∞-structure ong2 given by
a differentiald2 = m1

2+m1,1
2 +m2

2+ · · ·+mp1,...,pn
2 + · · · , on∧·g⊗·2 satisfyingd2◦d2 = 0.

Although this structure is non-explicit, it satisfies the following three properties :

(a) m1
2 is the extension of the differentialb

(b) m1,1
2 is the extension of the Gerstenhaber bracket[−,−]G

andm1,1,...,1
2 = 0

(c) m2
2 induces the exterior product in cohomology. (1.1)

Definition 1.3. A L∞-morphism between two L∞-algebras(g1,d1 = m1
1 + . . . ) and

(g2,d2 = m1
2 + . . .) is a morphism of differential coalgebras

ϕ : (∧·g1,d1)→ (∧·g2,d2). (1.2)

Such a mapϕ is uniquely determined by a collection of mapsϕn : ∧n
g1→ g2 (again

by cofreeness properties). In the caseg1 andg2 are respectively the graded Lie algebra
(Γ(M,∧T M), [−,−]S) and the differential graded Lie algebra(C(A,A) , [−,−]G), the
formality theorems of Kontsevich and Tamarkin state the existence of aL∞-morphism
betweeng1 andg2 such thatϕ1 is the Hochschild-Kostant-Rosenberg quasi-isomor
phism.

Definition 1.4. A morphism of G∞-algebras between two G∞-algebras(g1,d1) and
(g2,d2) is a mapφ : (∧·g⊗·1 ,d1)→ (∧·g⊗·2 ,d2) of codifferential coalgebras.

There is a coalgebra inclusion∧·g → ∧·g⊗·, and it is easy to check that anyG∞-
morphism between twoG∞-algebras(g,∑mp1,...,pn), (g′,∑m′p1,...,pn) restricts to aL∞-

morphism
(
∧·g,∑m1,...,1

)
→

(
∧·g′,∑m′1,...,1

)
. In the caseg1 andg2 are as above,

Tamarkin’s theorem states that there exists aG∞-morphism between the twoG∞ alge-
brasg1 andg2 (with theG∞ structure he built) that restricts to aL∞-morphism.

2 Main theorem

We keep the notations of the previous section, in particularg2 is the Hochschild com-
plex of cochains onC∞(M) andg1 its cohomology. Here is our main theorem.

Theorem 2.1. Given any G∞-structure d2 ong2 satisfying the three properties of (1.1),
and any L∞-morphismϕ betweeng1 andg2 such thatϕ1 is the Hochschild-Kostant-
Rosenberg map, there exists a G∞-morphismΦ : (g1,d1)→ (g2,d2) that restricts to
ϕ .

In particular, Theorem 2.1 implies that the formality map ofKontsevich lifts into a
G∞-morphism fromg1 (with its classicalG∞-structure) tog2 (endowed with Tamarkin’s
G∞-structure).

Let us first recall the proof of Tamarkin’s formality theorem(see [GH] for more
details):
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1. First one proves there exists aG∞-structure ong2, given by a differentiald2, as
in (1.1).

2. Then, one constructs aG∞-structure ong1 given by a differentiald′1 together with
a G∞-morphismΦ between(g1,d′1) and(g2,d2).

3. Finaly, one constructs aG∞-morphismΦ′ between(g1,d1) and(g1,d′1).

The compositionΦ◦Φ′ is then aG∞-morphism between(g1,d1) and(g2,d2),thus re-
stricts to aL∞-morphism between the differential graded Lie algebrasg1 andg2.

We suppose now that, in the first step, we take anyG∞-structure ong2 given by a differ-
entiald2 and we suppose we are given aL∞-morphismϕ between the Lie algebrasg1

andg2 satisfyingϕ1 = ϕHKR the Hochschild-Kostant-Rosenberg quasi-isomorphism.

Proof of Theorem 2.1:
The Theorem will follow if we prove that Items 2 and 3 of Tamarkin’s construction

are still true with the extra conditions that the restriction of theG∞-morphismΦ (resp.
Φ′) on the Lie structures is theL∞-morphismϕ (resp. id) between the Lie algebrasg1

andg2. As the arguments forΦ andΦ′ are very similar, we will only prove the result
for Φ.

Let us recall (see [GH]) that the constructions ofΦ andd′1 can be made by induc-
tion. Fori = 1,2 andn≥ 0, let us set

V [n]
i =

⊕

p1+···+pk=n

g
⊗p1
i ∧·· ·∧g

⊗pk
i

andV [≤n]
i = ∑k≤nV [k]

i . Let d[n]
2 andd[≤n]

2 be the sums

d[n]
2 = ∑

p1+···+pk=n
dp1,...,pk

2 and d[≤n]
2 = ∑

p≤n
d[p]

2 .

Clearly,d2 = ∑n≥1d[n]
2 . In the same way, we denoted′1 = ∑n≥1d′[n]

1 with

d′[n]
1 = ∑

p1+···+pk=n
d
′p1,...,pk
1 and d′[≤n]

1 = ∑
1≤k≤n

d′[k]1 .

We know from Section 1 that a morphismΦ : (∧·g⊗·1 ,d′1)→ (∧·g⊗·2 ,d2) is uniquely

determined by its componentsΦp1,...,pk : g
⊗p1
1 ∧·· · ∧g

⊗pk
1 → g2. Again, we haveΦ =

∑n≥1Φ[n] with

Φ[n] = ∑
p1+···+pk=n

Φp1,...,pk and Φ[≤n] = ∑
1≤k≤n

Φ[k]
.

We want to construct the mapsd′[n]
1 andΦ[n] by induction with the initial condition

d′[1]
1 = 0 and Φ[1] = ϕHKR,
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whereϕHKR : (g1,0) → (g2,b) is the Hochschild-Kostant-Rosenberg quasi-isomor-
phism (see [HKR]) defined, forα ∈ g1, f1, · · · , fn ∈ A, by

ϕHKR : α 7→
(
( f1, . . . , fn) 7→ 〈α,d f1∧·· ·∧d fn〉

)
.

Moreover, we want the following extra conditions to be true:

Φ1,...,1 = ϕ1,...,1
, d′1,1

1 = d1,1
1 , d′1,1,...,1

1 = 0. (2.3)

Now suppose the construction is done forn− 1 (n≥ 2), i. e., we have built maps

(d′[i]1 )i≤n−1 and(Φ[i])i≤n−1 satisfying conditions (2.3) and

Φ[≤n−1] ◦d′[≤n−1]
1 = d[≤n−1]

2 ◦ Φ[≤n−1] onV [≤n−1]
1 andd′[≤n−1]

1 ◦d′[≤n−1]
1 = 0 onV [≤n]

1 .

(2.4)
In [GH], we prove that for any such(d′[i]1 )i≤n−1 and(Φ[i])i≤n−1, one can constructd′[n]

1
andΦ[n] such that condition (2.4) is true forn instead ofn−1. To complete the proof

we have to show thatd′[n]
1 andΦ[n] also satisfy conditions (2.3). In the equation 2.4, the

termsd′
n︷︸︸︷

1,...,1
1 andΦ

n︷︸︸︷
1,...,1 only act onV

n︷︸︸︷
1,...,1

1 . So one can replaceΦ1,...,1 with ϕ1,...,1, d′1,1
1

with d1,1
1 (or d′

i︷︸︸︷
1,...,1
1 , i ≥ 3 with 0) provided conditions (2.4) are still satisfied onV1,...,1

1 .

The other terms acting onV1,...,1
1 in the equation 2.4 only involves termsΦ1,...,1 = ϕ1,...,1

andd′1,...,1
1 . Then conditions (2.4) onV1,...,1

1 is the equation that should be satisfied by

a L∞-morphism between theL∞-algebras(g1,d′
1,1
1 = d1,1

1 ) and(g2,d
1,1
2 ) restricted to

V1,...,1
1 . Hence by hypothesis onϕ the conditions hold. This proves the theorem.�

3 The difference between twoG∞-maps

In this section we investigate the difference between Tamarkin’s formality maps and
the lift of Kontsevich map, and more generally between two differentsG∞-formality
maps.

We fix once for all aG∞-structure ong2 (given by a differentiald2) satisfying the
conditions (1.1) and a morphism ofG∞-algebrasT : (g1,d1)→ (g2,d2) such thatT1 :
g1→ g2 is ϕHKR. Let K : (g1,d1)→ (g2,d2) be any otherG∞-morphism withK1 =
ϕHKR (for example any lift of Kontsevich formality map).

Theorem 3.1. There exists a map h: ∧·g⊗·1 →∧
·
g
⊗·
2 such that

T−K = h◦d1+d2◦h.

In other words the formality morphismsK andT are homotopic.

The mapsT andK are elements of the cochain complex
(

Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ
)

with

differential given, for allf ∈ Hom(∧·g⊗·1 ,∧·g⊗·2 ), | f |= k, by

δ ( f ) = d2◦ f − (−1)k f ◦d1.
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We first compare this cochain complex with the complexes
(

End(∧·g⊗·1 ), [d1;−]
)

and
(

End(∧·g⊗·2 ), [d2;−]
)

(where[−;−] is the graded commutator of morphisms). There

are morphisms

T∗ : End(∧·g⊗·1 )→Hom(∧·g⊗·1 ,∧·g⊗·2 ), T∗ : End(∧·g⊗·2 )→ Hom(∧·g⊗·1 ,∧·g⊗·2 )

defined, forf ∈ End(∧·g⊗·2 ) andg∈Hom(∧·g⊗·1 ,∧·g⊗·2 ), by

T∗( f ) = T ◦ f , T∗(g) = g◦T.

Lemma 3.2. the morphisms

T∗ :
(

End(∧·g⊗·1 ), [d1;−]
)
→

(
Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ

)
←

(
End(∧·g⊗·2 ), [d2;−]

)
: T∗

of cochain complexes are quasi-isomorphisms.

Remark: this lemma holds for every manifoldM and anyG∞-morphismT : (g1,d1)→
(g2,d2).

Proof: First we show thatT∗ is a morphism of complexes. Letf ∈ End(∧·g⊗·2 ) with
| f |= k, then

T∗([d1; f ]) = T ◦d1◦ f − (−1)kT ◦ f ◦d1

= d2◦ (T ◦ f )− (−1)k(T ◦ f )◦d1

= δ (T∗( f )).

Let us prove now thatT∗ is a quasi-isomorphism. For any graded vector spaceg,
the space∧·g⊗· has the structure of a filtered space where them-level of the filtration is
Fm(∧·g⊗·) =⊕p1+···+pn−1≤mg

⊗p1∧ . . .g
⊗pn. Clearly the differentiald1 andd2 are com-

patible with the filtrations on∧·g⊗·1 and∧·g⊗·2 , hence End(∧·g⊗·1 ) and Hom(∧·g⊗·1 ,∧·g⊗·2 )
are filtered cochain complex. This yields two spectral sequences (lying in the first quad-
rant)E·,·· andẼ·,·· which converge respectively toward the cohomologyH ·(End(∧·g⊗·1 ))

and H ·(Hom(∧·g⊗·1 ,∧·g⊗·2 )). By standard spectral sequence techniques it is enough

to prove that the mapT0
∗ : E·,·0 → Ẽ·,·0 induced byT∗ on the associated grading is a

quasi-isomorphism.

The induced differentials onE·,·0 andẼ·,·0 are respectively[d1
1,−] = 0 andd1

2 ◦ (−)−
(−)◦d1

1 = b◦ (−) whereb is the Hochschild coboundary. By cofreeness property we
have the following two isomorphims

E·,·0
∼= End(g1), Ẽ·,·0

∼= Hom(g1,g2).

The mapT0
∗ : E·,·0 → Ẽ0

·· induced byT∗ is ϕHKR ◦ (−). Let p : g2→ g1 be the projection
onto the cohomology,i.e. p◦ϕHKR = id. Letu : g1→ g2 be any map satisfyingb(u)= 0
and setv= p◦u∈ End(g1). One can choose a mapw : g1→ g2 which satisfies for any
x∈ g1 the following identity

ϕHKR ◦ p◦u(x)−u(x) = b◦w(x).

7



It follows thatϕHKR(v) has the same class of homology asu which proves the surjec-
tivity of T0

∗ in cohomology. The identityp◦ϕHKR = id implies easily thatT0
∗ is also

injective in cohomology which finish the proof of the lemma for T∗.

The proof thatT∗ is also a quasi-isomorphim is analogous. �

Proof of Theorem 3.1:

It is easy to check thatT−K is a cocycle in
(

Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ
)

. The complex of

cochain
(

End(∧·g⊗·1 ), [d1,−]
)
∼=

(
Hom(∧·g⊗·1 ,g1), [d1,−]

)
is trigraded with| |1 being

the degree coming from the graduation ofg1 and any elementx lying in g
⊗p1
1 ∧ ·· · ∧

g
⊗pq
1 satisfies|x|2 = q−1, |x|3 = p1 + . . . pq−q. In the caseM = R

n, the cohomology

H ·
(

End(∧·g⊗·1 ), [d1,−]
)

is concentrated in bidegree(| |2, | |3) = (0,0) (see [Ta], [Hi]).

By Lemma 3.2, this is also the case for the cochain complex
(

Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ
)

.

Thus, its cohomology classes are determined by complex morphisms(g1,0)→ (g2,d1
2)

and it is enough to prove thatT andK determine the same complex morphism(g1,0)→
(g2,d1

2 = b) which is clear becauseT1 and K1 are both equal to the Hochschild-
Kostant-Rosenberg map. �

Remark 3.3. It is possible to have an explicit formula for the maph in Theorem 3.1.
In fact the quasi-isomorphism coming from Lemma 3.2 can be made explicit using
explicit homotopy formulae for the Hochschild-Kostant-Rosenberg map (see [Ha] for
example) and deformation retract techniques (instead of spectral sequences) as in [Ka].
It is also the case for the isomorphism in cohomology in the proof of Theorem 3.1
(see [GH] for example).
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