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Abstract

Let g» be the Hochschild complex of cochains ©f(R") andg; be the space
of multivector fields onR". In this paper we prove that given am@-structure
(i.e. Gerstenhaber algebra up to homotopy structurgjppand any morphisng
of Lie algebra up to homotopy betwegh and g,, there exists &-morphism
& betweeng; and g, that restricts tgp. In particular, the morphism constructed
by Kontsevich can be obtained using Tamarkin's method fgr@g-structure on
g2. We also show that any two of su€h,-morphisms are homotopic in a certain
sense.
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Let M be a differential manifold ang, = (C (A, A),b) be the Hochschild cochain
complex onA = C*(M). The classical Hochschild-Kostant-Rosenberg theoretasta
that the cohomology af, is the graded Lie algebig = ' (M, A'T M) of multivector
fields onM. There is also a graded Lie algebra structurgipgiven by the Gersten-
haber bracket. In particulgi andg, are also Lie algebras up to homotojhyfalgebra
for short). In the casm = R", using different methods, Kontsevich ([Ko1] ajd [Ko2])
and Tamarkin ([Tja]) have proved the existence of Lie homguhisms “up to homo-
topy” (Lo-morphisms) formyg; to g». Kontsevich’s proof uses graph complex and is
related to multizeta functions whereas Tamarkin’s comsion uses the existence of
Drinfeld’s associators. In fact Tamarkirls,-morphism comes from the restriction of
a Gerstenhaber algebra up to homotopy homomorph@sanforphism) fromg; to
g2. The Gs-algebra structure op; is induced by its classical Gerstenhaber algebra



structure and a far less trivi@.-structure ory, was proved to exist by TamarkiE[Ta]
and relies on a Drinfeld’s associator. Whighis a Poisson manifold, Kontsevich and
Tamarkin homomorphisms imply the existence of a star-peosee [BFFLI1] and
[BFELSZ2] for a definition). A connection between the two aggmhes has been given
in [KS] but the morphisms given by Kontsevich and Tamarkie aot the same. The
aim of this paper is to show explicitelly that Kontsevichnhomorphism can be ob-
tained using Tamarkin’s method, hence can be extended ig-morphism. More
precisely, we show that given a-structure org,, and anyL.-morphismg between
g1 andgp, there exists &..-morphismd betweery; andg, that restricts tap.

In the first section, we fix notations and recall the defingiofL. andGs-structures.

In the second section we state and prove the main Theorenheltast section we
show that any twdG.-morphisms given by Tamarkin's method are homotopic in a
certain sense.

Remark : in the sequel, unless otherwise is stated, the maniflalslsupposed to bR"
for somen > 1. Most results could be generalized to other manifoldsgigohniques

of Kontsevich [Kol] (also se€ [TS], [CFT]).

1 L« and Ge-Structures

For any graded vector spagewe choose the following degree ang : if Xq,..., X
are homogeneous elements of respective dedfige . . | X«|, then

XL A AX] = [Xa] 4+ X — k.

In particular the component= Alg C A'g is the same as the spagewith degree
shifted by one. The spaceg with the deconcatenation cobracket is the cofree cocom-
mutative coalgebra omwith degree shifted by one. Any degree one rdap/kg — g

(k> 1) extends into a derivatiod® : A'g — A'g of the coalgebra\'g (by cofreeness

property).

Definition 1.1. A vector spaceg is endowed with a -algebra (Lie algebras “up to
homotopy”) structure if there are degree one linear mags : Akg — g such that if
we extend them to mapsg — A'g, then dod = 0 where d is the derivation

For more details oh.-structures, seq [IS]. It follows from the definition that.a-
algebra structure induces a differential coalgebra sirecon A'g and that the map
1 Akg — g are 0 fork > 3, we get the usual
definition of (differential ifm! + 0) graded Lie algebras.

For any graded vector spagewe denotgg®" the quotient ofg®" by the image of all
shuffles of lengtin (see ] or ] for details). The graded vector spagg og®" is
a quotient coalgebra of the tensor coalgebsaog®". Itis well known that this coalge-
bra®n=og”" is the cofree Lie coalgebra on the vector spa¢with degree shifted by



minus one). For any spagewe denote\ g® the graded space S) g“PLA
B m>1, py+--+pp=m—

- Ag®P. We use the following grading ong®': for x},--- . xf" € g, we define

P1 . P1
|X%®...®lel/\.../\xﬁ®...®Xrﬁ’n|:Z|x'll|+...+2|x'r?|_n.
In
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Notice that the induced grading ong c A'g® is the same than the one introduced
above. The cobracket ang® and the coproduct on'g extend to a cobracket and a
coproduct om'g® which yield a Gerstenhaber coalgebra structuregr?". It is well
known that this coalgebra structure is cofree (@e [Gi]fiSea for example).

Definition 1.2. A G.-algebra (Gerstenhaber algebra “up to homotopy”) struaun
a graded vector spacgis given by a collection of degree one maps

mPL-Pn - g®p1/\,,,/\g®pn —g

indexed by p,... pn > 1 such that their canonical extension: g — A'g®" satisfies
dod=0where
d — mpl,...,pn.
m>1, py+--ph=m

Again, as the coalgebra structure/o§®" is cofree, the mag makesA g® into a dif-

or (2,0,...), we get the usual definition of (differentialiifit # 0) Gerstenhaber alge-
bra.

The space of multivector fields is endowed with a graded Lie bracKet, —]s called
the Schouten bracket (sde [Kos]). This Lie algebra can kel into a Gerstenhaber
algebra, with commutative structure given by the exterfodpcct: (a,3) — a A

Settingd; = mi* + m2, wheremp! : A%g; — gy, andm? : g2 — g; are the ex-
tension of the Schouten bracket and the exterior productfingethat (g;,d;) is a
Gw-algebra.

In the same way, one can define a differential Lie algebraire on the vector space
g2 =C(AJA) = @kzOCK(A,A), the space of Hochschild cochains (generated by dif-
ferential k-linear maps fromAX to A), whereA = C*(M) is the algebra of smooth
differential functions oveM. lIts brackef—, —|g, called the Gerstenhaber bracket, is
defined, foD,E € go, by

[D,E]s = {D|E} - (-1)FI°/{E|D},
where

{DIE} (X1, ... Xg+e1) :,§0<71>‘E"‘D<xl,...,m,Em,...,xHe),...).

The spacey, has a grading defined B |= k < D € C¥t1(A A) and its differential is
b= [m, —]g, wherem e C2(A,A) is the commutative multiplication of.



Tamarkin (se€[[Ta] or als§ [GH]) stated the existence Gf.astructure ory, given by
a differentiald, = m%er%’ler%Jr cepmtPrg L on gy satisfyingdzodp = 0.
Although this structure is non-explicit, it satisfies thidwing three properties :

(a) ms is the extension of the differentibl
(b) m%"l is the extension of the Gerstenhaber bra¢ket-|g
andm%,l,...,l ~0

(c) m% induces the exterior product in cohomology. (1.2)

Definition 1.3. A Le,-morphism between twookalgebras(g,d; = mi +...) and
(g2,d2 = m% +...) is a morphism of differential coalgebras

¢ : (/\'gl,dl) — (/\'gz,dz). (1.2)

Such a map is uniquely determined by a collection of map%: A"g; — g2 (again

by cofreeness properties). In the cggs@ndg, are respectively the graded Lie algebra
(F(M,ATM), [—,—]s) and the differential graded Lie algeti@(A,A), [—,—]c), the
formality theorems of Kontsevich and Tamarkin state thetexice of d_..-morphism
betweeng; andg, such thatg?! is the Hochschild-Kostant-Rosenberg quasi-isomor
phism.

Definition 1.4. A morphism of G-algebras between two (Salgebras(g;,d;) and
(g2,d2) is a mapg: (A‘g_%“, dy) — (/\'ﬁ,dg) of codifferential coalgebras.

There is a coalgebra inclusiong — A'g®, and it is easy to check that ar.-

morphism(A'g,y mb-1) — (/\'g’,zml*"'* ) In the casey; and g, are as above,

Tamarkin's theorem states that there exis@G.amorphism between the twB., alge-
brasg; andg, (with the G., structure he built) that restricts to.a-morphism.

2 Main theorem

We keep the notations of the previous section, in partigylas the Hochschild com-
plex of cochains o€~ (M) andg; its conomology. Here is our main theorem.

Theorem 2.1. Given any G.-structure @ on gy satisfying the three properties @.1),
and any L.-morphism¢ betweerg; and g> such thatg?! is the Hochschild-Kostant-
Rosenberg map, there exists a-@orphism® : (g1,d;) — (g2,d2) that restricts to

6.

In particular, Theorer 3.1 implies that the formality mag<ohtsevich lifts into a
Go-morphism fromy; (with its classicalG.-structure) tqy, (endowed with Tamarkin’s
Goo-structure).

Let us first recall the proof of Tamarkin’s formality theordsee ] for more
details):



1. First one proves there exist$Ga,-structure orys, given by a differentiatly, as
in (L.3).

2. Then, one constructs@,-structure oy, given by a differentiadi together with
a Ge-morphism® between(gs,d;) and(go,dy).

3. Finaly, one constructs@.-morphismd’ between(gq,d:1) and(gs,d;).

The compositiord o @' is then aG.-morphism betweeligs,d;) and(gs, d2),thus re-
stricts to al.-morphism between the differential graded Lie algelraandg..

We suppose now that, in the first step, we take@gystructure org, given by a differ-
entiald, and we suppose we are givelhgmorphism¢ between the Lie algebras
andg, satisfyingg! = ¢nkr the Hochschild-Kostant-Rosenberg quasi-isomorphism.

Proof of Theorerp 2|1

The Theorem will follow if we prove that Items 2 and 3 of Tamat& construction
are still true with the extra conditions that the restriptaf the G,,-morphism® (resp.
@’) on the Lie structures is the,-morphism¢ (resp. id) between the Lie algebrgs
andg,. As the arguments fob and®’ are very similar, we will only prove the result
for @.

Let us recall (sedEH]) that the constructionsianddj can be made by induc-
tion. Fori = 1,2 andn > 0, let us set

Vi[n] _ @ gfipl/\.../\gi@Pk
P1t--+pe=n

andv{=" = 5, V. Letd!” andd}™" be the sums

dy = dvPeand  df = ngﬂ.
p<n

Clearly,dy = 5>, d". In the same way, we denoté = ¥ -, ' with

al = dPePeand  dFT= y dl
P1t--+pk=n 1<k<n

We know from Sectioff]1 that a morphistn: (Ag;",d;) — (Agy",do) is uniquely
determined by its componertgPPe: gPPL AL A g7 g5 Again, we haveb =
3 =1 @ with

o — z PPLPK and ol — oM.
p1+--F pk=n 1<k<n

We want to construct the mags,” and®!" by induction with the initial condition

d,[ll] =0 and Cp[l] = QuKR,



where ¢rkr : (g1,0) — (g2,b) is the Hochschild-Kostant-Rosenberg quasi-isomor-
phism (see[[HKR]) defined, far € g1, f1,---, fa € A by

¢HKR : G»—»((fl,...,fn)r—> <C{,df1/\~~~/\dfn>).
Moreover, we want the following extra conditions to be true:
ch,...,l _ ¢l,...,l7 dliyl _ di,l, d/i,l,...,l —o. (23)

Now suppose the construction is done for 1 (n > 2), i. e., we have built maps
(d’[l'])ign,l and ()., satisfying conditiond (2] 3) and

ol o /= = gl= o o<1 onv/[<" Y andd’ "V o oY = 0 onvI=",
(2.4)

In [GH], we prove that for any suc(rd’[lﬂ)ign,l and(®ll)i<n_1, one can constru«:t’[ln]

and®" such that conditior@A) is true forinstead ofn— 1. To complete the proof

we have to show that'" and®! also satisfy condition§ (3.3). In the equatfor] 2.4, the

3 The difference between twdG,-maps

In this section we investigate the difference between Taimarformality maps and
the lift of Kontsevich map, and more generally between twitedkntsG.-formality
maps.

We fix once for all aG.-structure ong, (given by a differentialdy) satisfying the
conditions [1]1) and a morphism 6%.-algebrasT : (g1,d1) — (g2,d2) such thafl® :
g1 — g2 1S dukr. LetK : (g1,d1) — (g2,d2) be any otheGe,-morphism withK! =
dukr (for example any lift of Kontsevich formality map).

Theorem 3.1. There exists amap:mg;y" — A'g;" such that
T—-K=hod;+dyoh.
In other words the formality morphism&andT are homotopic.

The mapsl andK are elements of the cochain compléﬂom(A'g?',A'g?'), 6) with
differential given, for allf € Hom(A'gy",A'g5"),|f| =k, by

3(f) =dao f— (=1 fod;.



We first compare this cochain complex with the compleé@ad(/\'ﬁ), [d1; f]) and

(Eno(/\'g_g“), [dz;f]) (where[—; —] is the graded commutator of morphisms). There
are morphisms

T.:EndAgy) — Hom(Agy , Agy"), T EndAgy") — Hom(A'gl", Ags)
defined, forf € EndA'g;") andg € Hom(A'gf", A'g5"), by
T(f)=Tof, T*(g) =goT.

Lemma 3.2. the morphisms

T.: (End(/\'ﬁ),[dl;—]) — (Hom(/\'g_%“,/\'g_%“),é) — (Enc{/\'ﬁ'), [dz;f]) T
of cochain complexes are quasi-isomorphisms.

Remark: this lemma holds for every manifditland anyG..-morphismT : (g1,d;) —
(G2, d2).

Proof: First we show thaf, is a morphism of complexes. Léte EndA'g5") with
|f| =k, then o

T.([d;;f]) = Todiof— (=1 Tofod
= dao(Tof)—(=1)XTof)od;
S(T.(f)).

Let us prove now that, is a quasi-isomorphism. For any graded vector space
the space\'g® has the structure of a filtered space wheretHevel of the filtration is
FM™(Ag®) :Tepﬁ...ernflgmﬂ/\ ...g®Pn. Clearly the differentiadl; andd, are com-
patible with the filtrations om g7 andA'g5", hence En@hg;") and Hon{A'gy", A'gs”)
are filtered cochain complex. This yields two spectral saqas (lying in the first quad-
rant)E" andE.” which converge respectively toward the cohomolbgyEnd A'g;"))

andH (Hom(A'g]",A'g5")). By standard spectral sequence techniques it is enough

to prove that the maji? : E; — E(')" induced byT, on the associated grading is a
quasi-isomorphism.

The induced differentials oE; andE;  are respectivelyd}, -] = 0 andd}o (—) —
(—)od} =bo () wherebis the Hochschild coboundary. By cofreeness property we
have the following two isomorphims

Eg = Endga), Eg = Hom(gy, g2).

The mapr? : E; — EC induced byT, is $rkr © (—). Letp: g2 — g1 be the projection
onto the cohomology.e. po ¢xkr = id. Letu: g1 — g be any map satisfyinig(u) =0
and sev= pou € End(g;). One can choose a map: g1 — g2 which satisfies for any
X € g1 the following identity

dHKRr © Po U(X) — u(x) = bow(x).



It follows that ¢kr (V) has the same class of homologywashich proves the surjec-
tivity of T2 in cohomology. The identitpo ¢pkr = id implies easily thalr? is also
injective in cohomology which finish the proof of the lemma 1.

The proof thafl * is also a quasi-isomorphim is analogous. |

Proof of Theorerp 31

It is easy to check thaf — K is a cocycle in(Hom(A‘giﬁ', NgS), 6). The complex of
cochain(End(A‘giﬁ'), [dl,—]) = (Hom(A‘g%",gl),[dl,—]) is trigraded with| |; being
the degree coming from the graduationgafand any element lying in gf’pl /ARERWA

gf’pq satisfiegx|> =q—1, X3 = p1+...Ppq— 0. In the caseM = R", the cohomology
H (End(A‘ﬁ), [dy, —]) is concentrated in bidegrégy, ||3) = (0,0) (see [Th], [Hi]).
By Lemma[3.p, this is also the case for the cochain coméMm(/\'ﬁ,/\'ﬁ), 6).

Thus, its cohomology classes are determined by complexisns(gs,0) — (g2,d3)
and itis enough to prove th&tandK determine the same complex morphigm, 0) —
(g2,d3 = b) which is clear becaus&® andK! are both equal to the Hochschild-
Kostant-Rosenberg map. [ ]

Remark 3.3. Itis possible to have an explicit formula for the majn Theoren{3]1.
In fact the quasi-isomorphism coming from Leming 3.2 can bderexplicit using
explicit homotopy formulae for the Hochschild-Kostantseaberg map (seEHa] for
example) and deformation retract techniques (insteadeaftesl sequences) as |n [Ka].
It is also the case for the isomorphism in cohomology in theopof Theorem 31

(see [GH] for example).
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