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Abstract

Let g2 be the Hochschild complex of cochains on C∞(Rn) and g1 be the space
of multivector £elds on Rn. In this paper we prove that given any G∞-structure
(i.e. Gerstenhaber algebra up to homotopy structure) on g2, and any morphism ϕ
of Lie algebra up to homotopy between g1 and g2, there exists a G∞-morphism
Φ between g1 and g2 that restricts to ϕ . In particular, the morphism constructed
by Kontsevich can be obtained using Tamarkin’s method for any G∞-structure on
g2. We also show that any two of such G∞-morphisms are homotopic in a certain
sense.

Keywords : Deformation quantization, star-product, homotopy formulas, homological methods

AMS Classi£cation : Primary 16E40, 53D55, Secondary 18D50, 16S80

Let M be a differential manifold and g2 = (C·(A,A),b) be the Hochschild cochain
complex on A = C∞(M). The classical Hochschild-Kostant-Rosenberg theorem states
that the cohomology of g2 is the graded Lie algebra g1 = Γ·(M,∧·T M) of multivector
£elds on M. There is also a graded Lie algebra structure on g2 given by the Gersten-
haber bracket. In particular g1 and g2 are also Lie algebras up to homotopy (L∞-algebra
for short). In the case M = Rn, using different methods, Kontsevich ([Ko1] and [Ko2])
and Tamarkin ([Ta]) have proved the existence of Lie homomorphisms “up to homo-
topy” (L∞-morphisms) form g1 to g2. Kontsevich’s proof uses graph complex and is
related to multizeta functions whereas Tamarkin’s construction uses the existence of
Drinfeld’s associators. In fact Tamarkin’s L∞-morphism comes from the restriction of
a Gerstenhaber algebra up to homotopy homomorphism (G∞-morphism) from g1 to
g2. The G∞-algebra structure on g1 is induced by its classical Gerstenhaber algebra
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structure and a far less trivial G∞-structure on g2 was proved to exist by Tamarkin [Ta]
and relies on a Drinfeld’s associator. When M is a Poisson manifold, Kontsevich and
Tamarkin homomorphisms imply the existence of a star-product (see [BFFLS1] and
[BFFLS2] for a de£nition). A connection between the two approaches has been given
in [KS] but the morphisms given by Kontsevich and Tamarkin are not the same. The
aim of this paper is to show explicitelly that Kontsevich’s homomorphism can be ob-
tained using Tamarkin’s method, hence can be extended into a G∞-morphism. More
precisely, we show that given any G∞-structure on g2, and any L∞-morphism ϕ between
g1 and g2, there exists a G∞-morphism Φ between g1 and g2 that restricts to ϕ .

In the £rst section, we £x notations and recall the de£nitions of L ∞ and G∞-structures.
In the second section we state and prove the main Theorem. In the last section we
show that any two G∞-morphisms given by Tamarkin’s method are homotopic in a
certain sense.

Remark : in the sequel, unless otherwise is stated, the manifold M is supposed to be Rn

for some n≥ 1. Most results could be generalized to other manifolds using techniques
of Kontsevich [Ko1] (also see [TS], [CFT]).

1 L∞ and G∞-structures

For any graded vector space g, we choose the following degree on ∧·g : if X1, . . . ,Xk
are homogeneous elements of respective degree |X1|, . . . |Xk|, then

|X1∧·· ·∧Xk|= |X1|+ · · ·+ |Xk|− k.

In particular the component g = ∧1g ⊂ ∧·g is the same as the space g with degree
shifted by one. The space ∧·g with the deconcatenation cobracket is the cofree cocom-
mutative coalgebra on g with degree shifted by one. Any degree one map dk : ∧kg→ g

(k ≥ 1) extends into a derivation dk : ∧·g→ ∧·g of the coalgebra ∧·g (by cofreeness
property).

De£nition 1.1. A vector space g is endowed with a L∞-algebra (Lie algebras “up to
homotopy”) structure if there are degree one linear maps m1,...,1 : ∧kg→ g such that if
we extend them to maps ∧·g→∧·g, then d ◦d = 0 where d is the derivation

d = m1 +m1,1 + · · ·+m1,...,1 + · · · .

For more details on L∞-structures, see [LS]. It follows from the de£nition that a L∞-
algebra structure induces a differential coalgebra structure on ∧·g and that the map
m1 : g→ g is a differential. If m1,...,1 : ∧kg→ g are 0 for k ≥ 3, we get the usual
de£nition of (differential if m1 6= 0) graded Lie algebras.

For any graded vector space g, we denote g⊗n the quotient of g⊗n by the image of all
shuf¤es of length n (see [GK] or [GH] for details). The graded vector space⊕n≥0g

⊗n is
a quotient coalgebra of the tensor coalgebra⊕n≥0g

⊗n. It is well known that this coalge-
bra ⊕n≥0g

⊗n is the cofree Lie coalgebra on the vector space g (with degree shifted by
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minus one). For any space g, we denote ∧·g⊗· the graded space ⊕
m≥1, p1+···+pn=m

g⊗p1 ∧

·· ·∧g⊗pn . We use the following grading on ∧·g⊗·: for x1
1, · · · ,x

pn
n ∈ g, we de£ne

|x1
1⊗·· ·⊗ xp1

1
∧·· ·∧ x1

n⊗·· ·⊗ xpn
n |=

p1

∑
i1

|xi1
1
|+ · · ·+

p1

∑
in

|xin
n |−n.

Notice that the induced grading on ∧·g ⊂ ∧·g⊗· is the same than the one introduced
above. The cobracket on ⊕g⊗· and the coproduct on ∧·g extend to a cobracket and a
coproduct on ∧·g⊗· which yield a Gerstenhaber coalgebra structure on ∧·g⊗·. It is well
known that this coalgebra structure is cofree (see [Gi], Section 3 for example).

De£nition 1.2. A G∞-algebra (Gerstenhaber algebra “up to homotopy”) structure on
a graded vector space g is given by a collection of degree one maps

mp1,...,pn : g⊗p1 ∧·· ·∧g⊗pn → g

indexed by p1, . . . pn ≥ 1 such that their canonical extension: ∧·g⊗·→∧·g⊗· satis£es
d ◦d = 0 where

d = ∑
m≥1, p1+···pn=m

mp1,...,pn .

Again, as the coalgebra structure of ∧·g⊗· is cofree, the map d makes ∧·g⊗· into a dif-
ferential coalgebra. If the maps mp1,...,pn are 0 for (p1, p2, . . .) 6= (1,0, . . .), (1,1,0, . . .)
or (2,0, . . .), we get the usual de£nition of (differential if m1 6= 0) Gerstenhaber alge-
bra.

The space of multivector £elds g1 is endowed with a graded Lie bracket [−,−]S called
the Schouten bracket (see [Kos]). This Lie algebra can be extended into a Gerstenhaber
algebra, with commutative structure given by the exterior product: (α,β ) 7→ α ∧β

Setting d1 = m1,1
1

+ m2
1, where m1,1

1
: ∧2g1 → g1, and m2

1 : g⊗2
1 → g1 are the ex-

tension of the Schouten bracket and the exterior product, we £nd that (g1,d1) is a
G∞-algebra.

In the same way, one can de£ne a differential Lie algebra structure on the vector space
g2 = C(A,A) =

⊕
k≥0 Ck(A,A), the space of Hochschild cochains (generated by dif-

ferential k-linear maps from Ak to A), where A = C∞(M) is the algebra of smooth
differential functions over M. Its bracket [−,−]G, called the Gerstenhaber bracket, is
de£ned, for D,E ∈ g2, by

[D,E]G = {D|E}− (−1)|E||D|{E|D},

where

{D|E}(x1, . . .,xd+e−1) = ∑
i≥0

(−1)|E|·iD(x1, . . .,xi,E(xi+1, . . .,xi+e), . . .).

The space g2 has a grading de£ned by |D |= k⇔ D ∈Ck+1(A,A) and its differential is
b = [m,−]G, where m ∈C2(A,A) is the commutative multiplication on A.
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Tamarkin (see [Ta] or also [GH]) stated the existence of a G∞-structure on g2 given by
a differential d2 = m1

2 +m1,1
2

+m2
2 + · · ·+mp1,...,pn

2
+ · · · , on ∧·g⊗·2 satisfying d2 ◦d2 = 0.

Although this structure is non-explicit, it satis£es the following three properties :

(a) m1
2 is the extension of the differential b

(b) m1,1
2 is the extension of the Gerstenhaber bracket [−,−]G

and m1,1,...,1
2 = 0

(c) m2
2 induces the exterior product in cohomology. (1.1)

De£nition 1.3. A L∞-morphism between two L∞-algebras (g1,d1 = m1
1 + . . .) and (g2,d2 =

m1
2 + . . .) is a morphism of differential coalgebras

ϕ : (∧·g1,d1)→ (∧·g2,d2). (1.2)

Such a map ϕ is uniquely determined by a collection of maps ϕn : ∧ng1→ g2 (again
by cofreeness properties). In the case g1 and g2 are respectively the graded Lie algebra
(Γ(M,∧T M), [−,−]S) and the differential graded Lie algebra

(
C (A,A) , [−,−]G

)
, the

formality theorems of Kontsevich and Tamarkin state the existence of a L∞-morphism
between g1 and g2 such that ϕ1 is the Hochschild-Kostant-Rosenberg quasi-isomor
phism.

De£nition 1.4. A morphism of G∞-algebras between two G∞-algebras (g1,d1) and
(g2,d2) is a map φ : (∧·g⊗·1 ,d1)→ (∧·g⊗·2 ,d2) of codifferential coalgebras.

There is a coalgebra inclusion ∧·g → ∧·g⊗·, and it is easy to check that any G∞-
morphism between two G∞-algebras (g,∑mp1,...,pn), (g′,∑m′p1,...,pn) restricts to a L∞-

morphism
(
∧·g,∑m1,...,1

)
→

(
∧·g′,∑m′1,...,1

)
. In the case g1 and g2 are as above,

Tamarkin’s theorem states that there exists a G∞-morphism between the two G∞ alge-
bras g1 and g2 (with the G∞ structure he built) that restricts to a L∞-morphism.

2 Main theorem

We keep the notations of the previous section, in particular g2 is the Hochschild com-
plex of cochains on C∞(M) and g1 its cohomology. Here is our main theorem.

Theorem 2.1. Given any G∞-structure d2 on g2 satisfying the three properties of (1.1),
and any L∞-morphism ϕ between g1 and g2 such that ϕ1 is the Hochschild-Kostant-
Rosenberg map, there exists a G∞-morphism Φ : (g1,d1)→ (g2,d2) that restricts to
ϕ .

In particular, Theorem 2.1 implies that the formality map of Kontsevich lifts into a
G∞-morphism from g1 (with its classical G∞-structure) to g2 (endowed with Tamarkin’s
G∞-structure).

Let us £rst recall the proof of Tamarkin’s formality theorem (see [GH] for more
details):
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1. First one proves there exists a G∞-structure on g2, given by a differential d2, as
in (1.1).

2. Then, one constructs a G∞-structure on g1 given by a differential d′1 together with
a G∞-morphism Φ between (g1,d

′
1) and (g2,d2).

3. Finaly, one constructs a G∞-morphism Φ′ between (g1,d1) and (g1,d
′
1).

The composition Φ◦Φ′ is then a G∞-morphism between (g1,d1) and (g2,d2),thus re-
stricts to a L∞-morphism between the differential graded Lie algebras g1 and g2.

We suppose now that, in the £rst step, we take any G∞-structure on g2 given by a differ-
ential d2 and we suppose we are given a L∞-morphism ϕ between the Lie algebras g1
and g2 satisfying ϕ1 = ϕHKR the Hochschild-Kostant-Rosenberg quasi-isomorphism.

Proof of Theorem 2.1:
The Theorem will follow if we prove that Items 2 and 3 of Tamarkin’s construction

are still true with the extra conditions that the restriction of the G∞-morphism Φ (resp.
Φ′) on the Lie structures is the L∞-morphism ϕ (resp. id) between the Lie algebras g1
and g2. As the arguments for Φ and Φ′ are very similar, we will only prove the result
for Φ.

Let us recall (see [GH]) that the constructions of Φ and d ′1 can be made by induc-
tion. For i = 1,2 and n≥ 0, let us set

V [n]
i

=
⊕

p1+···+pk=n

g⊗p1
i
∧·· ·∧g

⊗pk
i

and V [≤n]
i

= ∑k≤n V [k]
i

. Let d[n]
2

and d[≤n]
2

be the sums

d[n]
2

= ∑
p1+···+pk=n

dp1,...,pk
2

and d[≤n]
2

= ∑
p≤n

d[p]
2

.

Clearly, d2 = ∑n≥1 d[n]
2

. In the same way, we denote d ′1 = ∑n≥1 d′[n]
1 with

d′[n]
1 = ∑

p1+···+pk=n
d
′p1,...,pk
1

and d′[≤n]
1 = ∑

1≤k≤n

d′[k]1 .

We know from Section 1 that a morphism Φ : (∧·g⊗·1 ,d′1)→ (∧·g⊗·2 ,d2) is uniquely

determined by its components Φp1,...,pk : g⊗p1
1
∧ ·· ·∧g

⊗pk
1
→ g2. Again, we have Φ =

∑n≥1 Φ[n] with

Φ[n] = ∑
p1+···+pk=n

Φp1,...,pk and Φ[≤n] = ∑
1≤k≤n

Φ[k].

We want to construct the maps d ′[n]
1 and Φ[n] by induction with the initial condition

d′[1]
1 = 0 and Φ[1] = ϕHKR,
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where ϕHKR : (g1,0) → (g2,b) is the Hochschild-Kostant-Rosenberg quasi-isomor-
phism (see [HKR]) de£ned, for α ∈ g1, f1, · · · , fn ∈ A, by

ϕHKR : α 7→
(
( f1, . . . , fn) 7→ 〈α,d f1∧·· ·∧d fn〉

)
.

Moreover, we want the following extra conditions to be true:

Φ1,...,1 = ϕ1,...,1, d′1,1
1 = d1,1

1 , d′1,1,...,1
1 = 0. (2.3)

Now suppose the construction is done for n− 1 (n ≥ 2), i. e., we have built maps
(d′[i]1 )i≤n−1 and (Φ[i])i≤n−1 satisfying conditions (2.3) and

Φ[≤n−1] ◦d′[≤n−1]
1 = d[≤n−1]

2
◦ Φ[≤n−1] on V [≤n−1]

1
and d′[≤n−1]

1 ◦d′[≤n−1]
1 = 0 on V [≤n]

1
.

(2.4)

In [GH], we prove that for any such (d ′[i]1 )i≤n−1 and (Φ[i])i≤n−1, one can construct d′[n]
1

and Φ[n] such that condition (2.4) is true for n instead of n−1. To complete the proof
we have to show that d′[n]

1 and Φ[n] also satisfy conditions (2.3). In the equation 2.4, the

terms d′
n︷︸︸︷

1,...,1
1 and Φ

n︷︸︸︷
1,...,1 only act on V

n︷︸︸︷
1,...,1

1 . So one can replace Φ1,...,1 with ϕ1,...,1, d′1,1
1

with d1,1
1

(or d′
i︷︸︸︷

1,...,1
1 , i≥ 3 with 0) provided conditions (2.4) are still satis£ed on V 1,...,1

1
.

The other terms acting on V 1,...,1
1

in the equation 2.4 only involves terms Φ1,...,1 = ϕ1,...,1

and d′1,...,1
1 . Then conditions (2.4) on V 1,...,1

1
is the equation that should be satis£ed by

a L∞-morphism between the L∞-algebras (g1,d
′1,1
1 = d1,1

1
) and (g2,d

1,1
2

) restricted to
V 1,...,1

1
. Hence by hypothesis on ϕ the conditions hold. This proves the theorem. ¥

3 The difference between two G∞-maps

In this section we investigate the difference between Tamarkin’s formality maps and
the lift of Kontsevich map, and more generally between two differents G∞-formality
maps.

We £x once for all a G∞-structure on g2 (given by a differential d2) satisfying the
conditions (1.1) and a morphism of G∞-algebras T : (g1,d1)→ (g2,d2) such that T 1 :
g1 → g2 is ϕHKR. Let K : (g1,d1)→ (g2,d2) be any other G∞-morphism with K1 =
ϕHKR (for example any lift of Kontsevich formality map).

Theorem 3.1. There exists a map h : ∧·g⊗·1 →∧
·g⊗·2 such that

T −K = h◦d1 +d2 ◦h.

In other words the formality morphisms K and T are homotopic.
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The maps T and K are elements of the cochain complex
(

Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ
)

with

differential given, for all f ∈ Hom(∧·g⊗·1 ,∧·g⊗·2 ), | f |= k, by

δ ( f ) = d2 ◦ f − (−1)k f ◦d1.

We £rst compare this cochain complex with the complexes
(

End(∧·g⊗·1 ), [d1;−]
)

and
(

End(∧·g⊗·2 ), [d2;−]
)

(where [−;−] is the graded commutator of morphisms). There

are morphisms

T∗ : End(∧·g⊗·1 )→ Hom(∧·g⊗·1 ,∧·g⊗·2 ), T ∗ : End(∧·g⊗·2 )→ Hom(∧·g⊗·1 ,∧·g⊗·2 )

de£ned, for f ∈ End(∧ ·g⊗·2 ) and g ∈ Hom(∧·g⊗·1 ,∧·g⊗·2 ), by

T∗( f ) = T ◦ f , T ∗(g) = g◦T.

Lemma 3.2. the morphisms

T∗ :
(

End(∧·g⊗·1 ), [d1;−]
)
→

(
Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ

)
←

(
End(∧·g⊗·2 ), [d2;−]

)
: T ∗

of cochain complexes are quasi-isomorphisms.

Remark: this lemma holds for every manifold M and any G∞-morphism T : (g1,d1)→
(g2,d2).

Proof : First we show that T∗ is a morphism of complexes. Let f ∈ End(∧·g⊗·2 ) with
| f |= k, then

T∗([d1; f ]) = T ◦d1 ◦ f − (−1)kT ◦ f ◦d1

= d2 ◦ (T ◦ f )− (−1)k(T ◦ f )◦d1

= δ (T∗( f )).

Let us prove now that T∗ is a quasi-isomorphism. For any graded vector space g,
the space ∧·g⊗· has the structure of a £ltered space where the m-level of the £ltration is
Fm(∧·g⊗·) =⊕p1+···+pn−1≤mg⊗p1∧ . . .g⊗pn . Clearly the differential d1 and d2 are com-

patible with the £ltrations on ∧ ·g⊗·1 and ∧·g⊗·2 , hence End(∧·g⊗·1 ) and Hom(∧·g⊗·1 ,∧·g⊗·2 )

are £ltered cochain complex. This yields two spectral sequences (lying in the £rst quad-
rant) E ·,·· and Ẽ ·,·· which converge respectively toward the cohomology H ·(End(∧·g⊗·1 ))

and H ·(Hom(∧·g⊗·1 ,∧·g⊗·2 )). By standard spectral sequence techniques it is enough

to prove that the map T 0
∗ : E ·,·

0
→ Ẽ ·,·

0
induced by T∗ on the associated grading is a

quasi-isomorphism.

The induced differentials on E ·,·
0

and Ẽ ·,·
0

are respectively [d1
1 ,−] = 0 and d1

2 ◦ (−)−

(−)◦d1
1 = b◦ (−) where b is the Hochschild coboundary. By cofreeness property we

have the following two isomorphims

E ·,·0
∼= End(g1), Ẽ ·,·0

∼= Hom(g1,g2).
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The map T 0
∗ : E ·,·

0
→ Ẽ0

·· induced by T∗ is ϕHKR ◦ (−). Let p : g2→ g1 be the projection
onto the cohomology, i.e. p◦ϕHKR = id. Let u : g1→ g2 be any map satisfying b(u) = 0
and set v = p◦u ∈ End(g1). One can choose a map w : g1→ g2 which satis£es for any
x ∈ g1 the following identity

ϕHKR ◦ p◦u(x)−u(x) = b◦w(x).

It follows that ϕHKR(v) has the same class of homology as u which proves the surjec-
tivity of T 0

∗ in cohomology. The identity p ◦ϕHKR = id implies easily that T 0
∗ is also

injective in cohomology which £nish the proof of the lemma for T∗.

The proof that T ∗ is also a quasi-isomorphim is analogous. ¥

Proof of Theorem 3.1:

It is easy to check that T −K is a cocycle in
(

Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ
)

. The complex of

cochain
(

End(∧·g⊗·1 ), [d1,−]
)
∼=
(

Hom(∧·g⊗·1 ,g1), [d1,−]
)

is trigraded with | |1 being

the degree coming from the graduation of g1 and any element x lying in g⊗p1
1
∧ ·· · ∧

g⊗pq
1

satis£es |x|2 = q−1, |x|3 = p1 + . . . pq−q. In the case M = Rn, the cohomology

H ·
(

End(∧·g⊗·1 ), [d1,−]
)

is concentrated in bidegree (| |2, | |3) = (0,0) (see [Ta], [Hi]).

By Lemma 3.2, this is also the case for the cochain complex
(

Hom(∧·g⊗·1 ,∧·g⊗·2 ),δ
)

.

Thus, its cohomology classes are determined by complex morphisms (g1,0)→ (g2,d
1
2)

and it is enough to prove that T and K determine the same complex morphism (g1,0)→
(g2,d

1
2 = b) which is clear because T 1 and K1 are both equal to the Hochschild-

Kostant-Rosenberg map. ¥

Remark 3.3. It is possible to have an explicit formula for the map h in Theorem 3.1.
In fact the quasi-isomorphism coming from Lemma 3.2 can be made explicit using
explicit homotopy formulae for the Hochschild-Kostant-Rosenberg map (see [Ha] for
example) and deformation retract techniques (instead of spectral sequences) as in [Ka].
It is also the case for the isomorphism in cohomology in the proof of Theorem 3.1
(see [GH] for example).
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