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MULTI-VALUED BOUNDARY VALUE PROBLEMS
INVOLVING LERAY-LIONS OPERATORS
AND DISCONTINUOUSNONLINEARITIES

SIMONA DABULEANU - VICENTIU RADULESCU

We prove an existence result for a class of Dirichlet boundary value problems with
discontinuous nonlinearity and involving a Leray-Lions operator. The proof combines
monotonicity methods for elliptic problems, variationa inequality techniques and basic
tools related to monotone operators. Our work generalizes aresult obtained in Carl [4].
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1. Introduction and the main result.
Let @ ¢ RN be abounded domain with smooth boundary. Consider the
boundary value problem
P { —div (a(x, Vu(x))) = fux)), ifxeQ
u=0_0, onao 2,
wherea: Q@ x RN — RN isaCarathéodory function having the properties

(a) thereexist p> land A > Osuchthata(x, &)-& > 1-|&||P, forae x € Q
and for any £ € R™;

(@) @, &) —ax,n)-(—n >0foranys ne RN, & #n;
(ag) thereexista € RT andk € LP () suchthat |a(x, £)] < a(k(X)+|&|PY),
forae x € Q andforany £ € RV.

Assume that the nonlinearity f : R — R satisfies the hypothesis
(H;) thereexist nondecreasing functions f,g: R — R suchthat f =g —h.
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Let 8 : R — 2R be the maximal monotone graph associated with the
nondecreasing function h (see Brezis[3]). More exactly,

B(s) :=[h7(s),h*(9)], fordlse R,
where

h™(s) = lim h(s—¢), h'(s)= limh(s+¢).
e—0+ e—0+

Under this assumption we reformulate the problem (P) as follows
(P { —div (a(x, V(x))) + BU(x)) > g(u(x)), if x e
u=0, onog.

Denote by G the Nemitskii operator associated with g, that is, G(u)(x) =
g(u(x)).

DEFINITION 1. Afunctionu € Wol’p(Q) iscalled a solution of the problem
(P) if thereexists v € LP () such that
i) v(x) € B(u(x)) ae.in €,
i) /a(x,Vu)-dex+fv-w dx =fG(u)-wdx, for any w € Wy P(Q).
Q Q Q

Let L? be the set of nonnegative elements of LP(Q). For any v, w € Q
such that v < w, we set

[v,w]={ue LP(Q) /v <uc<uwl.

DEFINITION 2. AfunctionT € WP(Q) is called an upper solution of the
problem (P’) if there exists a function v e L P () such that

i) v(x) € B(U(x)) ae.in L,
ii) U>00n0%,

iii) fa(x,VU) - Vwdx + /v cwdx > fG(U) - wdx for all
Q Q Q
we W, P(Q)NLP(Q).

DEFINITION 3. A functionU € WXP(Q) is called a lower solution of the
problem (P’) if there exists a function 7 € L ' () such that

i) v(x) € B(U(x)) ae.inQ,
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i) u<0onoL,
iii) fa(x,Vg) - Vwdx + fy -wdx < fG(g) - wdx for any
Q

Q Q
we W, P(Q)NLP(Q).

In the sequel the following hypothesis will be needed:

(H,) There exist an upper solution U and alower solution u of the problem (P”)
suchthat u < T, and G(u), G(@), H*(@), H-(u) € L7 ().

The following is a generalization of the main result in Carl [4].

THEOREM 1. Assume hypothesis (H;) and (H,) hold and that g is right
(resp. left) continuous. Then there exists a maximal (resp. minimal) solution
u € [u, U] of the problem (P’).

2. Proof of Theorem 1.

We first reformulate the problem (P') in terms of variational inequalities
using the subdifferential theory in the sense of convex analysis.

Let ] : R — (—o0, 00] be a convex, proper and lower semicontinuous
function. Let 9] bethe subdifferential of j, thatis

Q) jry={feR : ji>jr)+Ff(s—r) for al s € R}.

We recall the following result concerning maximal monotone graphs in
R? (see Brezis[3] [Corollary 2.10], p. 43)

LEMMA 1. Let 8 : R — 2R be a maximal monotone graphin R2. Then
there exists a convex, proper and lower semicontinuous function j : R —
(—o00, +00] suchthat 8 = dj . Moreover, thefunction j isuniquely determined
up to an additive constant.

We observe that the function h appearing in (H;) can always be chosen so
that h(0) = 0. Then the maximal monotone graph 8 has the properties

) DB)=R and 0¢c B(0).

Sincethefunction j related to g according to Lemma 1 isuniquely determined
up to an additive constant we can assume that

3 j(0) =0.
So, by (1), (2) and (3) it follows that
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4 jss>0 foral s e R.
Define J : LP(R2) — (—o00, +00] by

fj(v(x))dx, for j(v(-) € LX)
J() = 2
400 otherwise.

Then J is convex, proper and lower semicontinuous (see Barbu [1]).
Under the above assertions we can reformulate the problem (P’) interms
of variational inequalitiesasfollows: find u € Wol’p(Q) such that

() fa(x, Vu) - V(w —u)dx + J(w) — J(u) > /G(u)(w —u) dx
Q Q
foral w e W, P(Q).

LEMMA 2. Let hypotheses (H;) and (H,) be fulfilled. Then u € [u, U] is
a solution of (5) if and only if u is a solution of the problem (P”).

Proof. Letu € [u, U] satisfy the variational inequality (5). Then

J(w) > J() + / GU) - (w—u)dx —/a(x, Vu) - V(w — u) dx.
Q Q
It follows that

(6) div (a(x, Vu)) + G(u) € 3J(u) inW-1P(Q).

It follows by Brezis [2] [Corollaire 1] that any subgradient v € 9J(u) of
the functional J : W, ?(Q) — (—o0, +00] a u € W, ?(2) belongsto L1($2)
and satisfies

@) v(X) € ) (U(X)) = B(U(X)) aein.
Furthermore
h™(u(x)) < h™(u(x)) < Bu(x)) < h"(T(x)) <h"@X) ae inQ.
Thus
€)) v < [HT @[+ [H-W].

By (Hy), the right-hand side of (8) belongs to L P (Q). It follows that v e
L”(Q). Thusthereexists v € LP () such that

divax, vu) + Gu) =v inW 7 ()
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or, equivalently,
9 /a(x,Vu)-dex+/v-wdx:/G(u)wdx
Q Q Q

foral w e Wy P(Q).

Relations (7) and (9) imply that u Wol’p(Q) isasolution of the problem
(P).

Conversaly, let u € [u, U] be a solution of the problem (P’). Then there
exists v € LP(Q) such that v € B(u) = 9j(u(x)) and the relation (9) is
fulfilled. Since v(x) € 9 (u(x)) we have

(10 j(8) = j(u(X)) +v(X)(S—u(x)).

Taking s = 0 in (10) we obtain, by means of (3) and (4) that 0 < j(u(x)) <
v(X)u(x). Thus

(11) j(u@) e LX) and J(U)=fj(U(X))dx.
Q

Let w € Wy P(2). Taking s = w(x) in (10) we obtain
(12) /j(w(X))dX—fj(U(X))dx > fv(X)(w(X)—U(X))dx.
Q Q Q
From (9), substituting w by w —u € Wol’p(Q) we get, by means of (12)
fa(x, Vu) - V(w —u)dx + J(w) — J(u) > /G(u) - (w — u)dx

Q Q
foral w € W, "(Q).

This means that u isasolution of the variational inequality (5). O

Remark 1. If u is a solution of (P’) then, by (11), J(u) < +oo0.
The result also holds also if we replace u by a super-solution U or by a
sub-solution u.

Set vt = max{v, 0}.

LEMMA 3. Letu, v € LP(2) suchthat J(u) and J(v) arefinite. Then
(13) Ju—U—-v)H=-JW+Iw+@U—v)")—Iw) =0.
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Proof. Let @, := {Xx € Q|u > v} and Q_ = {X € Q|u < v}. Since
uU—v)"=0inQ_and (u—v)" =u—vinQ, weobtain

(14) u-w-v9 =[x+ [judx <o
Qy Q_

(15 J(v—i-(u—v)*):/j(u)dx+/j(v)dx <00
Q. Q_

By (14) and (15) we obtain (13).
Consider now the following variational inequality: given z € L P(2), find
u € W, () such that

(16) fa(x, Vu) - Vw —u) + J(w) — J(u) > / G(2)(w — u) dx
Q Q
foral w € W, "(Q).

The variational inequality (16) defines a mapping T : z — u and each
fixed point of T yieldsasolution of (5) and conversely.

LEMMA 4. Let hypotheses (H;) and (H,) be satisfied. Then for each z €

[u, U] the variational inequality (16) has a unique solutionu = Tz € [u, U].

Moreover, there is a constant C > 0 such that || Tz|,,s < C, for any
0

P(Q) —
ze[uu].
Proof. Existence. Let z € [u, U] be arbitrarily given. Then G(2) is
measurable and G(z) € L? (Q), dueto the estimate
1G] = IG@|+ |G|

and after observing that the right-hand side of the above inequality is in
LP (), by (H2).
We now apply Theorem I1.8.5in Lions[5]. We first observe that the above
assertions show that the mapping W, () 5 u — /G(z)u isin W-1P(Q).
Q
Consider the Leray-Lions operator A : W, P() — WP (Q) defined by

(Au, w) :fa(x,Vu) -Vwdx.

Q
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We show that A is a pseudo-monotone operator. For this aim it is enough
to prove that A is bounded, monotone and hemi-continuous (see Lions [5]
[Prop. 11.2.5]).

Condition (a3) yields the boundedness of A. Indeed
| AUl w-1p (2) < C(IK|lLp ) + IIVUIIEE(lQ)) .

We a so observe that (ay) impliesthat A isamonotone operator.
In order to justify the hemi-continuity of A, let us consider a sequence
(An)n=1 CONverging to A. Then, for givenu, v, w € Wol’p(Q), we have

ax, Viu+ Aqv)) - Vw — a(X, Viu+ Av)) -V  aein.

From the boundedness of {A,} and condition (as) we obtain that the sequence
{la(x, V(u + A,v))Vw|} is bounded by a function which belongs to L ().
Using the L ebesgue dominated convergence theorem it followsthat

(AU 4+ Apv), w) — (AU + Ayv), w) as n — oo.

Hence the application . — (A(U + Av, w)) iscontinuous.

It followsthat all assumptionsof Theorem 11.8.51n [5] are fulfilled, so the
problem (16) has at least a solution.

Uniqueness. Let u; and u, be two solutions of (16). Then taking w = u,
as atest function for the solution u4, we obtain

/a(x, Vui) - V(U — up) dx + J(up) — J(up) > f G(2)(uz — ug) dx.
Q Q
Similarly we find

fa(x, VUy) - V(U — up) dx + J(up) — J(up) > f G(2)(up — up) dx.

Q Q
Therefore

f(a(x, Vu;) —a(x, Vuy)) - (Vu; — Vu,)dx < 0.

Q
So, by (ap), it follows that Vu; = Vu,, so u; = u, + C in Q. Since
Uy = U, =00n0%, itfollowsthat u; = u, in Q.

From (3) and (4) we deduce that J(0) = 0 and J(u) > 0. Moreover, the
variational inequality (16) implies

/a(x, vu) - V(—u)dx + J(0) — J(u) > —/G(z)udx.

Q Q
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Thus
fa(x,Vu)-Vudx < fG(z)udx.
Q Q

Thislast inequality, assumption (a;) and Holder’sinequality yield

A ull? <fG<z>udx < 1G@lrig - IUllLs

Wé‘ P —
Q

<C (”G(U)”LP/(Q) + ||G(H)|||_p/(§z)) ||u||Wé"p(Q) .
Thusu = Tz verifies

”u”p—l = Cl(”G(U)”LP/(Q) + ”G(H)”LP’(Q)) =C,.

WP =
Thisimpliesthat there exists a universal constant C > 0 such that

So, in order to conclude our proof, it is enough to show that u € [u, O].
But, by the definition of an upper solution, there exists o € L P () such that
v € B(U(X)) and

@an fa(x,VU)-Vw dx+fv-wdx > fG(U)wdx,
Q Q Q
foral w e Wy P(Q) N L2 (Q).

The solution u = Tz of the variational inequality (16) satisfies

(18) fa(x, Vu) - V(w —u)dx + J(w) — J(u) > / G(2)(w — u) dx
Q Q
foral w € W, "(Q).

Setting v € B(U) = 9j (), we have
(19) j(s) > jUX) +v(X)(s—u(x)) foral seR.
Taking s := U(X) + (u(x) — U(x))™ in (19) we find by integration

(20) JU+@u—-m") > J®O +f5(u — " dx.

Q
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Choosing now w = (u —m)* in (17) we obtain

(21) '/a(x,VU)-V(u—U)Jr dx+/v-(u—U)+dx > /G(U)-(u—ﬁ)*dx.
Q

Q Q
Relations (20) and (21) yield

(22) /a(x,VU)-V(u—ﬁ)+dx+J(U+(u—U)+)—J(n)z/G(U)-(u—m+dx.
Q

Q
Taking w = u— (u—U)" in (18), we obtain
/a(x, Vu)-(=Vu-0") dx+J(u—u-u")—-J(u) > — fG(z)(u—U)*dx.
Q Q

Sincez e [u, U] and G : LP(2) — LP(R) isnondecreasing, it follows that

/a(x, VUu) - VU= dx+Ju—u—-0)") — J(u)

Q

(23)
> —/G(U)(U—U)Jr dx.

Q

From (22), (23) and Lemma 3 we have
(24) /(a(x, Vu) —a(x,vVll) - V(u—mtdx < 0.
Q
LetQ, ={xeQlu<uUlandQ_={xe Q|u>Tu}.Since(u—u* =0in
Q,and(u—U)" =u—UuinQ_,itfollowsby (24) that
f(a(x, Vu) —a(x, Vi) - Viu—m+dx < 0.
Q_

So, by (a;) and the definition of 2_, we obtain meas(27) = 0, henceu < U
a.e. in . Proceeding in the same way we provethat u < u. O

LEMMA 5. The operator T defines a monotone nondecreasing mapping
from [u, U] to [u, T].
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Proof. Let z, z, € [u, T] besuch that z; < z,. By Lemma 4, we obtain
that Tz, Tz € [u, T] and

fa(x, VTz) -V(w—-Tz)dx+ J(w) — I(Tz)

Q

(25)
> / G(z)(w — Tzp) dx

Q

/a(x, VT2) -Vw—-Tz)dx+ J(w) — IJ(Tz)
Q

(26)
> /G(zz)(w — Tz)dx.

Q

Takingw =Tz — (Tzy—Tz)tin(25)andw = Tz + (Tzy — Tz)" in
(26), we get

—/a(x, VTz) - V(Tz1 - Tz) "dx+J(Tz1— Tz —Tz)") — I(Tz)

Q

> f G(2)(—(Tz — Tzp)*) dx

Q
/a(x, VTz2) VTz - T) "dx+J(T+ Tz —Tz)") — J(Tz)
Q
> /G(zz)(Tzl — Tz " dx.

Q

Summing up these inequalities we get, by means of (13),

/(a(x, VTz) —a(x,VTz)) -V(Tz; — Tz)"dx
Q
< / (G(z2) — G(z2)(Tzs — Tzp)" dx.
Q

But G(z;) < G(z), since G is a nondecreasing operator. Therefore, by the
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above inequality we obtain
/a(x, (VTz) —aX,VTz)) - V(Tzy—Tz) dx < 0.
Q

With the same argument as for proving (24) we obtain Tz, < T z,. O

Proof of Theorem 1 completed. Assume that g is right continuous. Define
(27) u™t=Tu",

where u® = T. Then, by Lemma 4, {u"} is nondecreasing, u” < [u, U], and
thereisaconstant C such that

(28) IIU”IIWJYp(Q) <C.
The compact embedding Wol’p(Q) — LP(2) and (28) ensure that there exists
ue Wol’p(Q) such that, up to a subsegquence,

u" — u strongly in LP(2)

u" — u  weakly in W, *(Q)

U, —> U aein<.

By Lemma 4, there exists u' € W,"?(R), U’ € [u, T] such that u’ = Tu. We
prove in what followsthat u isafixed pointof T i.e. u’ = u.
From (27) and by the definition of T we obtain

(29)/ ax, vu"™hvw — u™hHdx + J(w) — Ju"t) > / GU")(w — u™t
Q

Q
foral w e W, (Q).

Also, from Tu = U/, we have

(30 fa(x, VU)V(w —u)dx + J(w) — J(U) > / G) - (w —u)dx
Q Q
foral w € W, (Q).

Taking w = U’ in (29) and w = u"**in (30), we get

/a(x, vurth v —u™h dx+ Ju) — It > f G - (U —u™L) dx
Q

Q
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fa(x, V)Vt —u)dx + Ju™h) — J) > fG(u) (UMt —u)dx.
Q Q
So, by (29) and (30), J(u) < oo and J(u") < co. Summing up the last two
inequalities we obtain

/(a(x, vu) — ax, vu™h . v — u™?) dx

Q

(3D
< f (G(u) — G(u") (U — u™ ) dx.
Q

Since G isright continuouswe have G(u") — G(u) in 2. We aso have
IG(U) — GUM| (u—u™) <2(IGW)|+IG@I) (ul + [T]) € LY().
By (a;) and the Lebesgue dominated convergence theorem, we deduce from

(31) that

(32) /(a(x, vu) —a(x,vu") - ViU —u"dx — 0.
Q

Thisimpliesthat Vu" — VU’ ae.in .
Relation (32) implies that (up to a subsequence)

(33) (a(x, vu')—a(x, vu")-v(u —u") = 0 aex e Q.
Thisleadsto Vu" — VU’ ae. in Q. Indeed, if not, there exists x € Q such

that (up to a subsequence), Vu"(x) — & € R for & # Vu'. Passing to the
limit in (33) we obtain

(ax, vu) —a(x, §)) - (Vu' — §) = 0,
which contradicts (ay). So, we have proved that Vu" — Vu. Using the fact

that u" — u weakly in W, P(€2), we conclude that Vu' = Vu, thus u’ = u.
Replacing u’ by u in (30) we get

fa(x, Vu) - V(w —u)dx + J(w) — J(u) > f GU)(w — u) dx
Q Q
foral w e Wy P(Q).

Hence u isafixed point of T and a solution for the problem (P’).

In order to prove that u is a maximal solution of (3) with respect to the
order interval [u, U], take any other solution U € [u, U] of the problem (P’).
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Then 0 isin particular a sub-solution satisfying 0 < 0. Starting again the
iteration (27) with u® = G we obtain

<. <u"™<u"<.<u’=0.
It followsthat G < u, which concludes our proof. O
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