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We prove an existence result for a class of Dirichlet boundary value problems with
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1. Introduction and the main result.

Let � ⊂ RN be a bounded domain with smooth boundary. Consider the
boundary value problem

(P)

{ −div (a(x,∇u(x))) = f (u(x)), if x ∈ �

u = 0, on ∂ �,

where a : � × RN → RN is a Carathéodory function having the properties

(a1) there exist p > 1 and λ > 0 such that a(x, ξ ) ·ξ ≥ λ ·‖ξ‖ p, for a.e. x ∈ �

and for any ξ ∈ RN ;
(a2) (a(x, ξ ) − a(x, η)) · (ξ − η) > 0, for any ξ, η ∈ RN , ξ �= η;
(a3) there exist α ∈ R+ and k ∈ L p′

(�) such that |a(x, ξ )| ≤ α(k(x)+|ξ |p−1),
for a.e. x ∈ � and for any ξ ∈ RN .

Assume that the nonlinearity f : R → R satisfies the hypothesis

(H1) there exist nondecreasing functions f, g : R → R such that f = g − h .
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Let β : R → 2R be the maximal monotone graph associated with the
nondecreasing function h (see Brezis [3]). More exactly,

β(s) := [h−(s), h+(s)], for all s ∈ R ,

where

h−(s) = lim
ε→0+

h(s − ε), h+(s) = lim
ε→0+

h(s + ε) .

Under this assumption we reformulate the problem (P) as follows

(P ′)
{ −div (a(x,∇(x))) + β(u(x)) � g(u(x)), if x ∈ �

u = 0, on ∂�.

Denote by G the Nemitskii operator associated with g, that is, G(u)(x) =
g(u(x)).

DEFINITION 1. A function u ∈ W 1,p
0 (�) is called a solution of the problem

(P ′) if there exists v ∈ L p′
(�) such that

i) v(x) ∈ β(u(x)) a.e. in �,

ii)
∫
�

a(x,∇u)·∇w dx+
∫
�

v·w dx =
∫
�

G(u)·w dx, for any w ∈ W 1,p
0 (�).

Let L p
+ be the set of nonnegative elements of L p(�). For any v, w ∈ �

such that v ≤ w, we set

[v,w] = {u ∈ L p(�) / v ≤ u ≤ w}.

DEFINITION 2. A function u ∈ W 1,p(�) is called an upper solution of the
problem (P ′) if there exists a function v ∈ L p′

(�) such that

i) v(x) ∈ β(u(x)) a.e. in �,

ii) u ≥ 0 on ∂�,

iii)
∫
�

a(x,∇u) · ∇w dx +
∫
�

v · w dx ≥
∫
�

G(u) · w dx for all

w ∈ W 1,p
0 (�) ∩ L p

+(�).

DEFINITION 3. A function u ∈ W 1,p(�) is called a lower solution of the
problem (P ′) if there exists a function v ∈ L p′

(�) such that

i) v(x) ∈ β(u(x)) a.e. in �,
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ii) u ≤ 0 on ∂�,

iii)
∫
�

a(x,∇u) · ∇w dx +
∫
�

v · w dx ≤
∫
�

G(u) · w dx for any

w ∈ W 1,p
0 (�) ∩ L p

+(�).

In the sequel the following hypothesis will be needed:

(H2) There exist an upper solution u and a lower solution u of the problem (P ′)
such that u ≤ u, and G(u), G(u), H +(u), H−(u) ∈ L p′

(�).

The following is a generalization of the main result in Carl [4].

THEOREM 1. Assume hypothesis (H1) and (H2) hold and that g is right
(resp. left) continuous. Then there exists a maximal (resp. minimal) solution
u ∈ [u, u] of the problem (P ′).

2. Proof of Theorem 1.

We first reformulate the problem (P’) in terms of variational inequalities
using the subdifferential theory in the sense of convex analysis.

Let j : R → (−∞, ∞] be a convex, proper and lower semicontinuous
function. Let ∂ j be the subdifferential of j , that is

(1) ∂ j (r) = {r̂ ∈ R : j (s) ≥ j (r) + r̂(s − r) for all s ∈ R}.
We recall the following result concerning maximal monotone graphs in

R2 (see Brezis [3] [Corollary 2.10], p. 43)

LEMMA 1. Let β : R → 2R be a maximal monotone graph in R2. Then
there exists a convex, proper and lower semicontinuous function j : R →
(−∞, +∞] such that β = ∂ j . Moreover, the function j is uniquely determined
up to an additive constant.

We observe that the function h appearing in (H1) can always be chosen so
that h(0) = 0. Then the maximal monotone graph β has the properties

(2) D(β) = R and 0 ∈ β(0) .

Since the function j related to β according to Lemma 1 is uniquely determined
up to an additive constant we can assume that

(3) j (0) = 0 .

So, by (1) , (2) and (3) it follows that
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(4) j (s) ≥ 0 for all s ∈ R.

Define J : L p(�) → (−∞, +∞] by

J (v) =




∫
�

j (v(x)) dx, for j (v(·)) ∈ L1(�)

+∞ otherwise.

Then J is convex, proper and lower semicontinuous (see Barbu [1]).
Under the above assertions we can reformulate the problem (P ′) in terms

of variational inequalities as follows: find u ∈ W 1,p
0 (�) such that

(5)
∫
�

a(x,∇u) · ∇(w − u) dx + J (w) − J (u) ≥
∫
�

G(u)(w − u) dx

for all w ∈ W 1,p
0 (�) .

LEMMA 2. Let hypotheses (H1) and (H2) be fulfilled. Then u ∈ [u, u] is
a solution of (5) if and only if u is a solution of the problem (P ′).

Proof. Let u ∈ [u, u] satisfy the variational inequality (5). Then

J (w) ≥ J (u) +
∫
�

G(u) · (w − u) dx −
∫
�

a(x,∇u) · ∇(w − u) dx .

It follows that

(6) div (a(x,∇u)) + G(u) ∈ ∂ J (u) in W −1,p′
(�).

It follows by Brezis [2] [Corollaire 1] that any subgradient v ∈ ∂ J (u) of
the functional J : W 1,p

0 (�) → (−∞, +∞] at u ∈ W 1,p
0 (�) belongs to L 1(�)

and satisfies

(7) v(x) ∈ ∂ j (u(x)) = β(u(x)) a.e. in � .

Furthermore

h−(u(x)) ≤ h−(u(x)) ≤ β(u(x)) ≤ h+(u(x)) ≤ h+(u(x)) a.e. in �.

Thus

(8) |v| ≤ |H+(u)| + |H−(u)| .
By (H2), the right-hand side of (8) belongs to L p′

(�). It follows that v ∈
L p′

(�). Thus there exists v ∈ L p′
(�) such that

div (a(x,∇u)) + G(u) = v in W −1,p′
(�)
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or, equivalently,

(9)
∫
�

a(x,∇u) · ∇w dx +
∫
�

v · w dx =
∫
�

G(u)w dx

for all w ∈ W 1,p
0 (�).

Relations (7) and (9) imply that u ∈ W 1,p
0 (�) is a solution of the problem

(P ′).
Conversely, let u ∈ [u, u] be a solution of the problem (P ′). Then there

exists v ∈ L p′
(�) such that v ∈ β(u) = ∂ j (u(x)) and the relation (9) is

fulfilled. Since v(x) ∈ ∂ j (u(x)) we have

(10) j (s) ≥ j (u(x)) + v(x)(s − u(x)) .

Taking s = 0 in (10) we obtain, by means of (3) and (4) that 0 ≤ j (u(x)) ≤
v(x)u(x). Thus

(11) j (u(·)) ∈ L1(�) and J (u) =
∫
�

j (u(x)) dx .

Let w ∈ W 1,p
0 (�). Taking s = w(x) in (10) we obtain

(12)

∫
�

j (w(x)) dx −
∫
�

j (u(x))dx ≥
∫
�

v(x)(w(x) − u(x)) dx .

From (9), substituting w by w − u ∈ W 1,p
0 (�) we get, by means of (12)∫

�

a(x,∇u) · ∇(w − u) dx + J (w) − J (u) ≥
∫
�

G(u) · (w − u) dx

for all w ∈ W 1,p
0 (�).

This means that u is a solution of the variational inequality (5). �

Remark 1. If u is a solution of (P ′) then, by (11), J (u) < +∞.
The result also holds also if we replace u by a super-solution u or by a
sub-solution u.

Set v+ = max{v, 0}.
LEMMA 3. Let u, v ∈ L p(�) such that J (u) and J (v) are finite. Then

(13) J (u − (u − v)+) − J (u) + J (v + (u − v)+) − J (v) = 0.
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Proof. Let �+ := {x ∈ �| u > v} and �− := {x ∈ �| u ≤ v}. Since
(u − v)+ = 0 in �− and (u − v)+ = u − v in �+ we obtain

J (u − (u − v)+) =
∫

�+

j (v) dx +
∫
�−

j (u) dx ≤ ∞(14)

J (v + (u − v)+) =
∫

�+

j (u) dx +
∫

�−

j (v) dx ≤ ∞(15)

By (14) and (15) we obtain (13).
Consider now the following variational inequality: given z ∈ L p(�), find

u ∈ W 1,p
0 (�) such that

(16)
∫
�

a(x,∇u) · ∇(w − u) + J (w) − J (u) ≥
∫
�

G(z)(w − u) dx

for all w ∈ W 1,p
0 (�).

The variational inequality (16) defines a mapping T : z → u and each
fixed point of T yields a solution of (5) and conversely.

LEMMA 4. Let hypotheses (H1) and (H2) be satisfied. Then for each z ∈
[u, u] the variational inequality (16) has a unique solution u = T z ∈ [u, u].
Moreover, there is a constant C > 0 such that ‖T z‖W 1,p

0
(�)

≤ C, for any

z ∈ [u, u].

Proof. Existence. Let z ∈ [u, u] be arbitrarily given. Then G(z) is
measurable and G(z) ∈ L p′

(�), due to the estimate

|G(z)| ≤ |G(u)| + |G(u)|
and after observing that the right-hand side of the above inequality is in
L p′

(�), by (H2).
We now apply Theorem II.8.5 in Lions [5]. We first observe that the above

assertions show that the mapping W 1,p
0 (�) � u →

∫
�

G(z)u is in W −1,p′
(�).

Consider the Leray-Lions operator A : W 1,p
0 (�) → W −1,p′

(�) defined by

〈Au, w〉 =
∫
�

a(x,∇u) · ∇w dx .
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We show that A is a pseudo-monotone operator. For this aim it is enough
to prove that A is bounded, monotone and hemi-continuous (see Lions [5]
[Prop. II.2.5]).

Condition (a3) yields the boundedness of A. Indeed

‖Au‖W −1,p′(�) ≤ C(‖k‖L p′
(�) + ‖∇u‖p−1

L p(�)) .

We also observe that (a2) implies that A is a monotone operator.
In order to justify the hemi-continuity of A, let us consider a sequence

(λn)n≥1 converging to λ. Then, for given u, v, w ∈ W 1,p
0 (�), we have

a(x,∇(u + λnv)) · ∇w → a(x,∇(u + λv)) · ∇w a.e. in � .

From the boundedness of {λn} and condition (a3) we obtain that the sequence
{|a(x, ∇(u + λnv))∇w|} is bounded by a function which belongs to L 1(�).
Using the Lebesgue dominated convergence theorem it follows that

〈A(u + λnv),w〉 → 〈A(u + λnv),w〉 as n → ∞.

Hence the application λ → 〈A(u + λv, w〉) is continuous.
It follows that all assumptions of Theorem II.8.5 in [5] are fulfilled, so the

problem (16) has at least a solution.

Uniqueness. Let u1 and u2 be two solutions of (16). Then taking w = u 2

as a test function for the solution u 1, we obtain∫
�

a(x,∇u1) · ∇(u2 − u1) dx + J (u2) − J (u1) ≥
∫
�

G(z)(u2 − u1) dx .

Similarly we find∫
�

a(x,∇u2) · ∇(u1 − u2) dx + J (u1) − J (u2) ≥
∫
�

G(z)(u1 − u2) dx .

Therefore ∫
�

(a(x,∇u1) − a(x,∇u2)) · (∇u1 − ∇u2) dx ≤ 0 .

So, by (a2), it follows that ∇u1 = ∇u2, so u1 = u2 + C in �. Since
u1 = u2 = 0 on ∂�, it follows that u 1 = u2 in �.

From (3) and (4) we deduce that J (0) = 0 and J (u) ≥ 0. Moreover, the
variational inequality (16) implies∫

�

a(x,∇u) · ∇(−u) dx + J (0) − J (u) ≥ −
∫
�

G(z)u dx .
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Thus ∫
�

a(x,∇u) · ∇u dx ≤
∫
�

G(z)u dx .

This last inequality, assumption (a1) and Hölder’s inequality yield

λ · ‖u‖p

W 1,p
0

(�)
≤

∫
�

G(z)u dx ≤ ‖G(z)‖L p′
(�) · ‖u‖L p

≤ C1

(‖G(u)‖L p′
(�) + ‖G(u)‖L p′

(�)

) ‖u‖W 1,p
0

(�)
.

Thus u = T z verifies

‖u‖p−1

W 1,p
0

(�)
≤ C1(‖G(u)‖L p′

(�) + ‖G(u)‖L p′
(�)) = C2 .

This implies that there exists a universal constant C > 0 such that

‖u‖W 1,p
0

(�)
≤ C .

So, in order to conclude our proof, it is enough to show that u ∈ [u, u].
But, by the definition of an upper solution, there exists v ∈ L p′

(�) such that
v ∈ β(u(x)) and

(17)
∫
�

a(x,∇u) · ∇w dx +
∫
�

v · w dx ≥
∫
�

G(u)w dx,

for all w ∈ W 1,p
0 (�) ∩ L p

+(�).

The solution u = T z of the variational inequality (16) satisfies

(18)
∫
�

a(x,∇u) · ∇(w − u) dx + J (w) − J (u) ≥
∫
�

G(z)(w − u) dx

for all w ∈ W 1,p
0 (�).

Setting v ∈ β(u) = ∂ j (u), we have

(19) j (s) ≥ j (u(x)) + v(x)(s − u(x)) for all s ∈ R.

Taking s := u(x) + (u(x) − u(x))+ in (19) we find by integration

(20) J (u + (u − u)+) ≥ J (u) +
∫
�

v(u − u)+ dx .
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Choosing now w = (u − u)+ in (17) we obtain

(21)

∫
�

a(x,∇u)·∇(u−u)+ dx +
∫
�

v ·(u−u)+ dx ≥
∫
�

G(u)·(u−u)+ dx .

Relations (20) and (21) yield

(22)

∫
�

a(x,∇u)·∇(u−u)+ dx+J (u+(u−u)+)−J (u)≥
∫
�

G(u)·(u−u)+ dx .

Taking w = u − (u − u)+ in (18), we obtain
∫
�

a(x,∇u)·(−∇(u−u)+) dx+J (u−(u−u)+)−J (u) ≥ −
∫
�

G(z)(u−u)+ dx .

Since z ∈ [u, u] and G : L p(�) → L p(�) is nondecreasing, it follows that

(23)

∫
�

a(x,∇u) · ∇(u − u)+dx + J (u − (u − u)+) − J (u)

≥ −
∫
�

G(u)(u − u)+ dx .

From (22), (23) and Lemma 3 we have

(24)

∫
�

(a(x,∇u) − a(x,∇u) · ∇(u − u)+ dx ≤ 0.

Let �+ = {x ∈ � | u ≤ u} and �− = {x ∈ � | u > u}. Since (u − u)+ = 0 in
�+ and (u − u)+ = u − u in �− , it follows by (24) that

∫
�−

(a(x,∇u) − a(x,∇u) · ∇(u − u)+ dx ≤ 0 .

So, by (a2) and the definition of �−, we obtain meas (�−) = 0, hence u ≤ u
a.e. in �. Proceeding in the same way we prove that u ≤ u. �

LEMMA 5. The operator T defines a monotone nondecreasing mapping
from [u, u] to [u, u].
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Proof. Let z1, z2 ∈ [u, u] be such that z1 ≤ z2. By Lemma 4, we obtain
that T z1, T z2 ∈ [u, u] and

(25)

∫
�

a(x,∇T z1) · ∇(w − T z1) dx + J (w) − J (T z1)

≥
∫
�

G(z1)(w − T z1) dx

(26)

∫
�

a(x,∇T z2) · ∇(w − T z2) dx + J (w) − J (T z1)

≥
∫
�

G(z2)(w − T z2) dx .

Taking w = T z1 − (T z1 − T z2)
+ in (25) and w = T z2 + (T z1 − T z2)

+ in
(26), we get

−
∫
�

a(x,∇T z1) · ∇(T z1 − T z2)
+ dx + J (T z1 − (T z1 − T z2)

+) − J (T z1)

≥
∫
�

G(z1)(−(T z1 − T z2)
+) dx

∫
�

a(x,∇T z2) · ∇(T z1 − T z2)
+ dx + J (T z2 + (T z1 − T z2)

+) − J (T z2)

≥
∫
�

G(z2)(T z1 − T z2)
+ dx .

Summing up these inequalities we get, by means of (13),∫
�

(a(x,∇T z1) − a(x,∇T z2)) · ∇(T z1 − T z2)
+ dx

≤
∫
�

(G(z1) − G(z2))(T z1 − T z2)
+ dx .

But G(z1) ≤ G(z2), since G is a nondecreasing operator. Therefore, by the
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above inequality we obtain∫
�

a(x, (∇T z1) − a(x,∇T z2)) · ∇(T z1 − T z2)
+ dx ≤ 0 .

With the same argument as for proving (24) we obtain T z1 ≤ T z2. �

Proof of Theorem 1 completed. Assume that g is right continuous. Define

(27) un+1 = T un ,

where u0 = u. Then, by Lemma 4, {un} is nondecreasing, un ∈ [u, u], and
there is a constant C such that

(28) ‖un‖W 1,p
0

(�)
≤ C.

The compact embedding W 1,p
0 (�) ↪→ L p(�) and (28) ensure that there exists

u ∈ W 1,p
0 (�) such that, up to a subsequence,

un → u strongly in L p(�)

un ⇀ u weakly in W 1,p
0 (�)

un → u a.e. in �.

By Lemma 4, there exists u ′ ∈ W 1,p
0 (�), u ′ ∈ [u, u] such that u ′ = T u. We

prove in what follows that u is a fixed point of T i.e. u ′ = u.

From (27) and by the definition of T we obtain

(29)
∫
�

a(x,∇un+1)∇(w − un+1)dx + J (w) − J (un+1) ≥
∫
�

G(un)(w − un+1)

for all w ∈ W 1,p
0 (�).

Also, from T u = u ′ , we have

(30)
∫
�

a(x,∇u ′)∇(w − u ′) dx + J (w) − J (u′) ≥
∫
�

G(u) · (w − u ′) dx

for all w ∈ W 1,p
0 (�).

Taking w = u ′ in (29) and w = un+1 in (30), we get∫
�

a(x,∇un+1)∇(u ′ −un+1) dx + J (u′)− J (un+1) ≥
∫
�

G(un) · (u ′ −un+1) dx
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∫
�

a(x,∇u ′)∇(un+1 − u ′) dx + J (un+1) − J (u′) ≥
∫
�

G(u) · (un+1 − u ′) dx .

So, by (29) and (30), J (u ′) < ∞ and J (un+1) < ∞. Summing up the last two
inequalities we obtain

(31)

∫
�

(a(x,∇u ′) − a(x,∇un+1) · ∇(u ′ − un+1) dx

≤
∫
�

(G(u) − G(un)) (u ′ − un+1) dx .

Since G is right continuous we have G(un) → G(u) in �. We also have

|G(u) − G(un)| (u − un+1
) ≤ 2

(|G(u)| + |G(u)|) (|u| + |u|) ∈ L1(�).

By (a2) and the Lebesgue dominated convergence theorem, we deduce from
(31) that

(32)

∫
�

(a(x,∇u ′) − a(x,∇un) · ∇(u ′ − un) dx → 0 .

This implies that ∇un → ∇u ′ a.e. in �.
Relation (32) implies that (up to a subsequence)

(33) (a(x,∇u ′)−a(x,∇un)) ·∇(u ′ −un) → 0 a.e. x ∈ �.

This leads to ∇un → ∇u ′ a.e. in �. Indeed, if not, there exists x ∈ � such
that (up to a subsequence), ∇un(x) → ξ ∈ R

N
for ξ �= ∇u ′. Passing to the

limit in (33) we obtain

(a(x,∇u ′) − a(x, ξ )) · (∇u ′ − ξ) = 0 ,

which contradicts (a2). So, we have proved that ∇un → ∇u. Using the fact
that un ⇀ u weakly in W 1,p

0 (�), we conclude that ∇u ′ = ∇u, thus u ′ = u.
Replacing u ′ by u in (30) we get∫

�

a(x,∇u) · ∇(w − u) dx + J (w) − J (u) ≥
∫
�

G(u)(w − u) dx

for all w ∈ W 1,p
0 (�).

Hence u is a fixed point of T and a solution for the problem (P ′).
In order to prove that u is a maximal solution of (3) with respect to the

order interval [u, u], take any other solution û ∈ [u, u] of the problem (P ′).
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Then û is in particular a sub-solution satisfying û ≤ ū. Starting again the
iteration (27) with u0 = ū we obtain

û ≤ · · · ≤ un+1 ≤ un ≤ · ≤ u0 = ū .

It follows that û ≤ u, which concludes our proof. �
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Department of Mathematics

University of Craiova
1100 Craiova, Romania

E-mail: vicrad@yahoo.com


