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Diffraction of atoms by laser is a very important tool for
matter wave optics. Although this process is well understood,
the phase shifts induced by this diffraction process are not
well known. In this paper, we make analytic calculations of
these phase shifts in simple cases and we use these results to
model the contrast interferometer recently built by the group
of D. Pritchard at MIT to measure the ratio h/M : we thus
show that the diffraction phases are important and that they
may contribute to the large systematic error observed in this
measurement.

I. INTRODUCTION

In atom interferometry, laser diffraction is a very pow-
erful and versatile tool (for overviews, see references
[1,2]). The diffraction of matter waves by a standing light
wave was proposed by P. Kapitza and P.A.M. Dirac [3] in
the case of electrons and generalized to atoms by S. Alt-
shuler et al. [4]. Atom diffraction by light has been stud-
ied theoretically [5,6] and experimentally [7,8] and these
early works have been followed by many studies too nu-
merous to be quoted here. The phases of the diffraction
amplitudes are rarely discussed in detail, with a few ex-
ceptions like the works of S. Chu and coworkers [9] and of
K. Burnett and coworkers [10], in both cases for Raman
adiabatic transfer, and the work of C. Bordé and cowork-
ers [11,12], which analyzes the general diffraction process
in the rotating wave approximation. Unfortunately, this
approximation cannot be used for elastic diffraction stud-
ied here.

In an interferometer, the diffraction phases modify the
interference signals but this effect is difficult to detect, as
it requires accurate phase measurements and it cancels in
symmetric interferometers, like the Mach-Zehnder inter-
ferometer. The goal of this paper is to present an analytic
calculation of diffraction phases in a simple case (elastic
diffraction by a laser standing wave) and to show the im-
portance of these diffraction phases in an existing exper-
iment. We consider here diffraction in the Raman-Nath
regime and second order Bragg diffraction in the weak
field regime and we apply these results to the contrast
interferometer [13] built by the group of D. Pritchard
at MIT to measure the ratio h/MNa : the diffraction
phases are large in this interferometer and that they may

contribute significantly to the large systematic error ob-
served in this measurement.

II. THE PROBLEM

We consider diffraction of slow ground state atoms by
a near-resonant laser standing wave of frequency ωL. For
a sufficiently large laser detuning δ = ωL − ω0, where ω0

is the resonance transition frequency, the probability of
real excitation is negligible and the diffraction process
is coherent. In the dressed-atom picture [14], the laser
standing wave creates a light shift potential V (x, t) :

V (x, t) = V0(t) cos
2(kLx)

=
V0(t)

4
[2 + exp(+2ikLx) + exp(−2ikLx)] (1)

where the envelope V0(t) is proportional to the laser
power density divided by the frequency detuning δ and
kL is the laser wavevector. We are going to forget the
x-independent term, which simply shifts the energy zero
and therefore has no effect, as long as all atoms see the
same potential. The motion along the y and z directions
is free and will not be discussed. The natural energy
unit is the atom recoil energy h̄ωrec = h̄2k2

L/2m and we
will measure the potential with this unit, by defining q(t)
[15,16] :

q(t) = V0(t)/(4h̄ωrec) (2)

Using a dimensionless time τ defined by τ = ωrect, a
dimensionless spatial coordinate, X = kLx and a dimen-
sionless wavevector κ = kx/kL, the 1D Schrödinger equa-
tion becomes :

i
∂Ψ

∂τ
= − ∂

2Ψ

∂X2
+ q(τ) [exp(2iX) + exp(−2iX)] Ψ (3)

For a constant value of the potential q, the atom eigen-
states are Bloch states [17,15,16]. Writing the Hamilto-
nian matrix corresponding to equation (3) in the basis
|κ〉 of plane waves of momentum h̄κ and using numerical
diagonalization, we get the band structure ε(κ, p), with
the pseudo-momentum κ belonging to the first Brillouin
zone ( −1 < κ ≤ 1) and the integer p labeling the bands
[16]. Figure 1 presents the energy of the lowest Bloch
states as a function of κ for two values of the potential,
q = 0 and q = 1, with two important features : when q
is not equal to zero, band gaps appear at each crossing
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of the q = 0 folded parabola and energy shifts appear
at the same time. These energy shifts are explained by
perturbation theory : each free plane wave |κ〉 is coupled
to two other states, |κ± 2〉 and the two coupling terms
are equal. As the energy denominator is larger for the
coupling to the upper state, all the levels are pushed up-
wards (except near the places where gaps open), but the
lowest Bloch state is obviously pushed downwards.

III. DIFFRACTION PHASES

In order to simplify the calculations, we consider that
the atom is initially in a state of zero momentum,
|ψ(τ = 0)〉 = |0〉. We first consider diffraction in the
Raman-Nath regime. This approximation consists in ne-
glecting the dynamics of the atom during the diffraction
process produced by a pulse q(τ) of duration τRN . This
approximation is good if the potential q(τ) is intense,
q À 1, and if the pulse is brief, τRN ¿ 1. The validity
range of this approximation is given by [16,15] :

τRN < 1/(4
√
q) (4)

and the diffracted wave is a classic result :

|ψ(τRN )〉 =
∑

p

(−i)|p|J|p|(γ) |2p〉 (5)

with γ = 2qτRN . We have verified [16] that the Raman-
Nath formula predicts accurately the diffraction proba-
bility of order 0 and 1, for finite values of the parameter
q, as long as condition (4) is verified, but we have not
tested the phases of these diffraction amplitudes. They
could be tested by using the diffraction amplitudes cal-
culated [18] as a power series of 1/q.

Second order Bragg diffraction is due to the indirect
coupling of the |±2〉 free states, through the |0〉 state. As
this coupling is a second order term in q, to make a con-
sistent treatment, we must consider the 5 lowest energy
states, with κ = 0,±2,±4. The Hamiltonian matrix has
the following non-vanishing elements 〈2p|H|2p〉 = 4p2

and 〈2p|H|2(p± 1)〉 = q. Up to second order in q, the
energy correction of the |0 > state is E0 = −q2/2 and the
effective Hamiltonian coupling the states |−2〉 and |+2〉
is:

Heff =

[

4 + (q2/6)

(q2/4)

(q2/4)

4 + (q2/6)

]

(6)

We have tested the quality of this expansion limited to
the q2 terms, by numerical diagonalization of the Hamil-
tonian matrix. The neglected terms (in q4, etc.) are of
the order of 1% (10%) of the q2 terms if q = 0.3 (q = 1
respectively), thus giving an idea of the validity range of
this calculation.

The dynamics is adiabatic if the potential q(τ) varies
slowly, but diffraction remains possible when two free
states are degenerate, as the |±2〉 states. The problem

is equivalent to a Rabi oscillation exactly at resonance,
for which an exact solution is available for any function
q(τ). For a pulse extending from τ1 to τ2, the Rabi phase
ϕr at the end of the pulse is given by :

ϕr =

∫ τ2

τ1

(q2/2)dτ (7)

and if |ψ(τ1)〉 = |±2〉, the final state is :

|ψ(τ2)〉 = e[−i(4(τ2−τ1)+(ϕr/3))]

×
[

cos
(ϕr

2

)

|±2〉 − i sin
(ϕr

2

)

|∓2〉
]

(8)

where the phase shift of the | ± 2 > states due to their
energy shift has been expressed as a fraction of the Rabi
phase. When |ψ(τ1)〉 = |0〉, the final state is the |0〉 state
with an extra phase shift, also due to its energy shift:

|ψ(τ2)〉 = eiϕr |0〉 (9)

From now on, we consider a ϕr = π pulse. If the wave-
function at time τ1 is given by :

|ψ(τ1)〉 =
∑

p=−2,0,+2

ap(τ1) |p〉 (10)

the wavefunction at time τ2 is given by :

|ψ(τ2)〉 = eiπa0(τ1) |0〉+ e[−4i(τ2−τ1)−(5iπ/6)]

× [a−2(τ1) |+2〉+ a+2(τ1) |−2〉] (11)

The phase factor exp [−4i(τ2 − τ1)] is due to the free
propagation of the | ± 2 > states and is not linked to
the diffraction process. The interesting results are the
diffraction phases equal to (+π) for the |0〉 state and
(−5π/6) for the |±2〉 states. The opposite signs of the
diffraction phases are a consequence of the opposite signs
of the energy shifts of these levels. In the resulting phase
difference, the level shift contribution, equal to 4π/3, is
proportional to the Rabi phase ϕr, taken equal to π. In
an experiment, this phase difference may differ from this
calculated value, as a result of an imperfect π pulse or of
other effects neglected here (e. g. : κ 6= 0).

IV. SIMPLE MODEL OF THE CONTRAST

INTERFEROMETER OF S. GUPTA ET AL

We now calculate the output signal of the contrast
interferometer developed by S. Gupta et al. [13]. This
interferometer uses second order Bragg diffraction and
Raman-Nath diffraction and the atomic paths are repre-
sented in figure 2. The initial state is a Bose Einstein
condensate, approximated here by a |κ = 0〉 state. A
first intense and brief pulse from τ = 0 till τRN is used
to diffract this initial state in three coherent states, |0〉,
|±2〉. Within the Raman-Nath approximation, the wave-
function for τRN is given by :
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|ψ(τRN )〉 = J0 |0〉 − iJ1 [|+2〉+ |−2〉] (12)

the argument γ of Bessel functions being omitted for
compactness. The best contrast [13] would be obtained
with diffraction probabilities equal to 50% for the |0〉
state and 25% for each of the |±2〉 states. It is im-
possible to fulfill perfectly these two conditions simul-
taneously as the first one implies γ = 1.13 whereas the
second one implies γ = 1.21. We can nevertheless sup-
pose that γ ≈ 1.17. Although J2(1.17) ≈ 0.15, we will
neglect here the second order diffraction amplitudes, as
done in reference [13]. We assume that τRN is negligible
so that free propagation starts at τ = 0 and lasts till
the Bragg diffraction pulse which extends from τ1 to τ2.
Using equation (11), we get the wavefunction after this
pulse :

|ψ(τ2)〉 = J0e
iπ |0〉

+ J1e
−4iτ2e−4iπ/3 [|+2〉+ |−2〉] (13)

Free propagation goes on till a time τ where the matter
grating formed by the interference of these three states
is read by the reflection of a laser beam. The atomic
density as a function of X and τ is deduced from the
wavefunction :

| 〈X|ψ(τ)〉 |2 = J2
0 + 2J2

1 (1 + cos(4X)) + 4J0J1

× cos(2X) cos

(

4τ +
7π

3

)

(14)

The experimental signal S(τ) is the intensity of the light
reflected by this grating. This homodyne detection sig-
nal is proportional to the square of the cos(2X) modu-
lation of the atomic density , with the following time-
dependence :

S(τ) ∝ cos2
(

4τ +
7π

3

)

(15)

while the dependence predicted by Gupta et al. is :

S(τ) ∝ sin2 (4τ) (16)

If we express our result in the same form, we get S(τ) ∝
sin2 (4τ − (π/6)). This result may explain the reported
discrepancy [13] equal to 2×10−4 between the experimen-
tal value of ωrec and the literature value. The negative
sign of the predicted phase shift explains why the fitted
value of ωrec is lower than the exact value and the rela-
tive error, due to this phase, is of the order of the ratio of
the omitted term π/6 to the maximum observed phase,
φmax ' 3770 radians, equal to (π/6)/φmax ' 1.4× 10−4,
slightly less than the quoted discrepancy. Before dis-
cussing this difference, we may note that in the 7π/3
phase appearing in equation (15), 4π/3 are directly pro-
portional to the Rabi phase, i.e. to the laser intensity
during the Bragg pulse or to the pulse width. The rather
large phase fluctuations which have been observed (200

mrad from shot to shot) could be partly due to fluctua-
tions of the Rabi phase.

This difference could also be due to the numerous ap-
proximations used in our calculations, some of them be-
ing not very accurate :

i) the κ = 0 approximation is an oversimplification but
the calculation with κ 6= 0 is more complex.

ii) the first diffraction pulse used in the experiment is
1 µs long, corresponding to τRN = 0.157. If γ ≈ 1.17 (as
required for best contrast) q ≈ 3.7 and the validity con-
dition (4) requires τ ≤ 0.13. Therefore, the corrections
to the Raman-Nath phases are not fully negligible. We
have also neglected the second order diffraction beams,
which are not extremely weak and can contribute to the
signal.

iii) as for the perturbation expansion used to describe
Bragg diffraction, the π-pulse used is Gaussian with a
width of 7.6µs [13]. Assuming that q = qmax exp[−(t −
T )2/(2σ2

t )], with σt = 3.8µs, i.e. στ ≈ 0.6, we get the
value qmax ≈ 2.4, well outside the validity range of our
second order perturbation expansion.

Obviously, to describe very accurately this experiment,
a full numerical modelization is needed and feasible, as
the problem reduces to a 1D Schrödinger equation, if
atom-atom interactions are neglected. But, as noted by
Gupta et al., the mean field effect of the condensate can
also modify the atomic propagation. This effect not con-
sidered should be possible to detect by varying the initial
density of the atomic gas (for instance, simply by varying
the expansion time of the BEC).

V. CONCLUSION

In this paper, we have made a simple and tutorial cal-
culation of the phase shifts of atomic waves due to elastic
diffraction process by a laser standing wave. We have
also shown that some interferometric signals are directly
sensitive to these phase shifts and that these phase shifts
can strongly perturb high accuracy measurements, as the
h/mNa measurement done by the group of D. Pritchard.
These interferometric signals can be used to test the de-
pendence of the diffraction phase shifts with potential
strength and interaction time. The present calculations
are simple because of our assumptions : Raman-Nath
limit or perturbative regime, vanishing initial momen-
tum κ = 0. An accurate modelization of a real exper-
iment will require numerical integration of Schrödinger
equation to describe the diffraction dynamics without ap-
proximations.

We have considered only first and second order diffrac-
tion. Higher diffraction orders up to order 8, have been
observed [19–21] with moderate laser power densities.
The leading term of the coupling matrix element respon-
sible for diffraction order n behaves like qn [19] whereas
the leading terms of the energy shifts, responsible for the
diffraction phase shifts, are always in q2. Therefore, for
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diffraction orders n > 2, the control of the phase shifts
will require a full knowledge of the pulse shape. For the
second order of diffraction, the diffraction phase shifts
and the Rabi phase are simply related, as long as second
order perturbation theory is a good approximation.

We have made a systematic use of atomic Bloch states
to describe atom diffraction by laser, following our paper
published in 2001 [16]. The introduction of Bloch states
to describe atoms in a laser standing waves is due to
Letokhov and Minogin [22,23] in 1978 and also to Castin
and Dalibard [24] in 1991. Their use is rapidly expanding,
in particular to treat Bose-Einstein condensates in an
optical lattice, as reviewed by Rolston and Philipps [25].
When coupled to reduced units as done here, the atomic
Bloch states represent a very efficient tool to get a simple
understanding of the diffraction process.
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FIG. 1. Plots of the energies ε of the lowest Bloch states
versus the pseudomomentum κ : solid line q = 1; dashed line
q = 0.

FIG. 2. In the x, t plane, we have represented the atomic
paths followed by the wavepackets in the interferometer of
Gupta et al. [13] : Raman-Nath diffraction at time t = 0,
second order Bragg diffraction at time t = T , detection near
time t = 2T .
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