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Abstract

Having long considered that extraretinal information plays little or
no role in spatial vision, the study of structure from motion (SfM)
has confounded a moving observer perceiving a stationary object with
a non-moving observer perceiving a rigid object undergoing equal and
opposite motion. However, recently it has been shown that extraretinal
information does play an important role in the extraction of structure
from motion by enhancing motion cues for objects that are station-
ary in an allocentric, world-fixed reference frame (Wexler et al., 2001).
Here we test whether stationarity per se is a criterion in SfM by pitting
it against rigidity. We have created stimuli that, for a moving observer,
offer two interpretations: one that is rigid but non-stationary, another
that is more stationary and less rigid. In two experiments, with sub-
jects reporting either structure or motion, we show that stationary,
non-rigid solutions are preferred over rigid, non-stationary solutions;
and that when no perfectly stationary solution is available, the vi-
sual system prefers the solution that is most stationary. These results
demonstrate that allocentric criteria, derived from extra-retinal infor-
mation, participate in reconstructing the visual scene.

1 Structure from motion and the moving observer

1.1 Background

It has long been known that retinal motion can serve as a cue for three-
dimensional structure in human observers (von Helmholtz, 1867; Wallach
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and O’Connell, 1953; Rogers and Graham, 1979). However, an infinite num-
ber of interpretations, coupling 3D structure and movement, are compatible
with any two-dimensional optic flow field. To extract a definite interpreta-
tion, the observer must therefore make use of a regularizer, an assumption to
constrain the degrees of freedom in the problem. In both models of natural
vision and in work on artificial vision, the most popular candidate for such a
regularizer is the rigidity assumption (ra): the motion of an arbitrary object
made up of N points has 3N degrees of freedom, while that of a rigid object
has only 6. It can be shown that this reduction in the number of degrees of
freedom allows, in principle, for the extraction of a definite 3D interpretation
(up to an arbitrary absolute distance), when a rigid solution exists, even from
stimuli that are highly impoverished in space and in time (Ullman, 1979;
Koenderink, 1986).

One of the motivations behind the ra is an argument from ecological
utility. A significant fraction of optic flow experienced by a normal ob-
server is due to the observer’s own movement in an environment where
most of the objects are stationary in an external, allocentric, world-fixed
reference frame. If retinal stimulation (which carries only egocentric in-
formation) is the only input to spatial vision—we shall call this the optic
flow hypothesis—an observer moving through an environment of stationary
objects should perceive the same 3D structure as a non-moving observer
in an environment of rigid objects undergoing equal-and-opposite motion
(Wallach and O’Connell, 1953). Thus, the argument goes, ‘rigid motion’ is
ecologically prevalent, arising not only from external motion of rigid objects
but also from the observer’s locomotion through a stationary environment.
The two situations are not identical, as with the same optic flow the moving
observer perceives the environment as fixed and the non-moving observer
perceives the environment as moving (Ono and Steinbach, 1990). As far as
the perception of structure, rather than motion, is concerned, the hypothesis
is nevertheless that the two observers will perceive the same 3D shape, as
spelled out by Wallach:

The deformations of the retinal image that give rise to the kinetic
depth effect are, therefore, the same whether O moves past a
stationary object or whether a stationary O sees an object in
partial rotation. No matter how these deformations are produced,
the same three dimensional object should be perceived. In another
respect, however, the two conditions produce different results: in
the case where the object is stationary and O moves, the object
is not perceived to rotate. (Wallach, Stanton, and Becker, 1974,
p. 339; italics ours)

The optic flow hypothesis makes a strong prediction: if we present a
non-moving (‘passive’) observer with the same optic flow as experienced by
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a moving (‘active’) observer,1 the two should perceive the same 3D struc-
ture, and more generally, exhibit the same performance on SfM tasks.2

Rogers and Graham (1979) found support for the optic flow hypothesis:
passive observers had 3D detection thresholds indistinguishable from those
of active observers, and this result has been confirmed by subsequent work
(Cornilleau-Pérès and Droulez, 1994). The hypothesis was called into doubt,
however, by a finding that active observers extract SfM somewhat more ef-
ficiently from stimuli with low spatio-temporal coherence than do passive
observers (van Damme and van de Grind, 1996).

In contradiction to the optic flow hypothesis, extraretinal information in
active observers has been found to disambiguate certain 3D stimuli (Rogers
and Rogers, 1992; Dijkstra et al., 1995). It is well known that non-moving
observers often experience what are called motion reversals. This is due to
an approximate invariance of optic flow to simultaneous inversions of motion
and relative depth (see Fig. 1a-d, Appendix). In those experiments, when
observers actively generated the optic flow through their own motion, they
experienced fewer motion reversals than passive observers.

Here, we re-interpret this active/passive difference in motion reversals. It
can be noted that in the active conditions of the experiments of Rogers and
Rogers (1992), and Dijkstra et al. (1995) the optic flow arises from the pro-
jection of stationary objects for moving observers (see Fig. 1c). Thus, in the
passive condition the simulated object and its motion-reversed counterpart
move at equal (and opposite) speeds (see Fig. 1a, b), and the non-moving
subject experiences a high rate of reversals. In the active condition, how-
ever, while the simulated (and, by construction, rigid) object is stationary in
an allocentric reference frame, its motion-reversed counterpart moves twice
as fast as the observer in an allocentric frame (Fig. 1d). In our interpreta-
tion (borne out in Experiment 1), a bias toward perceiving stationary objects
suppresses inversions for the active observer.

We are thus led to conjecture a bias toward perceiving stationary ob-
jects, a stationarity assumption (sa) for short, in addition to the rigidity
assumption (ra), in the extraction of 3D structure and motion from optic
flow. By a ‘stationary object’ we mean one that is immobile in an allocentric,
earth-fixed reference frame. An object is more stationary than another if its
points undergo less total motion in this allocentric frame. (This parallels
the notion of comparative rigidity in the ra (Ullman, 1984)).

Most recently, we found strong evidence for the integration of extrareti-
nal information in SfM, and further support for the sa (Wexler et al., 2001).
Using stimuli with conflicting perspective and motion cues, we showed that

1By a “moving” observer we mean one in voluntary motion, although his trajectory may
not be voluntarily chosen. The distinction between voluntary and involuntary self-motion,
which may have psychophysical consequences, will be taken up in future work.

2We limit our discussion of observer movement to eye translations, since eye rotations
generate very little or no depth information.
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motion cues are used more by active than by passive observers; since differ-
ent structure was perceived from the same optic flow, this contradicts the
optic flow hypothesis. The result only held, however, for stationary objects,
showing that the ra coupled to the sa is stronger than the ra alone.

1.2 Present experiments

Here we test the stationary assumption directly, by creating stimuli that dis-
sociate stationarity and rigidity. The motion-reversal studies (Rogers and
Rogers, 1992; Dijkstra et al., 1995), though they are in agreement with the
sa, do not constitute a stringent test. The active-passive difference in rever-
sals could be explained by subjects’ preferring a stationary solution, when
one exists. But the stationary solution was also more rigid than the moving
one. If the rigidity difference was undetactable (for small stimuli), the choice
of the stationary solution was cost-free, i.e., no other known criterion needed
to be sacrificed; if the non-rigidity was detectable, the stationary solution
may actually have been chosen for its rigidity, and not for its stationarity.

In our experiments, we have devised stimuli for the active observer in
which two solutions are possible, one that is strictly rigid but moving, the
other less rigid but more stationary. We shall call these two solutions the
“rigid” and “stationary” solutions, respectively—despite the fact that the
second solution may not be perfectly stationary either (but it is always
more stationary than the rigid solution). We shall call an object perfectly
stationary if all of its points are fixed in an earth-fixed reference frame; an
object is more stationary than another if its points move less in such a frame.
For example, an object that rotates about its center is more stationary than
the same object undergoing a translation in addition to the above rotation—
a comparison that we uses in Experiment 2. In both experiments we varied
the stationary solutions’ non-rigidity (and therefore their ‘cost’, so to speak)
by varying the stimulus size: as the stimuli become larger and larger, the
non-rigidity of the stationary solution becomes more and more evident. We
also varied the task: in Experiment 1 the task was to report 3D structure,
whereas in Experiment 2, the task was to report motion.

How can the stationarity assumption articulate with the rigidity assump-
tion? From parsimony, we consider only models that treat actively generated
and passively observed optic flow by the same mechanisms. Three hypothe-
ses are possible.

• Pure rigidity. The observer always chooses the most rigid solution,
i.e., one in which the perceived 3D object deforms the least.

• Weak stationarity. When several solutions are available that are per-
ceived as equally rigid, the observer prefers the most stationary solu-
tion. If one solution is perceived more rigid than all others, it is chosen
without regard for its stationarity.
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• Strong stationarity. An observer will sometimes choose a stationary
solution, even if it is detectably non-rigid. Strong non-rigidity, how-
ever, may override stationarity, i.e., there may be a trade-off between
the sa and the ra.

A fourth logical possibility, pure stationarity, can be rejected because it
yields absurd results for the passive observer. Pure stationarity works for
objects that are actually stationary, but breaks down in the presence of
observer-independent motion. For an immobile observer, for instance, pure
stationarity is maximized when the flow is assumed to be the projection of
3D motion perpendicular to the line of sight. Based on this observation, the
reader can easily convince himself that a pure sa would fail to account for
many common SfM demonstrations, i.e., the case of the passive observer.
It is, of course, possible that the active observer uses the pure sa while the
passive observer uses the pure ra but we reject such a model by parsimony.
In the two experiments that follow, we find empirical support for the strong
stationarity hypothesis.

2 Experiment 1

In the first experiment we compare the stationarity hypothesis to the rigidity
hypothesis. In the crucial condition (act-move), we present the observer
with a stimulus that has two different rigid or nearly rigid interpretations:
one that is more stationary and less rigid, and one that is less stationary
and completely rigid. (In formal terms, the two stimuli are rigidity maxima.)
In this way we test the strength of the bias towards stationarity, when the
choice of stationarity conflicts with the rigidity hypothesis.

The existence of these ambiguous stimuli is based on a symmetry of
optic flow, illustrated in Fig. 1 and formally derived in the Appendix: sim-
ulateneously reversing the motion of a rotating plane and its tilt3 results
in approximately the same optic flow, or exactly the same optic flow in the
limit of small stimuli or field of view.4 If the optic flow resulting from Fig.
1a is misinterpreted as resulting from Fig. 1b, the object will appear to be
non-rigid—a non-rigidity that will be greater for larger stimuli. Since our

3The slant of a surface is the angle between its normal and the normal to the frontopar-
allel plane, while the tilt is the direction of its normal projected into the frontoparallel.
If we express the normal of a surface as (sin σ cos τ, sin σ sin τ, cos σ), σ is the slant, τ the
tilt. Multiplying the slant by −1 is therefore the same as adding 180◦ to tilt.

4This symmetry is exact in the limit of very small stimuli. Formally, this is because
only in this limit do first-order terms dominate higher-order terms. For finite-size stimuli,
the rigidity of the inverted solution becomes weaker with increasing size, as shown in the
Appendix. Physiologically, the symmetry can be said to be exact when the higher-order
terms are undetectable by the visual system (small stimuli), and broken when they are
(large stimuli). This is justified by the decrease in inversions for passive observers as the
stimulus size increases, as found in Exp. 1.
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(a) (b)

ACT-STAT

(c) (d)

ACT-MOVE

(e) (f)

Figure 1: Geometry of Experiment 1. The optic flow generated by rotating
plane (a) is approximately the same as that generated by plane (b), with
opposite angular velocity and tilt, as shown in the Appendix. An observer
moving past a stationary plane while fixating one of its points (c) may there-
fore misinterpret the plane as rotating about the fixation point in the same
direction as the observer’s motion (and twice as fast as the observer’s revolu-
tion), and having the opposite tilt (d) (condition act-stat). Similarly, an
observer moving past a plane that rotates twice as fast as his own revolution
about the fixation point (e) may misinterpret the plane as stationary and
having the opposite tilt (f) (condition act-move). Interpretations (c) and
(e) are rigid, while interpretations (c) and (f) are stationary.
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stimuli are drawn as a textures of points whose density on the monitor screen
is uniform (in central position), with few or no depth cues other than optic
flow, this symmetry will have major perceptual consequences.

Consider the common situation of an observer moving past a stationary
surface while fixating one of its points, shown in Fig. 1c. If the center of
the observer’s eye revolves with angular speed ω about the fixation point,
the optic flow is the same as for a stationary observer and a plane rotating
in the opposite direction, that is with angular speed −ω, with respect to the
observer : the flow resulting from the object rotation in Fig. 1a.5 This can
be confused with the nearly identical flow from Fig. 1b, resulting from a
plane with opposite tilt that rotates at speed +ω, again with respect to the
observer; but since the observer’s eye already revolves at speed ω about the
fixation point in an allocentric reference frame, the second percept rotates
at speed 2ω in the same frame—as shown in Fig. 1d.

The situation just described corresponds to condition act-stat of Ex-
periment 1. The percept corresponding to Fig. 1c is both rigid and sta-
tionary, while that corresponding to Fig. 1d is neither stationary nor rigid,
with the non-rigidity increasing for larger stimuli.6 All hypotheses therefore
predict that the percept of Fig. 1c will be chosen over that of Fig. 1d.

Consider now the less common but experimentally more interesting sit-
uation shown in Fig. 1e: an observer moves past a surface while fixating one
of its points (the observer’s eye revolving with angular speed ω about the
fixation point), while the surface rotates about the same axis, with speed
twice as high as the observer’s, i.e., 2ω. In the observer’s egocentric refer-
ence frame the surface rotates with speed ω. Applying the same symmetry
as in Figs. 1a-b, this percept can be confused with one that has opposite tilt,
and angular speed −ω with respect to the observer—and therefore speed 0
in an allocentric frame. This second solution, shown in Fig. 1f, is therefore
almost stationary.7

This situation—which corresponds to condition act-move—is interest-
ing because it features conflict between rigidity and stationarity. The per-
cept of Fig. 1e is perfectly rigid, but very non-stationary. The percept of
Fig. 1f, on the other hand is much more stationary, but non-rigid—with the
non-rigidity increasing as a function of stimulus size. This stimulus allows
us to ‘put a price’ on stationarity, i.e., to compare this bias with the bias
towards rigidity.

5If the observer’s motion is not a pure rotation about the fixation point, the component
of revolution may be replaced by an opposite rotation of the plane.

6More precisely, rigidity has two maxima: a single global maximum corresponding to
the perfectly rigid solution of Fig. 1c; and a local maximum, close to the solution of Fig.
1d. The tilt of the local maximum is always opposite that of the global maximum, while
the slant may be different. This is demonstrated in the Appendix.

7Since the percept of Fig. 1f is non-rigid, it is a forteriori non-stationary, but it is
nevertheless much more stationary than the percept of 1e. For convenience, we will refer
to it as the stationary solution.
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Condition Rigid solution Other solution
act-move moving (2ω) stationary (0)
pass moving (ω) moving (−ω)
act-stat stationary (0) moving (−2ω)

Table 1: The motion (in an allocentric reference frame) of the two solutions
in each of the three conditions in Exp. 1. The observer’s eye revolves around
the fixation point at angular speed ω.

We test the importance of stationarity, and its weight relative to rigidity,
by varying the stimulus size in the act-move condition. Since the rigid and
stationary solutions differ in tilt by 180◦, the responses allow us to calculate
the relative frequency of the two solutions in any condition. For very small
stimuli, higher-order terms are probably undetectable, so that both the rigid
and the stationary solutions appear equally rigid; if the visual system chooses
the stationary solution, this choice will therefore be ‘free’, i.e., bear no cost in
rigidity. For larger stimuli, higher-order terms in optic flow will presumably
become detectable, and the stationary solution will therefore be seen as
non-rigid. Will it continue to be chosen, despite its growing violation of the
ra?

In order to test the detectability of higher-order terms in optic flow, we
introduce a passive condition (pass), in which the subject does not move, but
where the rotational component of optic flow is replayed, frame-by-frame,
from previously recorded active trials. In pass, the two solutions are equally
non-stationary, rotating with equal speed in opposite directions. In addition,
one solution is non-rigid; the detection of this non-rigidity (as borne out
by a preference for rigid solution) is used as a test for the detectability
of higher-order terms in optic flow. In the limit of small stimuli, the two
solutions should be chosen equally often in pass; as stimuli increase in size,
the ‘stationary’ solution should be chosen less often and the rigid solution
more often.

In summary, in each of the three conditions (act-move, pass, act-
stat), there exists a completely rigid solution, which corresponds to the
virtual object actually used to generate the display. In an allocentric refer-
ence frame, the rigid solution is stationary in act-stat, but moves in the
other conditions. In addition, there is always a second solution, non-rigid
but corresponding to a local rigidity maximum. In act-move, the second
solution is almost stationary. This is summarized in Table 1.

The subject’s task is to indicate the average slant and tilt of the per-
ceived surface. Since, in each condition, the tilts of the two solutions differ
by 180◦ (see Figs. 1a, b), we are able to infer which of the two solutions
the subject saw (for example, if the subject saw the stationary solution in
conditions act-move and act-stat). This technique has a major advan-

8



tage over simply asking the subject whether he saw a stationary object,
although this is of course the point of interest. Had we asked about sta-
tionarity, a preference for the stationary solution could have been due to a
cognitive or response bias, rather than a reflection of perceptual reality: for
example, the subject could always respond “stationary” without actually
experiencing the corresponding percept. With our response method, on the
other hand, subjects do not know the one-to-one relation between tilt and
stationarity.8 Therefore, any preference for the stationary solution cannot
be due to cognitive factors.

Each of the three hypotheses proposed in the Introduction makes a dis-
tinct prediction concerning the outcome of this experiment. We assume
that, in the limit of small stimuli, the deformation of the non-rigid solution
will become undetectable, and the two solutions will be perceived as equally
rigid.

• Pure rigidity. There is always a perfectly rigid solution, and the dif-
ference between the rigid and non-rigid solution should be equally
detectable in all conditions. Thus, this hypothesis predicts that the
responses will be the same in all conditions. For small stimuli, the dif-
ference in rigidity between the two solutions should be undetectable,
and in the small-stimulus limit the rigid and non-rigid solutions should
be chosen equally often. As stimuli become larger, the rigid solution
should be increasingly preferred.

• Weak stationarity. In the limit of small stimuli, where non-rigidity is
undetectable,

– in act-move the observer will choose the stationary but non-
rigid solution;

– in pass the two solutions will chosen equally often;

– in act-stat the rigid solution will be chosen, because of its sta-
tionarity.

As soon as the rigidity the two solutions is distinguishable, in pass
the rigid solution should be chosen reliably more often. In this regime,
the non-stationary, rigid solution in act-move should be chosen as
frequenly as the rigid solution in pass.

• Strong stationarity. As for weak stationarity, in the limit of small
stimuli the observer prefers the stationary solution in act-move, and
chooses the two solutions equally often in pass. When, with larger

8And cannot know the motion-structure relation, even if they are not näıve—tilt is
varied randomly from trial to trial.
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Figure 2: Schematic predictions of the three hypotheses for Experiment 1,
expressed as the frequency that the non-rigid solution is perceived.

stimuli, the non-rigidity becomes detectable, and the rigid solution be-
comes preferred in pass, the stationary solution is still chosen more of-
ten in act-move due to its stationarity—even though its non-rigidity
is detectable. For even larger stimuli, where non-rigidity becomes very
strong, observers choose the rigid solution in all conditions.

These predictions are summarized in Fig. 2.

2.1 Methods

2.1.1 Apparatus

Subjects’ translational eye displacement was measured by a special-made
precision mechanical head tracker (Panerai et al., 1999), which features sub-
millimeter within-trial precision. The head tracker was sampled at the same
rate as the display monitor, 85 Hz. The tracker latency was lower than
the inter-sample interval. The same computer (Pentium II 400 MHz) sam-
pled the head tracker (using a National Instruments PCI-6602 card) and
controlled the stimulus display (Sony GDM-F500 CRT monitor driven by a
Matrox G400 video card at a resolution of about 5 arcmin/pixel).

2.1.2 Stimuli

Trials were in one of three conditions: act-stat, act-move, and pass. In
act-stat, subjects performed a lateral head motion past a virtual stationary
object (Fig. 1c). In act-move, the virtual object rotated about the fixation
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point, at a speed twice that of the observer’s revolution (Fig. 1e). In the
pass condition, the subject experienced that same optic flow as in a previous
active trial (minus the expansion or contraction component), but without
performing head motion. What follows is a complete technical description
of the generation of these stimuli.

Subjects viewed stimuli with their dominant eye, with the other eye
blindfolded. Let r0 = (x0, y0, z0) be the initial position of the dominant eye
on a given trial.9 In act-move and act-stat we generated 200 points in
the z = 0 plane, centered about R0 = (x0, y0, 0) and with a radius of 1, 2, 4,
6, or 8 cm (about 7◦, 14◦, 28◦, 41◦ and 53◦ of visual angle at typical distance
of 16 cm). The points were then projected (in perspective projection, here
and throughout) from r0 onto a slanted plane passing through R0, yielding
a set of points in space, P0, that formed the virtual object. Surface slant
was 45◦, and tilt varied between 0◦ and 345◦, in steps of 15◦.

On each subsequent frame (i.e., interval between monitor retrace, about
12 msec), the following operations were performed: the current eye position
(r) was read from the head tracker; P0 was transformed to a new set, P,
depending on the eye position r; P was projected onto a set of pixels, drawn
white on black. In act-move, we first calculated the rotation Ω that trans-
forms (r0 − R0)/|r0 − R0| to (r − R0)/|r − R0|. Ω2 was then applied to
P0 to generate P (see Figure 1). In act-stat, the points were stationary:
P = P0.

In each trial of pass, subjects experienced the same rotational optic flow
as in a previous active trial, T , but without performing head movement.
Let r0 and R0 be the initial eye position and stimulus center in T (barred
variables refer to T ). Let r0 = (x0, y0, z0) be the initial position of the
dominant eye in the passive trial; P0 was the same as in T , but now centered
about R0 = (x0, y0, 0), rather than R0. On each subsequent frame, the
following steps were performed: the eye position r was read from the head
tracker, and the eye position of the corresponding frame of T , r, was read
from a file; a rotation Ω was calculated that transforms (r −R0)/|r −R0|
to (r−R0)/|r−R0|; Ω−1 was applied to P0 in order to generate P; P was
projected for the eye position r.

In addition to the stimulus dots, there was also a small red fixation
point (about 40 arcmin) at R0. Apart from the stimuli, the experiment was
performed in darkness.

2.1.3 Procedure

In the act-move and act-stat conditions, the subject viewed the stimulus
while making a head translation of 6 cm along the x axis (i.e., horizontally
and parallel to the monitor). A trial began when the subject’s eye was

9In the coordinate system used, the monitor screen is the plane z = 0, x̂ to the subject’s
right, ŷ up and ẑ toward the subject.
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within 5 cm of the ideal starting point, located 16 cm from the monitor.
A fixation point then appeared, which the subject was instructed to fixate
throughout the trial. The subject then performed a head movement to the
right. When ∆x, the distance from the starting position along the x-axis,
reached 3 cm, a brief tone was sounded and the subject reversed the direction
of movement. When ∆x again dropped below 3 cm, the stimulus appeared,
with the leftward movement continuing until ∆x dropped below −3 cm, at
which point the stimulus disappeared. The stimulus remained visible an
average of 2.5 ± 0.3 sec. Note that actual trajectories were not arcs about
the fixation point; the actual eye position was always used in calculating the
projection of the virtual object.

Following the disappearance of the stimulus, the subject returned to
the central position, and a probe appeared on the screen. The task was
to indicate average surface tilt and slant by adjusting the probe with a
joystick. The probe object consisted of a projection of a circle (radius: 4.5◦)
and a normal to the circle (length: 7◦) that extended from the center of the
circle toward the subject. The subject adjusted the probe so that the circle
appeared to lie in the same plane as the stimulus dots, and that the line
appeared perpendicular to the stimulus. In the pass condition, the subject
viewed the stimulus without moving the head, responding as in the active
conditions.

In the active block, trials half the trials were in the act-move, and half
were in the act-stat condition. The experimental design was factorial;
with 24 tilts and 5 stimulus sizes and two stimulus movement conditions,
this yielded 240 trials in the active block. The passive block reproduced trial-
for-trial, and in the same order, the previous active block. Five volunteers
participated as subjects: 3 men and 2 women, ages 20–33 (including two
of the authors and three naive subjects). Following a training session, each
subject performed an the active block followed by the passive block.

2.2 Results

To determine whether subjects perceived the normal, rigid solution or in-
verted, non-rigid one, we analyzed response tilt, which differed by 180◦ for
the two cases. On each trial we transformed the response tilt by subtracting
the tilt of the rigid solution; henceforth, when we refer to tilt response we
mean the tilt with respect to that of the rigid solution. Therefore, a tilt
response of 0◦ indicates that the subject perceived the rigid solution, while
a tilt response of 180◦ indicates the non-rigid solution. Figure 3a shows the
distribution of tilt responses. As can be seen, the responses cluster around
the rigid and non-rigid solutions. The bimodality seen in Fig. 3a is also
present in individual subject data; we never found unimodality about some
intermediate tilt.

The stationarity and rigidity properties of the two solutions are summa-
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Figure 3: Results of Experiment 1. (a) Distribution of tilt errors for all
subjects, in the three movement conditions, for the five stimulus sizes. Tilt
errors are with respect to the tilt of the rigid solution; in act-move, tilt
of the stationary solution differs by 180◦. (b) Fraction of responses that
are closer to the non-rigid than to the rigid solution. Error bars represent
between-subject standard errors.
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rized in Table 1. In act-move, tilt response 0◦ corresponds to the rigid, non-
stationary solution, whereas tilt 180◦ is the stationary, non-rigid solution.
(The solution at 180◦ is not completely stationary, either (since it is non-
rigid), but it is more stationary than the solution at 0◦.) In act-stat, the
solution at 0◦ is both rigid and stationary; the solution at 180◦ is non-rigid
and non-stationary. In pass, the two solutions are equally non-stationary;
the solution at 0◦ is rigid, whereas the solution at 180◦ is non-rigid.

Results depend on both movement condition and stimulus size. In act-
move, the stationary solution was seen for the smaller stimuli, while the
rigid solution was more often chosen for larger stimuli. In act-stat the
non-stationary, non-rigid solution was almost never chosen, while there was
a strong peak around the stationary and rigid solution. In pass, the sta-
tionary and rigid conditions were chosen with almost equal frequency for
the smallest stimuli; for larger stimuli, the rigid solution was chosen with
higher frequency.

We counted the trials in which tilt response was more than 90◦ away
from the tilt of the rigid solution (i.e., 0◦). Figure 3b shows fractions
of such non-rigid trials, namely their number divided by the total num-
ber of trials in each condition. Performing a condition × size anova on
these fractions, we find the effects of condition and size, as well as their
interaction, significant (F2,8 = 84.8, F4,16 = 21.5, F8,32 = 20.0, respec-
tively).10 Even if we exclude act-stat, all three effects remain significant
(F1,4 = 22.0, F4,16 = 47.6, F4,16 = 7.11, respectively). Performing individual
t tests (with Bonferroni correction), we find that

• the non-rigid fraction in act-move is greater than in pass for all
values of stimulus size other than 41◦ (1-tailed, unequal variance);

• the fraction of stationary responses in act-stat is greater than in act-
move for stimulus sizes 28◦, 41◦, and 53◦ (1-tailed, unequal variance);

• the rigid solution is chosen more frequently than the non-rigid solution
in pass, for all stimulus sizes other that the smallest (1-tailed).

2.3 Discussion

In light of our results, we now return to the three hypotheses laid out above.
The results contradict the pure rigidity hypothesis, which predicts that the
allocentric criterion of stationarity plays no role at all in SfM, and there-
fore that the same solution should be chosen in the act-move and pass
conditions. The results also contradict the weak stationarity hypothesis,
according to which a stationary solution may be preferred, but only if it is
no less rigid than the non-stationary solution. This is not the case, since the
rigid solution in pass is always chosen more frequently than the non-rigid

10We adopt 0.05 as the criterion for statistical significance throughout.
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Figure 4: Geometry of Experiment 2. On the left is a plane with horizontal
tilt, rotating about a vertical axis. On the right is a plane with vertical
tilt, approaching the observer while rotating about a horizontal axis. Both
motions result in the same first-order optic flow, whose components are
shown above the corresponding human figure.

solution, and so the higher-order components of optic flow are detectable
even for the smallest stimuli; and yet, the rigid solution is always chosen
less frequently in the act-move than in pass, in favor of the stationary
solution.

Our results do support the strong stationarity hypothesis: the more
stationary a solution the more frequently it is chosen, even at the cost of
violating the rigidity assumption. We know that the non-rigidity of the
stationary solution is detectable, since it is chosen less and less often in the
pass condition as stimulus size increases.

In this experiment, stationarity is an all-or-nothing criterion; but would
this result still hold if the ‘stationary’ object (i.e., one that was more station-
ary) not only deformed, but also clearly moved? To answer this question,
we performed a different experiment using a different class of stimuli and a
task involving 3D motion rather than structure.

3 Experiment 2

Here we exploit another approximate symmetry of optic flow, illustrated in
Figure 4 and derived in the Appendix. Adding a rotation about an axis in
the frontal plane to a sagittal translation may cancel the translation and
result in a rotation about a different axis—in the limit of small stimuli. For
finite-size objects, this invariance results in a second deforming solution,
whose non-rigidity grows with stimulus size.

In agreement with this invariance, we previously noticed the following
interesting phenomenon. An non-moving observer watches the optic flow
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from a slanted plane undergoing sagittal translation, while the plane simul-
taneously rotates about a frontal axis. The rotation of the plane is coupled
to its translation in depth, with angular speed ω = Vz/(Ez tanσ) (where Vz

is the translation speed, Ez is the distance to the eye, and σ is the slant).
The observer does not perceive this object, however. Instead, he sees the
second solution, the one that does not translate, but that is also non-rigid.
This perceptual choice is interesting from the point of view of the station-
arity assumption, since it implies—as for the stimulus used in Experiment
1—that the visual system prefers to see a more stationary object, even when
it is non-rigid. As opposed to Experiment 1, however, it also implies that
stationarity is not an all-or-nothing criterion: when no perfectly stationary
percept is available (since both solutions undergo rotation at the same an-
gular speed), the visual system does not disregard stationarity altogether,
but chooses the percept that is most stationary.

If the stationarity explanation of the above phenomenon is true, it implies
that the result would be different if the translation were generated by the ob-
server. If the object’s rotation is coupled to translation (now the observer’s)
as before, the rigid solution should be perceived instead. Because of the
translation being the observer’s, rather than the object’s, the rigid solution
is now more stationary than the deforming one. We tested this hypothesis in
Experiment 2, where the situations just described are the passive (pass) and
active (act) trials in condition A, respectively. These are summarized in
Figure 5, where “R” represents the rigid solution (the virtual rigidly moving
object used to generate the stimulus), while “d” represents the alternate,
deforming solution, and the arrows represent movement with respect to an
allocentric reference frame. The stationarity hypothesis predicts that—in
spite of the same optic flow in active and passive trials—observers should
always prefer the more stationary solution: the rigid solution in act, and
the deforming solution in pass.

Such a result, however, would be open to an alternative explanation:
observers assign more weight to the rigidity criterion when they are mov-
ing. In order to distinguish this ‘movement/rigidity’ explanation from the
stationarity hypothesis, we added a second condition, B, to Experiment 2.
In the act trials of condition B, the center of the rigid object remained at
a constant distance from the observer, and therefore underwent a transla-
tion in space, with the same amplitude and phase, as the observer’s sagittal
movements (see Fig. 5). The rigid object underwent rotation at angular
speed ω = −Vz/(Ez tanσ), so that the center of the second, deforming so-
lution would be stationary in space. In the pass trials, therefore, the rigid
solution is more stationary than the deforming solution (Fig. 5). The sta-
tionarity hypothesis predicts that in condition B, the active observer should
prefer the deforming solution, while the passive observer should prefer the
stationary one—contrary to condition A. The ‘movement/rigidity’ hypoth-
esis, on the other hand, predicts that the active observer should prefer the
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Figure 5: Summary of conditions in Experiment 2. The rigid object, repre-
sented by “R”, and the deforming solution, represented by “d”, are some-
times stationary, and sometimes move in an allocentric reference frame. In
active trials, the deforming solution (in condition A) and the rigid solution
(in condition B) move with the same phase and amplitude as the observer.

rigid solution, as in condition A.
The subject’s task was to indicate the axis of rotation of the perceived

object—which differed by 90◦ for the rigid and deforming solutions. As in
Experiment 1, we preferred such an indirect task to asking the subject di-
rectly about stationarity, which could have opened to the door to cognitive
or response bias. As a complement to Experiment 1, where the task con-
cerned 3D shape, in Experiment 2 we asked the subjects about 3D motion.

In order to avoid non-sagittal motion, the center of the stimulus followed
the subjects’ movements along the x- and y-axes, remaining always at the
point on the monitor directly opposite the subject’s eye. This increased the
rigidity of the deforming solution, but decreased the stationarity of both
solutions by the same amount. In order to deconfound active-passive and
learning effects, we performed the experiment in four blocks in the order act,
pass, act, pass. In half the subjects the first two blocks were in condition
A and the last two in condition B, while in the rest of the subjects the order
was condition B followed by condition A.

3.1 Methods

3.1.1 Apparatus

Apparatus was the same as in Experiment 1.
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3.1.2 Stimuli

The stimulus consisted of 50 points lying on a slanted plane, chosen so that
in the observer’s initial position, their projections were distributed with a
radial distribution proportional to r−1/3, where r is the distance from the
center. The initial density of points was thus circularly symmetric, with a
density proportional to r−4/3. (This non-uniform distribution was chosen to
have relatively few points near the boundaries, in order to give the stimulus
an irregular shape.) The plane had slant 45◦ and tilt 0◦, 90◦, 180◦ or 270◦.
Stimuli were of five sizes, with the points chosen with radius no greater than
1, 2, 4, 6 or 8 cm (0.95◦, 1.9◦, 3.8◦, 5.7◦ and 7.6◦ at average distance of 60
cm).

In the active condition (act), the stimulus plane rotated as the observer
performed oscillatory, forward-and-back sagittal movements. In order to
prevent any movement between the observer and the stimulus other than
translations along the z-axis, the stimulus translated in the image plane,
so that its center was always opposite to the observer’s eye (i.e., if at any
given the eye was at point (x, y, z), the stimulus center was at (x, y, 0)). In
condition A, the center of the virtual object always lay on the monitor. In
condition B, the center of the object was always 60 cm away from the eye
along the z-axis.

The objects rotated about a frontoparallel axis passing through their
center and perpendicular to tilt. Angular speed was Vz/(Ez tanσ), where
Vz is the translation speed, Ez is the distance to the eye, and σ is the slant.
In condition A, the direction of rotation was such that the deforming solution
was always at the same distance to the eye. In condition B, the rotation was
such that the center of the deforming solution always lay on the monitor.
Following rotation, the stimulus dots were projected in perspective for the
current eye position and displayed as pixels, as in Experiment 1.

In the passive condition (pass), the observer experienced identical optic
flow as in a corresponding act trial, but without performing head move-
ments. The center of the virtual object was always located directly opposite
the subject’s eye, as in act. The virtual object was composed of the same
set of dots as in the corresponding act trial. On each frame of a pass trial,
the virtual object was as the same distance to the observer’s eye, and was
rotated about its center by the same amount, as in the corresponding frame
of the corresponding act trial.

3.1.3 Procedure

A trial began when the subject’s eye was within 5 cm of the ideal starting lo-
cation, located 60 cm from the screen. In act, the subject was instructed to
make back-and-forth head movements, with as little left/right and up/down
movement as possible. The subject began the movement backwards (away
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from the screen), while only the frame and fixation point were visible. When
the subject’s eye position relative to its starting point (∆z) reached 5 cm,
the stimulus dots appeared and a brief tone was sounded for the subject to
reverse movement direction. When ∆z attained −5 cm, another tone was
sounded, etc. The stimulus disappeared after the subject performed 2.5 such
back-and-forth cycles. The trial was restarted if the movement amplitude
∆z exceeded ±10 cm, or if the duration of any single movement cycle was
over 6 sec.

The task was to indicate the axis of stimulus rotation, by rotating a
probe line in the frontal plane using a joystick. The subject lined up the
probe (which appeared immediately following the stimulus dots) with the
perceived axis. The axis angle was read off between 0◦ and 180◦.

The optic flow and the task were identical in the passive condition (pass).
The experimental design was factorial: 5 stimulus sizes and 4 tilts yielded
20 trials in each block. The block of condition A pass trials immediately
followed the condition A act trials, and similarly for condition B. Half the
subjects (randomly chosen) performed condition A followed by condition B,
while the other half ran the experiment in the reverse order. Prior to starting
the experiment, subjects performed a training block to become familiar with
the stimuli and the task. Eight volunteers, all men, aged between 22 and 38
years, participated in the experiment, including one of the authors; the rest
of the subjects were naive concerning the experimental hypotheses.

3.2 Results

On act trials, subjects performed mostly sagittal motion, as instructed.
Mean standard deviation of the z coordinate of the eye position was 4.9 cm
(corresponding to an amplitude of 7.0 cm), while mean standard deviations
of the x and y coordinates were 0.7 and 0.6 cm, respectively.

Axis responses will be presented relative to the axis of the rigid solution.
The responses run from −90◦ to +90◦ (since axis A + 180◦ is the same as
axis A). Since there was no clockwise/counterclockwise asymmetry, we will
consider only the absolute value of the reponses, which run from 0◦ to 90◦. A
response of 0◦ indicates the rigid solution, a response of 90◦ the deforming
solution. We found no effects of stimulus size, nor of order of conditions
(A, B versus B, A). We will thus present all data confounded over these
variables.

The distribution of responses is shown in Figure 6a. As can be seen
clearly, subjects preferred the more stationary percept in all conditions: the
rigid solution in active trials of condition A and passive trials of condition B,
and the deforming solution in passive trials of condition A and active trials
of condition B. Although the optic flow was identical in act and pass trials
of condition A, and in act and pass trials of condition B, the responses
were very different. Thus this act/pass effect clearly demonstrates the
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Figure 6: Results of Experiment 2. (a) Distribution of axis responses for all
subjects, in the act and pass conditions, in conditions A and B. Response
0◦ indicates the rigid solution, 90◦ the deforming solution. Predictions of the
stationary hypothesis are marked by “stat”. (b) Fraction of responses closer
to the non-rigid solution than to the non-rigid one. Error bars represent
between-subject standard errors.
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contribution of extra-retinal information.
To quantify these effects, we calculated the ratios of ‘non-rigid trials’ to

all trials (where a non-rigid trial was defined as one in which the response
was greater than ±45◦). These fractions, as a function of condition and
self-motion, are shown in Figure 6b. A condition (A, B) × self-motion
(act, pass) × stimulus size anova, with condition order (A, B versus B,
A) yielded a significant condition × self-motion interaction (F1,5 = 62.1),
as well as a significant main effect of condition (more non-rigid responses in
A than in B, F1,5 = 11.7). The responses in act differed significantly from
those in pass in both conditions (F1,5 = 37.0 in A, F1,5 = 84.1 in B).

3.3 Discussion

The results rule out the pure rigidity hypothesis. In spite of experiencing
the same optic flow in the active and passive trials, subjects showed a very
strong bias towards different solutions in act and pass. They tended to
choose the more stationary solution in all cases: in condition A the rigid
solution in act and the deforming solution in pass, and in condition B
the deforming solution in act and the rigid solution in pass. The results
cannot be explained by a different weight assigned to rigidity in the moving
observer, since this would predict the same pattern of responses in condition
B as in condition A, which is clearly not the case.

There is an additional effect that deserves comment. Apart from the
presence of self-motion, we see from Fig. 5 that condition A act is similar
to condition B pass: the center of the rigid solution is stationary, while
that of the deforming solution translates. Therefore, it would seem that
we should have the same results in these two conditions, and, by analogous
considerations, in condition A pass and condition B act. Examining Fig.
6, we see that this is not entirely so: the results of the pass conditions are
more peaked at the extremes of stationarity than those of the act condi-
tions. At first glance, this might suggest that non-moving observers assign
higher weight to stationarity. However, a simpler explanation is possible.
In act trials, subjects performed some non-sagittal (left-right, up-down)
movements, and since the stimulus tracked these movements, they made all
possible percepts less stationary. In pass trials, on the other hand, subjects
performed very little movement at all. The greater magnitude of unintended
head movements in act than in pass trials therefore explains why pass re-
sponses are more strongly peaked about the stationary solutions.

Contrary to Experiment 1, in this experiment we used a motion, rather
than a structure, task. Even though this is a motion task, it is still not
open to cognitive bias, since it did not involve reporting whether the object
was stationary or moving (Ono and Steinbach, 1990), but rather the axis of
rotation. The rotational motions of the rigid and deforming solutions differ
relative to the observer, and not in an allocentric reference frame. Thus, for
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this class of stimuli, perception of stationarity is not mere compensation for
self-motion.

Apart from confirming the stationarity hypothesis for a different stim-
ulus and a different task than Experiment 1, the results of Experiment 2
show that stationarity is not an all-or-nothing criterion. When no entirely
stationary solution is available and all solutions undergo perceptible motion,
the visual system nonetheless shows a strong preference for perceiving the
most stationary object.

4 General discussion

In two experiments that involved different stimuli and tasks, we have shown
that observers do not necessarily perceive the most rigid solution to the SfM
problem. Instead, when a second, less rigid but more stationary, solution
is available, this solution is often the one perceived. Furthermore, this is
so even when it can be demonstrated that the more stationary solution is
detectably less rigid (Experiment 1), and when the more stationary solu-
tion nevertheless undergoes detectable motion (Experiment 2). Of the three
hypotheses discussed in the Introduction, our data thus rule out the rigid-
ity and weak stationarity hypotheses, and support the strong stationarity
hypothesis.

There are two causes of non-stationarity: deformation and rigid motion
in space. In Experiment 1, the stationarity criterion makes the observer per-
ceive the deforming rather than the rigidly moving solution. In Experiment
2, both solutions move, but one solution—the one that deforms—moves less
(rotation only) than the other (rotation and translation), and this solution is
the one perceived. Therefore, the sa operates not only when a truly station-
ary solution is present, but also favors the most stationary solution when
all solutions undergo motion in space. Thus in Experiment 2, the station-
arity criterion paradoxically leads to the perception of a rotating surface.
Furthermore, Experiment 2 shows that the sa is just as operative for the
non-moving as for the active observer.

It is important to note that the bias towards stationarity, as uncovered
by the present experiments, operates in the absence of any additional visual
cues to stationarity, such as a visual background to the scene. It has been
suggested that the principle means to distinguish self- from object motion
relies on the presence of such a background (Gibson, 1966). Our experi-
ments, however, are performed in darkness, with the stimulus the only ele-
ment visible. Therefore, a stationarity criterion could only apply provided
extra-retinal information (Wexler et al., 2001).

In this work we have examined stimuli that, amongst their infinite num-
ber of structure-from-motion interpretations, admit two local maxima of
rigidity, and have found that the more stationary of the two is often chosen
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by the visual system. We have thus found that two criteria play a role in
the extraction of SfM, rigidity and stationarity. How can these criteria be
combined? One possibility is that maxima of rigidity (Ullman, 1984) or
some modified form of rigidity (Todd, 1982; Koenderink, 1986) are found
first, with the stationarity criterion choosing between the possible solutions.
This possibility seems unlikely, since it would require finding all or many
of the local maxima of a high-dimensional function. A second possibility is
that the criterion of stationarity is applied first, but this also seems unlikely,
since in the case of non-stationary rigid objects this would often lead to
extremely non-rigid percepts, which is not the case.

A third possibility is that the visual system simultaneously maximizes
rigidity and stationarity. This could happen in at least two different ways.
Either the two are independent criteria, of which the visual system maxi-
mizes some weighted combination. Alternatively, and more parsimoniously,
an assumption of stationarity could be implicit in the SfM system. Any sys-
tem that solves for SfM must determine both 3D structure and 3D motion
simultaneously. If, for example, an iterative procedure is used, the opti-
mization could start from object motion equal-and-opposite to that of the
observer, i.e., an object that is stationary. Where no stationary solution
exists (either for a non-moving observer, or, as in Experiment 2, for an ac-
tive observer), a moving solution is eventually found. This simple scheme
would predict that for identical optic flow, the determination of SfM would
be faster for the active than for the non-moving observer. Work using stim-
uli with short dot lifetimes (van Damme and van de Grind, 1996) confirms
this prediction.

Regardless of how the stationarity criterion is applied, and the details
of how it articulates with rigidity assumption, its existence implies that 3D
structure and motion are coded in the human visual system, implicitly or
explicitly, in an allocentric reference frame. Neurophysiological evidence for
allocentric coding has been discovered in the hippocampus of rats (O’Keefe
and Nadel, 1978) and, more recently, in the parietal cortex of monkeys
(Snyder et al., 1998). How we come to have high-level, allocentric represen-
tations starting with low-level, egocentric sensory data has been one of the
most compelling questions in psychology and neuroscience. Here we have
presented psychophysical evidence for an allocentric criterion, and therefore
for implicit or explicit allocentric coding in visual processes leading to the
perception of three-dimensional structure.

Appendix

Consider a plane P that has normal N̂, passing through a point R0, and
let R be a point on the plane P. P simultaneously undergoes translation
with velocity V, and rotation with angular velocity Ω, about an axis passing
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through the point R0. Therefore, the three-dimensional motion vector of
the point R is

V + Ω× (R−R0). (1)

Now, what is the projection of this three-dimensional motion onto a two-
dimensional image plane? Let the image plane also pass through R0 and
have normal ẑ. Let r be the perspective projection of R from the eye located
at E onto the image plane; our goal is to solve for the two-dimensional optic
flow, i.e., the two-dimensional flow field as a function of r, u(r).

Let us express R as

R = E + t(r−E). (2)

Since (R−R0) · N̂ = 0, we have

t =
(R0 −E) · N̂
(r−E) · N̂

(3)

Equations (2) and (3) allow us to re-write the three-dimensional motion
(1) as a function of position in the two-dimensional image. Projecting this
vector onto the image plane, we find the general form of the two-dimensional
flow:

u(r) =
1
t

[
Bz

Ez
(r−E) + B

]
, B = V + Ω× [t(r−E)− (R0 −E)] (4)

The general optic flow (4) is greatly simplified in the limit of very small
stimuli. In order to see this, we set r = (ρ cos ϕ, ρ sinϕ, 0) and expand u(r)
as a Taylor series in powers of ρ about ρ = 0, i.e., about small field of view.
For our purposes we consider only sagittal translation, i.e., V = (0, 0, Vz),
and rotation about axes in the xy plane, i.e., Ω = (ω cos α, ω sinα, 0). If we
set N̂ = (sinσ cos τ, sinσ sin τ, cos σ) (where σ and τ are the surface slant
and tilt, respectively), and, without loss of generality, put E = (0, 0, Ez), we
find that the lowest-order terms in the Taylor series are of first order in ρ:

ux(ρ, ϕ) =
[

Vz
Ez

cos ϕ− ω tanσ sinα cos(ϕ− τ)
]
ρ + · · ·

uy(ρ, ϕ) =
[

Vz
Ez

sinϕ + ω tanσ cos α cos(ϕ− τ)
]
ρ + · · ·

(5)

where the ellipses represent second-order terms. In the first-order flow field,
the term proportional to Vz is an expansion or contraction due to sagittal
translation; the other term is identical to the flow field of a rotating plane
under parallel projection.

The first-order flow field (5) presents a number of symmetries or ambi-
guities. In Experiment 1, we exploit the fact that slant and angular speed
cannot be separately determined, but occur only in the combination ω tanσ.
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Thus, in the limit of small stimuli, optic flow is invariant under the trans-
formation

ω 7→ fωω
tanσ 7→ ftan σ tanσ

}
provided that fωftan σ = 1. (6)

In particular, the first-order flow remains unchanged under the simultaneous
transformations

ω 7→ −ω, σ 7→ −σ (7)

or, equivalently, ω 7→ −ω, τ 7→ τ + π. This invariance leads to the ‘motion
inversions’ where the observer, mistaking the sign of his or her movement
relative to the object, also inverts the surface orientation, leading to the
discrete symmetry in tilt τ 7→ τ + π.

What happens to the invariances (6) and (7) for finite-sized stimuli?
To answer this question, we calculated the degree of rigidity of different
planar 3D solutions, as a function of the multiplicative fω and ftan σ factors,
using parameters similar to those in Experiment 1. The simulations were
performed as follows. A circular cloud of dots was generated, then projected
onto a surface with slant σ = 35◦ and tilt 0◦. This virtual object was then
rotated, by changing σ from 35◦ to 55◦, in steps of 4◦. (This simulated
the observer’s motion in Experiment 1, ±3 cm at 16 cm from the stimulus
with slant 45◦ and tilt 0◦.) At the same time, the proximal stimulus was
projected onto a second surface, with different slant and angular speed, given
by tanσ′ = ftan σ tanσ and ω′ = fωω. The degree of rigidity of this second
surface was calculated as follows. Let rα

i be the 3D position of point i in
frame α, with a total of N points and F frames. Then we define rigidity as

R = −
F−1∑
α=1

N∑
i=1

N∑
j=i+1

(
|rα

i − rα
j | − |rα+1

i − rα+1
j |

)2

|rα
i − rα

j |+ |rα+1
i − rα+1

j |
(8)

Definition (8) is a measure of rigidity because in a rigidly moving object,
the distance between any two points is constant over time. For perfectly
rigid motion we will have R = 0, for non-rigid motion R < 0. Similar
to the definition of rigidity used by Ullman (1984), definition (8) sums up
the squares of the changes of inter-point distances, weighted by the inverse
distance between the two points, so that deformations between nearby points
are weighted heavier. Our results, however, would be similar given any
sensible measure of non-rigidity.

The results of our simulations are given in Fig. 7, which—for stimuli
sizes equal to the smallest and largest used in Exp. 1—shows the rigidity
landscape as a function of the fω and ftan σ factors. The point fω = ftan σ = 1
corresponds to the surface used to generate the stimulus, which is perfectly
rigid by construction, and is therefore a global maximum of rigidity. There is
also a local maximum near fω = ftan σ = −1, corresponding to the inversion
symmetry of Eq. 7. The important features of our results are as follows.
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Figure 7: Simulation of the rigidity landscape of Experiment 1, for small
and large stimuli, as a function of the ω and tanσ factors. (Darker shades
mean higher rigidity.) Scale is arbitrarily chosen.

• For infinitely small stimuli, the two maxima in Fig. 7 are actually an in-
finite one-parameter family of solutions, lying on the hyperbolic curves
fωftan σ = 1. Considering finite-size stimuli, and therefore including
the second-order terms in optic flow, reduces this infinite family down
to two discrete solutions, as assumed in our discussion elsewhere in
this article (see, e.g., Table 1).

• As stimuli become larger, the local maximum near fω = ftan σ = −1
becomes less sharp compared to the global maximum fω = ftan σ =
+1. Therefore, the non-rigidity of the second solution in Exp. 1, for
example, becomes greater for larger stimuli.

In Experiment 2, we consider the special case where the axis of rotation
is perpendicular to the surface normal, i.e., α = τ +π/2. It then follows that
the first-order flow (5) is invariant under the simultaneous transformations

Vz 7→ Vz + Ezω tanσ
τ 7→ τ + π

2
ω 7→ −ω

(9)

This invariance is heuristically illustrated in Fig. 4.
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