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What is the optimal shape of a fin for stationary heat

conduction?

Gilles Marck∗ Grégoire Nadin† Yannick Privat‡

Abstract

This article is concerned with the shape of small devices used to control the heat flowing

between a solid and a fluid phase, usually called fin. The temperature along a fin in stationary

regime is modeled by a one-dimensional Sturm-Liouville equation whose coefficients strongly

depend on its geometrical features. We are interested in the following issue: is there any

optimal shape maximizing the heat flux at the inlet of the fin? Two relevant constraints

are examined, by imposing either its volume or its perimeter, and nonexistence results are

proved for both problems. Furthermore, using a kind of rearrangement argument, we explicitly

compute the optimal values and construct maximizing sequences. We show in particular that

the optimal heat flux at the inlet is infinite in the first case and finite in the second one. Finally,

we provide several extensions of these results for more general models of heat conduction, as

well as several numerical illustrations.

Keywords: calculus of variation, shape optimization, Sturm-Liouville equation, volume con-
straint, perimeter constraint.

AMS classification: 49J15, 49K15, 34E05.

1 Introduction

The increasing need for compact and efficient thermal systems leads to new challenges in the
design of heat transfer devices. Across several engineering fields dealing with thermal management
issues, a recurrent problematic concerns the optimal shape of several small elements aiming at
locally increasing heat transfer. Theses systems, usually called fins, may adopt various shapes and
designs, slightly extending the structure subjected to thermal loads.

For instance, fins are widely used to control the temperature of the heat exchangers taking
place over the computational processing units (CPU), since thermal overloads can have devastating
effects on their physical integrity. Fins are also extensively used in industrial forming processes,
mainly to evacuate the heat handled by the molded material, and must be designed to guarantee
that the bulk temperature evolves inside a range specified by manufacturing constraints.

Therefore, efficient fin shapes are required to either improve cooling or warming processes,
shrewdly controlling the local temperature or increasing the heat transfer. Many engineering
works focused on modeling the direct problem in order to assess the efficiency of different fin
shapes [3]. Nevertheless, very few theoretical results and mathematical proofs do exist (see for
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instance [2, 7, 13]). The study proposed in the present article tackles this shape optimization
problem, taking into account several relevant constraints on the admissible class of designs.

Engineering motivations behind the fin optimization are rooted in a category of physical prob-
lems related to efficient transport of a conservative flux. Optimizing the shape of a fin belongs to
a larger class of problems aiming at reducing the thermal resistance occurring when the heat flows
inside different media. Indeed, the fin thermally links a solid material subject to a heat flux with
a fluid flow taking place around it. Its role consists in cooling down/warming up the solid phase
by transferring heat to/from the fluid phase.

From the optimal design point of view, the main difficulties arise from the multi-physic aspects
of this problem, depicted on Fig. 9 in Appendix A. Indeed, the heat flowing from a solid domain
through a fin to a fluid part is only transported by conduction inside the structure, as far as it
reaches its boundary. Then, according to heat flux conservativeness property, it is fully transferred
into the fluid phase. Hence, it is at the same time transported by the fluid motion and conducted
between fluid elements, which is referred to as conducto-convection phenomenon (see [21]). As
a consequence, the heat flowing from the fin to the fluid depends on the flow pattern around
boundaries. This multi-physics optimal design problem with a Navier-Stokes/heat coupling system
has been numerically investigated for some academic configurations in [18]. For the needs of
simple and robust modeling, physical/engineering works often only takes into consideration the
conduction phenomenon occurring inside the bulk material, considering an average convective
coefficient standing for the heat transfer at the solid/fluid interface [3, 21]. This is the choice we
make in the sequel.

We also will assume that the fin is subject to a steady-state thermal regime and attached to a
device at constant temperature. A fin is considered as thermally efficient if it conveys the largest
amount of heat, while requiring the smallest volume of solid material. Two reasons motivate this
claim: first, a fin is generally made of expensive components, because it requires high conductivity
materials such as copper. Secondly, a fin is generally oriented orthogonally to the cross-flow
direction, and we could expect that it is designed to generate the smallest possible perturbation
in the fluid motion. Indeed, notice that a smaller fin produces a smaller perturbation and requires
a smaller additional power to set the fluid into motion. This feature lead us to maximize the heat
crossing the fin, by prescribing either its volume or its surface.

From a mathematical point of view, the problems settled within this article write as infinite
dimensional optimization problems subject to constraints of several natures: (i) global ones such
as volume or perimeter, (ii) pointwise ones, and (iii) ordinary differential equation ones, since the
cost functional depends on the solution of a Sturm-Liouville equation, whose coefficients write as
highly nonlinear functions of the unknown.

The idea of minimizing functionals depending on a Sturm-Liouville operator, such as eigenvalues
or eigenfunctions, is a long story and goes back at least to M. Krein in [15], see also [11, 12, 16, 17]
and [8] for a review on such problems. We also mention [9, 19] where two problems close to the
ones addressed in this article have been solved in the context of Mathematical Biology (see Remark
3 for a comparison between these problems).

In [4], the authors considered a simplified model of fin, getting rid of the convective heat transfer
from the lateral side of the structure. Using rearrangement techniques, they addressed and solved
the problem of maximizing the cooling rate of the fin. The strong difference with the analysis
developed in this article comes from the awareness of the convective heat transfer, making the
optimal design problem harder to tackle.

This article is structured as follows: in Section 2.1, a Sturm-Liouville model of temperature
along the fin is derived using physical arguments. Physical justifications are postponed in Appendix
A for the sake of completeness. Section 2.2 is devoted to introducing the cost functional F (a),
standing for the heat flux at the inlet of the fin, and providing continuity properties about it. The

2



two main optimal design problems investigated are introduced in Section 3: in a nutshell, the first
one consists in maximizing F (a) with a volume constraint. A nonexistence result for this problem
is stated and proved in Section 3.2. We show in particular that the optimal value is infinite. The
second one aims to maximize F (a) with a perimeter like constraint. Similarly to the first problem,
we prove that it has no solution in Section 3.3 and we provide the optimal value for this problem,
as well as a way to construct maximizing sequences. Finally, all these results are extended to a
more general setting in Section 4. Several numerical simulations are also presented.

2 Modeling of a fin

2.1 Sturm-Liouville model of the temperature conduction

Let us consider an axisymmetric fin Ωa of length ℓ > 0 and radius a(x) at abscissa x, as displayed
in Figure 9, defined in a Cartesian coordinate system by

Ωa = {(r cos θ, r sin θ, x) | r ∈ [0, a(x)), θ ∈ S
1, x ∈ (0, ℓ)}.

We will assume in the sequel that

(H1) a ∈ W 1,∞(0, ℓ) so that the surface element is defined almost everywhere;

(H2) there exists a0 > 0 such that a(x) > a0 for every x ∈ [0, ℓ] so that the fin cannot collapse.

Figure 1 sums-up the situation and the notations we will use throughout this article.

a(x)

x

x = 0 x = ℓ

Ωa

Figure 1: An axisymmetric fin

Some physical explanations about the derivation of the temperature model are provided in
Appendix A. As a result, the temperature T along the fin is solution of the following ordinary
differential equation

(a2(x)T ′(x))′ = βa(x)
√

1 + a′(x)2(T (x)− T∞) x ∈ (0, ℓ)
T (0) = Td

T ′(ℓ) = −βr(T (ℓ)− T∞),
(1)

where β = 2h/k is a positive real constant and βr = hr/k is a nonnegative real constant.
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Since the function a is assumed to satisfy the assumptions (H1) and (H2), System (1) has a
unique solution T ∈ H1(0, ℓ) by virtue of the Lax-Milgram lemma. The following lemma provides
some precisions on this solution.

Lemma 1. Let a be a function satisfying the assumptions (H1) and (H2). Then, the solution T (·)
of (1) is decreasing, and verifies

T∞ 6 T (x) 6 Td

for every x ∈ [0, ℓ].

Proof. Let us use the standard change of variable for Sturm-Liouville problems (see for example

[5]) y =
∫ x

0
dt

a(t)2 . Setting ℓ1 =
∫ ℓ

0
dt

a(t)2 and S(y) = T (x) − T∞ for every x ∈ [0, ℓ], it follows from

(1) that S is solution of the boundary value problem

S′′(y) = βb(y)S(y) y ∈ (0, ℓ1)
S(0) = Td − T∞

S′(ℓ1) = −βra(ℓ)
2S(ℓ1),

(2)

where b(y) = a(x)3
√
1 + a′(x)2 for every x ∈ [0, ℓ]. Let us now prove that the function S(·) remains

positive on [0, ℓ1]. We denote by contradiction y0 the largest zero of S(·) on [0, ℓ1] whenever it exists.
One has necessarily S′(y0) 6= 0. Otherwise, the Cauchy-Lipschitz theorem would immediately yield
the contradiction. In particular, y0 6= ℓ1. If S

′(y0) > 0, then S is positive on (y0, ℓ1) since y0 is the
largest zero of S, and thus S(·) is strictly convex and increasing on (y0, ℓ1), which is incompatible
with the boundary condition at ℓ1. In the same way, if S′(y0) < 0, S(·) is concave negative and
decreasing on [y0, ℓ1] and the same conclusion follows. As a result, the function S(·) is positive on
[0, ℓ1], and hence strictly convex according to (2). The function S(·) is thus decreasing according
to the boundary condition at ℓ1. The conclusion follows.

2.2 The cost function F (a)

The cost function F (a) stands for the heat flux at the inlet of the fin. It is defined by

F (a) = −kπa(0)2T ′(0), (3)

where T (·) denotes the solution of (1). Integrating the main equation of (1) yields the new (integral)
expression

F (a) = kπβ

∫ ℓ

0

a(x)
√

1 + a′(x)2(T (x)− T∞) dx+ kπβra(ℓ)
2(T (ℓ)− T∞). (4)

In the forthcoming analysis of the optimal design problems we will investigate, we will need
to use continuity properties of the criterion F . Let us write precisely these properties. Define the
class of admissible designs

Aa0,ℓ = {a ∈ L∞(0, ℓ), a > a0 a.e. in (0, ℓ)} ,

and the product space Âa0,ℓ defined by

Âa0,ℓ =
{
(a, b), a ∈ Aa0,ℓ and b = a

√
1 + a′2

}
.

Introduce the criterion F̂ defined on Âa0,ℓ by

F̂ (a, a
√
1 + a′2) = F (a), (5)

for every a ∈ Aa0,ℓ. Here and in the sequel, the notation M(0, ℓ) stands for the space of Radon
measures on (0, ℓ).
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Definition 1. Let (an, bn)n∈IN be a sequence of elements of Âa0,ℓ. We will say that (an, bn)n∈IN

τ-converges to (a, b) ∈ C0([0, ℓ])×M(0, ℓ) if

• (an)n∈IN converges to a, locally uniformly in (0, ℓ];

• (bn)n∈IN converges to b in the sense of measures.

We endow Âa0,ℓ with the topology inherited from the τ -convergence. One has the following
continuity result of the criterion F .

Proposition 1. Let (an, bn)n∈IN be a sequence of elements of Âa0,ℓ which τ-converges to (a, b) ∈
C0([0, ℓ])×M(0, ℓ). Then, the sequence (F (an))n∈IN converges to F̂ (a, b) defined by

F̂ (a, b) = kπβ〈b, T − T∞〉M(0,ℓ),C0([0,ℓ]) + kπβra(ℓ)
2(T (ℓ)− T∞), (6)

where T = T̃ + Td, and T̃ is the unique solution of the equation written under variational form:
find T̃ ∈ H1(0, ℓ) satisfying T̃ (0) = 0 such that for every test function ϕ ∈ H1(0, ℓ) satisfying
ϕ(0) = 0, one has

∫ ℓ

0

a(x)2T̃ ′(x)ϕ′(x) dx+β〈b, (T̃+Td−T∞)ϕ〉M(0,ℓ),C0([0,ℓ])+βra(ℓ)
2(T̃ (ℓ)+Td−T∞)ϕ(ℓ) = 0. (7)

Remark 1. It follows from Proposition 1 that the functional F̂ defined (with a slight abuse of

notation) by (6) on the closure of Âa0,ℓ for the topology associated to the τ -convergence is a

continuous extension of the function F̂ defined by (5).

Proof of Proposition 1. Consider a sequence (an, bn)n∈IN of elements of Âa0,ℓ as in the statement
of Proposition 1. Denote by Tn the associated solution of (1). Let us multiply the main equation
of (1) by Tn − T∞ and then integrate by parts. One gets

a0 min{β, a0}‖Tn − T∞‖2H1(0,ℓ) 6

∫ ℓ

0

(
an(x)

2T ′
n(x)

2 + βbn(x)(Tn(x) − T∞)2
)
dx

= −βran(ℓ)
2(Tn(ℓ)− T∞)2 − an(0)

2T ′
n(0)(Td − T∞).

Integrating Equation (1) on (0, ℓ) yields

−βran(ℓ)
2(Tn(ℓ)− T∞)− an(0)

2T ′
n(0) = β

∫ ℓ

0

bn(x)(Tn(x)− T∞) dx

and according to Lemma 1, it follows that

a0 min{β, a0}‖Tn − T∞‖2H1(0,ℓ) 6 βr‖an‖2∞(Td − T∞)2 + β(Td − T∞)2〈bn, 1〉M(0,ℓ),C0([0,ℓ]).

Since (an, bn)n∈IN τ -converges to (a, b), we deduce from the previous estimate that the sequence
(Tn)n∈IN is uniformly bounded in H1(0, ℓ). Hence, using a Rellich theorem, there exists T ∗ ∈
H1(0, ℓ) such that, up to a subsequence, (Tn)n∈IN converges to T ∗, weakly in H1(0, ℓ) and strongly
in L2(0, ℓ). Introduce for every n ∈ IN, the function T̃n := Tn − Td. The function T̃n is the unique
solution of the system whose variational form writes: find T̃n ∈ H1(0, ℓ) such that T̃n(0) = 0 and
for every test function ϕ ∈ H1(0, ℓ) satisfying ϕ(0) = 0, one has

∫ ℓ

0

(
an(x)

2T̃ ′
n(x)ϕ

′(x) + βbn(x)(T̃n(x) + Td − T∞)ϕ(x)
)
dx = −βran(ℓ)

2(T̃n(ℓ) + Td − T∞)ϕ(ℓ).
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The conclusion follows hence easily, passing to the limit into this variational formulation, and
noting that

F̂ (an, bn)

kπ
= −an(0)

2T ′
n(0) = β

∫ ℓ

0

bn(x)(Tn(x) − T∞) dx + βran(ℓ)
2(Tn(ℓ)− T∞),

since the injection H1(0, ℓ) →֒ C0([0, ℓ]) is compact.

3 Optimal design problems for a simplified model of fin

3.1 The optimal design problems

In this section we will introduce and solve the problems modeling the optimal shape of a fin for
the Sturm-Liouville model (1). We will consider two kinds of constraints: a volume constraint or
a lateral surface constraint. Notice that

volume of Ωa = π

∫ ℓ

0

a(x)2 dx,

lateral surface of Ωa = 2π

∫ ℓ

0

a(x)
√

1 + a′(x)2 dx.

Optimal design problem with volume or lateral surface constraint. Let a0
and ℓ denote two positive real numbers. Fix V0 > ℓa20 and S0 > ℓa0. We investigate
the problem of maximizing the functional a 7→ F (a) defined by (3) either over the set

Va0,ℓ,V0
=
{
a ∈ W 1,∞(0, ℓ), a > a0 a.e. in [0, ℓ] and π vol(a) 6 πV0

}
(8)

or the set

Sa0,ℓ,S0
=
{
a ∈ W 1,∞(0, ℓ), a > a0 a.e. in [0, ℓ] and 2π surf(a) 6 2πS0

}
, (9)

where the volume and lateral surface functionals are defined by

vol(a) =

∫ ℓ

0

a(x)2 dx and surf(a) =

∫ ℓ

0

a(x)
√

1 + a′(x)2 dx.

Remark 2. Physically, the lateral surface constraint can be justified by considering the fluid
flowing around the fin. In realistic engineering configurations, the fluid is put into motion by an
external equipment, such as a pump or a fan. The pressure and kinetic energies provided by this
system are dissipated all through the fluid flow, mainly because of the wall shear stress. In other
words, one part of the dissipation is due to the fluid friction against the walls. As a consequence,
limiting the wet surface of the fin is a suitable way to reduce the operating cost of the whole
thermal system. In addition, limiting the fin surface may also help to reach easier and cheaper
shapes to manufacture.

Remark 3. As underlined in the introduction, the optimal design problems settled here look
similar to the ones addressed in [9, 19], devoted to the issue of understanding the nerve fibers shapes
by solving an optimization problem. In these works, a Sturm-Liouville operator whose coefficients
depended on the shape of the nerve fiber were also introduced and two criteria were considered: a
kind of transfer function, and the first eigenvalue of a self-adjoint operator. However, the technics
implemented in the present work are rather different and appear a bit more sophisticated. Indeed,
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the ideas of the proofs in [9, 19] were all based on the standard change of variable for Sturm-
Liouville problems used in Lemma 1, which permitted to consider auxiliary problems and thus get
a lower bound of the optimal values. This trick was then used to construct minimizing sequences.
Unfortunately, in the present work, we did not manage to adapt such technics, and the arguments
of the proofs rest upon the use of particular perturbations that could be assimilated to a kind a
rearrangement (see Remark 4 and the proof of Theorem 2).

Before solving these shape optimization problems, let us give some precisions on the topological
nature of the classes Va0,ℓ,V0

and Sa0,ℓ,S0
in L∞(0, ℓ). As it will be highlighted in the proofs of

theorems 1 and 2, the classes Va0,ℓ,V0
and Sa0,ℓ,S0

are not closed for the standard strong topology
of W 1,∞(0, ℓ). The following lemma investigates the L∞-boundedness of the elements of these
classes.

Lemma 2. Let a0 and ℓ denote two positive real numbers, and let V0 > ℓa20 and S0 > ℓa0. Then,

• the class Va0,ℓ,V0
is not a bounded set of L∞(0, ℓ),

• the class Sa0,ℓ,S0
is a bounded set of L∞(0, ℓ) and for every a ∈ Sa0,ℓ,S0

,

a0 6 a(x) 6
√
S2
0/ℓ

2 + 4S0.

Proof. First consider the sequence of functions (an)n>1 defined by

an(x) =

{ √
n− n(n−a2

0
)

2(V0−a2

0
ℓ)
x if x ∈ [0, 2(V0 − a20ℓ)/n]

a0 if x ∈ (2(V0 − a20ℓ)/n, ℓ].

By construction, ∫ ℓ

0

an(x)
2 dx = ℓa20 +

(n− a20)(V0 − a20ℓ)

n
< V0,

so that an ∈ Va0,ℓ,V0
for every n ∈ IN∗. Since an ∈ C0([0, ℓ]) and an(0) =

√
n, it follows obviously

that Va0,ℓ,V0
is not bounded in L∞(0, ℓ).

Second, consider a ∈ Sa0,ℓ,S0
. One has

S0 >

∫ y

x

a(t)
√

1 + a′(t)2 dt >

∫ y

x

a(t)|a′(t)| dt >
∣∣∣∣
∫ y

x

a(t)a′(t) dt

∣∣∣∣ =
1

2
|a(y)2 − a(x)2|,

for every 0 < x < y < ℓ. It follows that for every x ∈ [0, ℓ],

a(0)2 − 2S0 6 a(x)2 6 a(0)2 + 2S0. (10)

Using this inequality, one gets

S0 >

∫ ℓ

0

a(t) dt > ℓ
√
a(0)2 − 2S0

and thus, a(0)2 6 S2
0/ℓ

2+2S0. The conclusion follows by combining this inequality with (10).
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3.2 Maximizing F over the set Va0,ℓ,V0
(volume constraint)

The following theorem highlights the ill-posed character of Problem (8).

Theorem 1. Let a0 and ℓ denote two positive real numbers, and let V0 > ℓa20. Problem (8) has
no solution and

sup
a∈Va0,ℓ,V0

F (a) = +∞.

Proof. To prove this theorem, we will exhibit an explicit maximizing sequence (an)n∈IN∗ . The
construction of the sequence (an)n∈IN∗ is based on the use of an intermediate sequence denoted
(aS,m)m∈IN∗ where S denotes a positive real number. Fix S > 0. The sequence (aS,m)m∈IN∗ is
chosen to verify at the same time

• (aS,m)m∈IN∗ converges strongly to a0 in L∞(0, ℓ),

• the sequence (bS,m)m∈IN∗ defined by bS,m = aS,m
√
1 + a′2S,m for every m ∈ IN∗ verifies

surf(aS,m) =

∫ ℓ

0

bS,m(x) dx = S

for every m ∈ IN∗ and converges in the sense of measures to a0+(S−a0ℓ)δ0, where δ0 denotes
the Dirac measure at x = 0.

In particular, the sequence (aS,m, aS,m
√
1 + a′2S,m)m∈IN∗ τ -converges to (a0, a0 +(S− a0ℓ)δ0) as m

tends to +∞.
Let us now provide an example of such sequence. A possible choice of function bS,m for m large

enough is given by

bS,m(x) =

{
a0 + (S − a0ℓ)m if x ∈ [0, 1/m]
a0 if x ∈ (1/m, ℓ].

Solving the equation bS,m = aS,m
√
1 + a′2S,m comes to solve

aS,m|a′

S,m|√
b2
S,m

−a2

S,m

= 1 on each interval

(0, 1/m) and (1/m, ℓ). This equation has obviously an infinite number of solutions. In particular,
a family of solutions is obtained by making the function aS,m oscillate an integer number of times
in (0, 1/m), each oscillation corresponding to two successive choices of the sign of a′S,m on two
same length intervals. The continuity of each function aS,m determines then it in a unique way.
As a consequence, it is possible to control the L∞-norm of aS,m by choosing shrewdly the number
of oscillations.

Introduce Mm = a0+(S−a0ℓ)m for everym ∈ IN∗. We now construct the sequence (aS,m)n∈IN∗

so that each function oscillates m times on [0, 1/m] (see Figure 2). More precisely, we define aS,m
by

aS,m(x) =





√
M2

m − (
√

M2
m − a20 − x)2 on

[
0, 1

2m2

)
;

aS,m( 1
m2 − x) on

[
1

2m2 ,
1
m2

)
;

aS,m
(
x− i

m2

)
on
[

i
m2 ,

i+1
m2

)
, i ∈ {1, ...,m− 1} ;

a0 on
[
1
m , ℓ

]
.

(11)

Notice in particular that

‖aS,m − a0‖∞ = aS,m

(
1

2m2

)
− a0 = o

(
1

m2

)
as m → +∞.

The sequence (aS,m)n∈IN∗ verifies then the expected properties above. Moreover, according to
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x = 0 1

m
x = ℓ

a0

Mm

x = 0 x = ℓ

a0

1

m

Figure 2: Left: graph of bS,m = aS,m
√
1 + a′2S,m. Right: Graph of aS,m.

Proposition 1, one has

lim
m→+∞

F (aS,m) = lim
m→+∞

F̂ (aS,m, aS,m

√
1 + a′2S,m) = F̂ (a0, a0 + (S − a0ℓ)δ0)

Notice that the solution T of (7) associated to the pair (a, b) = (a0, a0+(S−a0ℓ)δ0) coincides with
the solution of the same equation associated to the pair (a, b) = (a0, a0). Explicit computations
thus lead to

T (x) = T∞ + (Td − T∞)

(
cosh

(√
β

a0
x

)
− γ sinh

(√
β

a0
x

))
,

for every x ∈ [0, ℓ], where γ denotes the positive real number

γ =

√
β
a0

sinh
(√

β
a0

ℓ
)
+ βr cosh

(√
β
a0

ℓ
)

√
β
a0

cosh
(√

β
a0

ℓ
)
+ βr sinh

(√
β
a0

ℓ
) . (12)

We then compute

lim
m→+∞

F (aS,m)

kπ
= β〈a0 + (S − a0ℓ)δ0, T − T∞〉M(0,ℓ),C0([0,ℓ]) + βra

2
0(T (ℓ)− T∞)

= β(Td − T∞)

(
a
3/2
0√
β
γ + (S − a0ℓ)

)
.

Conclusion: construction of a maximizing sequence (an)n∈IN∗ . Let n ∈ IN∗ such that n >

[a0ℓ] + 1. Consider the sequence (an,m)m∈IN∗ introduced previously. Since (an,m)m∈IN∗ converges
strongly to a0 in L∞(0, ℓ) and according to the previous convergence study, there exists p ∈ IN
such that vol(an,p) 6 V0 − 1

n and

F (an,p)

kπβ(Td − T∞)
>

(
a
3/2
0 γ√
β

+ (n− a0ℓ)

)
− 1

n
.

9



Let us denote by mn the first integer for which this property is verified, and by an the function
equal to a0 if n 6 [a0ℓ] and by an,mn

else. It follows not only that each element an belongs to
Va0,ℓ,V0

and that

sup
a∈Va0,ℓ,V0

F (a)

kπβ
> F (an,mn

) > (Td − T∞)

(
a
3/2
0 γ√
β

+ (n− a0ℓ)−
1

n

)

for every n > [a0ℓ] + 1. Letting n tend to +∞ yields the conclusion of the theorem.

3.3 Maximizing F over the set Sa0,ℓ,S0
(lateral surface constraint)

This section is devoted to the solving of Problem (9). We will prove that imposing a lateral surface
constraint on Ωa is not enough to get the existence of a solution for this problem. Nevertheless,
on the contrary of the previous case where a volume constraint were imposed (see Section 3.2,
Theorem 1), the value of the supremum of F over the set Sa0,ℓ,S0

is now finite.
The main result of this section is the following.

Theorem 2. Let a0 and ℓ denote two positive real numbers, and let S0 > ℓa0. Problem (9) has
no solution and

sup
a∈Sa0,ℓ,S0

F (a) = kπβ(Td − T∞)

(
a
3/2
0 γ√
β

+ (S − a0ℓ)

)
,

where γ is given by (12). Moreover, every sequence (an)n∈IN of elements of Sa0,ℓ,S0
such that

(an, an
√
1 + a′2n )n∈IN τ-converges to (a0, a0 + (S − a0ℓ)δ0), where δ0 denotes the Dirac measure at

x = 0, is a maximizing sequence for Problem (9).

Remark 4. It is standard, in shape optimization, to use rearrangements such as the so-called
Steiner or Schwarz symmetrizations, to characterize the solutions of an optimal design problem
(see for instance [14] for the definition and [8] for examples of use in shape optimization). In
general, such an approach needs to (re)write the criterion as an energy infimum. In our case, note
that one has for every a ∈ Aa0,ℓ,

F (a) =
kπ

Td − T∞
min

T̆∈H1,0(0,ℓ)
Fa(T̆ ),

where H1,0(0, ℓ) = {u ∈ H1(0, ℓ) | u(0) = 0} and

Fa(T̆ ) =

∫ ℓ

0

(a(x)2T̆ ′(x)2 + βa(x)
√

1 + a′(x)2(T̆ (x) + Td − T∞)2) dx + βra(ℓ)
2(T̆ (ℓ) + Td − T∞)2.

Unfortunately, a standard decreasing rearrangement of the functional Fa does not permit to
solve Problem (9), especially since it is a priori not possible using this technic to compare Fa(T̆ )
with Fa∗(T̆ ∗), the notation a∗ (resp. T̆ ∗) denoting the decreasing rearrangement of a (resp. T̆ ).

In a nutshell, the difficulties come from the facts that, if a ∈ Aa0,ℓ, the function a∗
√
1 + a∗′2 does

not coincide in general with the decreasing rearrangement of a
√
1 + a′2, and moreover, we should

apply a Polyà type inequality that would make the criterion decrease.
In the proof of Theorem 2, the key idea to show the nonexistence result and to construct

maximizing sequences lies in applying a perturbation that can be assimilated to a kind of monotone
rearrangement of the function a

√
1 + a′2, and then to shrewdly deduce an element a ∈ Aa0,ℓ

belonging to the class of admissible designs, and that makes the job.
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Proof. This proof is divided into several steps. Steps 1, 2 and 3 are devoted to showing that
Problem (9) has no solution, whereas Step 4 focuses on building maximizing sequences using a
kind of rearrangement inequality (see Remark 4). Let us argue by contradiction, assuming that
Problem (9) has a solution a ∈ Sa0,ℓ,S0

. Let us denote by b the function a
√
1 + a′2. The idea of the

proof is to introduce an admissible perturbation aε of a in Sa0,ℓ,S0
, suitably chosen to guarantee

that F (aε) > F (a) for a given ε > 0. We will proceed in several steps.

Step 1. Definition of the perturbation aε. Since the constant function equal to a0 is obvi-
ously not a solution of Problem (9), there exists x0 ∈ (0, ℓ) and an interval (x0 − ε/2, x0 + ε/2) on
which a > a0. Introduce for such a choice of x0 and ε, the function

bε = b+ c(χ[0,ε] − χ[x0−ε/2,x0+ε+2]),

where c is a positive constant, chosen small enough to guarantee that bε > a0 almost everywhere
in (0, ℓ). We will use the following lemma to construct aε.

Lemma 3. There exists a family (aε)ε>0 such that aε ∈ Sa0,ℓ,S0
for every ε > 0, aε

√
1 + a′2ε = bε

for almost every ε > 0, and
‖aε − a‖L∞(0,ℓ) = O(ε2).

The proof of this lemma is a bit technical and is postponed to Section 3.4. We now consider
a family (aε)ε>0 chosen as in the statement of Lemma 3. In particular, and according to the
construction of aε made in the proof of Lemma 3, we will assume without loss of generality that
aε(ℓ) = a(ℓ).

For ε > 0, we denote by Tε the temperature associated to aε, i.e. the solution of (1) with
a = aε.

Step 2. Asymptotic development of Tε at the first order. Notice that
∫ ℓ

0
bε(x) dx =∫ ℓ

0 b(x) dx, (bε)ε>0 converges in the sense of measures to b, and (aε)ε>0 converges strongly to a
in L∞(0, ℓ) as ε ց 0, according to Lemma 3. Then, following the proof of Proposition 1, the
family (Tε)ε>0 converges, up to a subsequence, weakly in H1(0, ℓ) and strongly in L2(0, ℓ) to T ,
the solution of (1) associated to the optimal radius a.

Let us write an asymptotic development of Tε at the first order. For that purpose, introduce

T̃ε =
Tε − T

ε
.

The function T̃ε is solution of the following ordinary differential equation

(a(x)2T̃ ′
ε(x))

′ = βb(x)T̃ε + βRε(x)
ε (Tε(x)− T∞)−

((
aε(x)

2−a(x)2

ε

)
T ′
ε(x)

)′
, x ∈ (0, ℓ)

T̃ε(0) = 0

T̃ ′
ε(ℓ) = −βrT̃ε(ℓ),

(13)

where Rε(x) = c(χ[0,ε] − χ[x0−ε/2,x0+ε+2]).

Let us first prove the convergence of T̃ε. We multiply the main equation of System (13) by T̃ε

and then integrate. We get

∫ ℓ

0

(
a(x)2T̃ ′

ε(x)
2 + βb(x)T̃ε(x)

2
)
dx+ βra(ℓ)

2T̃ε(ℓ)
2 = −β

ε

∫ ε

0

Rε(x)T̃ε(x)(Tε(x) − T∞) dx

−
∫ ℓ

0

(
aε(x)

2 − a(x)2

ε

)
T ′
ε(x)T̃

′
ε(x) dx.

11



First, notice that, using standard Sobolev imbedding results and the weak-H1 convergence of the
family (Tε)ε>0, there exists C1 > 0 such that

β

ε

∣∣∣∣
∫ ε

0

Rε(x)T̃ε(x)(Tε(x) − T∞) dx

∣∣∣∣ =
βc

ε

∣∣∣∣∣

∫ ε

0

T̃ε(Tε − T∞) dx−
∫ x0+ε/2

x0−ε/2

T̃ε(Tε − T∞) dx

∣∣∣∣∣

6 2βc‖T̃ε‖L∞(0,ℓ)(‖Tε‖L∞(0,ℓ) + T∞)

6 C1‖T̃ε‖H1(0,ℓ).

Second, using at the same time Lemma 2, 3 and the Cauchy-Schwarz inequality, there exists C2 > 0
such that
∣∣∣∣∣

∫ ℓ

0

(
aε(x)

2 − a(x)2

ε

)
T ′
ε(x)T̃

′
ε(x) dx

∣∣∣∣∣ 6 2

√
S2
0

ℓ2
+ 4S0

‖aε − a‖L∞(0,ℓ)

ε
‖T̃ε‖H1(0,ℓ)‖Tε − T∞‖H1(0,ℓ)

6 C2ε‖T̃ε‖H1(0,ℓ).

Combining the two previous estimates and using that

a0 min{β, a0}‖T̃ε‖2H1(0,ℓ) 6

∫ ℓ

0

(
a(x)2T̃ ′

ε(x)
2 + βb(x)T̃ε(x)

2
)
dx+ βra(ℓ)

2T̃ε(ℓ)
2,

yields that (T̃ε)ε>0 is bounded in H1(0, ℓ). Then, using a Rellich theorem, (T̃ε)ε>0 converges, up

to a subsequence, to T̃ , weakly in H1(0, ℓ) and strongly in L2(0, ℓ).

Let us now write the system whose T̃ is solution. The variational formulation of (13) writes:

find T̃ε ∈ H1(0, ℓ) satisfying T̃ε(0) = 0 such that for every test function ϕ ∈ H1(0, ℓ) satisfying
ϕ(0) = 0, one has

∫ ℓ

0

(
a(x)2T̃ ′

ε(x)ϕ
′(x) + βb(x)T̃ε(x)ϕ(x)

)
dx+ βra(ℓ)

2T̃ε(ℓ)ϕ(ℓ)

+β

∫ ℓ

0

Rε(x)

ε
(Tε(x) − T∞)ϕ(x) dx −

∫ ℓ

0

((
aε(x)

2 − a(x)2

ε

)
T ′
ε(x)

)′

ϕ(x) dx = 0. (14)

Note that

−
∫ ℓ

0

((
aε(x)

2 − a(x)2

ε

)
T ′
ε(x)

)′

ϕ(x) dx =

∫ ℓ

0

(
aε(x)

2 − a(x)2

ε

)
T ′
ε(x)ϕ

′(x) dx.

Then, since (Tε)ε>0 is uniformly bounded in H1(0, ℓ) and using Lemma 3, one deduces that

lim
εց0

∫ ℓ

0

((
aε(x)

2 − a(x)2

ε

)
T ′
ε(x)

)′

ϕ(x) dx = 0.

We let ε tend to zero in (14), and using the Lebesgue density theorem, we get

∫ ℓ

0

(
a(x)2T̃ ′(x)ϕ′(x) + βb(x)T̃ (x)ϕ(x)

)
dx− βcϕ(x0)(T (x0)− T∞) + βra(ℓ)

2T̃ (ℓ)ϕ(ℓ) = 0, (15)

for every test function ϕ ∈ H1(0, ℓ) satisfying ϕ(0) = 0. We refer to Remark 5 for the characteri-

zation of T̃ .
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Step 3. Asymptotic of the criterion when ε tends to 0 and conclusion. We compute

F (aε)− F (a)

kπβ
=

∫ ℓ

0

(bε(x)(Tε(x)− T∞)− b(x)(T (x)− T∞)) dx

+
βr

β
a(ℓ)2(Tε(ℓ)− T (ℓ))

=

∫ ℓ

0

b(x)(Tε(x) − T (x)) dx+

∫ ℓ

0

Rε(x)(Tε(x)− T∞) dx

+
βr

β
a(ℓ)2(Tε(ℓ)− T (ℓ)).

Dividing by ε and letting ε go to zero, one sees that

lim
εց0

F (aε)− F (a)

kπβε
=

∫ ℓ

0

b(x)T̃ (x) dx + c(Td − T (x0)) +
βr

β
a(ℓ)2T̃ (ℓ). (16)

The contradiction will follow by proving that the right hand-side of the last equality is positive.
For that purpose, take ϕ = T − Td in (15). We obtain

∫ ℓ

0

(
a(x)2T̃ ′(x)T ′(x) + βb(x)T̃ (x)T (x)

)
dx = βTd

∫ ℓ

0

b(x)T̃ (x) dx+ βc(T (x0)− Td)(T (x0)− T∞)

−βra(ℓ)
2T̃ (ℓ)(T (ℓ)− Td). (17)

Multiply now Equation (1) by T̃ and integrate then by parts. We obtain

∫ ℓ

0

(
a(x)2T̃ ′(x)T ′(x) + βb(x)T̃ (x)T (x)

)
dx = βT∞

∫ ℓ

0

b(x)T̃ (x) dx − βra(ℓ)
2T̃ (ℓ)(T (ℓ)− T∞).

(18)
Combining (17) and (18) yields

∫ ℓ

0

b(x)T̃ (x) dx = c
(Td − T (x0))(T (x0)− T∞)

Td − T∞
− βr

β
a(ℓ)2T̃ (ℓ).

According to (16), we compute

lim
εց0

F (aε)− F (a)

kπβε
= c

(Td − T (x0))(T (x0)− T∞)

Td − T∞
+ c(Td − T (x0))

= c
(Td − T∞)2 − (T (x0)− T∞)2

Td − T∞
.

According to Lemma 1, the right hand sign is positive, and it follows that, for ε small enough,
F (aε) > F (a). This is a contradiction, and it proves that Problem (9) has no solution.

Step 4. Convergence along maximizing sequences. It remains now to prove the second
claim of Theorem 2. To this aim, we will use an auxiliary optimal design problem obtained from
Problem (9) by imposing a uniform upper bound on the surface density a

√
1 + a′2. Indeed, define

for M > a0 the set

SM
a0,ℓ,S0

=
{
a ∈ Sa0,ℓ,S0

, a0 6 a
√
1 + a′2 6 M a.e. in (0, ℓ)

}
.
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Notice that for a given M > a0, the class SM
a0,ℓ,S0

is compact in W 1,∞(0, ℓ). For M > a0, let us
introduce the auxiliary problem

sup
{
F (a), a ∈ SM

a0,ℓ,S0

}
. (19)

In the following proposition, whose proof is postponed to Section 3.4, we perform a precise analysis
of this problem.

Proposition 2. Let a0, ℓ and M > 0 denote three positive real numbers, with S0 > ℓa0 and
M > a0. Then, Problem (19) has a solution aM , satisfying necessarily (up to a zero Lebesgue
measure subset)

aM (x)
√

1 + a′2M (x) =

{
M, x ∈ (0, xM ),
a0, x ∈ (xM , ℓ),

(20)

with xM = S−a0ℓ
M−a0

.

Next lemma highlights how solutions of Problem (19) can be used to exhibit a maximizing
sequence for Problem (9).

Lemma 4. The family (aM )M>a0
maximizes F .

The proof of this elementary lemma is postponed to Section 3.4.
According to this result, consider such a family (aM )M>a0

. Notice that the families (aM )M>a0

and (bM )M>a0
converge respectively uniformly in (0, ℓ] to a0 and for the measures topology to a

Dirac mass at x = 0, as M → +∞. Indeed, the convergence of (bM )M>a0
is clear and one has

bM (x) = a0 = aM (x)
√

1 + a′M (x)2 > a0 for all x ∈ [xM , ℓ], implying the L∞-convergence of aM (·)
in (0, ℓ] to a0, since xM → 0 as M → +∞. Proposition 1 thus yields that (F (aM ))M>a0

converges

to F̂
(
a0, (S − a0ℓ)δ0 + a0

)
as M → +∞. In other words, using the same computations as those in

the proof of Theorem 1, one gets

lim
M→+∞

F (aM ) = 2hπ(Td − T∞)

(
a
3/2
0 γ√
β

+ S0 − a0ℓ

)
.

Moreover, each sequence (an)n∈IN fulfilling the conditions of Theorem 2 admits the same limit by
Proposition 1.

Remark 5. System (15) must be understood in the following sense: T̃ solves the system





(a(x)2T̃ ′(x))′ = βb(x)T̃ (x) x ∈ (0, x0)

(a(x)2T̃ ′(x))′ = βb(x)T̃ (x) x ∈ (x0, ℓ)

T̃ (0) = 0

σ(a(x0)
2T̃ ′(x0)) = βc(T (x0)− T∞)

T̃ ′(ℓ) = −βrT̃ (ℓ),

where σ(a(x0)
2T̃ ′(x0)) = a(x+

0 )
2T̃ ′(x+

0 ) − a(x−
0 )

2T̃ ′(x−
0 ) denotes the discontinuity jump of the

function a2T̃ ′ at x = x0.
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3.4 Proofs of Lemma 3, Proposition 2 and Lemma 4

Proof of Lemma 3. The proof consists in exhibiting an element aε ∈ Sa0,ℓ,S0
so that the statements

of Lemma 3 are satisfied. First, we impose aε = a on (ε, x0 − ε/2)∪ (x0 + ε/2, ℓ). Without loss of
generality, let us now explain how to define aε on [0, ε], the construction of aε on [x0−ε/2, x0+ε/2]
being similar. The construction method is close to the one of the maximizing sequence presented
in the proof of Theorem 1. The idea is to impose oscillations on aε to control the L∞ distance
between a and aε.

We first explain how to create one oscillation on an interval [x̄, x̄+ η], where 0 < x̄ < x̄+ η < ε
(see Figure 3). The function aε is chosen so that

aε = aη,1 on (x̄, ξ) and aε = aη,2 on (ξ, x̄+ η),

where the function aη,1 is solution of the following Cauchy problem

a′η,1(x) =

√
bε(x)2−aη,1(x)2

aη,1(x)
x ∈ (x̄, x̄+ η)

aη,1(x̄) = a(x̄),

the function aη,2 is solution of the following Cauchy problem

a′η,2(x) = −
√

bε(x)2−aη,2(x)2

aη,2(x)
x ∈ (x̄, x̄+ η)

aη,2(x̄+ η) = a(x̄+ η),

and ξ ∈ (x̄, x̄ + η) is chosen so that aη,1(ξ) = aη,2(ξ). Notice that the functions aη,1 and aη,2

satisfy in particular aη,i
√
1 + a′2η,i = bε for i ∈ {1, 2}, aη,1 is increasing and aη,2 is decreasing.

Such a construction is possible provided that the graphs of aη,1 and aη,2 intersect at a point whose
abscissa belongs to (x̄, x̄ + η). The intermediate value theorem yields that it is enough to show
that

aη,1(x̄+ η) > a(x̄+ η) and aη,2(x̄) > a(x̄).

x = ξx = x̄ x = x̄ + η

y = aη,1(x)

y = aη,2(x)

y = aε(x)

y = a(x)
x = 0 x = ℓε x0

a0

y = a(x)

y = aε(x)

Figure 3: Left: Zoom on one oscillation. Right: the perturbation aε

Without loss of generality, let us prove that the first assertion is true, the proof of the second
one being similar. In fact, we will prove that aη,1 > a everywhere in (x̄, x̄ + η]. Let us argue
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by contradiction. Note that a′η,1(x̄) > a′(x̄) since x̄ < ε and thus bε(x̄) > b(x̄). Denote by α
the first point of (x̄, x̄ + η) such that aη,1(α) = a(α), provided that it exists. Since bε > b on

[x̄, x̄+ η] ⊂ [0, ε], there holds aη,1

√
1 + a′2η,1 > a

√
1 + a′2 almost everywhere in any neighborhood

of α, thus there exists necessarily a neighborhood Oα of α such that |a′η,1(x)| > |a′(x)| at every
Lebesgue point of a′η,1 and a′ in Oα. It implies the existence of ν > 0 such that aη,1(x) < a(x) on
(α− ν, α), which is absurd.

It remains now to find the number of oscillation on [0, ε] and [x0 − ε/2, x0 + ε/2] guaranteeing
that aε is as close to a as desired (in the sense of the L∞ distance). Notice that, according to the
previous definition of aε on [x̄, x̄+ η], one has

a(x)2 6 aε(x)
2

6 2

∫ x̄+η

x̄

bε(x) + a(x̄)2

6 2η(‖b+ c‖L∞(0,ℓ) + 2‖a′‖L∞(0,ℓ)‖a‖L∞(0,ℓ)) + a(x)2,

for every x ∈ [x̄, x̄+ η]. Moreover, since a ∈ W 1,∞(0, ℓ),

0 6 aε(x)− a(x) 6
(‖b+ c‖L∞(0,ℓ) + ‖a′‖L∞(0,ℓ)‖a‖L∞(0,ℓ))

a0
η

for every x ∈ [x̄, x̄+ η]. If suffices hence to fix for example η = ε/kε with kε = [1/ε] + 1, to ensure
that ‖aε − a‖L∞([x̄,x̄+η]) = O(ε2).

Conclusion. We consider a regular subdivision of [0, ε] (resp. [x0 − ε/2, x0 + ε/2]) into kε
intervals, and we use the process described previously to construct the graph of aε by creating one
oscillation on each of these intervals. This way, one gets: ‖aε − a‖L∞([0,ℓ]) = O(ε2). The lemma
is then proved.

Proof of Proposition 2. Consider a maximizing sequence (an)n∈IN in Sa0,ℓ,S0
, with bn = an

√
1 + a′2n

satisfying a0 6 bn 6 M for almost every n ∈ IN. Clearly a0|a′n(x)| 6 M for almost every n ∈ IN
and x ∈ (0, ℓ). Hence (an)n∈IN is uniformly Lipschitz-continuous and bounded. According to the
Arzelà-Ascoli theorem, the sequence (an)n∈IN converges, up to a subsequence, to some Lipschitz-
continuous limit aM , satisfying a0 6 bM 6 M where bM = aM

√
1 + a′2M .

On the other hand, Proposition 1 yields

lim
n→+∞

F (an) = F̂ (aM , bM ) = F (aM ),

since bM = aM
√
1 + a′2M . Hence aM solves Problem (19).

Assume by contradiction that aM does not satisfy (20). Then there exist 0 < y0 < x0 < ℓ and
ε > 0 such that the function bε defined by

bε = bM + c(χ[y0,y0+ε] − χ[x0−ε,x0]),

satisfies to a0 6 bε 6 M almost everywhere in [0, ℓ]. The same arguments as in the proof of
Theorem 2 yield that one can construct a family (aε)ε>0 in Sa0,ℓ,S0

such that bε = aε
√
1 + a′2ε for

all ε > 0 and ‖aM − aε‖L∞(0,ℓ) = O(ε2). Moreover, one computes

lim
εց0

F (aε)− F (aM )

kπβε
= c

(TM (y0)− T∞)2 − (TM (x0)− T∞)2

Td − T∞

where TM is the solution of (1) associated with aM , and is decreasing according to Lemma 1. Thus
the right hand-side is positive and F (aε) > F (aM ) provided that ε be small enough. It yields a
contradiction since aε belongs to the class of admissible functions for the current maximization
problem. It follows that necessarily, the function aM satisfies (20), whence the result.
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Proof of Lemma 4. Notice that constructed as well, the sequence of sets (SM
a0,ℓ,S0

)M>a0
is increas-

ing for the inclusion, and there holds

Sa0,ℓ,S0
=

⋃

M>a0

SM
a0,ℓ,S0

.

It thus follows that

sup
a∈Sa0,ℓ,S0

F (a) = sup
M>a0

sup
a∈SM

a0,ℓ,S0

F (a) = lim
M→+∞

max
a∈SM

a0,ℓ,S0

F (a) = lim
M→+∞

F (aM ),

whence the convergence of the maxima. As a result, (aM )M>a0
is a maximizing family.

4 Comments and conclusion

4.1 Extension of Theorems 1 and 2 to a more general setting

In this section we provide some generalizations of the results stated in Theorems 1 and 2 to a more
general model. Indeed, the convection coefficient h strongly depends on the operating conditions
and geometries driving the fluid flow around the fin. Consequently, h is now assumed to be a
function of x, especially because the lower part of the fin lies in the boundary layer of the fluid
characterized by lower velocities. Therefore, the temperature T along the fin is now assumed to
solve the following ordinary differential equation,

(a2(x)T ′(x))′ = β(x)a(x)
√

1 + a′(x)2(T (x)− T∞) x ∈ (0, ℓ)
T (0) = Td

T ′(ℓ) = −βr(T (ℓ)− T∞),
(21)

where Td, T∞ and βr are chosen as in Section 2.1, and β denotes a nonnegative continuous function
satisfying

β(x) > β0 > 0 (22)

for every x ∈ [0, ℓ] so that the fin surface cannot be insulated. Notice that, in this case, the
statement of Lemma 1 still holds for the solution T (·) of (21).

We investigate here the optimal design problems, generalizing those introduced in Section 3.1.

Generalized optimal design problem with volume or lateral surface con-

straint. Let a0 and ℓ denote two positive real numbers. Fix V0 > ℓa20 and S0 > ℓa0.
We investigate the problem of maximizing the functional a 7→ F̃ (a) with F̃ (a) =
−ka(0)T ′(0), where T denotes the unique solution of (21), either over the set Va0,ℓ,V0

or Sa0,ℓ,S0
, respectively defined by (8) and (9).

We obtain the following result.

Theorem 3. Let a0, β0 and ℓ denote three positive real numbers, and let V0 > ℓa20 and S0 > ℓa0.

1. One has
sup

a∈Va0,ℓ,V0

F̃ (a) = +∞.

2. Let us assume that β ∈ C0([0, ℓ]) is nonconstant, satisfies (22) and

max
x∈[0,ℓ]

β(x) = β(0). (23)
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Thus, the problem of maximizing F̃ over Sa0,ℓ,S0
has no solution and

sup
a∈Sa0,ℓ,S0

F̃ (a) = kπa0

∫ ℓ

0

β(x)(T̃ −T∞) dx+ kπ(S − a0ℓ)β(0)(Td−T∞)+ kβra
2
0(T̃ (ℓ)−T∞),

where T̃ is the unique solution of System (21) with a(·) = a0. Moreover, every sequence
(an)n∈IN of elements of Sa0,ℓ,S0

defined as in the statement of Theorem 2 is a maximizing
sequence for this problem.

Remark 6. The technic used in the proofs of Theorems 2 and 3 fails and cannot be easily adapted
when the function β does not satisfy (23) anymore. The issue of solving the same problem in this
case is discussed and commented in Section 4.2.

Proof. We do not give all details since the proof is very similar to the ones of Theorems 1 and 2.
We only underline the slight differences in every step.

1. Consider the sequence (aS,m)m∈IN∗ introduced in the proof of Theorem 1. The same kind of
computations show that

lim
m→+∞

F̃ (aS,m)

kπ
= β(0)(Td − T∞)(S − a0ℓ) + a0

∫ ℓ

0

(T (x)− T∞) dx+ βra
2
0(T (ℓ)− T∞)

> β(0)(Td − T∞)(S − a0ℓ),

where T is the unique solution of System (21) with a(·) = a0. Then, we conclude similarly
to the proof of Theorem 1.

2. Accordingly to the three first steps of the proof of Theorem 2, we first show that the afore-
mentioned problem has no solution. We argue by contradiction, by assuming the existence
of a solution a, introducing b = a

√
1 + a′2 and the perturbation

bε = b+ c(χ[0,ε] − χ[x0−ε/2,x0+ε/2]),

where c is a positive constant, chosen small enough to guarantee that bε > a0 almost ev-
erywhere in (0, ℓ), and x0 ∈ (0, ℓ) is such that a > a0 on (x0 − ε/2, x0 + ε/2). The same
computations as those led in Steps 2 and 3 yield

lim
εց0

F̃ (aε)− F̃ (a)

kπε
=

∫ ℓ

0

β(x)b(x)T̃ (x) dx + c (β(0)(Td − T∞)− β(x0)(T (x0)− T∞))

+βra(ℓ)
2T̃ (ℓ),

where T̃ ∈ H1(0, ℓ) is the unique function such that T̃ (0) = 0 and

∫ ℓ

0

(
a(x)2T̃ ′(x)ϕ′(x) + β(x)b(x)T̃ (x)ϕ(x)

)
dx− β(x0)cϕ(x0)(T (x0)− T∞)

+βra(ℓ)
2T̃ (ℓ)ϕ(ℓ) = 0, (24)

for every test function ϕ ∈ H1(0, ℓ) satisfying ϕ(0) = 0. An adequate choice of test function
allows to reduce the last expression into

lim
εց0

F̃ (aε)− F̃ (a)

kπε
= c

β(0)(Td − T∞)2 − β(x0)(T (x0)− T∞)2

Td − T∞
.
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Since T −T∞ is positive decreasing, the right-hand side is positive, which yields a contradic-
tion.

It remains now to exhibit a maximizing sequence. For that purpose, we follow the lines of
Step 4, by investigating the problem

sup
{
F̃ (a), a ∈ Sa0,ℓ,S0

, a0 6 a
√
1 + a′2 6 M a.e. in (0, ℓ)

}
(25)

and showing that a solution aM verifies necessarily (20). Define the function bM by bM =
aM
√
1 + a′2M . As in Proposition 2, we argue by contradiction. Thus, it suffices to consider a

particular perturbation bε of bM of the form

bε = bM + c(χ[y0,y0+ε] − χ[x0−ε,x0]),

with 0 < y0 < x0 < ℓ. The proof is identical, but we need to adapt slightly the proof of
Proposition 2, and in particular, to make the choices of ε, x0 and y0 precise, in order to

guarantee that limεց0
F̃ (aε)−F̃ (aM )

kπε be positive, provided that β satisfies (23). According to
this assumption, we consider ε > 0 and x0 ∈ (0, ℓ) such that

β|[0,ε] > β|[x0−ε/2,x0+ε/2] .

Recall that xM = S−a0ℓ
M−a0

and notice that, for M large enough, xM ∈ (0, ε). We fix M0 > a0
and y0 ∈ (0, xM ) so that b|[y0,y0+ε] < M for M > M0. Such conditions ensure that

lim
εց0

F̃ (aε)− F̃ (aM )

kπε
= c

β(y0)(T (y0)− T∞)2 − β(x0)(T (x0)− T∞)2

Td − T∞
> 0,

where T denotes the solution of System (21) with a(·) = aM . Hence, the conclusion of
Proposition 2 remains true in this case. It suffices then to mimic the rest of the proof, by
considering the sequence (bM )M>M0

and letting M go to +∞. The end of the proof is similar
to the one of Theorem 2 and can thus be easily adapted.

4.2 Numerical investigations

In Proposition 2, we established an existence result for the auxiliary problem (19), close to the
initial one, where a pointwise upper bound constraint on the term a

√
1 + a′2 were added. Recall

that this problem writes for a given M > a0,

sup
{
F (a), a ∈ Sa0,ℓ,S0

, a0 6 a
√
1 + a′2 6 M a.e. in (0, ℓ)

}
.

According to Lemma 4, solving this problem and letting M go to +∞ yields an approximation of
the optimal value for Problem (9). Furthermore, this problem is also used to construct maximizing
sequences in the proof of Theorem 2. This is why we decided to focus the numerical investigations
on the optimal design problem (19).

Remark 7 (Brief precisions on the numerical simulations). The simulations were obtained with
a direct method applied to the optimal design problem described previously, consisting in dis-
cretizing the underlying differential equations, the optimal design a(·), and to reduce the shape
optimization problem to some finite-dimensional maximization problem with constraints. Equa-
tion (1) is discretized with the finite volume method, well adapted to that case because of its
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heat flux conservativeness property. We used two staggered grids in order to avoid the so-called
checkerboard phenomenon [1]. The resulting finite-dimensional optimization problem is solved by
using an interior-point method. We used the code IPOPT (see [20]) combined with AMPL (see [6]) on
a standard desktop machine. The resulting code works out the solution very quickly (for instance,
around 3 seconds for the simulations below).

We provide hereafter several numerical simulations of Problem (19). Each structure has been
discretized with 250 design elements and we chose as optimization constraints parameters: a0 =
1 mm and S = 3S0 with S0 = 2πa0ℓ. Figures 4 and 5 may be considered as numerical illustrations
of the results stated in the theorems 2 and 3.

To the contrary, the numerical results provided on the figures 6, 7 and 8 provide some hints
on physical cases that are not covered by the aforementioned theorems: on the two first ones,
β is chosen to be a kind of regularized step function whereas on the third one, it is assumed to
be an increasing function. These figures suggest that several situations may arise: according to
the figures 6 and 7, one could expect a nonexistence result, since the term aM

√
1 + a′2M seems to

converge in the sense of measures, as M tends to +∞, to the sum of a regular function and a Dirac
measure at the point x = 60 mm, where the step of the function β occurs. Notice however that
the fins are assumed to be made of different raw materials having different thermal conductivities,
respectively k = 10W.m−2.K−1 on Figure 6 and k = 0.1W.m−2.K−1 on Figure 7. This is the
reason why the optimal profiles a strongly differ on each case.

At the opposite, one could maybe expect that the optimal design problem corresponding to the
profile plotted on Figure 8, where β is an increasing affine function, has a solution.

0 20 40 60 80 100
x (mm)

0

4

8

12

16

a
√ 1

+
a
′2

(m
m
)

0

25

50

75

100

h
(W

.m
−2
.K

−1
)

(a) a
√
1 + a′2 (−) and h (- -)

0 20 40 60 80 100
x (mm)

0

4

8

12

16

a
(m
m

)

0

2

4

6

8

10

T
(
◦ C

)

(b) a (−) and T (- -)

Figure 4: Optimal solution for a constant profile β = 2h/k with M = 15 mm, ℓ = 100 mm,
Td = 10 ◦C, T∞ = 0 ◦C, hr = h(ℓ) and k = 10W.m−2.K−1.

4.3 Conclusion and perspectives

In this article, we addressed the issue of finding the optimal shape of a fin, by assuming that
its shape is axisymmetric and considering as physical model of the temperature along its axis a
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Figure 5: Optimal solution for a decreasing function β = 2h/k with M = 15 mm, ℓ = 100 mm,
Td = 10 ◦C, T∞ = 0 ◦C, hr = h(ℓ) and k = 10W.m−2.K−1.

0 20 40 60 80 100
x (mm)

0

1

2

3

4

5

a
√ 1

+
a
′2

(m
m
)

0

25

50

75

100

h
(W

.m
−2
.K

−1
)

(a) a
√
1 + a′2 (−) and h (- -)

0 20 40 60 80 100
x (mm)

0

1

2

3

4

5

a
(m
m

)

0

2

4

6

8

10

T
(
◦ C

)

(b) a (−) and T (- -)

Figure 6: Optimal solution for a near step profile β = 2h/k at x = 60 mm with M = 4.5 mm,
ℓ = 100 mm, Td = 10 ◦C, T∞ = 0 ◦C, hr = h(ℓ) and k = 10W.m−2.K−1.

simplified one-dimensional Sturm-Liouville system, much used in the engineering litterature [3, 21].
Two natural constraints for the shape optimization problem have been investigated, by imposing
a maximal bound either on the volume or the lateral surface of the fin. In both cases, we proved
in the theorems 1, 2 and 3 that the optimal design problems (8) and (9) have no solution, and we
have exhibited maximizing sequences. More precisely, we showed that there is no optimal shape in
the set of regular radii a, but that a nearly optimal shape is given by the function aS,M defined by
(11) and displayed on Figure 2: it is first a kind of accordion concentrated at x = 0, and then a flat
fin. For such radii, the temperature inside the fin might not be independent of the polar variable
r anymore: this hypothesis, from which we derived the model, becomes quite questionable.

It would thus be natural to investigate a more elaborated model taking into account the depen-
dence of T with respect to r. Consider, as in Section 2.1, an axisymmetric fin Ωa of length ℓ > 0
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Figure 7: Optimal solution for a near step profile β = 2h/k at x = 60 mm with M = 4.5 mm,
ℓ = 100 mm, Td = 10 ◦C, T∞ = 0 ◦C, hr = h(ℓ) and k = 0.1W.m−2.K−1.
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Figure 8: Optimal solution for an increasing function β = 2h/k with M = 10 mm, ℓ = 100 mm,
Td = 10 ◦C, T∞ = 0 ◦C, hr = h(ℓ) and k = 10W.m−2.K−1.

and radius a(x) at abscissa x, where a satisfies the hypothesis (H1) and (H2). Introduce

Σa = {(r, θ, x) ∈ IR+ × (0, 2π)× (0, ℓ) | ∀(x, y, z) ∈ Ωa, (y, z) = (r cos θ, r sin θ)},
Γa,i = {(a(θ, x), θ, x), (θ, x) ∈ (0, 2π)× (0, ℓ)},

Γa,lat = {(r, θ, 0), (r, θ) ∈ (0, a(θ, 0))× (0, 2π)},
Γa,o = {(r, θ, ℓ), (r, θ) ∈ (0, a(θ, ℓ))× (0, 2π)},

so that ∂Ωa = Γa,i ∪ Γa,lat ∪ Γa,o. A possible such model writes

1
r

∂
∂r

(
r ∂T
∂r

)
+ 1

r2
∂2T
∂θ2 + ∂2T

∂x2 = 0 (r, θ, x) ∈ Σa

−k
(
∂T
∂r − 1

r2
∂a
∂θ

∂T
∂θ − ∂a

∂x
∂T
∂x

)
= h

√
1 + 1

r2

(
∂a
∂θ

)2
+
(
∂a
∂x

)2
(T − T∞) (r, θ, x) ∈ Γa,lat

T (r, θ, 0) = Td (r, θ, x) ∈ Γa,i

−k ∂T
∂x (r, θ, ℓ) = hr(T (r, θ, ℓ)− T∞) (r, θ, x) ∈ Γa,o

(26)
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in cylindrical coordinates. As previously, we are led to maximize the heat flux at the inlet, given
by

F (a) = −2πk

∫ a(θ,0)

0

∂T

∂x
(r, θ, 0)rdr, (27)

either over the class Va0,ℓ,V0
or the class Sa0,ℓ,S0

. In particular, one of the challenging aspects of this
problem lies in the fact that the technic used to construct maximizing sequences is based on the
precise knowledge of the behaviour of the temperature T , combined with a kind of rearrangement
argument on the function a

√
1 + a′2. For this reason, the extension to a partial differential equation

model on the temperature is not immediate and will be investigated in an ongoing work.
We also mention the interesting mathematical issue of investigating the cases where Assumption

(23) is not satisfied anymore. In that case, the perturbation bε introduced in the proof of Theorem 3
(and even its general version used in Proposition 2) does not permit to conclude to the nonexistence
of solutions, and would probably need a specific study. And yet, it is not clear whether the related
optimal design problem has a solution, or not.

A Derivation of the one dimensional temperature model

Let us provide some explanations on the derivation of the one dimensional model for the temper-
ature. The physical modeling of the heat transfer along the fin is based on the two main following
assumptions:

(i) the convective coefficient h, modeling the heat transfer between the fin surface and the fluid
flow, does not depend1 on the variable x and θ. This hypothesis allows to reduce the three-
dimensional problem to an axisymmetric one, which justifies that the temperature T along
the fin can be considered as a function of r and x only.

(ii) for most of its operating conditions, the fin can be viewed as thermally thin along the r-
axis. As a consequence, its radial thermal resistance is low enough in comparison with the
convective heat transfer h and it is relevant to claim that ∂T/∂r ≃ 0 almost everywhere in
Ωa. This is why we will impose from now on that the temperature T is a function of the
variable x only.

Using these assumptions, let us write the one dimensional model for the temperature. The en-
ergy balance equation under steady-state regime for a differential element of thickness dx, pictured
in light gray on Figure 9, writes

ϕ(x) − ϕ(x+ dx) − ϕs(x) = 0 (28)

where ϕ(x) stands for the heat drained by conduction inside the fin at the position x ∈ (0, ℓ) while
ϕs stands for the thermal heat exchanged by convection along the lateral surface of the differential
element, denoted dS. Each involved energy being computed as the product of the surface area by
the heat flux crossing it, one gets according to Fourier’s law for the conductive configuration, and
to Newton’s law for the convective heat transfer,

ϕ(x) = −kπa2(x)T ′(x) and ϕs(x) = h

(
T (x) + T (x+ dx)

2
− T∞

)
dS, (29)

where k is a positive real number denoting the thermal conductivity of the fin. Since

dS = π (a(x) + a(x+ dx))
√
dx2 + (a(x+ dx)− a(x))2, (30)

1Notice that a more general model where this assumption is weakened is investigated in Section 4.1.
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Figure 9: Scheme of the axisymmetric fin

one gets combining Equations (28), (29), and (30),

k
1

dx

(
a2(x+ dx)T ′(x+ dx) − a2(x)T ′(x)

)
=

h (a(x) + a(x+ dx))

√

1 +

(
a(x+ dx) − a(x)

dx

)2(
T (x) + T (x+ dx)

2
− T∞

)
(31)

Letting dx tend to 0 leads to

k (a2(x)T ′(x))′ = 2h a(x)
√
1 + a′(x)2 (T (x)− T∞) . (32)

The inlet of the fin is assumed to be at a constant temperature Td. For the sake of simplicity,
we will only consider processes where the fin aims at cooling a thermal system, i.e. where the heat
flows from its basis towards the fluid. This assumption2 comes to assume that 0 < T∞ < Td.

The fin thermal model is completed with a Robin boundary condition at its tip (x = ℓ),
modeling a convective heat transfer. It writes

−kT ′(ℓ) = hr(T (ℓ)− T∞)

2If a warming process had been considered, this inequality would have been reversed. It is worth noting that
reversing the heat flowing through the fin will not affect the conclusions reached in this article.
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where hr is a nonnegative real number3 representing the convective coefficient characterizing the
heat transfer over the tip.

To sum-up, the temperature T along the fin is solution of the following ordinary differential
equation

(a2(x)T ′(x))′ = βa(x)
√

1 + a′(x)2(T (x)− T∞) x ∈ (0, ℓ)
T (0) = Td

T ′(ℓ) = −βr(T (ℓ)− T∞),

where β = 2h/k is a positive real constant and βr = hr/k is a nonnegative real constant.
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