Interaction between charged anisotropic macromolecules: Application to rod-like polyelectrolytes
David Chapot, Lydéric Bocquet, Emmanuel Trizac

To cite this version:
David Chapot, Lydéric Bocquet, Emmanuel Trizac. Interaction between charged anisotropic macromolecules: Application to rod-like polyelectrolytes. 2003. hal-00000857

HAL Id: hal-00000857
https://hal.science/hal-00000857
Preprint submitted on 21 Nov 2003

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interaction between charged anisotropic macromolecules: application to rod-like polyelectrolytes

David Chapot, Lydéric Bocquet, and Emmanuel Trizac

1 Laboratoire de Physique de l’ENS de Lyon, UMR CNRS 5672, 46 Allée d’Italie, 69364 Lyon Cedex, France
2 Laboratoire PMCN, UMR CNRS 5586, Université Lyon 1, 69622 Villeurbanne Cedex, France
3 Laboratoire de Physique Théorique, UMR CNRS 8627, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France

In this paper we propose a framework allowing to compute the effective interactions between two anisotropic macromolecules, thereby generalizing the DLVO theory to non-spherical finite size colloids. We show in particular that the effective interaction potential remains anisotropic at all distances and provide an expression for the anisotropy factor. We then apply this framework to the case of finite rod-like polyelectrolytes. The calculation of the interaction energy requires the numerical computation of the surface charge profiles, which result here from a constant surface potential on the rod-like colloids. However, a simplified analytical description is proposed, leading to an excellent agreement with the full numerical solution. Conclusions on the phase properties of rod-like colloids are proposed in this context.

I. INTRODUCTION

The DLVO theory, named after Derjaguin, Landau, Verwey and Overbeek [1], is one of the most influential and still very important description of charged colloidal suspensions. It has been developed more than fifty years ago to rationalize the stability of lyophobic colloidal suspensions. One specific prediction of the DLVO theory is the far-field pair potential between two spherical colloids of like radii, which, within a linearization approximation, takes a Yukawa form:

$$U_{12}(r) = \frac{Z^2 e^2}{4\pi\epsilon} \left(\frac{\exp[\kappa_D a]}{1 + \kappa_D a} \right)^2 \frac{\exp(-\kappa_D r)}{r}, \quad (1)$$

where Z is the valence of the object, e the elementary charge and \(\kappa_D\) denotes the inverse Debye screening length. The latter is defined in terms of the microions bulk densities \(\{\rho_\alpha\}\) (with valencies \(\{z_\alpha\}\)) as: \(\kappa_D^2 = 4\pi\epsilon \rho_B \sum_\alpha \rho_\alpha z_\alpha^2\). At the level of a dielectric continuum approximation for the solvent with permittivity \(\epsilon\), the Bjerrum length \(\ell_B\) is defined as \(\ell_B = e^2/(4\pi\kappa_D k_B T)\), where \(k_B T\) the thermal energy: \(\ell_B = 7\,\text{Å}\) for water at room temperature. Note that the Debye screening factor, \(\kappa_D\), does characterize the decay rate of the interaction potential in the far field region, providing therefore an experimental measurement of the screening factor from interaction force measurements (see eg. [2]).

However, in the colloid world, the spherical shape is not the rule and many macromolecules are intrinsically very anisotropic: rod-like or ribbon-like shapes (DNA molecules, TMV or fd virus, V2O5 ribbons, Boehmite rods, etc.) [3–7], disk-like shapes (eg for clays, as laponite, bentonite, etc.) [8–11]. Since the seminal work of Langmuir on bentonite clay particles published in 1938 [12], these systems have been the object of considerable attention, in particular in the context of orientational phase transitions (such as isotropic to nematic I-N, etc.) [15]. From the theoretical side, these transitions were first addressed by Onsager [13], who showed that the nematic phase was stabilized at high density by purely entropic effects. The extension to charged rods has been reconsidered more recently by Stroobants et al. [14], showing that the electrostatic interaction between the polyelectrolytes lead to a twisting effect which enhances the concentration at the I-N transition. The picture of Onsager reproduces correctly the experimental results for highly disymmetric particles, such as TMV or fd viruses [3,4]. However in many anisotropic systems, a gelation occurs before any I-N transition [6,8,9]. According to the DLVO theory, gelation is usually assumed to result from the presence of van der Waals attraction between the macromolecules, which overcome at high salinity the double layer repulsion. However, the origin of gelation in many rod- and platelet-like systems remains quite obscure [6,9,16]. The "gel" denomination is also misleading in some cases since the texture of the "gelled" system may be closer to a glassy-like phase, in which the orientational and translational degrees of freedom are frozen [16,17]. The origin of such a glass-like transition is still under debate.

In this paper, we shall stay at a more "microscopic" level and consider the effects of anisotropy on the interaction between two macromolecules, much in the spirit of the DLVO approach. One specific question we raise is the following. We consider two anisotropic particles, separated by a "large" distance (i.e. a distance \(r\) larger than their typical dimension \(a\)). Can the electrostatic interaction between these two individual objects be modelled by the previous DLVO result, i.e. is the anisotropy lost for large distances? This is of course the case in the absence of salt [20]. Does this result generalize with an
electrolyte?

Before delving into the details, let us first consider a much simpler problem, namely that of two identical charges \(q \), with positions \(z = \pm a/2 \) along the \(z \) axis (\(a \) fixed) and embedded in an electrolyte \(1 \): what is the electrostatic potential \(\phi \) created by these two charges at large distances?

Naively, one would expect that the anisotropy is lost for large distances (\(i.e. \) distances larger than the size \(a \) of the object, or larger than the Debye length \(1/\kappa_D \)) and the potential should reduce to its Yukawa form \(\Phi(r) = \frac{2q}{4\pi \varepsilon} \frac{\exp(-\kappa_D r)}{r} \). But this is actually not the case! This can be understood by computing –within a linear Debye-Hückel like theory– the potential at large distances in the \(x \) and \(z \) directions: along the axis \(x \), one gets as expected \(\Phi(r) \approx \frac{2q}{4\pi \varepsilon} \frac{\exp(-\kappa_D r)}{r} \) to lowest order in \(a/r \); but on the \(z \) axis, one gets at the same order \(\Phi(r) \approx \frac{2q \cosh(\kappa_D a)}{4\pi \varepsilon} \frac{\exp(-\kappa_D r)}{r} \). There is consequently a residual anisotropy factor (here \(\cosh(\kappa_D a) \)) between the two directions, which does not disappear at large distances \(r \) from the charges.

The same result is expected to hold for anisotropic macromolecules, with a residual and potentially strong anisotropy at large distances. The corresponding generalization of the DLVO theory is thus required. We emphasize immediately that the proposed description is mostly relevant in the case of moderately dissymmetric objects, \(i.e. \) not too large aspect ratio, since the interaction energy we shall compute is valid for distances between the objects larger than their typical size (this precludes infinite objects). This is anyway the case for many macromolecules (Laponite clays, Boehmite rods, etc.).

The purpose of the present paper is twofold

- we shall first describe in a general way the far-field interaction between two anisotropic macromolecules. This will lead to a generalized DLVO interaction between two non-spherical molecules, with a formal expression of the anisotropic interaction factor.
- we shall then apply these results to the case of finite cylinders. A byproduct of this part of the work is the charge carried by the finite cylinder and a description of the edge effects on the cylinders. An approximate analytical model is proposed yielding results in good agreement with numerical calculations. Note that we chose the finite cylinder geometry, not only for its relevance for polyelectrolytes, but also because we expect edge effects to be particularly marked. This geometry is therefore a “benchmark” for the study of anisotropic electrostatic interactions.

As in the original calculation of Verwey and Overbeek [1], the macromolecules are specified by a constant electrostatic potential on their surfaces and the electrostatic potential in the electrolyte solution is described at the level of the linearized mean-field Poisson-Boltzmann equation. However we will show extensively in a subsequent paper [23] that this assumption is justified for colloids bearing a large constant charge on their surfaces [18]. For small surface charges, the sketch of resolution presented thereafter can also be easily adapted.

This paper is organized as follows:

- in the first sections, we present the general method we have developped to construct the solution of the problem.
- we subsequently deduce the general formula for the interaction between two anisotropic colloids at large distances. This yields a formal expression of the anisotropic factors discussed above.
- we then apply this general method to the specific case of finite cylinders. We first obtain the charge distributions on the cylinder, exhibiting the so-called edge effects. The influence of electrolyte concentration and finite-size effects are discussed.
- An approximate analytical model is eventually proposed to describe these effects, yielding results in quantitative agreement with the numerical solution.

II. GENERAL CONSIDERATIONS AND DESCRIPTION OF THE PROBLEM

A. Method of resolution: the auxiliary surface charge

We consider a single charged macromolecule embedded in an infinite electrolyte solution. The solution is characterized by a Debye screening length, \(\ell_D = 1/\kappa_D \) and as emphasized above, we assume that the electrostatic potential at the surface of the macromolecule, \(\Phi_0 \), is held constant [1]. The electrical double layer around the macromolecule is described at the level of the linearized Poisson-Boltzmann theory. This relies on a mean-field description of the micro-ion clouds, together with a small potential assumption. An extensive discussion of all these
assumptions can be found in [1,18]. We anticipate however that the assumption of a constant potential at the macromolecule boundary naturally emerges as an effective condition to describe correctly the far field obtained within the full non linear Poisson-Boltzmann theory, for colloids with a large bare charge, provided $\kappa_D a$ is not too small [18,23].

In this context, outside the macromolecule, the electrostatic potential obeys the linearized Poisson-Boltzmann (LPB) equation

$$\Delta \Phi(\vec{r}) = \kappa_D^2 \Phi(\vec{r})$$ \hspace{1cm} (2)

together with the boundary condition on the molecule surface Σ

$$\Phi(\vec{r}) = \Phi_0$$ \hspace{1cm} (3)

Note that we assume that the macromolecule interior is empty of charges, so that $\Phi(\vec{r}) = \Phi_0$ for any point \vec{r} inside the macroion (this amounts to write $\Delta \Phi(\vec{r}) = 0$).

The surface charge density, σ, is then obtained from the derivative of the electrostatic potential at the molecule surface:

$$\sigma(\vec{r}) = -\epsilon \left(\frac{\partial \Phi}{\partial n} \right)_{\Sigma^+}$$ \hspace{1cm} (4)

where \vec{n} is the (outer) unitary vector perpendicular to Σ and the notation $\left(\frac{\partial \Phi}{\partial n} \right)_{\Sigma^+}$ stands for $\vec{n} \cdot \nabla \Phi$

The standard Green function formalism is too cumbersome to be applied in its simplest version to solve the previous equations, Eqs. (2) and (3). This is due to the existence of a non-vanishing excluded region for the micro-ions (inside the macromolecule), where the LPB equation, Eq. (2), does not apply. In other words, the relevant Green’s function for the problem depends on particle shape and size, which seriously limits its practical interest. To circumvent this difficulty, we have therefore introduced an auxiliary system, in which the LPB equation applies everywhere in the volume. This is defined as :

$$\begin{cases}
\text{for } \vec{r} \in C & \Delta \Phi(\vec{r}) = \kappa_D^2 \Phi(\vec{r}) \\
\text{for } \vec{r} \notin C & \Delta \Phi(\vec{r}) = \kappa_D^2 \Phi(\vec{r}) \\
\text{for } \vec{r} \in \Sigma & \Phi(\vec{r}) = \Phi_0
\end{cases}$$ \hspace{1cm} (5)

The corresponding surface charge on the molecule, $\tilde{\sigma}$, is defined here in terms of the solution $\Phi_{\text{full}}(\vec{r})$ of the previous system of equations :

$$\tilde{\sigma}(\vec{r}) = \left[\left(\frac{\partial \Phi_{\text{full}}(\vec{r})}{\partial \vec{n}} \right)_{\Sigma^+} - \left(\frac{\partial \Phi_{\text{full}}(\vec{r})}{\partial \vec{n}} \right)_{\Sigma^-} \right]$$ \hspace{1cm} (6)

Of course, the solution of Eq. (5), $\Phi_{\text{full}}(\vec{r})$, reduces to the solution of Eq. (2), $\Phi_{\text{empty}}(\vec{r})$, outside the macromolecule. This matching originates in the unicity theorem for the operator $-\Delta + \kappa_D^2$ with Neumann or Dirichlet boundary conditions (see [20] for a similar result concerning the bare Laplace operator Δ).

Now, the solution of Eq. (5), $\Phi_{\text{full}}(\vec{r})$ can be defined in terms of the surface charge $\tilde{\sigma}$:

$$\Phi_{\text{full}}(\vec{r}) = \iint_{\Sigma} \tilde{\sigma}(\vec{r}') G(\vec{r}, \vec{r}') \ dS'$$ \hspace{1cm} (7)

where $G(\vec{r}, \vec{r}')$ is the screened electrostatic Green function, $G(\vec{r}, \vec{r}') = \exp(-\kappa_D |\vec{r} - \vec{r}'|)/(4\pi \epsilon |\vec{r} - \vec{r}'|)$. The unknown auxiliary charge, $\tilde{\sigma}$, is found by inverting the boundary condition on the macromolecule. This can be explicitly written as: for any point \vec{r} on the molecule,

$$\Phi_0 = \iint_{\Sigma} \tilde{\sigma}(\vec{r}') G(\vec{r}, \vec{r}') \ dS'$$ \hspace{1cm} (8)

The overall result of these general considerations is a formal solution of the LPB equation, Eq. (2), for any point outside the macromolecule:

$$\Phi(\vec{r}) = \iint_{\Sigma} \tilde{\sigma}(\vec{r}') G(\vec{r}, \vec{r}') \ dS'$$ \hspace{1cm} (9)

with the auxiliary charge $\tilde{\sigma}$ defined in Eq. (8).

To get back to the "real" charge on the macromolecule, one has to compute the surface charge density as a function of the auxiliary quantity, $\tilde{\sigma}$. Using the definition $\sigma(\vec{r}) = -\epsilon \left(\frac{\partial \Phi(\vec{r})}{\partial \vec{n}} \right)_{\Sigma^+}$ on any point \vec{r} on the colloid surface Σ, one obtains:

$$\sigma(\vec{r}) = \iint_{\Sigma} \tilde{\sigma}(\vec{r}') \left[-\frac{\partial [G(\vec{r}, \vec{r}')]}{\partial \vec{n}} \right]_{\Sigma^+} \ dS'$$ \hspace{1cm} (10)

In practice, the calculation of $\tilde{\sigma}$ which requires the inversion of the boundary condition, Eq. (8), can be performed analytically for simple geometries only, spheres or infinite rods (see below). For more complex case, such as finite cylinders as considered in this paper, a numerical calculation has to be performed to compute the inverse
matrix of $G(\vec{r}, \vec{r}')$ on the (discretized) macroion. We shall show however that a simple model can be proposed which yields results in quantitative agreement with the numerical calculation.

In the case of a given surface charge $\sigma(\vec{r})$, this method of resolution can also be used to calculate the electrostatic potential $\Phi(\vec{r})$ outside the colloid by computing the auxiliary charge $\tilde{\sigma}(\vec{r}')$ at any point \vec{r}' of Σ using Eq. 10 and then applying Eq. (9). Once again, the auxiliary charge $\tilde{\sigma}$ is the most relevant parameter to deal with the electrostatic potential created by a colloid immersed in a ionic fluid.

B. The spherical case as an illustrative example

Before going further, we come back to the simple spherical problem, where all previous different quantities, such as the bare and auxiliary surface charge, can be explicitly computed either by solving the LPB equation straightforwardly, or by using the auxiliary charge method sketched above.

We consider an empty sphere Σ of radius a, at a constant surface potential Φ_0. On the one hand, the solution of the LPB equation is the usual Yukawa potential:

$$\Phi(r) = \Phi_0 \frac{e^{-\kappa_D(r-a)}}{r}$$ \hspace{1cm} (11)

The surface charge σ is defined as $\sigma = -\epsilon \frac{d\Phi}{dr}(r=a)$ and is therefore given by:

$$\sigma = \epsilon \kappa_D \left(1 + \frac{1}{\kappa_D a}\right) \Phi_0$$ \hspace{1cm} (12)

On the other hand, the auxiliary problem described above consists in a sphere S filled with the electrolyte. Using the screened electrostatic Green function $G(\vec{r}, \vec{r}') = \exp(-\kappa_D|\vec{r}-\vec{r}'|)/(4\pi\epsilon|\vec{r}-\vec{r}'|)$, one may invert the integral equation, Eq. (8), to obtain the (uniform) auxiliary charge:

$$\tilde{\sigma} = \epsilon \kappa_D \left[1 + \coth(\kappa_D a)\right] \Phi_0$$ \hspace{1cm} (13)

It is then straightforward to show that performing the integral in Eq. (10) allows to recover the surface charge density obtained above, Eq. (12).

This simple example illustrates the difference between the bare and auxiliary problems which we have introduced in the previous section and two ways to calculate the real charge σ as a function of Φ_0. The first method could only be used because we knew the formal solution of LPB for a sphere at fixed potential but this is an exception rather than the rule. On the contrary, the auxiliary charge method, even if it seems less straightforward in this case, is a systematic way to compute the solution of LPB for given boundary conditions.

We now turn to the calculation of the interaction energy between two macromolecules.

III. FAR-FIELD INTERACTION BETWEEN ANISOTROPIC HIGHLY CHARGED COLLOIDS

Before focusing on a specific geometry, we first use the previous results to describe the interaction between two anisotropic charged macromolecules.

We consider two colloids C_i $(i = 1, 2)$ separated by a distance r much larger than the typical size D of the colloids. As we already noticed in the introduction, it is important to note that the restriction $r \geq D$ makes sense for moderately disymmetric macromolecules only. We assume at this level that the charge profiles $\sigma_i(\vec{r})$, and equivalently $\tilde{\sigma}_i(\vec{r})$, are known. The position of each colloid C_i is characterized by fixing a (somewhat arbitrary) origin O_i for the molecule (this may coincide for example with the colloid center if it is symmetrical). On the other hand, we assume that the orientation of the anisotropic colloidal is described a unit vector \vec{u}_i pointing into a direction Ω_i and an angle φ_i corresponding to a rotation of C around \vec{u}_i. We finally define the colloid-colloid direction using the unit vector $\vec{u} = O_1O_2/O_1O_2$ and introduce the bisector plane, Π, of $[O_1O_2]$ and O the intersection of Π with (O_1O_2). It will prove useful to introduce of system of coordinates (O, x, y, z), with the x-axis corresponding to the axis (O_1O_2) (see Fig. 3).

The distance between O and a point P is denoted as ρ.

![FIG. 3. Calculation of the electrostatic interaction between two dissymetric macromolecules. An arbitrary center O_i, a unit vector \vec{u}_i and a rotation angle φ_i are defined for each molecule. We denote as $r = |O_1O_2|$ the distance between the two molecules, while the unit vector \vec{u} is defined as $\vec{u} = O_1O_2/[O_1O_2]$. We eventually introduce the bisector plane Π and the intersection point O between Π and O_1O_2.](image)

We shall estimate the interaction force (acting on one macromolecule due to the other) by integrating the electrostatic stress tensor, \vec{T}, defined as [20] :

$$\vec{T} = \left(\frac{P + \vec{E}^2}{2}\right) \vec{I} - \epsilon \vec{E} \otimes \vec{E}$$ \hspace{1cm} (14)

where \vec{I} is the identity tensor, \vec{E} the electrostatic field and P the hydrostatic pressure.
The force acting on the macromolecule C_2 can be written accordingly as

$$ F_2 = -\iint_{\Pi} \tilde{T} \, d\Sigma $$

(15)

Note that the integral runs over the bisector surface Π, and not the colloid surface. This is a consequence of the fact that the divergence of the electrostatic stress tensor \tilde{T} vanishes outside the macromolecules.

We emphasize that the following calculations are conducted in the far field limit where the distance r is larger than the Debye length κ_D^{-1}. This will allow us to expand the various quantities in powers of ρ/r. No specific assumption is done however on the ratio between the typical size of the macromolecule, a, and κ_D^{-1}.

Hydrostatic equilibrium and (linearized) Poisson-Boltzmann equations, respectively $-\nabla p + \rho \tilde{E} = 0$ and $\Delta \Phi = \kappa_D^2 \Phi_0$, allow to write $P = P_\infty + \frac{1}{2} \kappa_D^2 \Phi^2$. Note that the linearization of the PB equation is fully justified in the present case since in the far field limit ($r \gg \kappa_D^{-1}$) the dimensionless electrostatic potential $\epsilon \Phi/k_B T$ is expected to be small. One therefore obtains

$$ \tilde{T} = \left(P_\infty + \frac{1}{2} \kappa_D^2 \Phi^2 - \frac{e}{2} \tilde{E}^2 \right) \tilde{I} - \epsilon \left(\tilde{E} \otimes \tilde{E} - \tilde{E}^2 \right) \tilde{I} $$

(16)

We denote E_α the component of \tilde{E} in the direction α, $\alpha=x, y, z$. Then, for $P \in \Pi : E_x = O(\rho/r)$, $E_z = O(\rho/r)$.

This allows to rewrite the force F_2 acting on the colloid 2 as

$$ F_2 \simeq \left\{ \iint_{\Pi} \left[\kappa_D^2 \Phi^2(\rho) - \frac{e}{2} \tilde{E}^2(\rho) \right] \right\} d\Sigma $$

(17)

Both the potential Φ and the electric field E_x in this equation can be estimated from the solution for the potential created by a single colloid, as obtained in the previous paragraph, as we now show. First Eq. (9) can be written as

$$ \Phi(\vec{r}) = \sum_\Sigma \tilde{\sigma}(\vec{r'}) \exp(-\kappa_D \vec{r'} \cdot \vec{r})/4\pi \epsilon |\vec{r'} - \vec{r}| dS' $$

(18)

For distances r much larger than the typical size a of the macromolecule C_2, one might expand the previous equation for small r' to obtain the leading large r contribution:

$$ \Phi(\vec{r}) = \exp(-\kappa_D r) \sum_\Sigma \tilde{\sigma}(\vec{r'}) \exp(-\kappa_D \vec{r'} \cdot \vec{r}) dS' $$

(19)

with $\vec{r'} = \vec{r}/r$. We introduce at this point the total auxiliary charge $\tilde{Z} = \sum_\Sigma \tilde{\sigma}(\vec{r'}) dS'$ and the angular distribution $f_1(P)$ defined as,

$$ f_1(P) = 1/\tilde{Z} \sum_\Sigma \tilde{\sigma}(\vec{r'}) \exp(-\kappa_D \vec{r'} \cdot \vec{r'}) dS' $$

(20)

Using these definitions, one gets eventually the electrostatic potential at point P as

$$ \Phi_1(P) = \frac{\tilde{Z}_1 f_1(P) \rho e^{-\kappa_D r}}{4\pi \epsilon r} $$

(21)

At the order $O(\rho/r)$, is is straightforward to check that one might replace \vec{u}_i by \vec{u} in the anisotropic factor f_1 of the previous equation: f_1 only depends on the angular coordinates (characterized by \vec{u}_i and φ_i). Note that the dependence on φ_i disappears for axisymmetric colloids. From now on, we will only consider such objects so that may write $f_i = f_i(\vec{u}_i)$ for simplification. The potential created by colloid i therefore reads

$$ \Phi_i(P) = \frac{\tilde{Z}_i f_i(\vec{u}_i) \rho e^{-\kappa_D r}}{4\pi \epsilon r} $$

(22)

In the $r \gg \kappa_D^{-1}$ limit, the corresponding electric field reduces to $\tilde{E}_i = \pm \kappa_D \Phi_i(P) \vec{u}$, with a plus (resp. minus) sign for $i = 1$ (resp. $i = 2$). The total electrostatic potential Φ on the mediator plane Π is written as the sum of the contributions due to each colloids, $\Phi = \Phi_1 + \Phi_2$:

$$ \Phi(P) = \tilde{Z}_1 f_1(\vec{u}_1) + \tilde{Z}_2 f_2(\vec{u}_2) \frac{e^{-\kappa_D r}}{4\pi \epsilon r} $$

(23)

Note that the superposition assumption for the potential is justified in the far field limit, where one may neglect mutual polarization effects. The same holds for the electric field: $E_x = E_1 + E_2$, leading to:

$$ E_x = \kappa_D \left(\tilde{Z}_1 f_1(\vec{u}_1) - \tilde{Z}_2 f_2(\vec{u}_2) \right) \frac{e^{-\kappa_D r}}{4\pi \epsilon r} $$

(24)

Introducing these expressions into Eq. (17) yields the following expression for the force F_2:

$$ F_2 = \frac{2 \kappa_D^2 \tilde{Z}_1 \tilde{Z}_2 f_1(\vec{u}_1) f_2(\vec{u}_2)}{(4\pi \epsilon)^2} \times \int_0^\infty 2\pi r \rho d\rho \frac{e^{-2\kappa_D \sqrt{d^2 + r^2}}}{d^2 + r^2} \vec{u} $$

(25)

In the far field region, $r \gg \kappa_D^{-1}$, it is legitimate to expand the integrand in powers of ρ/r and keep only the leading order: using $e^{-2\kappa_D \sqrt{d^2 + r^2}} = e^{-\kappa_D r (1 + 4\rho^2/r^2 + O(\rho^4/r^4))}$, one may compute the integral to get

$$ F_2 = \frac{\tilde{Z}_1 \tilde{Z}_2 f_1(\vec{u}_1) f_2(\vec{u}_2) e^{-\kappa_D r}}{4\pi \epsilon r} \kappa_D \vec{u} $$

(26)

which is always repulsive [24]. This force derives form the potential energy (again at leading order in $\kappa_D r$):

$$ U_{12}(r) = \frac{\tilde{Z}_1 \tilde{Z}_2 f_1(\vec{u}_1) f_2(\vec{u}_2) e^{-\kappa_D r}}{4\pi \epsilon r} $$

(27)
This expression for the interaction energy between the two macromolecules is one of the main results of this paper. This generalizes the DLVO calculation for anisotropic molecules. Note that, in view of the various expansions performed, this expression is valid in the far-field limit, i.e. for interparticles distances r larger than both the Debye length and the typical size of the colloid a (say, to fix the ideas, $r > 4\ell_D, 4a$).

As anticipated in the introduction, the interaction does not reduce at any distance to the isotropic DLVO result, obtained for spheres. The anisotropy of the interaction is described by the angular distribution obtained for spheres. The anisotropy of the interaction is described by the angular distribution $f_1(\vec{u}_1)$ and $f_2(\vec{u}_2)$ defined in Eq. (20). The latter is defined in terms of the (auxiliary) charge distribution on the macromolecules $\tilde{\sigma}(\vec{r})$, or equivalently as a function of the bare surface charge $\sigma(\vec{r})$ using Eq. (10).

We conclude this part by showing that the previous expression for the interaction energy indeed reduces to the standard DLVO expression for spheres (as it should). In this case, the bare and auxiliary surface charge on one sphere have been computed in the previous section, in Eqs. (12) and (13). On the other hand, the angular factor f_i for each sphere i can be easily computed and reduces to $f_i = \frac{\kappa_D a}{\kappa_D a + \kappa_D a}$. The latter is of course independent of any angular variable. Gathering these results, one retrieves the DLVO expression, Eq. (1):

$$U_{12} = \left(\frac{e^{\kappa_D a}}{1 + \kappa_D a}\right)^2 \frac{Z_1 Z_2 e^{-\kappa_D r}}{4\pi \epsilon r}$$

A final note concerns the case of colloids with vanishing internal volumes. In the latter case, the bare and auxiliary charge coincide, $\tilde{\sigma} = \sigma$, and our calculation leads back to the expression found in a different context by Trizac et al. [17]:

$$U_{12} = \frac{Z_1 Z_2 e^{-\kappa_D r}}{4\pi \epsilon r} f_1(\vec{u}_1) f_2(\vec{u}_2)$$

IV. CHARGE DISTRIBUTION ON A FINITE ROD-LIKE POLYELECTROLYTE

We now use the previous results to predict the far field interaction between two finite rod-like polyelectrolytes. In contrast to the spherical case, briefly considered in the previous section, the surface charge cannot be obtained analytically in this situation. Therefore, we shall first obtain numerically the surface charge on the cylinder, by solving Eq. (8). We will then propose a simple analytical model yielding an approximate surface charge in good agreement with the "exact" numerical results.

We emphasize at this point that the finite cylinder geometry should be merely considered here as a generic situation where end effects are important. The present description could be easily extended to other related geometries, like sphero-cylinders, ellipsoids, etc., though no fundamental difference is however expected.

A. Sketch of the numerical method

We now consider a cylinder C with radius R and length L, at a constant potential Φ_0. The resolution first starts with the computation of the auxiliary surface charge by inverting Eq. (8). This calculation involves the Green function $G(\vec{r}, \vec{r}'), G(\vec{r}, \vec{r}') = \exp(-\kappa_D |\vec{r} - \vec{r}'|)/(4\pi \epsilon |\vec{r} - \vec{r}'|)$, expressing the potential at point \vec{r}' created by a unit point charge in \vec{r}. However due to the cylindrical symmetry of the problem, one might reduce the dimensionality of the problem by integrating the Green function on a ring (or small cylinder) whose center matches the axis of symmetry of the cylinder, as illustrated on Fig. 4. This specific problem is considered below. Once the corresponding reduced Green function is known, the numerical task simplifies into a standard inversion problem. First, the cylinder C is decomposed into the superposition of small cylinders (on the lateral surface) or rings (on the head surfaces), denoted as C_j and R_k, with dimension ℓ and surface charge density $\tilde{\sigma}_j$ (see Fig. 4).

![FIG. 4. The numerical calculations are performed by decomposing the cylinder C into small cylinders C_j of radius R and height \ell, and in rings R_k of radii r_0 and of width \ell. Each of these elementary surfaces carry a uniform surface charge density \tilde{\sigma}_j. The numerical calculations were performed with \ell \leq 0.05 \ell_D.](image)

Then Eq. (8) is discretized according to the equation:

$$\forall j \in \Sigma, \Phi(\vec{r}_j) = \sum_i \tilde{\sigma}_i G_i(\vec{r}_i, \vec{r}_j) = \Phi_0$$

where $G_i(\vec{r}_i, \vec{r}_j)$ is the electrostatic potential created on the cylinder C_j or ring R_j by the cylinder C_i or ring R_i, carrying a unit surface charge density.
B. Reduced Green function

As mentioned above, the previous inversion requires the knowledge of the potential created by an elementary ring or cylinder, which we now compute. To this end, we make use of the explicit expression of the electrostatic potential created by a disk of radius R at height z’ carrying a uniform surface charge density (here equal to unity) and immersed in an electrolyte with Debye length ℓ_D. This expression can be found in Ref. [21] and reads:

$$G_{\text{disk}}(R, r, z) = \frac{R}{2\epsilon} \int_0^\infty \frac{J_1(kR) J_0(kr)}{\sqrt{k^2 + \kappa_D^2}} \exp\left(-\sqrt{k^2 + \kappa_D^2}|z - z'|\right) dk$$ \hspace{1cm} (31)

with J_0 and J_1 the Bessel functions of order 0 and 1. This is namely the potential created by a unit surface charge, which we now compute. To this end, we make use of the explicit expression of the electrostatic potential created by a disk of radius R at a point M, with cylindrical coordinates (r, z) (the origin being placed at the center of the disk). Note also that the dimension of G_{disk} is given by R/ϵ, since G_{disk} is the potential created by a unit surface charge.

Now the potential $dG_{\text{cyl}}(R, r, z)$ created, at a point M, by an infinitesimal cylinder with height dz', radius R and unit surface charge can be deduced directly as:

$$dG_{\text{cyl}}(R, r, z) = dz' \frac{\partial G_{\text{disk}}(R, r, z)}{\partial R}$$ \hspace{1cm} (32)

This leads to

$$dG_{\text{cyl}}(R, r, z) = \frac{Rdz'}{2\epsilon} \int_0^\infty \frac{k J_0(kr) J_0(kR)}{\sqrt{k^2 + \kappa_D^2}} \exp\left(-\sqrt{k^2 + \kappa_D^2}|z - z'|\right) dk$$ \hspace{1cm} (33)

where the identity $\frac{d}{dx}[x J_1(x)] = x J_0(x)$ has been used.

As a result, the electrostatic potential created by a cylinder of radius R, height ℓ and unit surface charge, with a center located in (0, z’), is given by

$$G_{\text{cyl}}(R, z', r, z) = \frac{R}{2\epsilon} \int_{z' - \ell/2}^{z' + \ell/2} dz'' \int_0^\infty \frac{k J_0(kr) J_0(kR)}{\sqrt{k^2 + \kappa_D^2}} \exp\left(-\sqrt{k^2 + \kappa_D^2}|z - z'|\right) dk$$ \hspace{1cm} (34)

Along the same lines, the potential $G_{\text{ring}}(r_0, r, z)$ created by the ring of radius r_0 and of thickness ℓ can be expressed in terms of G_{disk} according to the relation

$$G_{\text{ring}}(r_0, r, z) = G_{\text{disk}}(r_0 + \ell/2, r, z) - G_{\text{disk}}(r_0 - \ell/2, r, z)$$ \hspace{1cm} (35)

where $G_{\text{disk}}(R, r, z)$ is given above in Eq. (31).

Note that in order to avoid numerical problems, the previous integrals must be reformulated specifically for the case $z = z'$.

C. Calculation of the surface charge

Inversion of the equation (30) yields the auxiliary surface charge $\tilde{\sigma}$. The "real" surface charge, σ, can be deduced from $\tilde{\sigma}$ using Eq. (10). In a discretized form, this reads:

$$\forall j \in \Sigma, \sigma(r_j) = \sum_i \tilde{\sigma}_i \frac{\partial G_i(r_i, r_j)}{\partial r_i}$$ \hspace{1cm} (36)

where G_i takes either the cylinder or the ring form, obtained in Eqs. (34) and (35). This equation involves various derivatives of the Green function at the cylinder surface, namely:

$$\left(\frac{\partial G_{\text{cyl}}}{\partial r}\right)_{r=R^+}, \left(\frac{\partial G_{\text{cyl}}}{\partial z}\right), \left(\frac{\partial G_{\text{disk}}}{\partial r}\right)_{r=R^+}$$

and $\left(\frac{\partial G_{\text{disk}}}{\partial z}\right)_{r=R^+}$.

It will turn useful to write all the results in terms of dimensionless variables. All the lengths (such as ℓ_B, κ_D^{-1} or L) are expressed in units of the radius of the cylinder R : $\text{eg} \ L^{\text{adim}} = L/R$. In the same way, the electrostatic potential Φ and surface charge densities σ become respectively $\Phi^{\text{adim}} = e\Phi/k_BT$ and $\sigma^{\text{adim}} = 4\pi\ell_B e R/\epsilon$ where we recall that ℓ_B is the Bjerrum length defined by $\ell_B = \sqrt{2/(4\pi \epsilon k_BT)}$ (for water at room temperature, $\ell_B = 7 \text{ Å}$). We also introduce dimensionless Green functions, as $G^{\text{adim}} = \epsilon G/R$ (see previous remark on the dimension of G). From now on, the index "adim" will be omitted to simplify notations.

D. Numerical Results

The previous equations are easily implemented numerically, provided the various expressions of the Green functions are written in terms of well-converging integrals as mentioned above.

To fix ideas the potential on the macromolecule is assumed to be $V_0 \approx 100 \text{ mVolts}$, so that $\Phi_0 = 4$ (see however Refs. [18] and [23] for further justifications of this choice).

1. Surface charge profiles

We now present the results for the surface charges on the lateral and the head of the cylinder, that we shall denote respectively as $\sigma_{\text{cyl}}(z)$ and $\sigma_{\text{head}}(z)$. We first focus on the shape of the profiles.

Typical results for these profiles are shown on Figs. 5 and 6.
found to diverge in the vicinity of the edge as $\rho^{\sigma/3 - 1}$ where ρ is the distance to the edge \[20\]. In the present geometry, corresponding to $\beta = 3\pi/2$, the surface charge is expected to diverge as $\rho^{-1/3}$. For a charged object embedded in an electrolyte, \textit{i.e.} $\kappa_D \neq 0$, the situation is more complex. However the divergence is expected to remain, as can be understood from a simple argument. As mentioned in paragraph \textsc{II.B}, the surface charge on a sphere with radius a and constant potential Φ_0 reads $\sigma = \epsilon \kappa_D \left(1 + \frac{1}{\kappa_D a}\right) \Phi_0$ (see Eq. (12)). Now using this relationship for a non spherical object, one finds that the surface charge σ diverge at the points where the radius of curvature a vanishes.

Figs. 5 and 6 show that the auxiliary surface charge $\tilde{\sigma}$ also exhibits an edge effect. However the latter is more localized close to the edge, compared to the "real" surface charge σ. As for σ, the divergence of $\tilde{\sigma}$ can be understood using the results for the sphere, $\tilde{\sigma} = \epsilon \kappa_D [1 + \coth(\kappa_D a)] \Phi_0$, which indeed diverges as the radius of curvature a vanishes. However, the transition from a small a region to a large a region is much more marked for the auxiliary surface charge than for the bare charge. Indeed from the previous expressions for σ and $\tilde{\sigma}$, one gets $\sigma(a) = \sigma(a = \infty) + \mathcal{O}(1/\kappa_D a)$, while $\tilde{\sigma}(a) = \tilde{\sigma}(a = \infty) + \mathcal{O}(\exp[-\kappa_D a])$. The large a limit is therefore approached much more quickly for the auxiliary charge than for the bare charge, which is in agreement with the stronger localization of the divergence of the auxiliary charge close to the edge.

We now report in more details on the variations of these density profiles when the size of the cylinder L and the screening length κ_D are varied. Generally speaking the geometry of the problem is characterized by two dimensionless quantities : the aspect ratio L/R and the amounts of screening $\kappa_D R$. Some general trends for the surface charge profiles emerge when these quantities are varied. First, the lateral surface profiles is found to saturate as the aspect ratio L/R goes to infinity. On the other hand, the head profile is found to be barely dependent on the aspect ratio. One expects in fact that the cylinder length L will only play a role when it is smaller or equal to the Debye length, κ_D^{-1}, say $\kappa_D L \leq \alpha$, with α of the order of a few units to fix ideas. Therefore for a given screening $\kappa_D R$, the profile is expected to saturate for aspect ratio larger than $L/R \sim \alpha/(\kappa_D R)$. This rule of thumb is confirmed when $\kappa_D R$ is varied. In the present study, we have verified this assertion in the interval $\kappa_D R \in [0.1; 1]$ (data not shown). Typically one finds $\alpha \sim 5$. Finally it is interesting to compare both profiles with the edge effect divergence predicted in the $\kappa_D = 0$ limit, as argued above. Only the charge profile on the head is found to be in semi-quantitative agreement with this scaling, as shown on Fig. 6. Note that in order to symetrize the predicted divergence, we compare the head profile with $\sigma_{\text{head}}(r)/\sigma_{\text{head}}(0) = (1 - (r/R)^2)^{-1/3}$. On the other hand this prediction is found to fail for the cylinder surface charge. This is expected since in most of

![Fig. 5](image1)

FIG. 5. Plot of the reduced surface charge on the lateral side of the cylinder, $\ln[\sigma_{\text{cyl}}(z/R)/\sigma_{\text{cyl}}(0) - 1]$. The aspect ratio of the cylinder is $L/R = 20$ and the screening factor is $\kappa_D R = 1.0$. Note that z is in units of the cylinder radius R. The solid line is the result of the full numerical calculations, while the dashed line is the result of the "four parameter" model described in the appendix. The dotted line is the (reduced) auxiliary surface charge $\tilde{\sigma}_{\text{cyl}}(z/R)/\tilde{\sigma}_{\text{cyl}}(0)$. Note that the edge effect spans over a smaller distance for the auxiliary surface charge, compared to the "real" charge. See text for details.

![Fig. 6](image2)

FIG. 6. Same as Fig. 5, but for the surface charge profile on the head of the cylinder $\ln[\sigma_{\text{head}}(z/R)/\sigma_{\text{head}}(0) - 1]$. On this figure, we have also plotted the predicted scaling for the divergence in the absence of salt $\kappa_D R = 0$, $\sigma_{\text{head}}(z/R)/\sigma_{\text{head}}(0) = (1 - (r/R)^2)^{-1/3}$ (open circles).

Qualitatively, the main striking feature of these profiles is the diverging surface charge close to the edges of the cylinder. This is of course the well-known edge effect which is expected for charged objects with uniform potential. In the absence of electrolyte ($\kappa_D = 0$), the divergence of the surface charge in the vicinity of an edge is a classical result \[20\]. For an infinite conducting diecde with an edge angle β, the surface charge density σ is...
the present calculations, the length L of the cylinder is larger than the Debye length, so that the $\kappa_D = 0$ profile is only a very crude approximation. On the other hand, the radius of the cylinder is always smaller than the Debye length considered, and for the head, the $\kappa_D = 0$ profile should be a fair but not so bad approximation for $\kappa_D R \leq 1$.

2. Total lateral and head charge

A more global quantity of interest is the total charge on the lateral surfaces and on each head of the cylinder, respectively denoted as $Z_{\text{lat}} e$ and $Z_{\text{head}} e$ (e being the elementary charge). It proves in fact useful to consider the average surface charges on the lateral surface $\sigma_{\text{ave}}^{\text{lat}} = Z_{\text{lat}}/(2\pi RL)$ and on each head of the cylinder, $\sigma_{\text{ave}}^{\text{head}} = Z_{\text{head}}/(\pi R^2)$ (note that we plot below the reduced surface charge densities introduced above as $\sigma^* = 4\pi R e\sigma/e$). These quantities are plotted respectively on Figs 7 and 8 as a function of the length of the cylinder L/R for various screenings $\kappa_D R$. In the limit of large aspect ratio, both charges saturate to finite values. Moreover, both charges are found to be increasing functions of the screening $\kappa_D R$. This is expected, as can be understood from the spherical test case, Eq. (12), as a benchmark.

V. ANALYTICAL DESCRIPTION OF THE SURFACE CHARGE

In this section, we propose a very simplified description of the electrostatic problem, which has the virtue to provide analytic estimates of the surface charges. This estimate will prove useful in fine to compute the interaction between two rod-like polyelectrolytes. A more detailed approach, including a description of the edge effect, is proposed in appendix A.

A. Uniform head and lateral surface charges

We consider a "zeroth order" approximation of the problem, consisting in a cylinder with uniform charges on the head and on the lateral sides. More specifically we assume a uniform auxiliary charge profile. We denote σ_{cyl}^* and σ_{head}^* the auxiliary surface charge on the cylinder and on the head, and by σ_{cyl} and σ_{head} the corresponding "real" surface charges.

At this level of approximation, equation (30) relating the auxiliary surface charge to the potential Φ_0 reduces to a 2×2 problem :

\[
\begin{align*}
\Phi_0 &= \sigma_{\text{cyl}} G_{\text{cyl}}(R, R, 0) + 2 \sigma_{\text{head}} G_{\text{head}}(R, R, L/2) \\
\Phi_0 &= \sigma_{\text{cyl}} G_{\text{cyl}}(R, 0, L/2) \\
&\quad + \sigma_{\text{head}} [G_{\text{head}}(R, 0, 0) + G_{\text{head}}(R, 0, L)]
\end{align*}
\]

FIG. 8. Same as Fig. 7, but with the charge on the head of the cylinder, $\sigma_{\text{head}}^{\text{ave}}$.

The surface charges on the head and on the lateral side of the cylinder are then obtained using Eq. (10) as

\[
\sigma_{\text{cyl}} = \sigma_{\text{cyl}} \left(\frac{\partial G_{\text{cyl}}(R, r, 0)}{\partial r} \right)_{r^+} + \sigma_{\text{head}} \left(\frac{\partial G_{\text{head}}(R, r, L/2)}{\partial r} \right)_{r^+}
\]
\[\sigma_{\text{head}} = \sigma_{\text{cyl}} \left(\frac{\partial G_{\text{cyl}}(R,0,z)}{\partial z} \right)_{L/2^+} + \sigma_{\text{head}} \left(\frac{\partial G_{\text{head}}(R,r,z)}{\partial z} \right)_{0^+} \]

(38)

In the previous equations, the derivatives of the Green functions are expressed in terms of integrals of Bessel functions (see Eqs. (31), (34)), which have to be computed numerically for any \(L \) and \(\kappa \). The systems in Eqs. (37-38) can be easily inverted to obtain the expressions of \(\sigma_{\text{cyl}} \) and \(\sigma_{\text{head}} \) as a function of the aspect ratio \(L/R \) and screening \(\kappa_D R \).

We do not report here the full expressions. Rather we consider the asymptotic limit, in which the surface charges reach finite values. Note that this limit is reached for sizes \(L \) larger than a few Debye lengths.

In the infinite \(L \) limit, the various Green functions may be computed, yielding

\[G_{\text{cyl}}(R,0,0) = I_0(\kappa_D R) K_0(\kappa_D R) \]
\[G_{\text{disk}}(R,0,L/2) = 0 \]
\[G_{\text{cyl}}(R,0,L/2) = K_0(\kappa_D R)/2 \]
\[G_{\text{disk}}(R,0,0) = \left(1 - e^{-\kappa_D R} \right)/2 \kappa_D R \]

(39)

In the same way :

\[\left(\partial/\partial r \right) G_{\text{cyl}}(R,0,L) = \kappa_D R I_0(\kappa_D R) K_1(\kappa_D R) \]
\[\left(\partial/\partial r \right) G_{\text{disk}}(R,0,R+1/2) = e^{-\kappa_D R} \]
\[\left(\partial/\partial r \right) G_{\text{disk}}(R,0,R+1/2) = 0 \]
\[\left(\partial/\partial z \right) G_{\text{cyl}}(R,0,0) = 1/2 \]

(40)

Gathering results, we obtain after inversion of Eq. (37):

\[\sigma_{\text{cyl}}^{\text{uniform}} = \sum \frac{\Phi_0}{I_0(\kappa_D R)} K_0(\kappa_D R) \]
\[\sigma_{\text{head}}^{\text{uniform}} = \frac{2 \kappa_D R \Phi_0}{1 - e^{-\kappa_D R}} \left[1 - \frac{1}{2 I_0(\kappa_D R)} \right] \]

(41)

We now denote these profiles as "uniform" to avoid any confusion with the numerical results. Using Eq. (38), one gets the "real" surface charge densities :

\[\sigma_{\text{cyl}}^{\text{uniform}} = \Phi_0 \frac{\kappa_D R K_1(\kappa_D R)}{K_0(\kappa_D R)} \]
\[\sigma_{\text{head}}^{\text{uniform}} = \frac{e^{-\kappa_D R} \Phi_0}{2 I_0(\kappa_D R) K_0(\kappa_D R)} + \frac{\kappa_D R \Phi_0}{1 - e^{-\kappa_D R}} \left[1 - \frac{1}{2 I_0(\kappa_D R)} \right] \]

(42)

In the limit of large \(\kappa_D R \), the surface charges are linear in \(\kappa_D R \). This is expected since in this limit, one retrieves the planar results for which \(\sigma \propto \kappa \Phi_0 \).

The previous result for \(\sigma_{\text{uniform}}^{\text{cyl}} \) correspond to the semi-infinite cylinder limit [18]. One may also verify on Fig. 7 that this result does indeed match the \(L \to \infty \) limit of the averaged cylinder profile. Note that in contrast, one may verify that the uniform surface charge on the head \(\sigma_{\text{uniform}}^{\text{head}} \) is only a fair approximation to the numerically computed averaged surface charge, even in the \(L \to \infty \). This is because for the screening considered \((\kappa_D R \leq 1) \), the head always feels the edge of the cylinder.

B. Towards a description of the edge effect

A simple extension of the previous modelization can be proposed: adding a "ring" on the edge of the cylinder should allow to capture the main features of the edge effect. This can be done in a straightforward way, but the details of the calculation are somewhat cumbersome. We therefore report the details of this approach in the appendix A. This "four parameters" model gives results in good agreement with the numerical solutions. This can be seen on Figs. 7 and 8, where the results of this model are displayed (as dashed lines) against the full numerical results.

However, the interactions between two polyelectrolytes do not involve the "real" charge, but the auxiliary charge. As we show below, the results of the much simpler "uniform" approach described in the previous paragraph will prove sufficient to describe the interaction between two rods.

VI. INTERACTION BETWEEN TWO ROD LIKE POLYELECTROLYTES

We eventually turn to the description of the interaction between two rod-like polyelectrolytes. Our starting point is the potential energy obtained in section III, Eq. (27). The two crucial ingredients in this interaction energy are: the total auxiliary charge \(\tilde{Z} \) on the cylinder; and the anisotropic term, \(f(P) \), defined in terms of the auxiliary charge profile in Eq. (20). We recall here this expression :

\[f(P) = 1/\tilde{Z} \int_{S'} \tilde{\sigma}(\mathbf{\varepsilon}) \exp(-\kappa_D \mathbf{u}_n \cdot r') dS' \]

(43)

These ingredients can be therefore easily computed from the full numerical solution, once the auxiliary surface charge has been computed.

A. Total auxiliary charge

We show on Fig. 9 the size dependence of the total auxiliary charge \(\tilde{Z} \ell_B / R \), for various screenings \(\kappa_D R \). As can be seen on this figure, the charge is mainly linear in \(L \).
FIG. 9. Total auxiliary charge $\tilde{Z}_{tot}\ell_B/R$ as a function of the size of the cylinder L/R. The solid line corresponds to the full numerical resolution, while the crosses are the result of the uniform model. The dashed line is the result of the four parameter model detailed in the appendix. The dotted line corresponds to the uniform model with finite L (see text for details). From bottom to top the screening factors are $\kappa_D R = 0.2$, $\kappa_D R = 0.5$ and $\kappa_D R = 1.0$.

This result is compared with the predictions of the simplified models we have proposed in the previous section. Within the simple uniform surface charge model described in Sec. V A, the total auxiliary charge reads

$$\tilde{Z} = 2\pi R L \tilde{\sigma}_{\text{cyl}}^{\text{uniform}} + 2\pi R^2 \tilde{\sigma}_{\text{head}}^{\text{uniform}}$$

(44)

Eqs. (41) reports the expressions of the reduced auxiliary charges (recall that in the previous section, reduced variables have been used $\sigma^* = 4\pi \ell_B R\sigma/\epsilon$). This leads eventually to the following expression of the total auxiliary charge as a function of the aspect ratio L/R and screening $\kappa_D R$:

$$\tilde{Z}_{tot} = \Phi_0 \left\{ \frac{1}{2} \frac{L}{R} I_0(\kappa_D R) K_0(\kappa_D R) \right\} + \frac{\kappa_D R}{1 - e^{-\kappa_D R}} \left[1 - \frac{1}{2 I_0(\kappa_D R)} \right]$$

(45)

This prediction is plotted as crosses on the previous figures, showing a relatively good agreement with the "exact" numerical results. The agreement might be slightly improved by considering the complete L dependence, while staying within the uniform model. This corresponds to solving the 2×2 system of equations, Eqs. (38), with a numerical estimate of the Green functions for finite L. We have plotted the results of this approach as dotted lines on Fig. 9. This improves slightly the agreement especially for small L and $\kappa_D R$. We also present the results obtained using the "four parameters" model, described in the appendix. This model adds to the result in Eq. (44) the contribution of the rings which capture the edge effects. This model is not analytic either and as can be seen on Fig. (9), it does not improve much the agreement.

We conclude here that the very simple analytic expression in Eq. (44) provides a useful and trustworthy approximation for the total auxiliary charge which enters the interaction energy, Eq. (27).

B. Anisotropic Terms

We report on Figs. 10 and 11 the numerical results for the anisotropic terms $f(P)$ for two cylinder sizes $L/R = 8$ and $L/R = 20$. These functions have been obtained after numerical integration of Eq. (43) using the numerical result for the auxiliary surface charge. On these figures, the anisotropic terms are plotted as a function of the tilt angle θ, between the axis z of the cylinder considered and the unit vector \vec{u} linking the two cylinder centers (see e.g. Fig. 3).
It is instructive to compare these "exact" anisotropic factors to the predictions of the simplified models for the surface charges discussed in the previous section, Sec. V. Again, let us first concentrate on the uniform (auxiliary) charge model, proposed in section V A. In the frame of this simplified description, the anisotropic factor, in Eq. (43), can be computed analytically since the auxiliary charges are constant over the head and the lateral side of the cylinder. This leads the following expression for \(f(\theta) \):

\[
f(\theta) = \frac{Z_{\text{cycl}}}{\tilde{Z}} f_{\text{cycl}}(\theta) + \frac{Z_{\text{head}}}{\tilde{Z}} f_{\text{head}}(\theta)
\]

where \(\tilde{Z}_{\text{cycl}} = 2\pi R L \tilde{\sigma}_{\text{cycl}} \) is the total charge on the lateral sides of the polyelectrolyte, and \(\tilde{Z}_{\text{head}} = 2\pi R^2 \tilde{\sigma}_{\text{head}} \) is the charge on the heads of the polyelectrolyte. Using expressions, Eqs. (41) obtained within the uniform model, one has

\[
\tilde{Z}_{\text{cycl}} = \frac{1}{2 R \Phi_0 \kappa R} \frac{1}{1 - e^{-\kappa_D R}}
\]

and the total charge \(\tilde{Z} \) is given in Eq. (45). On the other hand, the expressions for anisotropic factors due to the cylinder and due to the heads read

\[
f_{\text{cycl}}(\theta) = I_0(\kappa_D R \sin \theta) \frac{\sinh \left(\frac{\kappa_D L \cos \theta}{2} \right)}{\kappa_D L \cos \theta}
\]

\[
f_{\text{head}}(\theta) = \frac{2 I_1(\kappa_D R \sin \theta)}{\kappa_D R \sin \theta} \frac{\cosh \left(\frac{\kappa_D L \cos \theta}{2} \right)}{2}
\]

This expression for \(f(\theta) \), using the previous expressions for \(\tilde{Z}_{\text{cycl}} \) and \(\tilde{Z}_{\text{head}} \), is plotted against the numerical results on Fig. 10 and 11 for two aspect ratios \(L/R = 8 \) and \(L/R = 20 \) respectively. The agreement is seen to be surprisingly good in view of the simplicity of the modelization.

On these figures, we also show the prediction of the more detailed "four parameters" model, which includes a crude description of the edge effect, as detailed in appendix A. This approach adds a contribution from the rings to the previous anisotropic factors, \(\tilde{Z}_{\text{ring}} f_{\text{ring}}(\theta) \) where \(\tilde{Z}_{\text{ring}} = 2 \times 2\pi R L (\tilde{\sigma}_3 + \tilde{\sigma}_4) \) is the total charge on the rings (see appendix A for details). The contribution to the anisotropic factor due to the ring, \(f_{\text{ring}} \), reads explicitly:

\[
f_{\text{ring}}(\theta) = I_0(\kappa_D R \sin \theta) \cosh \left(\frac{\kappa_D L \cos \theta}{2} \right)
\]

As can be seen on the figures, this more detailed description does not improve much the agreement compared to the much simpler "uniform" approach.

Such a good agreement using a very simple description of the surface charge calls for some comments. The crucial point is that the interaction energy involves the auxiliary charges and not the bare charges. The full numerical resolution shows in fact that the edge effect is much more marked for the auxiliary charges than for the "bare" charge, in the sense that the divergence of the surface charge occurs much closer to the edge for the auxiliary charge. We have discussed this effect in section IV D 1. As a result, the auxiliary charge profile is more flat than the "real" charge profile. This feature allows to understand why the uniform model yields results in good agreement with the numerical results for the anisotropic factors.

VII. CONCLUSION

In the present paper, we have proposed a framework allowing to generalize the DLVO interaction for anisotropic macromolecules. The central result is the electrostatic interaction energy between two anistropic macromolecules

\[
U_{12}(r) = \frac{\tilde{Z}_1 \tilde{Z}_2 f_1(\vec{u}_1) f_2(\vec{u}_2) e^{-\kappa_D r}}{4\pi \epsilon r}
\]

The main point resulting from Eq. (50) is that in a medium with finite salt concentration, the anisotropy is remanent at all distances. We have quantified this effect and obtained general formulae for the anisotropic factor \(f(\vec{u}, \varphi) \) (which only depends on \(\vec{u} \) for axisymmetrical objects) in Eq. (20). We have then applied this framework to finite rod-like cylinders. The previous calculations provide a simple and efficient description of the interaction between two such polyelectrolytes. In particular, the simple uniform model leads to an analytic expression for the total auxiliary charge and anisotropic terms which enter the interaction energy, that turn out to be in good agreement with the full numerical solution. With this approximation, the anisotropic factor \(f(\vec{u}) \) for a finite-size cylinder of length \(L \) and radius \(R \) at fixed potential \(\Phi_0 \) takes a simple form.
\[f(\vec{u}) = \frac{\tilde{Z}_{\text{cyl}}}{Z} f_{\text{cyl}}(\theta) + \frac{\tilde{Z}_{\text{head}}}{Z} f_{\text{head}}(\theta). \]

In the above expression, the auxiliary charges \(\tilde{Z}_{\text{cyl}} \) and \(\tilde{Z}_{\text{head}} \), as well as the anisotropy factors \(f_{\text{cyl}}(\theta) \) and \(f_{\text{head}}(\theta) \) are given by

\[
\begin{align*}
\tilde{Z}_{\text{cyl}} & = \frac{I_0(\kappa \Delta R \sin \theta)}{L_D R \sin \theta} \sinh \left(\frac{\kappa \Delta R \cos \theta}{2} \right), \\
\tilde{Z}_{\text{head}} & = \frac{2 I_1(\kappa \Delta R \sin \theta)}{\kappa \Delta R \sin \theta} \cosh \left(\frac{\kappa \Delta R \cos \theta}{2} \right).
\end{align*}
\]

As will be shown in [23], the above expressions with the relevant choice of \(\Phi_0 \) and \(\tilde{Z} \), as well as the anisotropy factors \(f_{\text{cyl}}(\theta) \) and \(f_{\text{head}}(\theta) \) are given by

\[
\begin{align*}
\tilde{Z}_{\text{cyl}} & = \frac{1}{2 \kappa \Delta R} \frac{I_0(\kappa \Delta R \sin \theta)}{L_D R \sin \theta} \sinh \left(\frac{\kappa \Delta R \cos \theta}{2} \right), \\
\tilde{Z}_{\text{head}} & = \frac{1}{2 \kappa \Delta R} \frac{I_1(\kappa \Delta R \cos \theta)}{2 \kappa \Delta R \cos \theta} \cosh \left(\frac{\kappa \Delta R \sin \theta}{2} \right).
\end{align*}
\]

Work along these lines is in progress.

Acknowledgments: We would like to thank Miguel Aubouy for inspiring discussions and an enjoyable collaboration on related topics.

APPENDIX A: A SIMPLE DESCRIPTION OF THE EDGE EFFECT

1. general framework

In this appendix a more detailed description of the edge effect is proposed. We extend the model described in section VA by incorporating a specific charge on the edge of the rod-like macromolecule. More specifically, we model the auxiliary surface charge as the superposition of a uniform charge on the head and on the lateral surface of the cylinder, supplemented by a ring charge on the edge of the macromolecule, as shown on Fig. 12.

From a technical point of view, we separate the ring charge on the edge of the molecule as a ring of radius \(R \) on the head, and a ring of radius \(R \) on the lateral side of the cylinder (see figure 12). The extension of the lateral ring is denoted as \(\ell_{\text{cyl}} \), and that on the edge \(\ell_{\text{head}} \). There is therefore four parameters in the model: respectively the uniform surface charge on the head \(\tilde{\sigma}_{\text{head}} \), on the lateral sides \(\tilde{\sigma}_{\text{cyl}} \), \(\tilde{\sigma}_{\text{cyl edge}} \) and \(\tilde{\sigma}_{\text{head edge}} \). In the following results, we have chosen \(\ell_{\text{cyl}} = \ell_{\text{head}} = 0.05R \). Results are only weakly dependent on this choice. As in section VA, one has to solve Eq. (30), relating the auxiliary surface
charge to the potential Φ_0. Within the simplified analysis, and taking into account the symmetry of the cylinder, this equation reduces to a 4×4 inversion: irrespective of j

$$\sum_i \tilde{\sigma}_i G_{ij} = \Phi_0$$ (A1)

where the summation i runs over the different parts of the simplified object: $i = 1$ stands for the center of the heads of the cylinder; $i = 2$ stands for the middle part of the cylinder; while $i = 3$ and $i = 4$ stand for the rings on the edges. The "Green functions" \tilde{G}_{ij} are defined in terms of the Green functions $G_{\text{disk}}, G_{\text{cyl}}$ and G_{ring} whose expressions are given respectively in Eqs. (31), (34) and (35) (see below for the detailed expressions of the 4×4 matrix \tilde{G}_{ij}). Once the auxiliary charges $\tilde{\sigma}_i$ are known, one obtains the "bare" charge σ everywhere on the cylinder using Eq. (10). This can be written formally:

$$\sigma(\vec{r}) = \sum_i \tilde{\sigma}_i \frac{\partial \tilde{G}(\vec{r}, i)}{\partial \vec{n}}$$ (A2)

where the notation $\tilde{G}(\vec{r}, i)$ stands for the Green function computed at point \vec{r} due to charge i defined above; $\partial/\partial \vec{n}$ denotes the derivative along the normal to the surface at point \vec{r}.

The previous equation, Eq. (A1), is easily inverted and the corresponding surface charges are plotted on the previous figures, Figs 7 and 8. As shown on these plots, the approximate description yields results in excellent agreement with the full numerical resolution for any aspect ratio L/R and screening $\kappa_D R$.

As a consequence, despite its simplicity, the simplified description of the auxiliary charges contains most of the physics of the edge effect. Also, as shown by the previous argument, a better agreement is expected for large $\kappa_D R$.

2. technical details

The cylinder is decomposed into 4 different pieces:

- a lateral part of length L and radius R
- two disks of radius R
- two lateral rings of radius R, of height ℓ_{cyl} and of centers located in $[0, \pm(L/2 \mp \ell_{\text{cyl}}/2)]$
- two rings of radius $R - \ell_{\text{head}}/2$ and widths ℓ_{head}

respectively denoted 1, 2, 3 and 4 and carrying the uniform surface charge densities $\tilde{\sigma}_{\text{cyl}}, \tilde{\sigma}_{\text{head}}, \tilde{\sigma}_{\text{cyl \ edge}}$ and $\tilde{\sigma}_{\text{head \ edge}}$. To simplify the formulation of the equations, we respectively call $G_{\text{cyl}}(r_0, r, \ell, z)$ and $G_{\text{ring}}(r_0, \ell_{\text{head}}, r, z)$ the electrostatic potentials by a cylinder of radius r_0 and of height ℓ located in (r, z) and by a ring of radius r_0 and of width ℓ_{head} in (r, z) with the origin of the coordinates $(0, 0)$ located in the center of the cylinder or of the ring.

In order to find the auxiliary charges on the disks, rings and lateral sides of the cylinder, one has to solve the 4×4 linear problem, obtained from Eq. (30):

$$\forall j \in \{1, 2, 3, 4\}, \sum_i \tilde{\sigma}_i A_{ij} = \Phi_0$$

The coefficients A_{ij} are given in terms of the expressions of G_{cyl} and G_{disk} given in Eqs. (34) and (35):

$$A_{11} = G_{\text{cyl}}(R, R, L, 0)$$
$$A_{12} = 2 G_{\text{disk}}(R, R, L/2)$$
$$A_{13} = 2 G_{\text{cyl}}(R, R, \ell_{\text{cyl}}, L/2 - \ell_{\text{cyl}}/2)$$
$$A_{14} = 2 G_{\text{ring}}(R - \ell_{\text{head}}/2, R, L/2)$$
$$A_{21} = G_{\text{cyl}}(R, 0, L, R/2)$$
$$A_{22} = G_{\text{disk}}(R, R, 0) + G_{\text{disk}}(R, 0, L)$$
$$A_{23} = G_{\text{cyl}}(R, 0, \ell_{\text{cyl}}, \ell_{\text{cyl}}/2)$$
$$+ G_{\text{cyl}}(R, 0, \ell_{\text{cyl}}, L - \ell_{\text{cyl}}/2)$$
$$A_{24} = G_{\text{ring}}(R - \ell_{\text{head}}/2, 0, 0)$$
$$+ G_{\text{ring}}(R - \ell_{\text{head}}/2, 0, L)$$

$$A_{31} = G_{\text{cyl}}(R, R, L/2 - \ell_{\text{cyl}}/2)$$
$$A_{32} = G_{\text{disk}}(R, R, \ell_{\text{cyl}}/2) + G_{\text{disk}}(R, R, L - \ell_{\text{cyl}}/2)$$
$$A_{33} = G_{\text{cyl}}(R, R, \ell_{\text{cyl}}/2, 0) + G_{\text{cyl}}(R, R, L - \ell_{\text{cyl}})$$
$$A_{34} = G_{\text{ring}}(R - \ell_{\text{head}}/2, R, \ell_{\text{cyl}}/2)$$
$$+ G_{\text{ring}}(R - \ell_{\text{head}}/2, R, L - \ell_{\text{cyl}}/2)$$

$$A_{41} = G_{\text{cyl}}(R, R - \ell_{\text{head}}/2, L, L/2)$$
$$A_{42} = G_{\text{cyl}}(R, R, L - \ell_{\text{head}}/2, 0) + G_{\text{disk}}(R, R - \ell_{\text{head}}/2, L)$$
$$A_{43} = G_{\text{cyl}}(R, R - \ell_{\text{head}}/2, \ell_{\text{cyl}}/2) + G_{\text{cyl}}(R, R - \ell_{\text{cyl}}/2, L - \ell_{\text{cyl}}/2)$$
$$A_{44} = G_{\text{ring}}(R - \ell_{\text{head}}/2, R - \ell_{\text{head}}/2, 0)$$
$$+ G_{\text{ring}}(R - \ell_{\text{head}}/2, R - \ell_{\text{head}}/2, L)$$

Once the $\tilde{\sigma}$ have been calculated, we get σ using Eq. (36), which reads within the simplified description:

$$\forall i \in \{1, 2, 3, 4\}, \sigma_i(\vec{r}) = \sum_j \tilde{\sigma}_j B_{ij}(\vec{r})$$ (A8)

The coefficients $B_{ij}(\vec{r})$ are given by

$$B_{11}(z) = \left(\frac{\partial G_{\text{cyl}}(R, r, L, z)}{\partial r} \right)_{R^+}$$
$$B_{12}(z) = \left(\frac{\partial G_{\text{disk}}(R, r, L/2 - z)}{\partial r} \right)_{R^+}$$
$$+ \left(\frac{\partial G_{\text{disk}}(R, r, L/2 + z)}{\partial r} \right)_{R^+}$$
\[B_{13}(z) = \left(\frac{\partial G_{\text{cyl}}(R, r, \ell_{\text{cyl}}, L/2 - \ell_{\text{cyl}}/2 - z)}{\partial r} \right)_{R^+} \]
\[+ \left(\frac{\partial G_{\text{cyl}}(R, r, \ell_{\text{cyl}}, L/2 - \ell_{\text{cyl}}/2 + z)}{\partial r} \right)_{R^+} \]
\[B_{14}(z) = \left(\frac{\partial G_{\text{ring}}(R - \ell_{\text{head}}/2, r, L/2 - z)}{\partial r} \right)_{R^+} \]
\[+ \left(\frac{\partial G_{\text{ring}}(R - \ell_{\text{head}}/2, r, L/2 + z)}{\partial r} \right)_{R^+} \]
\[B_{21}(r) = \left(\frac{\partial G_{\text{cyl}}(R, r, L, z)}{\partial z} \right)_{L/2^+} \]
\[B_{22}(r) = \frac{1}{2} + \left(\frac{\partial G_{\text{disk}}(R, r, z)}{\partial z} \right)_{L^+} \]
\[B_{23}(r) = \left(\frac{\partial G_{\text{cyl}}(R, r, \ell_{\text{cyl}}, \ell_{\text{cyl}}/2)}{\partial z} \right)_{\ell_{\text{cyl}}/2^+} \]
\[+ \left(\frac{\partial G_{\text{cyl}}(R, r, \ell_{\text{cyl}}, z)}{\partial z} \right)_{(L-\ell_{\text{cyl}})^+} \]
\[B_{24}(r) = \frac{1}{2} + \left(\frac{\partial G_{\text{ring}}(R - \ell_{\text{head}}/2, r, z)}{\partial z} \right)_{(L-\ell_{\text{cyl}})/2^+} \]
with \(1_{\text{ring}}(r) = 1\) if \(R - \ell_{\text{head}} \leq r \leq R\) and 0 otherwise.

\[B_{31} = \left(\frac{\partial G_{\text{cyl}}(R, r, L, L - \ell_{\text{cyl}}/2)}{\partial r} \right)_{R^+} \]
\[B_{32} = \left(\frac{\partial G_{\text{disk}}(R, r, \ell_{\text{cyl}}/2)}{\partial r} \right)_{R^+} \]
\[+ \left(\frac{\partial G_{\text{disk}}(R, r, L - \ell_{\text{cyl}}/2)}{\partial r} \right)_{R^+} \]
\[B_{33} = \left(\frac{\partial G_{\text{cyl}}(R, r, \ell_{\text{cyl}}/2, 0)}{\partial r} \right)_{R^+} \]
\[+ \left(\frac{\partial G_{\text{cyl}}(R, r, \ell_{\text{cyl}}, L - \ell_{\text{cyl}})}{\partial r} \right)_{R^+} \]
\[B_{34} = \left(\frac{\partial G_{\text{ring}}(R - \ell_{\text{head}}/2, r, \ell_{\text{cyl}}/2)}{\partial r} \right)_{R^+} \]
\[+ \left(\frac{\partial G_{\text{ring}}(R - \ell_{\text{head}}/2, r, L - \ell_{\text{cyl}}/2)}{\partial r} \right)_{R^+} \]
\[B_{41} = \left(\frac{\partial G_{\text{cyl}}(R, R - \ell_{\text{head}}/2, L, z)}{\partial z} \right)_{L/2^+} \]
\[B_{42} = \frac{1}{2} + \left(\frac{\partial G_{\text{disk}}(R, R - \ell_{\text{head}}/2, L)}{\partial z} \right)_{L} \]
\[B_{43} = \left(\frac{\partial G_{\text{cyl}}(R, R - \ell_{\text{head}}/2, \ell_{\text{cyl}}, \ell_{\text{cyl}}/2)}{\partial z} \right)_{\ell_{\text{cyl}}/2^+} \]
\[+ \left(\frac{\partial G_{\text{cyl}}(R, R - \ell_{\text{head}}/2, \ell_{\text{cyl}}, L - \ell_{\text{cyl}}/2)}{\partial z} \right)_{(L-\ell_{\text{cyl}})/2^+} \]
\[B_{44} = \frac{1}{2} + \left(\frac{\partial G_{\text{ring}}(R - \ell_{\text{head}}/2, R - \ell_{\text{head}}/2, L)}{\partial z} \right)_{L^+} \]