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Abstract. In this paper, first the basics of the Bayesian inference for linear inverse problems
are presented. The inverse problems we consider are, for example, signal deconvolution, image
restoration or image reconstruction in Computed Tomography (CT). The main point to discuss then
is the prior modeling of signals and images. We consider two classes of priors:simpleorhierarchical
with hidden variables. For practical applications, we need also to consider the estimation of the
hyper parameters. Finally, we see that we have to infer simultaneously the unknowns, the hidden
variables and the hyper parameters.

Very often, the expression of the joint posterior law of all the unknowns is too complex to be
handled directly. Indeed, rarely we can obtain analytical solutions to any point estimators such
the Maximum A posteriori (MAP) or Posterior Mean (PM). Threemain tools can then be used:
Laplace approximation (LAP), Markov Chain Monte Carlo (MCMC) and Bayesian Variational
Approximations (BVA).

To illustrate all these aspects, we will consider a deconvolution problem where we know that
the input signal issparseand propose to use a Student-t distribution for that. Then, to handle the
Bayesian computations with this model, we use the property of Student-t which is modelling it via
an infinite mixture of Gaussians, introducing thus hidden variables which are the variances. Then,
the expression of the joint posterior of the input signal samples, the hidden variables (which are here
the inverse variances of those samples) and the hyper-parameters of the problem (for example the
variance of the noise) is given. From this point, we will present the joint maximization by alternate
optimization and the three possible approximation methods. Finally, the proposed methodology is
applied in different applications such as mass spectrometry, spectrum estimation of quasi periodic
biological signals and X ray computed tomography.

INTRODUCTION

In many generic inverse problems in signal and image processing, the problem is to
infer on an unknown signalf (t) or an unknown imagef (r) with r = (x,y) through
an observed signalg(t ′) or an observed imageg(r ′) related between them through an
operatorH such as convolutiong= h∗ f or any other linear or nonlinear transformation
g = H f . When this relation is linear and we have discretized the problem, we arrive
to the relation:g = H f + ε where f = [ f 1, · · · , f n]

′ represents the unknowns,g =
[g1, · · · ,gm]

′ the observed data,ε= [ε1, · · · ,εm]
′ the errors of modelling and measurement

andH the matrix of the system response.
The Bayesian inference approach is based on the posterior law:

p( f |g,θ) = p(g| f ,θ) p( f |θ)
p(g|θ) ∝ p(g| f ,θ) p( f |θ) (1)



where the sign∝ stands for “proportional to”,p(g| f ,θ) is the likelihood,p( f |θ) the
prior probability law model andp(g|θ) is called the evidence of the model.θ is called
the vector of the hyper-parameters of the problem. It can be divided in two independent
partsθ = (θ1,θ2) whereθ1 is only appearing in the likelihood term andθ2 in the prior
term. Then, we can writep( f |g,θ) ∝ p(g| f ,θ1) p( f |θ2).

When the parametersθ have to be estimated too, a prior probability lawp(θ|θ0) with
fixed values forθ0 is assigned to them in such a way to obtain the joint posteriorlaw:

p( f ,θ|g,θ0) =
p(g| f ,θ) p( f |θ) p(θ|θ0)

p(g|θ0)
(2)

which can be used to infer them jointly. From this point (omitting θ0 for simplicity of
notations), at least three main approaches are commonly used to infer both unknownsf
andθ:

• Joint MAP estimation:

( f̂ , θ̂) = arg max
( f ,θ)
{p( f ,θ|g)} (3)

which is done in general by an alternate optimization algorithm such as:




f̂ = argmaxf

{
p( f , θ̂|g)

}

θ̂ = argmaxθ
{

p( f̂ ,θ|g)
} (4)

• Marginalization overf to obtain:

p(θ|g) =
∫∫

p( f ,θ|g) d f (5)

which can be used to inferθ which is then used for the estimation off . Unfor-
tunately, in general, the marginalization step can not be done analytically. The
Expectation-Maximization (EM) algorithm is used to obtainθ̂. The EM algorithm
can be summarized as follows:





Q(θ, θ̂) =
∫∫

p( f |θ̂,g) ln p( f ,θ|g) d f = 〈ln p( f ,θ|g)〉
p( f |θ̂,g)

θ̂ = argmaxθ
{

Q(θ, θ̂)
} (6)

• Variational Bayesian Approximation (VBA):
The main idea here is to approximatep( f ,θ|g) by a separable oneq( f ,θ) =
q1( f ) q2(θ) which can then be used for inferring onf or θ [3, 1, 13, 18, 2, 15,
17, 12, 9].

As we will see more in detail in the next section,q1( f ) andq2(θ) are obtained via the
following iterative algorithms:





q1( f ) ∝ exp
{
−〈ln p( f ,θ,g)〉q2(θ)

}

q2(θ) ∝ exp
{
−〈ln p( f ,θ,g)〉q1( f )

} (7)



The two first approaches are very well known. The last one is less and is explained in
more details in the next section. These approaches are compared in Figure 1.

Joint MAP:
Main idea:

p( f ,θ|g) −→
Joint

Maximum
A Posteriori

−→ f̂

−→ θ̂

Algorithm:

θ(0) −→ θ̂−→ f̂ = argmaxf

{
p( f |θ̂,g)

}
−→ f̂ −→ f̂

↑ ↓
θ̂←− θ̂←− θ̂ = argmaxθ

{
p(θ| f̂ ,g)

}
←− f̂

Marginalization:
Main idea:

p( f ,θ|g) −→ p(θ|g) −→ θ̂−→ p( f |θ,g) −→ f̂

Algorithm:

θ(0) −→ θ̂−→ Q(θ, θ̂) = 〈ln p( f ,θ|g)〉
p( f |θ̂,g) −→Q(θ, θ̂)

↑ ↓
f̂ ←− f̂ = argmax

f

{
p( f |θ̂,g)

}
←− θ̂←− θ̂ = argmax

θ

{
Q(θ, θ̂)

}
←− Q(θ, θ̂)

VBA:
Main idea:

p( f ,θ|g) −→
Variational
Bayesian

Approximation

−→ q1( f |g)−→ f̂

−→ q2(θ̂|g)−→ θ̂

Algorithm:

q̂(0)2 −→ q̂2−→ q1( f ) ∝ exp
{〈

ln p(g, f ,θ;M )
〉

q2

}
−→q̂1( f )−→ f̂

↑ ↓
θ̂← q̂2(θ)←− q2(θ) ∝ exp

{〈
ln p(g, f ,θ;M )

〉
q1

}
←−q̂1

Figure 1: Three different approaches for inferring both unknowns f andθ.

As we will see, the main inconvenient of the first approach is that we are summarizing
the joint posterior lawp( f ,θ|g) by only its mode. Also, for obtaining this mode, in
general an iterative alternate optimization is used, whereat each iteration, only the



values of the estimates at previous iterations are used without accounting for their
corresponding uncertainties. In the second approach, firstθ is estimated and then it is
used for the estimation off , again without accounting for its uncertainty. In the third
approach, as we will see, the estimation off depends on the approximated lawq2(θ)
and the estimation ofθ depends on the approximated lawq1( f ), thus accounting for
uncertainties in both steps.

A simple prior probability law is often not enough for modeling signals and images,
in particular for non stationary signals or non homogeneousimages. We then may use
hierarchical models with hidden variableszwhich may represent, for example, the class
labels in mixture models. In those cases, the prior probability model contains two parts
p( f |z,θ2) andp(z|θ3) and we will have:

p( f ,z,θ|g,θ0) ∝ p(g| f ,θ1) p( f |z,θ2) p(z|θ3) p(θ|θ0) (8)

and then again different approaches can be used to infer the unknownsf , z andθ.
In this paper, first the general VBA method is detailed for theinference on inverse

problems with hierarchical prior models. Then, two particular classes of prior models
(Student-t and mixture of Gaussians) are considered and thedetails of BVA algorithms
are given for them.

BAYESIAN VARIATIONAL APPROXIMATION WITH
HIERARCHICAL PRIOR MODELS

When a hierarchical prior modelp( f |z,θ) is used and when the estimation of the hyper-
parametersθ has to be considered, the joint posterior law of all the unknowns becomes:

p( f ,z,θ|g) ∝ p(g| f ,θ1) p( f |z,θ2) p(z|θ3) p(θ) (9)

which can also be written asp( f ,z,θ|g) = p( f |z,θ,g) p(z|θ,g) p(θ|g) where

p( f |z,θ,g) = p(g| f ,θ) p( f |z,θ)/p(g|z,θ) with p(g|z,θ) =
∫

p(g| f ,θ) p( f |z,θ) d f

(10)
and

p(z|θ,g) = p(g|z,θ) p(z|θ)
p(g|θ) with p(g|θ) =

∫
p(g|z,θ) p(z|θ) dz (11)

and finally

p(θ|g) = p(g|θ) p(θ)
p(g)

with p(g) =
∫∫

p(g|θ) p(θ) dθ. (12)

In general, common chooses forp(g| f ,θ1) and p( f |z,θ2) are Gaussians and for
p(z|θ3) andp(θ) are Bernoulli or Binomial (for discrete valuedz) or Gamma for inverse
of the variances. Thus, the first term

p( f |z,θ,g) ∝ p(g| f ,θ)p( f |z,θ) (13)



will be easy to handle because it is the product of two gaussians and so it is a multivariate
Gaussian. But the two others are not.

The main idea behind the VBA is to approximate the joint posterior p( f ,z,θ|g) by a
separable one, for example

q( f ,z,θ|g) = q1( f )q2(z)q3(θ) (14)

and where the expressions ofq( f ,z,θ|g) is obtained by minimizing the Kullback-Leibler
divergence

KL(q : p) =
∫

qln
q
p
=

〈
ln

q
p

〉

q
. (15)

It is then easy to show that KL(q : p) = ln p(g|M )− F (q) where p(g|M ) is the
likelihood of the model

p(g|M ) =
∫∫ ∫∫ ∫∫

p( f ,z,θ,g|M ) d f dzdθ (16)

with p( f ,z,θ,g|M ) = p(g| f ,θ) p( f |z,θ) p(z|θ) p(θ) andF (q) is the free energy asso-
ciated toq defined as

F (q) =

〈
ln

p( f ,z,θ,g|M )

q( f ,z,θ)

〉

q
. (17)

So, for a given modelM , minimizing KL(q : p) is equivalent to maximizingF (q) and
when optimized,F (q∗) gives a lower bound for lnp(g|M ).

Without any other constraint than the normalization ofq, an alternate optimization of
F (q) with respect toq1, q2 andq3 results in





q1( f ) ∝ exp
{
−〈ln p( f ,z,θ,g)〉q(z)q(θ)

}

q2(z) ∝ exp
{
−〈ln p( f ,z,θ,g)〉q( f )q(θ)

}

q3(θ) ∝ exp
{
−〈ln p( f ,z,θ,g)〉q( f )q(z)

} (18)

Note that these relations represent an implicit solution for q1( f ), q2(z) andq3(θ) which
need, at each iteration, the expression of the expectationsin the right hand of exponen-
tials. If p(g| f ,z,θ1) is a member of an exponential family and if all the priorsp( f |z,θ2),
p(z|θ3), p(θ1), p(θ2), and p(θ3) are conjugate priors, then it is easy to see that these
expressions leads to standard distributions for which the required expectations are easily
evaluated. In that case, we may note

q( f ,z,θ|g) = q1( f |̃z, θ̃,g)q2(z| f̃ , θ̃,g)q3(θ| f̃ , z̃,g) (19)

where the tilded quantities̃z, f̃ andθ̃ are, respectively functions of( f̃ ,̃θ), (̃z,̃θ) and( f̃ ,̃z)
and where the alternate optimization with respect toq1, q2 andq3 becomes alternate
updating of the parameters(̃z, θ̃) for q1, the parameters( f̃ , θ̃) of q2 and the parameters
( f̃ , z̃) of q3.



Finally, we may note that, to monitor the convergence of the algorithm, we may
evaluate the free energy

F (q)=
〈
ln p( f ,z,θ,g|M )

〉
q+ 〈− lnq( f ,z,θ)〉q

= 〈ln p(g| f ,z,θ)〉q+ 〈ln p( f |z,θ)〉q+ 〈ln p(z|θ)〉q
+〈− lnq( f )〉q+ 〈− lnq(z)〉q+ 〈− lnq(θ)〉q

(20)

where all the expectations are with respect toq.
Other decompositions are also possible:

q( f ,z,θ|g) = ∏
j

q1 j( f j | f̃ (− j), z̃, θ̃,g) ∏
j

q2 j(zj | f̃ , z̃(− j), θ̃,g) ∏
l

q3l(θl | f̃ , z̃, θ̃(−l),g)

(21)
or

q( f ,z,θ|g) = q1( f |̃z, θ̃,g)∏
j

q2 j(zj | f̃ , z̃(− j), θ̃,g)∏
l

q3l (θl | f̃ , z̃, θ̃(−l),g) (22)

In the following section, we consider this case and give somemore details with the
hierarchical model of Infinite Mixture model of Student-t which is used for example for
modeling the distributions of sparse signals or images [14].

JMAP AND BAYESIAN VARIATIONAL APPROXIMATION WITH
STUDENT-T PRIORS

The Student-t model is:

p( f |ν) = ∏
j
S t( f j |ν) with S t( f j |ν) =

1√
πν

Γ((ν+1)/2)
Γ(ν/2)

(
1+ f 2

j/ν
)−(ν+1)/2

(23)

Knowing that

S t( f j |ν) =
∫ ∞

0
N ( f j |0,1/zj)G(zj |ν/2,ν/2) dzj (24)

we can write this model via the positive hidden variableszj :

{
p( f |z) = ∏ j p( f j |zj) = ∏ j N ( f j |0,1/zj) ∝ exp

{
−1

2 ∑ j zj f 2
j

}

p(zj |α,β) = G(zj |α,β) ∝ zj
(α−1)exp

{
−βzj

}
with α = β = ν/2

(25)

The Cauchy model is obtained whenν = 1.
Now consider this prior model for the unknownsf of a linear inverse problem with

the linear forward modelg = H f + ε and assign a Gaussian law to the noiseε which
results top(g| f ,vε) =N (g|H f ,vεI). We also assign a priorp(τε|α0,β0) =G(τε|α0,β0)
to τε = 1/vε. Figure 2 shows the graphical representation of this model.
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Figure 2: The graphical representation of the proposed model with the Student-t
equivalent hierarchical prior.

In the following, we summarize all the equations related to this modeling and infer-
ence scheme.

• Forward probability laws:

{
p(g| f ,τε) =N (g|H f ,(1/τε)I), p(τε|αε0,βε0) = G(τε|αε0,βε0),

p( f |z) = ∏ j N
(

f j |0,1/zj
)
, p(z|α0,β0) = ∏ j G(zj |α0,β0).

(26)

• Joint posterior laws:

p( f ,z,τε|g,α0,β0,αε0,βε0) ∝ p(g| f ,τε) p( f |z) p(z|α0,β0) p(τε|αε0,βε0)

∝ τε
−M/2 exp

{
−1

2τε‖g−H f‖2
}

∏ j zj
−1/2 exp

{
−1

2zj f 2
j

}

∏ j zj
−α0+1 exp

{
−β0zj

}
τε
−αε0+1 exp{−βε0τε} .

(27)

• Joint MAP alternate maximization algorithm:
The objective of the JMAP optimization is:

( f̂ , ẑ, τ̂ε) = arg max
( f ,z,τε)

{p( f ,z,τε|g,α0,β0,αε0,βε0)} . (28)

The alternate optimization is an iterative optimization, respectively with respect to
f , z andτ:





f̂ = argminf

{
τ̂ε‖g−H f‖2+∑ j ẑj f 2

j

}
,

ẑ= argminz
{

N+2α0−2
2 lnzj +∑ j zj

(
1
2 f̂ j

2
+β0

)}
,

τ̂ε = argminτε

{
(M

2 +αε0−1) lnτε +
(

1
2‖g−H f̂‖2+βε0

)}
.

(29)

The first optimization can be done either analytically or using any gradient based
algorithm. The second and the third optimizations have analytical expressions:





f̂ = τ̂ε Σ̂H ′g with Σ̂ =
(

τ̂ε H ′H + Ẑ
)−1

whereẐ
−1

= diag[̂z] ,

ẑj =
(

1
2 f̂ j

2
+β0

)
/(M

2 +αε0−1),

τ̂ε =
(

1
2‖g−H f̂‖2+βε0

)
/(M

2 +αε0−1).

(30)



One iteration of this algorithm is shown in Figure 3.

ẑ
−→
τ̂ε
−→

f̂ = τ̂ε

(
τ̂ε H ′H + Ẑ

)−1
H ′g

f̂
−→

ẑj =
(

1
2 f̂ j

2
+β0

)
/(M

2 +αε0−1)

τ̂ε =
(

1
2‖g−H f̂‖2+βε0

)
/(M

2 +αε0−1)

ẑ
−→
τ̂ε
−→

Figure 3: One iteration of the JMAP algorithm.

The main drawback of this method is that the uncertainties ofthe solution at each
step is not accounted for for the next step.

• VBA posterior laws:





q1( f |µ̃, Σ̃) =N ( f |µ̃, Σ̃), µ̃= τ̃ Σ̃H ′g, Σ̃ =
(

τ̃H ′H + Z̃
)−1

with Z̃−1 = diag[̃z] ,

q2 j(zj) = G(zj |α̃ j , β̃ j), α̃ j = α0+
1
2, β̃ j = β0+< f 2

j > /2,

q3(τε) = G(τε|α̃ε, β̃ε)

α̃ε = αε0+(n+1)/2, β̃ε = βε0+
1
2[‖g‖2−2〈f〉′H ′g+H ′ 〈f f ′〉H].

(31)
with

< f >= µ̃, < f f ′ >= Σ̃+ µ̃̃µ′, < f 2
j >= [Σ̃] j j + µ̃2

j , τ̃ =
α̃τε

β̃τε

andz̃j =
α̃ j

β̃ j

. (32)

The expression of the free energies can be obtained as follows:

F (q) =
〈

ln p( f ,z,τ,g|M )

q( f ,z,τ)

〉
=

〈ln p(g| f ,z,τ)〉+ 〈ln p( f |z,τ)〉+ 〈ln p(z|τ)〉+ 〈− lnq( f )〉+ 〈− lnq(z)〉+ 〈− lnq(τ)〉
(33)

where

〈ln p(g| f ,τε)〉= n
2(< lnτε >− ln(2π))− 1

2 {〈λ〉g′g−2< f >′ H ′g+H ′ < f f ′ > H}

〈− ln p( f |z)〉 =−n+1
2 ln(2π)− 1

2

{
∑ j < lnα j >< α j >< f 2

j >
}

〈− ln p(z)〉 =−(n+1)αε0 lnβε0 +(αε0−1)∑ j < lnα j >−β < α j >−(n+1) lnΓ(α)

〈p(τε))〉 = clnd+(c−1)< lnτε)>−d〈λ〉− lnΓ(c)
〈− lnq( f )〉 =−n+1

2 (1+ ln(2π))− 1
2 ln |Σ f |

〈− lnq(z)〉 =−∑ j
[
α̃ j ln(β̃ j)+(α̃ j −1)< ln α̃ j >−β̃ j < α j >− lnΓ(α̃ j)

]

〈q(τε)〉 = c̃ln d̃+(c̃−1)< lnτ)>−d̃〈λ〉− lnΓ(c̃).



In these equations, 



< lna j >= ψ(ã j)− ln b̃ j ,
< lnτ >= ψ(c̃)− ln d̃,

ψ(a) = ∂ lnΓ(a)
∂a .

(34)

The three steps of this algorithm is shown in Figure 4.

τ̃−→

z̃−→

q1( f |̃z, τ̃) =N ( f̃ , Σ̃)

f̃ = τ̃Σ̃H ′g
Σ̃ = (τ̃H ′H + Z̃−1)−1

f̃−→

Σ̃−→

q2 j(zj | f̃ ) = G(zj |α̃ j , β̃ j)

α̃ j = α0+
n+1

2

β̃ j = β0+
1
2

〈
f 2

j

〉

z̃j = α̃ j/β̃ j

f̃−→
Σ̃−→
z̃j−→

q3(τ| f̃ ) = G(τ|α̃τ, β̃τ)
α̃ε = αε0+

n+1
2

β̃ε = βε0+H ′ < f f ′ > H]
+1

2[‖g‖2−2< f >′ H ′g

τ̃ = α̃τε/β̃τε

τ̃−→

z̃−→

6

6

Figure 4: The three steps of the Bayesian Variational Approximation Algorithm.

BAYESIAN VARIATIONAL APPROXIMATION WITH MIXTURE
OF GAUSSIANS PRIORS

The mixture models are also very commonly used as prior models. In particular the
Mixture of two Gaussians (MoG2) model:

p( f |λ,v1,v0) = ∏
j

(
λN ( f j |0,v1)+(1−λ)N ( f j |0,v0)

)
(35)

which can also be expressed through the binary valued hiddenvariableszj ∈ {0,1}




p( f |z) = ∏ j p( f j |zj) = ∏ j N
(

f j |0,vzj

)
∝ exp

{
−1

2 ∑ j
f 2

j
vzj

}

P(zj = 1) = λ, P(zj = 0) = 1−λ
(36)

In generalv1 >> v0 andλ measures the sparsity (0< λ << 1) [11]. In this case also all
the equations are very similarly can be obtained. Here, we donot have enough place to
write them.

CONCLUSIONS

In this paper, a VBA method is proposed for doing Bayesian computations for inverse
problems where a hierarchical prior modeling is used for theunknowns. In particular,
two prior models are considered: the Student-t and the mixture of Gaussian models. In
both cases, these priors can be written via hidden variableswhich gives the model a
hierarchical structure which is used to do the factorization. For some applications see
for example [19, 7, 4, 6, 5, 10, 8, 16] and two other related papers in this volume.
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IOA annual meeting, Nantes, France, Apr.23-27,2012.

6. N. Chu, A. Mohammad-Djafari, and J. Picheral. A bayesian sparse inference approach in near-
field wideband aeroacoustic imaging. In2012 IEEE International Conference on Image Processing,
Orlando, USA, Sep.30-Oct.4, 2012.

7. N. Chu, J. Picheral, and A. Mohammad-Djafari. A robust super-resolution approach with sparsity
constraint for near-field wideband acoustic imaging. InIEEE International Symposium on Signal
Processing and Information Technology, pages 286–289, Bilbao, Spain, Dec.14-17,2011.

8. Mircea Dumitru and Ali Mohammad-Djafari. Estimating theperiod of a signal through inverse
problem modeling and bayesian inference with sparsity enforcing prior. In 32nd International
Workshop on Bayesian Inference and Maximum Entropy Methodsin Science and Engineering, IPP,
Garching near Munich, Germany,15-20 July 2012.

9. Aurélia Fraysse and Thomas Rodet. A gradient-like variational Bayesian algorithm. InSSP 2011,
number S17.5, pages 605–608, Nice, France, jun 2011.

10. Leila Gharsalli, Ali Mohammad-Djafari, Aurélia Fraysse, and Thomas Rodet. Variational bayesian
approximation with scale mixture prior for inverse problems: a numerical comparison between three
algorithms. In32nd International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering, IPP, Garching near Munich, Germany,15-20 July 2012.

11. J. Rao. H. Ishwaran. Spike and Slab variable selection: Frequentist and Bayesian strategies.Annals
of Statistics, 2005.

12. L. He, H. Chen, and L. Carin. Tree-Structured Compressive Sensing With Variational Bayesian
Analysis. IEEE Signal. Proc. Let., 17(3):233–236, 2010.

13. A. C. Likas and N. P. Galatsanos. A variational approach for bayesian blind image deconvolution.
IEEE Transactions on Signal Processing, 2004.

14. A Mohammad-Djafari. Bayesian approach with prior models which enforce sparsity in signal and
image processing.EURASIP Journal on Advances in Signal Processing, Special issue on Sparse
Signal Processing (1 Mars 2012):2012:52, 2012.

15. T. Park and G. Casella. The Bayesian Lasso.Journal of the American Statistical Association, 2008.
16. R. Pérenon, A. Mohammad-Djafari, E. Sage1, L. Duraffourg, S. Hentz1, A. Brenac, R. Morel, and

P. Grangeat. Mcmc-based bayesian estimation algorithm dedicated to NEMS mass spectrometry. In
32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering, IPP, Garching near Munich, Germany,15-20 July 2012.

17. M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 2001.

18. John Winn, Christopher M. Bishop, and Tommi Jaakkola. Variational message passing.Journal of
Machine Learning Research, 6:661–694, 2005.

19. Sha Zhu, Ali Mohammad-Djafari, Hongqiang Wang, Bin Deng, Xiang Li, and Junjie Mao. Parameter
estimation for sar micromotion target based on sparse signal representation.Eurasip Journal of
Signal Processing, special issue "sparse approximations in signal and image processing", 2012.


