N

N

Variational Bayesian Approximation methods for inverse
problems
Ali Mohammad-Djafari

» To cite this version:

Ali Mohammad-Djafari. Variational Bayesian Approximation methods for inverse problems. MaxEnt
2012, Jul 2012, Garching, Germany. pp.230. hal-00833298

HAL Id: hal-00833298
https://hal.science/hal-00833298

Submitted on 12 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00833298
https://hal.archives-ouvertes.fr

Bayesian I nference Tools for I nverse Problems

Ali Mohammad-Djafari

Laboratoire des Signaux et Systemes,
UMR 8506 CNRS-SUPELEC-UNIV PARIS SUD
SUPELEC, Plateau de Moulon, 3 rue Juliot-Curie, 91192 Gif-gvette, France

Abstract. In this paper, first the basics of the Bayesian inference ifealr inverse problems
are presented. The inverse problems we consider are, fon@&asignal deconvolution, image
restoration or image reconstruction in Computed Tomogrd@f). The main point to discuss then
is the prior modeling of signals and images. We consider tasses of priorssimpleor hierarchical
with hidden variablesFor practical applications, we need also to consider ttienason of the
hyper parameters. Finally, we see that we have to infer s&amebusly the unknowns, the hidden
variables and the hyper parameters.

Very often, the expression of the joint posterior law of &k tunknowns is too complex to be
handled directly. Indeed, rarely we can obtain analyticdlitions to any point estimators such
the Maximum A posteriori (MAP) or Posterior Mean (PM). Thr@ain tools can then be used:
Laplace approximation (LAP), Markov Chain Monte Carlo (MCMand Bayesian Variational
Approximations (BVA).

To illustrate all these aspects, we will consider a decaniah problem where we know that
the input signal issparseand propose to use a Student-t distribution for that. Trehandle the
Bayesian computations with this model, we use the propéi8tudent-t which is modelling it via
an infinite mixture of Gaussians, introducing thus hiddemnakdes which are the variances. Then,
the expression of the joint posterior of the input signal gkes, the hidden variables (which are here
the inverse variances of those samples) and the hyper-pteesof the problem (for example the
variance of the noise) is given. From this point, we will gnesthe joint maximization by alternate
optimization and the three possible approximation methbufally, the proposed methodology is
applied in different applications such as mass spectrgfmgiectrum estimation of quasi periodic
biological signals and X ray computed tomography.

INTRODUCTION

In many generic inverse problems in signal and image praugsthe problem is to
infer on an unknown signaf (t) or an unknown imagd (r) with r = (x,y) through
an observed signa(t’) or an observed imagg(r’) related between them through an
operator/{ such as convolutiog = hx f or any other linear or nonlinear transformation
g = H f. When this relation is linear and we have discretized thdlpra, we arrive
to the relation:g = Hf +¢€ where f = [fy,---, fy]’ represents the unknowng,=
[01, - ,0m]’ the observed data= [€1,- - - ,€m)’ the errors of modelling and measurement
andH the matrix of the system response.

The Bayesian inference approach is based on the postesior la

p(f|g,0) = p(glf,6) p(f]B)
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where the sigri] stands for “proportional to”p(g| f,0) is the likelihood,p(f|0) the
prior probability law model angb(g|0) is called the evidence of the modé8lis called
the vector of the hyper-parameters of the problem. It can\bdetl in two independent
parts® = (81,02) where0; is only appearing in the likelihood term ald in the prior
term. Then, we can writp(f|g,0) O p(g|f,01) p(f|62).

When the parametefshave to be estimated too, a prior probability 1a¢8|6g) with
fixed values fofg is assigned to them in such a way to obtain the joint post&aver

p(glf,6) p(f]8) p(6]8o)
f,0|0,00) = 2
which can be used to infer them jointly. From this point (dmd 6q for simplicity of
notations), at least three main approaches are commordytasefer both unknowns$
ande:

« Joint MAP estimation:

(.8) = argmax{p(f,6|9)} 3)
(f.6)
which is done in general by an alternate optimization atharisuch as:

T = argmax {p(f,é\g)}
{ 6 =argmax { p(7.6l9) | X

« Marginalization overf to obtain:

p(6lg) = [ p(1.0l0) df ©

which can be used to inféd which is then used for the estimation &6f Unfor-
tunately, in general, the marginalization step can not beedanalytically. The

Expectation-Maximization (EM) algorithm is used to obtairThe EM algorithm
can be summarized as follows:

6,0) = [ p(f[6,g) Inp(f,6]g) df = (Inp(f,6 5
Q©.8) = [ p(1[0.0) p(1.00) df = (np(1.09) 50
0 = argmaxy {Q(G, G)}
« Variational Bayesian Approximation (VBA):
The main idea here is to approximapéf,6|g) by a separable ong(f,0) =

01(f) g2(0) which can then be used for inferring dnor 6 [3, 1, 13, 18, 2, 15,
17,12, 9].

As we will see more in detail in the next sectiap( f) andgy(6) are obtained via the
following iterative algorithms:

{ qu(f) 0 exp{— (Inp(f,6,9))4,0)

7
CI2(9> Dexp{_<|n p(f7evg)>ql(f) ( )



The two first approaches are very well known. The last onessdad is explained in
more details in the next section. These approaches are cedhpaFigure 1.
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Figure 1: Three different approaches for inferring bothnownsf and6.

As we will see, the main inconvenient of the first approachas tve are summarizing
the joint posterior lawp(f,6|g) by only its mode. Also, for obtaining this mode, in
general an iterative alternate optimization is used, wlagreach iteration, only the



values of the estimates at previous iterations are usecdbutithccounting for their
corresponding uncertainties. In the second approach gfissestimated and then it is
used for the estimation of, again without accounting for its uncertainty. In the third
approach, as we will see, the estimationfoflepends on the approximated lap(0)
and the estimation o® depends on the approximated law( f), thus accounting for
uncertainties in both steps.

A simple prior probability law is often not enough for modgisignals and images,
in particular for non stationary signals or non homogenemagjes. We then may use
hierarchical models with hidden variableg/hich may represent, for example, the class
labels in mixture models. In those cases, the prior proltgiolodel contains two parts
p(f|z 62) andp(z/63) and we will have:

p(f,z6|g,80) O p(g|f,01) p(f|z 62) p(z03) p(6]60) (8)

and then again different approaches can be used to infentreownsf, zand®.

In this paper, first the general VBA method is detailed for itiference on inverse
problems with hierarchical prior models. Then, two pattciclasses of prior models
(Student-t and mixture of Gaussians) are considered andktiads of BVA algorithms
are given for them.

BAYESIAN VARIATIONAL APPROXIMATION WITH
HIERARCHICAL PRIOR MODELS

When a hierarchical prior model f|z 6) is used and when the estimation of the hyper-
parameter® has to be considered, the joint posterior law of all the umkmobecomes:

p(f,z6|g) O p(g|f,01) p(f|z 62) p(z/63) p(6) (9)

which can also be written g¥ f,z 6|g) = p(f|z06,9) p(z/6,9) p(6|g) where

p(f(z6,9) = p(g|f,6) p(f|z B)/p(glz 6) with p(g|z 6) =/p<g\f,9) p(f|z6) df

(10)
an (02,6) p(2l6)
_ b9}, : _
p(210,9) = PR 8 with p(glo) = [ p(olz0)p(0)dz (1)
and finally
p(gl®) ()
p(Blg) = R vvlthp f p(gl6) p (12)

In general, common chooses fpfg|f,01) and p(f|z62) are Gaussians and for
p(z83) andp(0) are Bernoulli or Binomial (for discrete valueflor Gamma for inverse
of the variances. Thus, the first term

p(f|z8,9) O p(g|f,6)p(f|z ) (13)



will be easy to handle because it is the product of two ganssiad so it is a multivariate
Gaussian. But the two others are not.

The main idea behind the VBA is to approximate the joint pastep( f,z 06|g) by a
separable one, for example

q(f,z6]g) = au(f)d2(2) 4a(6) (14)
and where the expressionsgiff, z, 6|g) is obtained by minimizing the Kullback-Leibler
divergence

L(q:p):/qlng:<lng> ) (15)

p P/q

It is then easy to show that Koy : p) = Inp(g|M) — F(q) where p(g|M) is the
likelihood of the model

palad) = [ [ [e(t.26.9%0) df dzao (16)
with p(f,z0,9/M) = p(g|f,0) p(f|z,6) p(z0) p(6) and F(q) is the free energy asso-

ciated toq defined as
p(f,z,e,glM)>
F :<In— : 17
(a) a(f.20) /, (17)

So, for a given model\/, minimizing KL(q: p) is equivalent to maximizingF (q) and
when optimized# (q*) gives a lower bound for Ip(g|M).

Without any other constraint than the normalizatiomoén alternate optimization of
F (q) with respect tay;, g2 andgs results in

q1(f) 0] exp{ - <In p( f 2, 97 g))q(Z)q(e)
o(2) O exp{— (Inp(f,28,9))qf)q0) (18)
qs(6) O exp{— (Inp(f,2,8,9))q(f)q2

Note that these relations represent an implicit solutiomf¢f ), g2(z) andgs(6) which
need, at each iteration, the expression of the expectatdhe right hand of exponen-
tials. If p(g|f,z 61) is a member of an exponential family and if all the prip(s |z, 6,),
p(7|63), p(61), p(62), andp(B3) are conjugate priors, then it is easy to see that these
expressions leads to standard distributions for whicheqaired expectations are easily
evaluated. In that case, we may note

q( f v e|g) - ql( f |Z 67 g) q2(2|?7’év g) q3(e|']?,z g) (19)

where the tilded quantitiés f and® are, respectively functions ¢f,8), (z8) and(f,2)
and where the alternate optimization with respectjtogz andqgs becomes alternate
updating of the paramete(s, 6) for qp, the parametersf 6) of g2 and the parameters

(f7~) of gs.



Finally, we may note that, to monitor the convergence of tlgoréhm, we may
evaluate the free energy

= (In p(f,z,e,g|.‘7\/[)>q+ (—Inq(f,z8)),
= (Inp(glf,z e)>q+ (Inp(fz e))q"’ (In p(Z|9)>q (20)
+(=Inq(f))g+(=Inq(2))q+ (= Ina(6)),

where all the expectations are with respeaf.to
Other decompositions are also possible:

f Ze|g |_|q1] ]|f Ze g |_|q2] ZJ|f Z éag) r|q3|(e||?7,27§(—|)7g)
|

(21)
or

q(f,z6lg) = qu(f[Z6,9) [z .7_}.6.9) [0 (6 11.2601),9) (22)
j |

In the following section, we consider this case and give samee details with the
hierarchical model of Infinite Mixture model of Student-tiatis used for example for
modeling the distributions of sparse signals or images.[14]

JMAP AND BAYESIAN VARIATIONAL APPROXIMATION WITH
STUDENT-T PRIORS

The Student-t model is:

PLIV) = [ t(31v) with St(f1v) = \/%”(P’J/%/Z) (15 2) V2 (o)
Knowing that .
Stiiv) = [ AH10.1/2) G@lv/2v/2) ¢ (24)

we can write this model via the positive hidden varialdes

{ p(f[2) =I'Ijp(fj\zj)ZI'IjN(fj\O,l/Zj)DeXp{—%ijjf,Z} (25)
p(zj|a,B) = G(zj|a,B) Dz Vexp{—Bz} witha =p=v/2

The Cauchy model is obtained wheni-= 1.

Now consider this prior model for the unknowhf a linear inverse problem with
the linear forward modelj = Hf + € and assign a Gaussian law to the nasghich
results top(g| f,ve) = AL(g|H f, Vel ). We also assign a priga(te |0, Bo) = G(Te|0o, Bo)
to 1e = 1/v. Figure 2 shows the graphical representation of this model.



[0, Bo}+(Z) &
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e Beg -0+ (9

Figure 2: The graphical representation of the proposed hwatlethe Student-t
equivalent hierarchical prior.

In the following, we summarize all the equations relatechie tnodeling and infer-
ence scheme.

+ Forward probability laws:

{ P(glf,Te) = ALGH T, (1/Te)l),  P(Te|0te0, Beo) = G (Te|Aeo, Beo), (26)

p(fl2) =N (F110,1/z),  p(zZao,Bo) = 1; G (7|0, Bo).
« Joint posterior laws:
p(f,ZTe|g, a0, Bo, 0o, Beo) U P(g| f, Te) P(F|2) p(Z|oto, Bo) P(Te|Ate0, Beo)
Ot M 2exp{—ite]lg—Hf|2} ;772 exp{—%zj sz} (27)

Mizi % exp{—Bozj} T 0™ exp{—PeoTe}.

+ Joint MAP alternate maximization algorithm:
The objective of the IMAP optimization is:

(?,/Z\,f;) =arg max {p( f » 2, T€|g7 to, BO? Qeo, BSO)} . (28)

( 7Z:T‘£)

The alternate optimization is an iterative optimizatia@spectively with respect to
f, zandrt:

T = argmin; {&lg—Hf|>+3,7 3},

o~ . — /\2
z:argmlrz{wlnmrzjzj (%fj +Bo)}, (29)
T’;:argmir}s{(%—i—ago—l)lnh-i- (%Hg—H/f\HZ-i—Bgo)}.

The first optimization can be done either analytically ongsany gradient based
algorithm. The second and the third optimizations haveydical expressions:

~ ~ ~ ~\ 1 ~

f—f,SH/gwith s — (r; H'H +z> whereZ ' = diag[z],

. ~2

2 = (37 +Bo) /(% + a0 1), (30
@ = (3lg—HTI2+Beo) /(% + 00— 2).



One iteration of this algorithm is shown in Figure 3.

= Y4
z T |5 1§, M —
N 4 7 = (4f —l—Bo)/(—-l—O(eo—l) "
St=% (TSH H+z) Hgl— 3 , y &

& §||9 HT 12+ Beo) /(% +as0— 1) |—
o

Figure 3: One iteration of the JMAP algorithm.

The main drawback of this method is that the uncertaintige®folution at each
step is not accounted for for the next step.

« VBA posterior laws:

au(f[L2) = N(FL2), rlz’fiH'g,iz(’fH'Hﬂ) with Z-1 = diag[Z,
o2;(z) = G(z/0},B)), Oj=0o+3, Bj=PRot+<ff>/2
03(Te) = G(Te|Oe, Be) _
de =00+ (N+1)/2, Be=PBeo+3[l|glI>—2(f)' H'g+H'(F ) H].
(31)
with
<f>=P < T >=5+0l, < 2>=[5];; +I%, T= =% andz = =)

e j

(32)

The expression of the free energies can be obtained as ®llow

7(0) = (In 2 ) -
(Inp(g|f,z 1))+ (Inp(f|z,1)) + (Inp(Z1)) + (—Inq(f)) + (= Inq(z)) + (—In OI(TE:)B)
where

(Inp(g|f,te))=5(<InTe > —In(2m)) — S {N gg—2< f > H'g+H' < ff' > H}

(—Inp(f|2)) :—&zlln(zm—%{zjdna,- ><ap>< 2>

(—Inp(2)) =—(N+1)agInBey+ (0, —1) ¥ j < Inaj > —-B<aj>—(n+1)Inl(a)
(p(te))) =clnd+(c—1) <Inte) > —d\) —InT(c)

(~Inq(f)) =-"F(1+In(2m)—3In|Z¢]

(-Inq(@))  =—3;[6;In(B;) + (@} — 1) <InGj > —Bj < aj > ~InT(G;))]

(q(Te)) =¢Ind+ (E—1) <InT) > —d (\) — InT (&).



In these equations,

<Int>={(¢) —Ind, (34)
_dinT(a)

b(@) = =7

The three steps of this algorithm is shown in Figure 4.

{ <Inaj >= Y(&)) —Inbj,

= =+ %zl = 6(za;.B) | 7 |as(tlf) = (16, Br) -

i}ql(ﬂz,r)_f?\[(f,z) f ) - @;Z%ovL%l T

Z)s_ o 5onyo1| 2, B =Pot 3 () 5 | +llg?-2< f >'H'g | Z
S=(tH'H+Z) = Iy 2270 ~
zj=d;/B T=0r,/Pr,

Figure 4: The three steps of the Bayesian Variational Apjpnation Algorithm.

BAYESIAN VARIATIONAL APPROXIMATION WITH MIXTURE
OF GAUSSIANS PRIORS

The mixture models are also very commonly used as prior nsodielparticular the
Mixture of two Gaussians (MoG2) model:

P(fIA,v1,vo) = [ (AAL(F[0,v1) + (1= N)A( 4]0, v0)) (35)
j

which can also be expressed through the binary valued hidaléblesz; € {0,1}

P =Myp(tilz) =mac(tiow) Do 35, g
P(zj=1) =A, P(zj=0)=1-A

In generaly >> vg andA measures the sparsity {OA << 1) [11]. In this case also all
the equations are very similarly can be obtained. Here, weaddave enough place to
write them.

CONCLUSIONS

In this paper, a VBA method is proposed for doing Bayesianmaations for inverse
problems where a hierarchical prior modeling is used foruhlkenowns. In particular,
two prior models are considered: the Student-t and the maxdtiGaussian models. In
both cases, these priors can be written via hidden variabtesh gives the model a
hierarchical structure which is used to do the factorizatieor some applications see
for example [19, 7, 4, 6, 5, 10, 8, 16] and two other relatecepam this volume.
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