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Abstract. In this paper, a class of minimization problems, associated with
the micromagnetics of thin films, is dealt with. Each minimization problem is
distinguished by the thickness of the thin film, denoted by 0 < h < 1, and it
is considered under spatial indefinite and degenerative setting of the material
coefficients. On the basis of the fundamental studies of the governing energy
functionals, the existence of minimizers, for every 0 < h < 1, and the 3D-2D
asymptotic analysis for the observing minimization problems, as h ց 0, will
be demonstrated in the main theorem of this paper.

1. Introduction. Let S ⊂ R
2 be a two-dimensional bounded domain with a

smooth boundary, and let Ω ⊂ R
3 be a three-dimensional cylindrical domain, given

by Ω := S × (0, 1). Also, let us set Ω(h) := S × (0, h), for any h > 0. Let
α : Ω −→ [0,∞) be a given continuous function, and let A0 := α−1(0) be the set of
zero-points of α on Ω.

In this paper, we suppose that 0 < h < 1, and deal with the following minimiza-

tion problem, denoted by (MP)
(h)
org.

(MP)
(h)
org Find a vectorial function m(h)

org
= (m

(h)

org 1,m
(h)

org 2,m
(h)

org 3) ∈ L2(Ω(h); R3) of

three variables, which minimizes the following functional:
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E(h)
org (m) :=











































1

L3(Ω(h))

(

∫

Ω(h)\A0

α|∇m|2 dL3 +

∫

Ω(h)

ϕ(m) dL3

+
1

2

∫

Ω(h)

∇ζmag · mdL3

)

,

if m ∈ W 1,2
loc (Ω(h) \A0; R

3) and
√

α∇m ∈ L2(Ω(h) \A0; R
3×3),

∞, otherwise,

for any m = (m1, m2, m3) ∈ L2(Ω(h); R3);

(1)

subject to:

div (−∇ζmag + 0m) = 0, in R
3, (2)

|m| = ms, L3-a.e. in Ω. (3)

In (1), the functional E(h)
org is supposed to be the free energy, per unit volume,

in a ferromagnetic thin film (cf. Brown [9]). In the context, the index 0 < h < 1
and Ω(h) denote the thickness and the distribution region of the magnetic thin film,
respectively, and the unknown m = (m1(x),m2(x), m3(x)) (x = (x1, x2, x3) ∈ Ω(h))
is a vectorial function of three variables, which describes the magnetization in Ω(h).
The given continuous function α = α(x) (x ∈ Ω) is the so-called material coefficient,
and here, it is supposed that this coefficient may degenerate somewhere on Ω.
ϕ : R

3 −→ [0,∞) is a given continuous and even function, which represents the
magnetization anisotropy.

Equation (2) is a simplified version of the Maxwell equation, and hence its solu-
tion ζmag : R

3 −→ R is supposed to be the potential of the magnetic field. Besides,

the notation “ 0 ” denotes the zero-extension of functions. Equation (3) is the
constraint for the magnetization strength, and ms is a given positive constant of
the magnetization saturation.

Hereafter, for the sake of simplicity, let us set:

L2(S) = 1 (and hence L3(Ω) = 1), and ms = 1;

and let us denote by T (h) the diffeomorphism, defined as:

T (h) : x = (x1, x2, x3) ∈ R
3 7→ (x1, x2, hx3) ∈ R

3.

Also, let us put

α(h) := α ◦ T (h) ∈ C(Ω) and A
(h)
0 := (α(h))−1(0).

Then, by fundamental calculations with use of the area formula, it will be seen that

the minimization problem (MP)
(h)
org, for any 0 < h < 1, has the following equivalent

form, denoted by (MP)(h).

(MP)(h) Find a vectorial function m(h) = (m
(h)
1 ,m

(h)
2 , m

(h)
3 ) ∈ L2(Ω; R3) of three

variables, which minimizes the following functional:

E(h)(m) :=



































Φ(h)
α (m) +

∫

Ω

ϕ(m) dL3

+
1

2

∫

Ω

(

∇Pζ · mP +
1

h
∂3ζ m3

)

dL3,

if m ∈ L2(Ω; S2),

∞, otherwise,

for any m = (m1,m2, m3) ∈ L2(Ω; R3);

(4)
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subject to:

∇P · (−∇Pζ + 0mP) +
1

h
∂3

(

− 1

h
∂3ζ + 0m3

)

= 0, in R
3; (5)

where the subscript “ P ” denotes the restriction of the situation onto the
two-dimensional plane R

2, e.g.:

yP := (y1, y2), for y = (y1, y2, y3) ∈ R
3,

µP := (µ1, µ2) ∈ L2(Ω; R2), for µ = (µ1, µ2, µ3) ∈ L2(Ω; R3),

and the distributional gradient

∇Pµ :=





∂1µ1 ∂2µ1

∂1µ2 ∂2µ2

∂1µ3 ∂2µ3



 , for µ = (µ1, µ2, µ3) ∈ L2(Ω; R3);

and Φ
(h)
α is a convex function on L2(Ω; R3), defined as:

Φ
(h)
α (m) :=























∫

Ω\A
(h)
0

α(h)

(

|∇Pm|2 +
1

h2
|∂3m|2

)

dL3,

if m ∈ W 1,2
loc (Ω \ A

(h)
0 ; R3),

∞, otherwise,

for any m = (m1,m2,m3) ∈ L2(Ω; R3);

(6)

Additionally, for any 0 < h < 1, the equality:

m(h) = m(h)
org

◦ T (h) in L2(Ω; R3); (7)

holds between the minimizers m(h) and m(h)
org

of the respective problems (MP)(h)

and (MP)
(h)
org. In either case, the minimizers, as in (7), are supposed to represent

the most probable profile of the magnetization in the observing thin film. However,

under the very thin situation of the thickness h, the problem (MP)(h)/(MP)
(h)
org is

often reduced to some simpler one.
For the detailed description of this matter, let us first set:

α◦(x1, x2) := α(x1, x2, 0) for any (x1, x2) ∈ S, and A◦
0 := (α◦)−1(0).

Here, if we consider the nondegenerate case of the material coefficient α, namely
the case that:

A
(h)
0 = A◦

0 = ∅ for 0 < h < 1, and α∗ := min
x∈Ω

α(x) > 0;

then the convex part Φ
(h)
α of the energy E(h) satisfies the following coercivity con-

dition:

Φ(h)
α (m) ≥ α∗|∇m|2L2(Ω;R3×3), for all m ∈ L2(Ω; R3); (8)

and hence we can apply the theories, studied in [3, 6, 7, 8, 14, 17, 18, 19, 20], to
find a definite association between the limiting profile of (MP)(h) as h ց 0, and the
following minimization problem, denoted by (MP)◦, for the magnetization on the
two-dimensional domain S.
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(MP)◦ Find a vectorial function m◦ = (m◦
1,m

◦
2,m

◦
3) ∈ L2(S; R3) of two variables,

which minimizes the following functional:

E◦(m) :=



















Φ◦
α(m)+

∫

S

ϕ(m) dL2 +
1

2

∫

S

|m3|2 dL2,

if m ∈ L2(S; S2),

∞, otherwise,

for any m = (m1,m2,m3) ∈ L2(S; R3);

(9)

where Φ◦
α is a convex function on L2(S; R3), defined as:

Φ◦
α(m) :=











∫

S\A◦
0

α◦|∇m|2 dL2, if m ∈ W 1,2
loc (S \A◦

0; R
3),

∞, otherwise,

for any m = (m1,m2,m3) ∈ L2(S; R3).

(10)

Up to the present date, the proof of the above fact has been performed by relying
on the compactness of the sublevel sets of E(h), that has been derived from the
coercivity condition (8).

Now, the main theme of this study is to verify whether some analogous conclusion
can be obtained even under degenerative situations of α, or not. So, as the first
step of the research, we here impose the following two conditions for the material
coefficient α:

(a1) L3(A0) = 0, and hence L3(A
(h)
0 ) = 0, for 0 < h < 1;

(a2) there exists a constant Cα ≥ 1, such that

α◦(xP) ≤ α(x) ≤ Cαα◦(xP), for all x = (x1, x2, x3) ∈ Ω.

Consequently, some positive conclusions for our theme will be shown in the main
theorem, stated as follows.

Main Theorem. (I) Let us assume the condition (a1). Then, for any 0 < h < 1,
the minimization problem (MP)(h) admits at least one solution (minimizer)

m(h), and hence the same holds for the problem (MP)
(h)
org.

(II) Under the conditions (a1)-(a2), there exist a sequence {hi | i = 1, 2, 3, · · · } ⊂
(0, 1) and a limiting function m◦ ∈ L2(S; R3) of two variables, such that:
(i) hi ց 0, m(hi) → m◦ in L2(Ω; R3), E(hi)(m(hi)) → E◦(m◦), and







∇Pm(hi)(x1, x2, x3) → ∇Pm◦(x1, x2) (= ∇m◦(x1, x2)),

1

hi
∂3m

(hi)(x1, x2, x3) → 0,

for L2-a.e. (x1, x2) ∈ S and L1-a.e. x3 ∈ (0, 1),

(11)

as i → ∞;
(ii) the limit m◦ solves the problem (MP)◦;

where {m(h) | 0 < h < 1} is the sequence of minimizers m(h), 0 < h < 1,
obtained in (I).

The content of this paper is as follows. In the next Section 2, the mathematical
treatment of the coupled Maxwell equation (5) is described, with the references of
foregoing works [18, 20]. In Sections 3-4, the key-properties of the energy functionals

E(h) and Φ
(h)
α are shown, including the compactness of sublevel sets, without help
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from (8), and the limiting observation (Γ-convergence) for the functionals as h ց 0.
Finally, Section 5 is devoted to the proof of Main Theorem.

Notation. For any dimension n ∈ N, the n-dimensional Lebesgue measure is de-
noted by Ln, and for any Borel set E ⊂ R

n, the characteristic function on E is
denoted by χE .

For any abstract Banach space, the norm of X is denoted by | · |X . However,
when X is an Euclidean space, the norm is simply denoted by | · |. Also, we denote
by distX(ξ, Y ) the distance between any point ξ ∈ X and any subset Y ⊂ X, that
is defined as distX(ξ, Y ) := infη∈Y |ξ − η|X . Additionally, for any r > 0 and any
functional F : X −→ [−∞,∞], we denote by L(r;F ) the sublevel set of F , more
precisely:

L(r;F ) :=
{

ξ ∈ X F (ξ) ≤ r
}

.

For any abstract Hilbert space H, the inner product of H is denoted by (·, ·)H .
However, when H is an Euclidean space, the inner product between two vectors
ξ, η ∈ H is simply denoted by ξ · η. Besides, for arbitrary k, ℓ ∈ N and arbitrary
k × ℓ-matrices A = (aij), B = (bij) ∈ R

k×ℓ, the scalar product between these two

matrices is denoted by A : B, more precisely, A : B :=
∑k

i=1

∑ℓ
j=1 aijbij .

2. Mathematical treatment of the Maxwell equation. In this section, we
focus on the coupled Maxwell equation (5), to recall its rigorous mathematical
treatment, studied in [18, 20].

Hereafter, let us fix any (three-dimensional) open ball BΩ, which contains the
cylindrical domain Ω. Then, the phase space for the Maxwell equation (5) is settled
as the following functional space, denoted by V :

V :=

{

v ∈ H1
loc(R

3) ∇v ∈ L2(R3; R3) and

∫

BΩ

v dL3 = 0

}

.

As it is easily checked (cf. [5, Theorem 5.4.3]), this functional space is a Hilbert
space, endowed with the inner product:

(z, v)V :=

∫

R3

(

∇Pz · ∇Pv +
1

h2
∂3z∂3v

)

dL3, for all z, v ∈ V ;

where 0 < h < 1 is the same constant as in (5). Additionally, the Hilbert space V
is compactly embedded into the space L2(BΩ).

On the basis of the above notation, the solution of the Maxwell equation (5) is
prescribed as follows.

Definition 2.1. Let us fix any constant 0 < h < 1, and any function m =
(m1, m2,m3) ∈ L2(Ω; R3). Then, the solution of the equation (5) is defined as
a function ζ ∈ V , which solves the following variational identity:

(ζ, v)V =

∫

Ω

(

mP · ∇Pv +
1

h
m3∂3v

)

dL3, for any v ∈ V . (12)

The above definition method was proposed by James-Kinderlehrer [20], and in the
cited paper, the authors also demonstrated the well-posedness for (5), summarized
in the following proposition.

Proposition 1. (Summary of [20, Lemma 3.1]) Let us fix any 0 < h < 1. Then, for
any m ∈ L2(Ω; R3), the Maxwell equation (5) admits a unique solution ζ. Hence,
the solution operator S(h) : L2(Ω; R3) −→ V , that maps any m ∈ L2(Ω; R3) to the
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solution ζ ∈ V of (5), is well-defined as a single-valued mapping. Moreover, the
solution operator S(h) is a bounded linear operator, such that:

|S(h)m|V ≤ |m|L2(Ω;R3), for any m ∈ L2(Ω; R3). (13)

Next, let us look toward the limiting observation for (5), as h ց 0. As a ground-
breaking work for this theme, we can refer to [18, Proposition 4.1], stated as follows.

Proposition 2. (Summary of [18, Proposition 4.1]) Let {m̃(h) | 0 < h < 1} ⊂
L2(Ω; R3) be a fixed sequence, such that m̃(h) → m̃ in L2(Ω; R3) as h ց 0, for
some m̃ = (m̃1, m̃2, m̃3) ∈ L2(Ω; R3). For any 0 < h < 1, let ζ(h) be the solution

of the Maxwell equation (5) when m = m̃(h). Let E
(h)
mag and E◦

mag be functionals on

L2(Ω; R3), which are respectively defined as:














E(h)
mag(m) :=

1

2

∫

Ω

(

∇Pζ(h) · mP +
1

h
∂3ζ

(h) m3

)

dL3,

E◦
mag(m) :=

1

2

∫

Ω

|m3|2 dL3,

for any m = (m1, m2, m3) ∈ L2(Ω; R3).

(14)

Then,

ζ(h) → 0 in V , and
1

h
∂3ζ

(h) → m̃3 in L2(Ω), as h ց 0, (15)

and hence

E(h)
mag(m̃

(h)) → E◦
mag(m̃), as h ց 0.

Remark 1. For any 0 < h < 1, the functional E
(h)
mag, given in (14), links to the

part of the free energy E(h), given in (4), that is involved in the coupled Maxwell
equation (5). Moreover, in the light of Definition 2.1, we have:

E(h)
mag(m̃

(h)) =
1

2
|ζ(h)|2V ≥ 0, for any 0 < h < 1; (16)

under the same notations as in Proposition 2.

3. Key-properties of energy functionals. We start with the description of the
discussion points, that are planning in Sections 3-4. In these sections, four theorems
will be demonstrated with some corollaries.

The first theorem is concerned with a Hilbert space, associated with the effective
domains of convex parts of energy functionals.

Theorem 3.1. Let us set:














A†
0 := A◦

0 × (0, 1),

X†
α :=

{

m ∈ L2(Ω; R3)
m ∈ W 1,2

loc (Ω \ A†
0; R

3),
√

α◦ ∇m ∈ L2(Ω \ A†
0; R

3×3)

}

.
(17)

Then, X†
α is a Hilbert space, endowed with the inner product:

(ξ, η)X†
α

:=

∫

Ω

ξ · η dL3 +

∫

Ω\A†
0

α◦ ∇ξ : ∇η dL3, for all ξ, η ∈ X†
α. (18)
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Hence, the functional Φ†
α, defined as:

Φ†
α(m) :=











∫

Ω\A†
0

α◦|∇m|2 dL2, if m ∈ X†
α,

∞, otherwise,

for any m = (m1,m2,m3) ∈ L2(Ω; R3);

(19)

is proper l.s.c. and convex on L2(Ω; R3).

Just as in the above theorem, we can prove the following corollary.

Corollary 1. (I) Let us fix any 0 < h < 1, and let us denote by X
(h)
α the effective

domain of the convex function Φ
(h)
α , given in (6). Then, X

(h)
α is a Hilbert

space, endowed with the inner product:

(ξ, η)
X

(h)
α

:=

∫

Ω

ξ · η dL3 +

∫

Ω\A
(h)
0

α(h)

(

∇Pξ : ∇Pη +
1

h2
∂3ξ · ∂3η

)

dL3,

for all ξ, η ∈ X
(h)
α .

Hence, the convex function Φ
(h)
α turns out to be proper and l.s.c. on L2(Ω; R3).

(II) Let us denote by X◦
α the effective domain of the convex function Φ◦

α, given in
(10). Then, X◦

α is a Hilbert space, endowed with the inner product:

(ξ, η)X◦
α

:=

∫

S

ξ · η dL2 +

∫

S\A◦
0

α◦ ∇ξ : ∇η dL2, for all ξ, η ∈ X◦
α.

Hence, the convex function Φ◦
α turns out to be proper and l.s.c. on L2(S; R3).

Remark 2. As it is easily checked, the two convex functions Φ†
α and Φ◦

α, as in
Theorem 3.1 and Corollary 1, coincide with as functionals on L2(S; R3), namely:

Φ†
α(m) = Φ◦

α(m), if m ∈ L2(S; R3).

The discussion point of the second theorem is in the compactness of the embed-

ding, relative to the Hilbert spaces X
(h)
α , 0 < h < 1, and X◦

α.

Theorem 3.2. (Compactness) Let us assume the condition (a1), as in introduction,
and let us take any 2 < p ≤ ∞. Then, for any 0 < h < 1, any bounded sequence in

X
(h)
α ∩Lp(Ω; R3) is relatively compact in L2(Ω; R3). As well as, if we assume that:

(a1)◦ L2(A◦
0) = 0;

then any bounded sequence in X◦
α ∩ Lp(S; R3) is relatively compact in L2(S; R3).

Here is a corollary that is derived from the second theorem.

Corollary 2. (I) Let us assume the condition (a1), as in introduction, and let

us take any 1 ≤ p < 2. Then, for any 0 < h < 1, the Hilbert space X
(h)
α

is compactly embedded into the Banach space Lp(Ω; R3). As well as, if we
assume the condition (a1)◦, as in Theorem 3.2, then the Hilbert space X◦

α is
compactly embedded into the Banach space Lp(S; R3).

(II) Let us assume the condition (a1), as in introduction, then for any 0 < h < 1
and any r > 0, the sublevel set:

L(r; E(h)) :=
{

m ∈ L2(Ω; R3) E(h)(m) ≤ r
}

;
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is compact in L2(Ω; R3). As well as, if we assume the condition (a1)◦, as in
Theorem 3.2, then for any r > 0, the sublevel set:

L(r; E◦) :=
{

m ∈ L2(Ω; R3) E◦(m) ≤ r
}

;

is compact in L2(S; R3).

In the third theorem, we focus on the limiting observation of the sequence

{Φ(h)
α | 0 < h < 1} of convex functions, as h ց 0.

Theorem 3.3. (Mosco convergence as h ց 0) Let us assume the conditions (a1)-

(a2), as in introduction. Then, the sequence {Φ(h)
α | 0 < h < 1} of convex functions

converges to (the infinity-extension of) the convex function Φ◦
α, on L2(Ω; R3), in

the sense of Mosco (cf. [23]), as h ց 0. More precisely:

(m1) lim inf
hց0

Φ(h)
α (µ(h)) ≥ Φ◦

α(µ), if {µ(h) | 0 < h < 1} ⊂ L2(Ω; R3) is a bounded

sequence, in the topology of L2(Ω; R3), having a weak limit µ ∈ L2(Ω; R3);

(m2) for any ν ∈ X◦
α (⊂ L2(S; R3)), there exists a sequence {µ(h)

ν | 0 < h < 1} ⊂
L2(Ω; R3), such that µ

(h)
ν → ν in L2(Ω; R3) and Φ

(h)
α (µ

(h)
ν ) → Φ◦

α(ν), as
h ց 0.

Additionally, checking the above Mosco convergence from the theory of Γ- con-
vergence (cf. [1, 11]), we conclude the following corollary.

Corollary 3. (Γ-convergence as h ց 0) Under the same assumption as in Theorem
3.3, the sequence {E(h) | 0 < h < 1} of energy functionals converges to (the infinity-
extension of) the functional E◦, on L2(Ω; R3), in the sense of Γ-convergence, as
h ց 0.

Remark 3. According to [1, Lemma 2.3], the Γ-convergence, asserted in Corollary
3, can be concluded, if and only if:

(γ1) lim inf
hց0

E(h)(µ(h)) ≥ E◦(µ), if {µ(h) | 0 < h < 1} ⊂ L2(Ω; R3) is a convergent

sequence, in the topology of L2(Ω; R3), having a (strong) limit µ ∈ L2(Ω; R3);

(γ2) for any ν ∈ X◦
α (⊂ L2(S; R3)), there exists a sequence {µ(h)

ν | 0 < h < 1} ⊂
L2(Ω; R3), such that µ

(h)
ν → ν in L2(Ω; R3) and E(h)(µ

(h)
ν ) → E◦(ν), as h ց 0.

Here, with helps from Proposition 2 and the constraint onto L2(Ω; S2) as in (4),
we can derive the conditions (γ1)-(γ2) from the conditions (m1)-(m2) of Mosco
convergence, mentioned in Theorem 3.3.

The final fourth theorem is concerned with a sort of uniform compactness of
sublevel sets, with respect to 0 < h < 1.

Theorem 3.4. (Uniform compactness) Let us assume the conditions (a1)-(a2).
Then, for arbitrary 2 < p ≤ ∞ and arbitrary r,R > 0,

⋃

0<h<1

L(r; Φ(h)
α ) ∩

{

m ∈ X
(h)
α |m|Lp(Ω;R3) ≤ R

}

⊂ X†
α, (20)

and the above union is compact in L2(Ω; R3). As well as,
⋃

0<h<1

L(r; E(h)) ⊂ X†
α ∩ L2(Ω; S2), (21)

and the above union is compact in L2(Ω; R3).
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4. Proofs of Theorems 3.1-3.4. This section is devoted to the proofs of Theo-
rems 3.1-3.4. The proofs of all theorems will be based on the following lemma.

Lemma 4.1. (Approximating open sets)

(I) For any 0 < h < 1, there exists a sequence {Ω(h)
ℓ | ℓ = 1, 2, 3, · · · } ⊂ R

3 of
three-dimensional open sets, having Lipschitz boundaries, such that:

∅ 6= Ω
(h)
1 ⊂⊂ Ω

(h)
2 ⊂⊂ Ω

(h)
3 ⊂⊂ · · · ⊂⊂ Ω

(h)
ℓ ⊂⊂ · · · ⊂⊂ Ω \ A

(h)
0 =

∞
⋃

ℓ=0

Ω
(h)
ℓ . (22)

(II) There exists a sequence {Sℓ | ℓ = 1, 2, 3, · · · } ⊂ R
2 of two-dimensional open

sets, having Lipschitz boundaries, such that:

∅ 6= S1 ⊂⊂ S2 ⊂⊂ S3 ⊂⊂ · · · ⊂⊂ Sℓ ⊂⊂ · · · ⊂⊂ S \ A◦
0 =

∞
⋃

ℓ=0

Sℓ.

Proof of Lemma 4.1. In the proof of the assertion (I), the elements of the required
sequence will be selected from a class of open sets ∆ε,δ,τ , 0 < ε, δ, τ < 1, prescribed
as follows.

∆ε,δ,τ :=
{

x ∈ Ω (ρε ∗ χDδ
)(x) > τ

}

, for all 0 < ε, δ, τ < 1;

where the functions ρε, 0 < ε < 1, are the usual mollifiers, the notation “ ∗ ” denotes
the convolution between functions, and

Dδ :=
{

x ∈ Ω \ A
(h)
0 distR3(y, A

(h)
0 ∪ ∂Ω) > δ

}

, for any 0 < δ < 1.

Then, Sard’s theorem enables to take appropriate sequences {εℓ, δℓ, τℓ | ℓ = 1, 2, 3, · · · } ⊂
(0, 1), such that the open sets Ω

(h)
ℓ := ∆εℓ,δℓ,τℓ

, ℓ = 1, 2, 3, · · · , satisfy the condition
(22) with the smoothness of their boundaries.

On the other hand, the proof of the assertion (II) will be just a modified version
of the above one, arranged for the two-dimensional situation.

Remark 4. As a consequence of Lemma 4.1, we infer that:






a
(h)
ℓ := min

x∈Ω
(h)
ℓ

α(h)(x) > 0, ℓ = 1, 2, 3, · · · ,

a
(h)
ℓ ց 0, as ℓ → ∞,

for any 0 < h < 1.

As well as, we may say that:

a◦
ℓ := min

x∈Sℓ

α◦(x) > 0, ℓ = 1, 2, 3, · · · , and a◦
ℓ ց 0 as ℓ → ∞.

Remark 5. If we additionally assume the condition (a2) in Lemma 4.1, then the

sequences {Ω(h)
ℓ }, 0 < h < 1, can be taken independently of h. In fact, since the

condition (a2) implies that:

(†) A
(h)
0 = A†

0, for any 0 < h < 1;

it is easily checked that all of open sets, given as:

Ω†
ℓ := Sℓ × (0, 1), ℓ = 1, 2, 3, · · · ;

have Lipschitz boundaries, and the (h-independent) sequence {Ω†
ℓ | ℓ = 1, 2, 3, · · · }

fulfills (22), for any 0 < h < 1.
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Proof of Theorem 3.1. We can easily check that the set X†
α is a linear space. Also,

by the definition formula (18),

(ξ, ξ)X†
α
≥ |ξ|2L2(Ω;R3), for any ξ ∈ X†

α. (23)

It implies that the left hand side of (23) is always nonnegative, and it is equal to
zero if and only if ξ = 0, L3-a.e. in Ω. After this, the bi-linearity, inherent in (18),
guarantees that the pairing (·, ·)X†

α
defines a certain inner product in X†

α.
Now, all we have to do is to verify the completeness of the topology, provided

by the inner product (·, ·)X†
α
. To this end, we take any Cauchy sequence {ξ(i) | i =

1, 2, 3, · · · } ⊂ X†
α, namely for any ε > 0, we suppose the existence of the index

number nε ∈ N, such that:

|ξ(i) − ξ(j)|2
X†

α
=

∫

Ω

|ξ(i) − ξ(j)|2 dL3 +

∫

Ω\A†
0

α◦|∇(ξ(i) − ξ(j))|2 dL3 ≤ ε,

for all i, j ≥ nε.

Then, in the light of Remark 4,














• {ξ(i)} is a Cauchy sequence of L2(Ω; R3);

• {ξ(i)} is a Cauchy sequence of W 1,2(Ω†
ℓ; R

3), for any ℓ ∈ N;

• {
√

α◦ ∇ξ(i)} is a Cauchy sequence in L2(Ω \ A†
0; R

3×3).

So, by the completeness in the Hilbert spaces, listed the above, we find a function

ξ ∈ L2(Ω; R3) ∩ W 1,2
loc (Ω \ A†

0; R
3), such that:















ξ(i) → ξ in L2(Ω; R3),

ξ(i) → ξ in W 1,2(Ω†
ℓ; R

3), for any ℓ ∈ N,
√

α◦ ∇ξ(i) →
√

α◦ ∇ξ in L2(Ω \ A†
0; R

3×3),

as i → ∞.

From these convergences, it is deduced that:

|ξ(i) − ξ|X†
α

= lim
j→∞

(

∫

Ω

|ξ(i) − ξ(j)|2 dL3 +

∫

Ω\A†
0

α◦|∇(ξ(i) − ξ(j))|2 dL3

)

≤ sup
j≥nε

|ξ(i) − ξ(j)|2
X†

α
≤ ε, for all i ≥ nε;

and hence ξ = ξ(nε) + (ξ − ξ(nε)) ∈ X†
α. Thus, X†

α is a Hilbert space.
Next, with regard to the functional Φ†

α, its convexity is immediately seen from the
quadratic form, as in (19). Also, noting that X†

α ⊃ W 1,2(Ω; R3), we infer that the
convex function Φ†

α is proper on L2(Ω; R3). Furthermore, the lower semi-continuity
of Φ†

α can be verified by checking the closedness of the sublevel sets:

L(r; Φ†
α) :=

{

m ∈ X†
α Φ†

α(m) ≤ r
}

, for r > 0.

In fact, assuming that:






• r > 0, {η(i) | i = 1, 2, 3, · · · } ⊂ L(r; Φ
(h)
α ), η ∈ L2(Ω; R3),

• η(i) → η in L2(Ω; R3) as i → ∞;

we immediately have:

η(ik) → η weakly in X†
α as k → ∞, and hence η ∈ X†

α;
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for some subsequence {η(ik) | k = 1, 2, 3, · · · } ⊂ {η(i)}. So, by the weak lower semi-
continuity of the convex function m ∈ X†

α 7→ |m|2
X†

α
, it is deduced that:

Φ(h)
α (η) = |η|2

X†
α
− |η|2L2(Ω;R3) ≤ lim inf

k→∞
|η(ik)|2

X†
α
− lim

k→∞
|η(ik)|2L2(Ω;R3)

= lim inf
k→∞

(

|η(ik)|2
X†

α
− |η(ik)|2L2(Ω;R3)

)

≤ sup
i∈N

Φ(h)
α (η(i)) ≤ r.

Hence, η ∈ L(r; Φ
(h)
α ).

Proof of Theorem 3.2. We prove only the assertion for the space X◦
α ∩ Lp(S; R3)

with 2 < p ≤ ∞, since the demonstration method for the other one is essentially
the same.

Let us assume the condition (a1)◦, let us fix any 2 < q < p, and let us set

r := limp̃րp(p̃/(p̃ − q)). Besides, let us take any sequence {ξ(i)
∗ | i = 1, 2, 3, · · · } ⊂

X◦
α ∩ Lp(S; R3), such that:

sup
i∈N

|ξ(i)
∗ |X◦

α
≤ R0 and sup

i∈N

|ξ(i)
∗ |Lp(S;R3) ≤ R0; (24)

for some constant R0, independent of i ∈ N. Then, noting that L2(S) = 1, and:

sup
i∈N

∣

∣|ξ(i)
∗ |2

∣

∣

Lq/2(S;R3)
= sup

i∈N

|ξ(i)
∗ |2Lq(S;R3) ≤ sup

i∈N

|ξ(i)
∗ |2Lp(S;R3) ≤ R2

0;

we find a sequence {n(0)
k | k = 1, 2, 3, · · · } ⊂ N, and functions ξ∗ ∈ X◦

α and γ∗ ∈
Lq/2(S), such that:







n
(0)
k ր ∞, ξ

(n
(0)
k )

∗ → ξ∗ weakly in X◦
α,

and |ξ(n
(0)
k )

∗ |2 → γ∗ weakly in Lq/2(S),

as k → ∞. (25)

The above convergence implies that:
∫

E

|ξ(n
(0)
k )

∗ |2 dL2 =

∫

S

|ξ(n
(0)
k )

∗ |2χE dL2 →
∫

S

γχE dL2 =

∫

E

γ dL2

as k → ∞, for any Borel subset E ⊂ S.

So, applying the assumption (a1)◦ and Vitali-Hahn-Saks’s theorem [2, Theorem
1.30], we infer that:

I
(ℓ)
∗ := sup

j∈N

∫

S\Sℓ

|ξ(n
(0)
j )

∗ |2 dL2 → 0, as ℓ → ∞. (26)

Next, due to Lemma 4.1 and Remark 4, the subsequence {ξ(n
(0)
k )

∗ | k = 1, 2, 3, · · · }
⊂ {ξ(i)

∗ } turns out to be bounded in the space W 1,2(Sℓ; R
3), for any ℓ ∈ N. Hence,

Sobolev’s embedding theorem enables to construct a decreasing family of subse-
quences:

{n(0)
k } ⊃ {n(1)

k } ⊃ {n(2)
k } ⊃ {n(3)

k } ⊃ · · · ⊃ {n(ℓ)
k } ⊃ · · · ;

to fulfill that:

• the subsequence {ξ(n
(ℓ)
k )

∗ } admits a limit

η
(ℓ)
∗ ∈ W 1,2(Sℓ; R

3), in the (strong) topology
of L2(Sℓ; R

3), as k → ∞,

• |ξ(n
(ℓ)
k )

∗ − η
(ℓ)
∗ |2L2(Sℓ;R3) ≤

1

ℓ
, k = 1, 2, 3, · · · ,































for any ℓ ∈ N. (27)



12 REJEB HADIJI AND KEN SHIRAKAWA

Now, let us set a function η∗ ∈ W 1,2
loc (S \ A◦

0; R
3), by putting:

η∗(x) := η
(ℓ)
∗ (x), if x ∈ Sℓ, for L2-a.e. x ∈ S.

Then, by virtue of (24) and the monotone convergence theorem,
∫

S

|η∗|2 dL2 = lim
ℓ→∞

∫

S

χSℓ
|η∗|2 dL2 ≤ sup

ℓ∈N

∫

Sℓ

|η(ℓ)
∗ |2 dL2

= sup
ℓ∈N

(

lim
k→∞

∫

Sℓ

|ξ(n
(ℓ)
k )

∗ |2 dL2

)

≤ sup
i∈N

|ξ(i)
∗ |2X◦

α
≤ R2

0; (28)

therefore η∗ ∈ L2(S; R3).

Subsequently, let us set a subsequence {ξ(k)
∗∗ | k = 1, 2, 3, · · · } ⊂ {ξ(i)

∗ }, by putting:

ξ
(k)
∗∗ := ξ

(n
(k)
k )

∗ in L2(S; R3), for k = 1, 2, 3, · · · .
Then, taking into account of the assumption (a1)◦, and (26)-(28), we obtain that:

|ξ(k)
∗∗ − η∗|2L2(S;R3)

≤ |ξ(n
(k)
k )

∗ − η∗|2L2(Sk;R3) + 2(|ξ(k)
∗∗ |2L2(S\Sk;R3) + |η∗|2L2(S\Sk;R3))

≤ 1

k
+ 2I

(k)
∗ + 2

∫

S\Sk

|η∗|2 dL2 → 0, as k → ∞.

Thus, the subsequence {ξ(k)
∗∗ } is a convergent sequence in the topology of L2(S; R3),

and the limit η∗ must coincide with the weak limit ξ∗ as in (25).

Proof of Theorem 3.3. First, let us take into account of the assumptions (a1)-(a2),
Theorem 3.1 and Remark 5, to check that:

(‡) L3(A
(h)
0 ) = L3(A†

0) = L2(A◦
0) = 0, Φ

(h)
α ≥ Φ†

α on L2(Ω; R3), and hence

X
(h)
α ⊂ X†

α, for any 0 < h < 1.

Now, the proof is divided into two steps, which are concerned with the respective
verifications of items (m1) and (m2).

(Step 1) verification of (m1). Let us take any sequence {µ(h) | 0 < h < 1} ⊂
L2(Ω; R3) and any µ ∈ L2(Ω; R3), such that:

µ(h) → µ weakly in L2(Ω; R3), as h ց 0. (29)

Then, it is enough to consider only the finite case of lim infhց0 Φ
(h)
α (µ(h)), since the

other case is obvious. In this case, we find a sequence {h̆i | i = 1, 2, 3, · · · } ⊂ (0, 1)
and a constant R1, independent of the index i ∈ N, such that:











h̆i+1 < h̆i <
1

2i
,

1

h̆2
i

∫

Ω\A†
0

α(h̆i)|∂3µ
(h̆i)|2 dL3 ≤ Φ(h̆i)

α (µ(h̆i)) ≤ R1,
for i = 1, 2, 3, · · · , (30)

and
lim

i→∞
Φ(h̆i)

α (µ(h̆i)) = lim inf
hց0

Φ(h)
α (µ(h)) (< ∞). (31)

By virtue of (29)-(31) and Remark 4,










|∂3µ
(h̆i)|2

L2(Ω†
ℓ ;R3)

≤ R1

a
(h̆i)
ℓ

h̆2
i ≤ R1

a
(1/2)
ℓ

h̆2
i → 0, as i → ∞,

∂3µ = 0 in L2(Ω†
ℓ; R

3),

for any ℓ ∈ N.
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Therefore, for any ℓ ∈ N, we find a function of two-variables µ
(ℓ)
∗ ∈ L2(Sℓ; R

3), such
that:

µ(x1, x2, x3) = µ
(ℓ)
∗ (x1, x2), for L2-a.e. (x1, x2) ∈ Sℓ and L1-a.e. x3 ∈ (0, 1).

Here, let us set:

µ∗(x1, x2) :=

{

µ
(ℓ)
∗ (x1, x2), if ℓ ∈ N and (x1, x2) ∈ Sℓ,

0, otherwise,

for L2-a.e. (x1, x2) ∈ S.

Then, with helps from (a1)-(a2), Fubini’s theorem and the monotone convergence
theorem, it is inferred that:

∫

S

|µ∗|2 dL2 =

∫ 1

0

∫

S\A◦
0

|µ∗|2dL2dL1 = lim
ℓ→∞

∫ 1

0

∫

S\A◦
0

χSℓ
|µ∗|2dL2dL1

= lim
ℓ→∞

∫ 1

0

∫

Sℓ

|µ∗|2dL2dL1 = lim
ℓ→∞

∫

Ω†
ℓ

|µ|2 dL3 ≤ |µ|2L2(Ω;R3) < ∞,

and
∫

Ω

|µ − µ∗|2 dL3 = lim
ℓ→∞

∫ 1

0

∫

S

χSℓ
|µ − µ∗|2 dL2dL1

= lim
ℓ→∞

∫ 1

0

∫

Sℓ

|µ − µ∗|2 dL2dL1 = 0.

Hence, the limit µ can be regarded as the function µ∗ ∈ L2(S; R3) of two-variables.
Now, taking into account of (‡), Theorem 3.1 and Remark 2, we conclude that:

lim inf
hց0

Φ(h)
α (µ(h)) ≥ lim inf

hց0
Φ†

α(µ(h)) ≥ Φ†
α(µ) = Φ◦

α(µ).

(Step 2) verification of (m2). Let us take any ν ∈ X◦
α. Then, under (a1)-(a2), we

can construct the required sequence {µ(h)
ν | 0 < h < 1}, by putting:

µ(h)
ν := ν ∈ X†

α (= X(h)
α ), for any 0 < h < 1. (32)

In fact, since:
{

α(h) → α◦ in C(Ω), as h ց 0,

|α(h)| (= α(h)) ≤ Cα α◦ on Ω, for any 0 < h < 1;

we obtain that:

Φ(h)
α (µ(h)

ν ) =

∫

Ω\A†
0

α(h)|∇ν|2 dL3

→
∫

Ω\A†
0

α◦|∇ν|2 dL3 =

∫

S\A◦
0

α◦|∇ν|2 dL2 = Φ◦
α(ν), as h ց 0; (33)

by applying Lebesgue’s dominated convergence theorem.

Proof of Theorem 3.4. Let us assume the conditions (a1)-(a2), and let us take any
2 < p ≤ ∞. Then, the inclusions (20) and (21) will be direct consequences of (†)-(‡).
In view of this, either compactness, asserted in Theorem 3.4, is reduced to that of
the embedding X†

α ∩ Lp(Ω; R3) into L2(Ω; R3).
However, the above compact embedding will be obtained, immediately, by ap-

plying Theorem 3.2 for the special situation that Cα = 1 in the assumption (a2).
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Eventually, under the assumption (a1)-(a2), it can be said that Theorem 3.4 is
a corollary of Theorem 3.2.

5. Proof of Main Theorem. This section is largely divided into two subsections,
concerned with the proofs of the respective assertions (I) and (II) of Main Theorem.

5.1. Proof of (I) of Main Theorem. Let us assume the condition (a1), and let
us fix any 0 < h < 1. Then, the assertion (I) can be shown by applying standard
technique, with the help from the compactness, as in Theorem 3.2 and Corollary 2.

Let us put e† := [1, 0, 0] ∈ S
2. Then, by virtue of (4), (14) and (16),

0 ≤ E
(h)
∗ := inf

m∈L2(Ω;R3)
E(h)(m) ≤ E(e†).

Since the above inequality implies the finiteness of the infimum E
(h)
∗ of E(h) in

L2(Ω; R3), we naturally find a sequence {m̆(i) | i = 1, 2, 3, · · · } ⊂ X
(h)
α , such that:

E(h)(m̆(i)) ց E
(h)
∗ as i → ∞. (34)

Subsequently, by (II) of Corollary 2 and the constraint onto L2(Ω; S2) as in (4), we
further find a subsequence {m̆(ik) | k = 1, 2, 3, · · · } ⊂ {m̆(i)} with a limiting function
m̆ ∈ L2(Ω; S2), such that:

{

m̆(ik) → m̆ in L2(Ω; R3),

ϕ(m̆(ik)) → ϕ(m̆) in L1(Ω),
as k → ∞. (35)

Besides, for any k ∈ N, let us denote by ζ̆(k) the solution of the coupled Maxwell

equation (5), when m = m̆(ik), and also, let us denote by ζ̆ the solution of (5), when
m = m̆. Then, in the light of Proposition 1,

ζ̆(k) → ζ̆ in V , as k → ∞. (36)

Now, taking into account of (16), (34)-(36) and Theorem 3.1, we obtain that:

E
(h)
∗ = lim

k→∞
E(h)(m̆(ik))

= lim inf
k→∞

Φ(h)
α (m̆(ik)) + lim

k→∞

(

|ϕ(m̆(ik))|L1(Ω) +
1

2
|ζ̆(k)|2V

)

≥ Φ(h)
α (m̆) + |ϕ(m̆)|L1(Ω) +

1

2
|ζ̆|2V = E(h)(m̆) ≥ E

(h)
∗ .

Therefore, the limit m̆ is the minimizer, that is denoted by m(h) in the assertion (I)
of Main Theorem.

5.2. Proof of (II) of Main Theorem. Let us assume the conditions (a1)-(a2),
and let us take a sequence {m(h) | 0 < h < 1} of minimizers m(h) of E(h), for every
0 < h < 1. Namely, we may say that:

E(h)(m(h)) ≤ E(h)(m), for all m ∈ L2(Ω; R3) and all 0 < h < 1. (37)

For any 0 < h < 1, let ζ
(h)

e† be the solution of the coupled Maxwell equation (5),

when m ≡ e†, L3-a.e. in Ω. Then, by (12) and (16),

2E(h)
mag(e

†) ≤ |ζ(h)

e† |2V ≤ |e†|L2(Ω;R3)|ζ(h)

e† |V ≤
√

2E
(h)
mag(e†).

Since the above inequality implies that:

E(h)
mag(e

†) ≤ 1

2
< 1, for all 0 < h < 1;
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it is further seen that:

Φ(h)
α (m(h)) ≤ E(h)(m(h)) ≤ E(h)(e†) = Φ(h)

α (e†) + |ϕ(e†)|L1(Ω) + E(h)
mag(e

†)

≤ ϕ(e†) + 1, for all 0 < h < 1. (38)

By virtue of (38), Theorem 3.4 and the constraint onto L2(Ω; S2) as in (4), we find

a sequence {ĥi | i = 1, 2, 3, · · · } ⊂ (0, 1) with a limiting function m◦ ∈ L2(Ω; S2),
such that:

{

ĥi ց 0, m(ĥi) → m◦ in L2(Ω; R3),

ϕ(m(ĥi)) → ϕ(m◦) in L1(Ω),
as i → ∞. (39)

Also, taking into account of (38) and Corollary 3 and Remark 3, it will be observed
that:

Φ◦
α(m◦) ≤ E◦(m◦) ≤ lim inf

i→∞
E(ĥi)(m(ĥi)) ≤ ϕ(e†) + 1; (40)

and hence m◦ ∈ X◦
α ∩ L2(S; S2). Furthermore, by (32)-(33), we obtain that:

E◦(m◦) ≤ lim sup
i→∞

E(ĥi)(m(ĥi)) ≤ lim
i→∞

E(ĥi)(m) = E◦(m),

for any m ∈ X◦
α ∩ L2(S; S2),

and

E◦(m◦) ≤ lim inf
i→∞

E(ĥi)(m(ĥi)) ≤ lim sup
i→∞

E(ĥi)(m(ĥi)) ≤ E◦(m◦).

Now, all we have to do is to show that the pointwise convergence, asserted in

(11), is certainly realized by some subsequence {hi | i = 1, 2, 3, · · · } of {ĥi}.
By (a2), (38) and (40),

∫

Ω\A†
0

α◦|∇P(m(h) − m◦)|2 dL3 ≤ 2

∫

Ω\A†
0

α◦
(

|∇Pm(h)|2 + |∇Pm◦|2
)

dL3

≤ 2
(

Φ(h)
α (m(h)) + Φ◦

α(m◦)
)

≤ 4(ϕ(e†) + 1), for all 0 < h < 1. (41)

So, putting:

β(h) :=
√

α◦ ∇P(m(h) − m◦) ∈ L2(Ω \ A†
0; R

3×2), for any 0 < h < 1;

we infer from (41) the existence of a subsequence {ĥ(0)
i | i = 1, 2, 3, · · · } ⊂ {ĥi} with

a limiting function β◦ ∈ L2(Ω \ A†
0; R

3×2), such that:

β(ĥ
(0)
i ) → β◦ weakly in L2(Ω \ A†

0; R
3×2), as i → ∞. (42)

Besides, in the light of Remark 4, (39) and (41), we can construct a decreasing
family of subsequences:

{ĥ(0)
i } ⊃ {ĥ(1)

i } ⊃ {ĥ(2)
i } ⊃ {ĥ(3)

i } ⊃ · · · ⊃ {ĥ(ℓ)
i } ⊃ · · · ;

so that:

∇Pm(ĥ
(ℓ)
i ) → ∇Pm◦ weakly in L2(Ωℓ; R

3×2), as i → ∞, for any ℓ ∈ N.

Here, for a subsequence {ȟi := ĥ
(i)
i | i = 1, 2, 3, · · · } ⊂ {ĥi}, we deduce that:

{

∇Pm(ȟi) → ∇Pm◦,

β(ȟi) → 0,
in the distribution sense on Ω \ A†

0, as i → ∞. (43)

As a consequence of (42) and (43), it can be said that:

β◦ = 0 in L2(Ω \ A†
0); (44)
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since the distributional limits should be unique.
In the meantime, from (a2) and (37), it is derived that:

(

Φ(ȟi)
α (m◦) − Φ◦

α(m◦)
)

+ |ϕ(m(ȟi)) − ϕ(m◦)|L1(Ω)

+|E(ȟi)
mag(m

◦) − E◦
mag(m

◦)| + |E(ȟi)
mag(m

(ȟi)) − E◦
mag(m

◦)|
≥ Φ(ȟi)

α (m(ȟi)) − Φ◦
α(m◦) ≥ Φ†

α(m(ȟi)) − Φ◦
α(m◦)

=

∫

Ω\A†
0

[
√

α◦ ∇Pm◦ + β(ȟi)] : [
√

α◦ ∇Pm◦ + β(ȟi)] dL3

+
1

ȟ2
i

∫

Ω\A†
0

α◦|∂3m
(ȟi)|2 dL3 − Φ◦

α(m◦)

= 2
(√

α◦ ∇Pm◦, β(ȟi)
)

L2(Ω\A†
0;R

3×2)

+

(

|β(ȟi)|2
L2(Ω\A†

0;R
3×2)

+

∣

∣

∣

∣

1

ȟi

√
α◦ ∂3m

(ȟi)

∣

∣

∣

∣

2

L2(Ω\A†
0;R

3)

)

, (45)

for i = 1, 2, 3, · · · .
In view of (32)-(33), (39), (42), (44) and Proposition 2, letting i → ∞ in (45)

yields that:

lim sup
i→∞

(

|β(ȟi)|2
L2(Ω\A†

0;R
3×2)

+

∣

∣

∣

∣

1

ȟi

√
α◦ ∂3m

(ȟi)

∣

∣

∣

∣

2

L2(Ω\A†
0;R

3)

)

≤ 0.

Thus,










β(ȟi) =
√

α◦ ∇P(m(ȟi) − m◦) → 0 in L2(Ω \ A†
0; R

3×2),

1

ȟi

√
α◦ ∂3m

(ȟi) → 0 in L2(Ω \ A†
0; R

3),
as i → ∞. (46)

On account of (a1)-(a2), the above convergence (46) implies the existence of a

subsequence {hi | i = 1, 2, 3, · · · } ⊂ {ȟi} (⊂ {ĥi}), satisfying (11).

Remark 6. (Further conclusion) From (32)-(33) and (46), the convergence:
√

α(ȟi) ∇Pm(ȟi) →
√

α◦ ∇Pm◦ in L2(Ω \ A†
0; R

3×2), as i → ∞;

is derived, as a result of the following calculation:

|
√

α(ȟi) ∇Pm(ȟi) −
√

α◦ ∇Pm◦|2
L2(Ω\A†

0;R
3×2)

≤ 2Cα|
√

α◦ ∇P(m(ȟi) − m◦)|2
L2(Ω\A†

0;R
3×2)

+2

∫

Ω\A†
0

(√

α(ȟi) −
√

α◦
)2

|∇Pm◦|2 dL3 (47)

→ 0, as i → ∞.

Incidentally, the zero-convergence of the integral part of (47) is easily checked by
applying Lebesgue’s dominated convergence theorem, for the situation that:











(√

α(ȟi) −
√

α◦
)2

|∇Pm◦|2 → 0
(√

α(ȟi) −
√

α◦
)2

|∇Pm◦|2 ≤ Cαα◦|∇m◦|2,
L3-a.e. in Ω \ A†

0.
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