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Editorial Preface 
 
A typical question that almost all of us (the authors’ team and other colleagues) has been 
asked not only once has in general the meaning (although usually being shorter): “What is the 
best method for modeling of light diffraction by periodic structures?” Unfortunately for the 
grating codes users, and quite fortunately for the theoreticians and code developers, the 
answer is quite short, there is no such a bird like the best method. 
 In the more than 30 years active studies on the subject, I have worked on the theory 
and numerical applications of several approximate methods, like Rayleigh expansion, 
coupled-wave theory, beam propagation method, first-order approximations, singular Green’s 
function approximation, effective index medium theory, etc. My conviction is that they are 
quite useful (otherwise why to exist) for physical understanding, but my heart lies in what is 
considered as rigorous grating theories. Name ‘rigorous’ is used in the sense that in 
establishing the theories, exact vector macroscopic Maxwell equations and boundary 
conditions are applied without approximations. The approaches become approximate after 
computer implementation, due to the impossibility to work with infinite number of equations 
and unknowns, and due to the finite length of the computer word.   
 Of course, there are always initial approximations and assumptions, like the infinite 
dimensions of the grating plane, linearity of the optical response, etc. From physical point of 
view, the main feature of the methods, presented in this book are characterized by the use of 
optical parameters of different substances as something given by other physical optics 
theories and the experiment as an ultimate judge.  
 The necessity to use more than a single rigorous method comes from practice: 
different optogeometrical structures made of different materials and working in different 
spectral regions require a variety of methods, because each one is more effective in some 
cases, and less effective (or failing completely) in others. In addition, each approach is a 
subject of constant research and development. Grating modeling, grating manufacturing and 
grating use go hand in hand, and practice provides strong stimuli for the theory development. 
Vice versa, recent grating technologies and application cannot advance without proper 
theoretical and numerical support.  

When I started my grating studies, the method of coordinate transformations that uses 
eigenvector technique to integrate the Maxwell equations (sometimes known as the C-
method) has just been formulated. It worked perfectly for holographic grating whatever the 
polarization and the grating material, but failed completely for grooves with steep facets. It 
took more than 15 years to refine its formulation, so that now it can deal with echelles and 
pyramidal bumps (in the case of two-dimensional periodicity) with slopes up to 87 deg 
steepness. However, the method is not at all adapted to lamellar gratings. On the other hand, 
the Fourier modal method (also known as Rigorous coupled-wave approach, RCW) is perfect 
for such profiles, but its use in the case of arbitrary grating profiles (e.g., sinusoidal or 
triangular profiles) in case of metallic grating material causes problems when using a staircase 
approximation of the profile. The differential method does not use this approximation and 
could deal with arbitrary profiles, but it took more than 20 years to make it working with 
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metallic gratings in TM (p, or S) polarization. And quite ironically, the improvement came 
from advances in the competing RCW approach. 

These methods are relatively easy for programing nowadays, after solving the 
numerical problems due to growing exponentials and factorization rules of the product of 
permittivity and electric field, however there are still some persisting problems for highly 
conduction metals. In addition, neither the differential, nor the Fourier modal methods can 
deal with infinitely conducting gratings. 
 Several methods are quite flexible concerning the geometry of the diffracting objects 
and the grating material. For example, the integral method can treat inverted profiles, rod 
gratings with arbitrary cross section, finitely or infinitely conducting materials in any 
polarization, but its programming require deep mathematical understanding of the 
singularities and integrability of the Green’s functions. Other two flexible methods are quite 
famous and widely used, even in the form of commercially available codes. These are the 
finite-element method, and the finite-difference time domain method. The flexibility with 
respect to the geometrical structure, optical index inhomogeneity and anisotropy, etc. has to 
be paid by the necessity of sophisticated meshing algorithms and very large sparse matrix 
manipulations. 
 These few examples represent only the top of the iceberg, and are invoked to illustrate 
the basic idea that the best method has not been invented, yet. Probably never. 
 We have tried to gather a team of specialists in rigorous theories of gratings in order to 
cover as large variety of methods and applications as practically possible. The last such effort 
dates quite long ago, and it has resulted in the famous Electromagnetic Theory of Gratings 
(ed. R. Petit, Springer, 1980), a book that has long served the community of researchers and 
optical engineers, but that is now out of press and requires a lot of update and upgrade, 
something that we hope to achieve, at least partially with this new book. 
 Our choice of electronic publishing is determined by the desire to ensure larger free 
access that is not easily available through printed editions. I want to thank all the contributors 
to this Edition. Special thanks are due to my colleagues Fréderic Forestier and Boris Gralak 
for the technical efforts to make the electronic publishing possible. 
 
Marseille, France                 Evgeny Popov 
December 2012 
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Chapter 1  
 

Introduction to Diffraction Gratings: Summary 
of Applications 

 
Evgeny Popov 

 
Institut Fresnel, CNRS, Aix-Marseille University, Ecole Centrale 

Marseille, Campus de Saint Jerome,13013 Marseille, France 
e.popov@fresnel.fr         www.fresnel.fr/perso/popov 

 
Periodic systems play an important role in science and technology. Moreover, desire for order 
in Nature and human society has accompanied development of philosophy. Simple periodical 
oscillation is referenced as ‘harmonic’ in mechanics, optics, music, etc., the name deriving 
from the Greek ἁρμονία (harmonía), meaning "joint, agreement, concord” [1.1]. It is not our 
purpose here to study harmony in general, nor harmony in physics. We are aiming to much 
more modest target: rigorous methods of modeling light propagation and diffraction by 
periodic media.   

The methods presented in the book have already shown their validity and use from x-ray 
domain to MW region, for nonmagnetic and magnetic materials, metals and dielectrics, linear 
and nonlinear optical effects. The existing variety of these methods is due not only to 
historical reasons, but mainly to the absence of The Method, a universal approach that could 
solve all diffraction problems. Some of the approaches cover greater domain of problems, but 
more specialized ones are generally more efficient. The other reason of the great number of 
methods is the complexity and variety of their objects and applications. 

1.1. Diffraction property of periodic media 
The most important property of diffraction grating to create diffraction orders has been 
documented by Rittenhause for the first time in 1786 [1.2] due to the observation made by 
Francis Hopkinson through a silk handkerchief. The appearance of diffraction orders rather 
than the specularly reflected and transmitted beams was studied experimentally by Young in 
1803 [1.3] with his discovery of the sine rule. A detailed presentation of the analytic 
properties of gratings can be found in Chapter 2. 

Secondary-school pupils are supposed nowadays to know the Snell-Descartes law, 
which undergraduate students in universities are supposed to be able to demonstrate: single-
ray diffraction on a plane interface results in a single transmitted and single reflected rays. 
The critical advantage of periodic perturbation of the interface (variation of the refractive 
index or surface corrugation) changes the impulsion (wavevector surface component S,mk



) of 

the incident wave S,ik


 along the surface by adding or subtracting an integer number of grating 

impulses (grating vectors) K


: 
 S,m S,ik k mK= +

 


 (1.1) 

where 2 ˆK d
d
π

=


 and d is the grating period in a unit-vector direction d̂ . 

If the interface lies in the xy-plane and the periodicity is along the x-axis (Fig.1.1), and 
the incidence lies in a plane perpendicular to the grooves, the equation in reflection takes the 
form of the so-called grating equation: 
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 m isin sin m
d
λ

θ = θ +  (1.2) 

where λ is the wavelength of light. 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.1. Lamellar grating working in in-plane regime in TM (transverse magnetic) 
           polarization, together with the coordinate system, incident wavevector. 

 
The case of conical (off-plane) diffraction by a plane grating having one-dimensional 

periodicity can also be described by eq.(1.1), preserving the wavevector component parallel to 
the groove direction: 

 
y,m y,i

x,m x,i

2 2 2
z,m x,m y,i

k k

k k mK

k k k k

=

= +

= − −

 (1.3) 

 
where k is the wavenumber in the cladding. As a result, the diffracted beams lie on a cone, 
thus the name conical diffraction. 

Two-dimensional periodicity (having grating vectors 1K


and 2K


) imposed on the 
optogeometrical properties of the plane interface creates two sets of diffraction orders 
together with their spatial combinations, subjected to the same rule formulated just before 
eq.(1.1): 

 S,mn S,i 1 2k k mK nK= + +
 

 

 (1.4) 
 
Pure three-dimensional (3D) periodicity appears in crystallography and photonic 

crystals, if the substance is assumed to fill the entire space. The third-direction periodicity 
imposes additional condition to the wavenumber (said more precisely, to z,mk , which is 
already defined by the wave equation as given in the third equation of (1.3)), which leads to 
creation of discrete modes propagating in 3D periodic structures. This also leads to the 
appearance of propagating and forbidden zones structure. 

 

1.2.  Classical gratings in spectroscopy 
The most common application of diffraction gratings is due to the fact that outside of the 
specular order (m = 0), the diffraction order direction depends on the wavelength, as stated in 
eq.(1.2). The result is that the grating acts as a dispersive optical component, with several 
advantages when compared to the prisms: 

 

order 0 

c 

x 

z 
y 

  

h 
θi  

d 

order – 1  
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1. The grating can be a plane device, while the prism is a bulk one that requires larger 
volumes of optically pure glass (to add the difficulties of weight and temperature 
expansion constrains). 

2. Provided a suitable reflecting material, the grating can work in spectral regions, where 
there is no transparent ‘glass’ with sufficient dispersion. 

3. Grating dispersion can be varied, as it depends on the groove period, while prism 
dispersion depends on the material choice and groove angle, which gives quite limited 
choices. 

Since the first works of Young, followed by Fraunhofer’s quite serious attention to diffraction 
gratings use and properties [1.4], there is rarely more important device in spectroscopy 
achievements that lay the basis of modern physics. An interested reader can find some 
important aspects of their history, properties, and application in [1.5]. Despite the above-listed 
advantages compared to prisms, the diffraction gratings never have sufficient performance for 
their spectroscopy customers: 
 

1. There is no enough diffraction efficiency, defined as the ratio of the incident light 
diffracted in the order used by the application. 

This is probably the problem that has been mostly treated by rigorous grating methods, 
because they are the only ones to provide feasible results on the energy distribution, while the 
other characteristics (spectral resolution, scatter, dispersion, order overlap, etc.) can be 
obtained by simpler approaches.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.2. Diffraction efficiency of aluminum-made sinusoidal grating with period d = 0.5 µm as a 
function of the wavelength. Littrow mount (–1st order diffracted in the direction of the incident 
beam) for the two fundamental polarizations (transverse electric TE and transverse magnetic TM).  

A typical spectral dependence of the diffraction efficiency (defined more precisely as 
the ratio between the energy flow in the corresponding order and the energy flow in the 
incident order in z-direction) of a surface-relief sinusoidal grating made of aluminum and 
working in the –1st Littrow mount1 is presented in Fig.1.2. As observed, the problems of 
spectral variation of efficiency adds to its polarization dependence. 

2. There is no enough resolution, defined as the ratio between the working wavelength  
and the smallest distinguishable (as usual, defined using the Rayleigh criterion) 
spectral interval: 

                                                 
1 Littrow mount means retrodiffusion, when the diffracted beams propagates in a direction opposite to the 

incident beam, i.e. sinθ-1 = -sinθi 
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 R λ
=

∆λ
 (1.5) 

Classical diffraction theories show that the spectral resolution is proportional to the number of 
grooves illuminated by the incident beam, and inversely proportional to cos(θi), if we 
consider 1D periodicity in non-conical diffraction (speaking more precisely, the inverse 
proportionality implies to the sum of the cosines of the incident and the diffracted angles). 
The latter dependence gives advantages to grazing incidence for higher spectral resolution 
applications, namely astronomy.  
 

3. The efficiency depends on the polarization.  
Laser resonators usually use Brewster windows, so that the requirements are for high-efficient 
grating working in TM (transverse magnetic) polarization. However, spectroscopic 
applications do not like this at all. In astronomy, this property can be quite costly, because the 
loss of a half of the incident light intensity requires twice the exposer time. Low polarization 
dependent losses (PDL) are one of the most important criterions in optical communications, in 
general, and in grating applications for wavelength demultiplexing, in particular, necessary 
for multichannel optical connections. Fortunately, contrary to stellar spectroscopy, gratings 
used in optical communications work in only very small spectral interval, and are used in 
quite smaller sizes, so that there exist several solutions that provide high efficiency in 
unpolarized light over a limited spectral region. The idea is to shift the maxima in the spectral 
dependence of the two polarizations in Fig.1.2 in order to make them overlap at some required 
wavelength. One solution is to use a grating having two-dimensional (2D) periodicity, as 
shown further on in Fig.7.1. The period in the perpendicular direction is sufficiently small as 
not to introduce additional diffraction orders, and this additional corrugation can shift the 
position of the TE maximum to longer wavelengths [1.6].  

 

 
 

Fig.1.3. SEM picture of the profile of a grating etched in Si wafer and used for wavelength 
demutiplexing (after [1.7], with the publisher’s permission) 

Another more conventional solution is to use a classical grating with a 1D periodicity, 
but having a deformed profile in order to perform the same shift of the TE maximum [1.7, 8]. 
This can be achieved by introducing a flat region at the bottom of the grooves and 
“sharpening” the groove triangle, which needs a sharper apex angle. While this is quite 
difficult to be made with grating ruling or holographic recording, etching in crystalline silicon 
naturally produces grooves with 70.5° apex angle, as observed in Fig.1.3. A flat region on the 
top is made if the etching is not complete. When covered with gold, such grating can be used 
from the silicon side, which is transparent at wavelengths around 1.55 µm. Unpolarized 

Si 

Au 
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efficiency greater than 80% can be kept over the communication interval of 50-60 nm, as 
observed in Fig.1.4. 

 

 
Fig.1.4. Spectral dependence of efficiency in -1st order for the grating shown in Fig.1.3 
(after  [1.7] , with the publisher’s permission). 

 
4. There is an overlap of diffraction orders. 

As stated by the grating equation, if the period is chosen to provide diffraction orders inside a 
large spectral interval, the second diffracted order has the same direction of propagation as the 
first one for wavelength of light twice shorter. This problem is avoided in many spectroscopic 
devices by three different methods: additional spectral filtering of undesired orders; 
interchange of grating having different spatial frequency (period); adding cross-dispersion 
grating for echelle applications. 

In addition, there is a contradiction between some requirements as, for example, free 
spectral range (spectrum covered by the grating), dispersion and overlap of orders. In some 
cases, the only compromise is to use interchangeable gratings in order to cover larger spectral 
range without order overlap and maintaining higher dispersion. Some spectrographs are 
designed having multiple channels with splitting of the incident beam between them, however  
reducing the illumination power in each channel.  

 

1.3.  Echelle gratings in astronomy 
In astronomy, measurements of very low signals coming from far cosmic objects require large 
periods of time, so that the loss of energy due to low efficiency or/and strong polarization 
dependence leads to a further growth of costs. When efficiency constraints are added to the 
independence of the polarization, the only known solution is the echelle grating (high groove-
angle triangular groove profile used in grazing incidence, Fig.1.5) that has the advantages of 
almost equal and high efficiency in both fundamental polarizations [1.9].  

 
 
 
 
 
 
 
 
 

Fig.1.5. Schematical presentation of echelle grating. 

metal 
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The high efficiency in unpolarized light is obtained when the diffraction is made as if 
light is reflected by the working facet in its normal direction. Of course, it is necessary that 
the reflections at consecutive facets are in phase. The problem is that the efficiency varies 
rapidly with the wavelength, and the maxima switch between consecutive orders (Fig.1.6). 
The separation of orders is usually made using another shorter-period grating with grooves 
perpendicular to the echelle (called cross-dispersion), so that the different orders are separated 
in direction perpendicular to the echelle dispersion direction. 

 

                  
Fig.1.6. Diffraction efficiency of an echelle made of aluminum with 31.6 grooves/mm and 

    64° groove angle of the working facet. Incident angle is equal to 64°. The numbers of the 
    diffraction orders are indicated in the figure. 

 
Echelle gratings are also used in transmission, glued to the hypotenuse face of a prism 

that has a role to deviate back the beam diffracted by the grating, so that the principal 
diffracted order of the device propagates almost in the same direction as the incident beam for 
a chosen central wavelength. The device is known as a Carpenter prism or GRISM and gives 
the possibility to convert an imaging device (camera) into a long slit spectrograph [1.10], 
commonly used in airborne or space borne scientific missions. 

UV excimer lasers used in photolithography at 193.3 nm wavelength can be equipped 
with an echelle grating for narrowing the spectral line. While in lasers working in the visible 
and IR, the resonators are equipped with diffraction gratings with symmetrical grooves 
working in –1st order than easily can be made holographically or lithographically, a grating 
working in the lowest order at 193.3 nm must have more than 9 000 gr/mm, very difficult for 
fabrication and impossible for replication. Echelles take longer to be made and are more 
expensive as they require mechanical ruling engines with temperature control and clean 
environment, but have large periods and can be replicated from the ruled masters and 
submasters to become available at acceptable prices. 

 

1.4.  Gratings as optical filters  
Spectroscopic applications of gratings use one or more diffraction orders that differ from the 
specular reflected and transmitted ones, because of the required spectral dependence. There 
exist, however, several applications that use the zero order(s), even with corrugation of the 
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surface or modulation of the refractive index in the grating region. These are devices having 
refractive or reflection properties in the zeroth order that are modified by the grating surface.  
 

1.4.1. Zero-order diffraction (ZOD) imaging 
One of the applications uses the diffraction in higher orders to change the spectral dependency 
in the zero order, as light that is diffracted in the higher order(s) is absent in the zero order. 
The structure known as zero-order diffraction (ZOD) microimage [1.11] represents a 
transmission grating (usually with a rectangular or triangular groove form that can be 
replicated by relief printing in plastic sheet. Appropriately choosing the groove depth, one 
obtains broad-band color filters in transmission by using non-absorbing materials without 
colorants that can bleach. 

Another type of gratings have periods, smaller than the wavelength in the substrate and 
the cladding, chosen to avoid the propagation of other that the zero orders. Such structures are 
known as subwavelength gratings, and they play important role in integrated optical devices 
and recently in plasmonics to transfer energy from one to another guided mode in dielectric or 
metallic waveguides, or to change the mode direction, or to focus guided light (see Section 
1.5). 

 

1.4.2. Surface/guided mode excitation 
A subwavelength grating can serve to couple the incident light to surface or cavity resonances 
that can exist in the grating structure. The absence of higher orders means only that they are 
evanescent rather than propagating in the cladding or in the substrate. The horizontal 
component of their propagation constant (say, kx) is larger than the wavenumber in the 
surrounding media, and thus it can excite a surface or waveguide mode that is subjected to the 
same requirement in order to stay confined to the surface. The grating action is the same as in 
the coupling between the incident wave and one of the diffraction orders, only that now x, 1k −  

is equal to the real part of the mode propagation constant kg: 
 

 g x,iRe(k ) k K= −  (1.6) 
 
To fail to see the quite small difference between kg and k0 in the case of surface 

plasmons on highly conducting metal surfaces is one of the rare failures of Lord Rayleigh 
[1.12] when trying to explain Wood’s anomalies [1.13]. The case when x,m 0k k=  represents 
a transition of the m-th diffracted order between a propagating and an evanescent type, as 
follows from eq.(1.3). This transition leads to a redistribution of energy between the 
propagating orders, observed in efficiency behavior as a phenomenon called cut-off anomaly.  

Lord Rayleigh attributed Wood’s anomalies to the cut-off of higher orders, whereas the 
true explanation is that Wood anomaly is due to surface plasmon excitation. It is easy to judge 
nowadays, but the difference in the spectral and angular positions of the cut-off and surface 
plasmon anomaly sometimes is smaller than the experimental error, or more important, the 
error in the knowledge of the grating period. The resonant nature of the surface-plasmon 
anomaly has much more pronounced features than the cut-off anomaly, a fact first noticed by 
Fano [1.14] and further developed by Hessel and Oliner [1.15]. The form of the so-called 
Fano-type anomaly can easily be derived from the interference with a non-resonant 
contribution (for example, non-resonant reflection by the grating layer) and a resonant effect 
(for example, excitation by the incident wave of a surface mode that is diffracted back into the 
direction of the non-resonant wave), as sketched in Fig.1.7.  
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Fig.1.7. Process of interference between the non-resonant and the resonant reflections 
(second term in eq.(1.7)) that is created due to the excitation of the surface or guided wave 
through the –1st grating order, and then radiated into the cladding through the +1st 
diffraction order.  

Here, by mode, we mean a surface or guided wave that represents an eigen (proper) 
solution of the homogeneous diffraction problem (assuming non-zero diffracted field without 
incident wave). The latter effect is commonly described in physics as having a Lorentzian 
character (e.g. electric circuit dipole oscillator). For example, the wavelength dependence of 
the total reflectivity r will be the sum of the non-resonant and the resonant Lorentzian 
contributions: 

 res.
n.res. p

x,i x

cr r
k k

= +
−

 (1.7) 

 
where the coefficients rn.res. and cres. are slowly varying functions of the incident wave 
parameters. The pole p

xk  of the resonant term is equal to the surface/guided wave propagation 
constant. The Fano-type equation is obtained by taking the common denominator in eq.(1.7): 

 
z

x,i x
n.res. p

x,i x

k k
r r

k k
−

=
−

 (1.8) 

with z p
x x res. n.res.k k c r= −  representing a zero of the reflectivity. The formula implies that for 

each resonance, there exist an associated zero, that is expressed as a minimum of the anomaly. 
In reality, the pole has always non-zero imaginary part due to the interaction between the 
incident and the surface/guided wave. The zero takes, in general, complex values, but there 
are several important practically cases when the zero could become (and remains) real, i.e., 
the reflectivity can become zero. The imaginary part of the pole determines the quality factor 
(width) of the resonant maximum.  

The same reasoning applies in transmission (and in any other existing propagating 
order), with the same pole (same resonance), but different zeros. Depending on the imaginary 
parts of the pole and the zero, sometimes the resonant anomaly can show itself as a Lorentzian 
maximum, sometimes as a pure minimum on otherwise highly-reflecting background, 
sometimes both maximum and minimum can manifest themselves. The important cases when 
the zeros are almost real are used in surface plasmon absorption detectors and in resonant 
dielectric grating filters (see the next two subsections). 

 

1.4.3. Surface plasmon absorption detector 
Wood anomaly can sometimes lead to a total absorption of light by shallow metallic gratings 
with groove depth that does not exceed 10% of the wavelength. This phenomenon was called 
Brewster effect in metallic gratings [1.16] and has found an important application in chemical 

rn.res. rres. 

kx

p
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and biochemical surface-plasmon grating detectors [1.17]. The effect of total light absorption 
appears in a narrow spectral and angular interval (Fig.1.8).  
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Fig.1.8. Reflectivity of an optical surface plasmon detector as a function of the incident angle. 
Wavelength equals 850 nm, TM polarization. Cladding is glass, the substrate index for the two 
curves is indicated in the figure, and the grating layer is made of silver with thickness of 40 nm. 
The grating profile function contains two Fourier harmonics: ( ) ( )35sin 2 x / d 59sin 4 x / d / 2π + π + π  
with the depths given in nanometers (after [1.18], with the permission of the publisher). 

The position of the anomaly depends on the propagation constant of the plasmon 
surface wave that is quite sensible to the variation of the refractive index of the surrounding 
dielectric, thus the determination of the position of the anomaly brings information about the 
composition of the surrounding medium, i.e., serves as an optical detector (Fig.1.8). 
Introduction of the second Fourier component of the profile function increases the direct 
interaction between the plasmon surface waves propagating in opposite directions (the grating 
vector of the second harmonic is twice longer that of the first one), interaction that increases 
the sensitivity of the device. 

 

1.4.4. Resonant dielectric filters 
There is a particular case when the maximum in the reflectivity due to the resonant waveguide 
mode excitation stays theoretically at 100% on a low-reflective non-resonant background 
value. This is the case of corrugated dielectric waveguides having symmetrical grooves. If, in 
addition, the substrate is identical to the cladding, the zero in reflection remains real whatever 
the other parameters, i.e. a 100% maximum is accompanied by a 0 value minimum in the 
reflectivity (Fig.1.9). This peculiarity was accidentally found in 1983 [1.19, 20] followed by a 
theoretical explication in 1984 [1.21]. The effect has been independently rediscovered in 1989 
by Magnusson [1.22], who has done a lot for its analysis, and quite important practically, for 
its extension in transmission [1.23]. The advantage of the device is that the quality factor 
increases with the decrease of the groove depth, i.e. very narrow-line spectral filters can be 
obtained using shallow gratings, at least theoretically. However, as usual, the advantage is 
paid back somewhere, namely in the tight angular tolerances: when eq.(1.6) results in high 
spectral sensibility, it also is responsible for strong angular sensibility. Sentenac and 
Fehrembach [1.24] proposed to introduce a direct coupling between the waveguide modes 
propagating in the opposite direction (as was done in Fig.1.8), but this time aiming to a 
significant reduction of the angular sensibility of the effect. 
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Fig.1.9. Reflection by a corrugated dielectric waveguide. Symmetrical triangular profile with 
groove angle equal to 10°. Substrate and cladding have optical index equal to1, the layer has 
index 2.3 and its thickness is equal to 69 nm. Incident angle is equal to 26.7°. Excitation of TE 
waveguide mode leads to a narrow spectral anomaly.  

The idea was based on the flattening of the angular dependence of the guided wave 
propagation constant on the boundaries of the forbidden gaps, created by the direct mode 
coupling due to the structure periodicity, one of the basic properties of photonic (and 
electronic) crystals. 

 

1.4.5. Enhanced transmission through hole arrays in metallic screens 
In 1998 Ebbesen et al. [1.25] reported an interesting effect on metallic screen perforated with 
circular holes (Fig.1.10a). They were surprised to observe peaks with relatively strong 
transmission in the spectral dependence (Fig.1.11).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                    (b) 
 
Fig.1.10. (a) Schematical representation and notations of a two-dimensional hole array perforated 
in a metallic screen deposited on a glass substrate and illuminated from above with linearly 
polarized incident wave. (b) Surface-plasmon assisted energy flow inside the aperture close to the 
resonance. 
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Fig.1.11. Spectral dependence of the transmission of the structure presented in Fig.1.10a, with d = 
0.9 µm, t = 0.2 µm, and hole diameter of 0.2 µm (after [1.25], with the publisher’s permission). 

These peaks were identified as resulting from surface plasmon excitation on the upper, 
or the lower surface. Many theoretical and experimental works appeared as a result of this 
discovery, which revived the interest to surface plasmons and grating structure, leading to a 
new name of the plasmon studies called now plasmonics. 

It seems nowadays that the explanation of the enhanced transmission observed in 
Fig.1.11 lies in the common action of two phenomena [1.26]. The first one is the surface 
plasmon excitation that enhances the electromagnetic field intensity near the entrance 
apertures, as represented schematically in Fig.1.10b. The second phenomenon is the tunneling 
of the mode in the vertical hollow waveguides inside the holes. Although for small holes even 
the lowest mode is evanescent (contrary to 1D lamellar gratings, where TEM mode exists 
without cut-off), it gives the possibility of energy transfer from the upper to the lower 
interface, much more efficiently than the tunneling through the non-perforated screen [1.27]. 

One unexpected consequence of the observation of Ebbesen et al. came in fluorescence 
single-molecule microscopy and in the biomembrane studies. Both require small measuring 
volumes in order to study only a very small number of molecules or a small portion of the 
membrane surface. However, small measuring volumes mean week signals. Here comes the 
role of the surface plasmon enhanced field and evanescent mode inside the aperture. When the 
mode is close to its cut-off, the real part of its propagation constant along the axis of the hole 
tends to zero, which leads to a compression of the electromagnetic field at the entrance 
aperture, increasing even more the field density and thus the measured signal. In addition, as 
the field is evanescent inside the hole, the effective measuring volume does not extend to the 
entire hole depth (see Fig.1.12). The small cross-section of the holes reduces further on the 
measuring volume to much smaller values than permitted by the diffraction limit, in several 
cases volumes of the order of several attolitres have been reported. 
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                       (a)                                                                                             (b) 
Fig.1.12. Schematic presentation of (a) single-molecule fluorescence backside microscopy field 
density, and (b) tiny-portion cell membrane microscopy inside a metallic aperture (after [1.28] 
with the publisher’s permission). 

 

1.4.6. Non-resonant filters 
Resonant filtering has its advantages, when narrow spectral bands are aimed, but in some 
important applications it is necessary to have wider bands, accompanied by angular and 
polarization invariance with respect to the incident wave. Such are the requirements for color 
filters used to separate the RGB colors on each pixel of the CCD cameras. A promising 
example [1.29] contains a small subwavelength grating consisting of circular metallic bumps 
with different diameters and heighst (Fig.1.13a) that can filter light in different spectral 
regions, depending on their geometrical parameters, (Fig.1.13b). 
 

 
 
 

 
 
 

(a)                                                                            (b) 

Fig.1.13. (a) Nanostucture consisting of coaxial metallic cylinders, with a subwavelength period 
equal to 300 nm, external diameter 260 nm, and internal diameter 160 nm. (b) Transmission 
spectrum of the structure for different metals and cylinder heights, as shown in the inset (after 
[1.29] with the publisher’s permission). 

 

1.4.7. Flying natural gratings: butterflies, cicadas  
The observation of Hopkinson (see Sec.1.1) of the diffraction on a handkerchief is far the less 
exotic grating that exists. As always, Nature had all the time to surpass humanity. A striking 
realization has been developed during the million-year long evolution of butterfly wings that 
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have so attractive coloring. The so called Morpho rhetenor butterflies have a non-pigment 

metallic blue color (Fig.1.14) that long has been attributed to multilayer reflection. However, 

Vukusic et al. [1.30] had the idea (and funds) to use an electron microscope to observe deeper 

in detail the structure of the scales, as reported in Fig.1.15a, a typical 3D structure that 

resembles a photonic crystal. The modeling with a 2D grating with a structure given in 

Fig.1.15b confirms the blue-spectrum reflection of the scales (Fig.1.16). 

 

 

 
 
Fig.1.14. Entire view (to the left) and magnification of the scales (to the right) of a Morpho 

rhetenor butterfly (after [1.30] with the publisher’s permission). 

 

 

      y

z
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Fig.1.15. (a) Transmission electron microscope image showing the cross-section through a single 

Morpho rhetenor scale (after [1.30] with the publisher’s permission). (b) Modeled structure; the 

two red lines define a grating layer, the optical index  of white regions is 1 (after [1.31] with the 

publisher’s permission). 
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Fig.1.16. Spectral dependence of the reflection of the butterfly scale (after [1.31], with the 
publisher’s permission). 

Another “application” is used by the cicadas (quite common in the southern Europe, see 
Fig.1.17a) to camouflage themselves on the tree branches. Their wings are covered with an 
anti-reflection nanostructure, first observed by Xie et al. [1.32] and shown in Fig.1.17b. 
Anyone that has entered the microwave measuring rooms can identify the cones on the walls 
that are about 1 million times larger, as scaled to the wavelength.    

 
 

 
 

(a)                                                                                  (b) 

Fig.1.17. (a) A photo of a cicada, and (b) the nanostructure pattern on its wings (after [1.32] with 
the publisher’s permission). 

 

1.5.  Gratings in Integrated optics and plasmonic devices  
Gratings are used in integrated optical devices to deviate the direction of propagation of 
waveguide modes and surface waves, for their focusing inside or outside the guide, or for 
energy transfer between different modes. Let us consider the case with one-dimensional 
periodicity. The grating equation can be applied not only to free-space waves, but to the 
waveguides modes. If the period is suitably chosen, it is possible to couple one mode to 
another: 

 
 g,1 g,2Re(k ) Re(k ) K= −  (1.9) 
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where g,1k  and  g,2k  are the propagation constants of the modes.  
 
 

 
 
 

Fig.1.18. Upper part: schematical presentation of Bragg relief type lamellar grating deposited on 
a waveguide (dielectric or plasmonic) with two propagating modes. Lower part: energy carried by 
each mode.  

 
It is possible to couple the mode propagating in a given direction to the same but contra-

propagative mode. This is the case of the so-called Bragg gratings that act as a distributed 
mirror forming a forbidden zone for the mode propagation, in which the mode field decreases 
exponentially without being radiated in the cladding and in the substrate. The result is that it is 
rejected back into a contra-propagative direction (Fig.1.18). Due to the limit size of the 
grating region, a small part of the incident mode 1 is transmitted to the right, thus the reflected 
mode 2 carries smaller amount of energy. The grating grooves can be made curvilinear in 
order to focus the mode. The same effect can be obtained by replacing the 1D structure by 2D 
periodicity having also a period in the transversal y-direction (see Section 1.8).  

 

1.6.  Beam-splitting applications 
The fact that the periodicity creates diffraction orders can be used to create multiple beams 
from a single laser beam. The most-commonly used device is symmetrical groove 
transmission gratings used as beam splitters for optical disk readers, where the wavelength of 
the laser source is constant. As a rule, the zero order beam reads the track and the two first 
order beams read adjacent tracks to keep the head both centered and focused. By controlling 
the groove depth, the ratio of zero to first orders transmission can be varied over a factor of 
10, and a high degree of symmetry is inherent. 

A special type of transmission grating can be used to generate an entire family of orders 
with a groove shape designed to make their intensities as equal as possible. This gives us 
multiple beam splitters, which may have 5 or even 20 orders on both sides of zero. A top view 
of such gratings under working conditions (with a laser input) gives rise to the term of “fan-
out gratings”. Applications are found in scanning reference planes for construction use, 
optical computing, and others [1.5, 33]. Such gratings tend to have large groove spacings (10 
to 100 µm) and low depth modulations. The difficulty in making such gratings lies in 
achieving a groove shape that leads to a sufficient degree of efficiency uniformity among 
orders, especially if they are to function over a finite wavelength range. Two obvious 
candidates are cylindrical sections or an approximation of this shape in the form of a wide 
angle V with several segments of different angles. The choice may vary with the availability 
of the corresponding diamond tools. They have also been made by holographic methods, 
which are able to produce the parabolic groove form that gives the best energy uniformity 

mode  
amplitude 
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between the diffracted orders [1.34, 35]. Applications of fan-out gratings are found in 
scanning reference planes for construction use, in biophysics for simultaneous treatment of 
great number of samples, etc. 

By combining two such grating at right angles to each other, an accurately defined 2D 
array of laser beams is generated to be used for calibrating the image field distortion of large 
precision lenses, in robotic vision systems, or in parallel optical computing. Instead of using 
two 1D periodical grating, it is possible to use a single large-period 2D crossed grating with 
specially optimized pattern inside each period [1.36]. 

 

1.7.  Subwavelength gratings for photovoltaic applications 
As explained in Sec.1.4, resonant excitation in metallic gratings can lead to a total absorption 
of incident light, effect necessary for the efficient work of photovoltaic devices. The problem 
with surface plasmon excitation and the accompanying light absorption is that its wave is not 
localized, thus it is characterized by a well-determined value of propagation constant along 
the surface, because non-local effects in the real space are localized in the inverse space. This 
is why the surface plasmon anomalies have very narrow angular and spectral width, an 
advantage in detector construction, but failing in photovoltaics. Evidently, effects that are less 
localized in the inverse space will be more localized in the real space. This leads us to cavity 
resonances, volume plasmonic excitation, and surface plasmons that propagate in the vertical 
direction but are localized in x-y direction. Cavity resonances in deep grooves or in closed 
cavities, like embedded dielectric spheres or cylinders inside a metallic sheet can absorb light 
within relatively large angular region (20-30 deg) [1.37-40].  
 
 
 
 
 

 
 
 
 
 
 

Fig.1.19. Crossed metallic diffraction grating 

Fig.1.20. Real and imaginary part of the 
effective refractive index of the structure of 
Fig.1.19 as a function of the filling ratio 
when the period is much shorter than the 
wavelength λ = 457 nm. 

 
However, the problem of cavity resonances is that they are strongly wavelength-

sensitive. An alternative approach consists of using metamaterial behavior of small-feature 
structures. By mixing metallic and dielectric materials one can, in general, obtain strongly 
absorbing alloys with effective refractive index that does not exist for known materials. In 
addition, the equivalent metamaterial layer has a uniaxial anisotropy with axis perpendicular 
to the grating plane. Thus inside the xOy plane it has isotropic properties and its response is 
polarizationally independent, at least close to normal incidence.  

For example, a crossed channel grating as presented in Fig.1.19 and made of silver 
bumps on a silver substrate. It can strongly absorb the incident light in much larger spectral 
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domain when compared with the surface plasmon excitation effects. As can be observed in 
Fig.1.20, close to a filling ratio (f = c2/d2) equal to 0.7, both the real and the imaginary part of 
the effective refractive index for small-period structure grow significantly to values that no 
existing material has in this spectral domain. This increases the effective optical thickness of 
the system, together with its absorption, so that a very thin grating (h < 10 nm) can totally 
absorbed incident light [1.41]. Because of the 2D periodicity of the structure, it becomes 
polarization insensible. Moreover, this effect has no resonant nature and is extended angularly 
to almost the entire set of angles of incidence, as seen in Fig.1.21. In addition, the spectral 
domain of absorption stronger than 75% extends to a more than 100 nm interval [1.42].  

           

 
Fig.1.21. Reflectivity of the crossed graing in Fig.1.19 as a function 
of the wavelength and of the sine of the incident angle. Period d = 3 
nm, system thickness h = 6.2 nm, filling factor = 0.7, i.e. c/d = 
0.837. 

However, the use of such structures for practical 
applications requires not only a larger spectrum of strong 
absorption, but also needs that the absorbed light is not 
immediately transformed into heat and that it is kept inside the 
photovoltaic layer that transforms light into electricity. The 
simple structure represented in Fig.1.19 is not sufficient to 
efficiently fulfill these purposes. It has to be complicated by a 
structuring in the depth of the device (Fig.1.22). Light is incident 
from the top of the device. Its entering part (in blue) is designed 
to act as an antireflector, and absorbs most of the blue part of the 
spectrum. The green part is absorbed in the middle of the rods, 
while the back-side part (in red) absorbs the longer wavelengths, 
and serves as a reflector to prevent the unabsorbed part to be lost 
in the substrate [1.43]. 

 
 

 
Fig.1.22. Grating rods as optimal photovoltaic absorber  (after [1.43], with the publisher’s permission) 
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1.8.  Photonic crystals 
Periodic structures in optics can serve for the photons in the same manner as semiconductor 
crystals for electrons. This common feature led in the ‘90s to call such structures photonic 
crystals. As discovered by Yablonovich [1.44, 45], they present band-gaps that forbid 
propagation and thus guaranteeing 100% reflection inside the band. While this property is 
widely known and largely used in multilayer dielectric mirrors (Fig.1.23a), the band gap of 
1D photonic crystals is limited in relatively smaller angular interval. Some other structures 
that have 2D periodicity combined with a nanostructuring in the third dimensions can be 
found in Figs.1.15, 17, and 22. 

 
 
 
 
 
 
 
 
 
                                          (a)                                                      (b) 
 
 
 
 
 
 
 
 
 
                                          (c)                                                      (d) 

Fig.1.23. Schematic representation of (a) one-, (b) two- and (c, d) three-dimensional photonic 
crystals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.24. Forbidden bands for the photonic crystalmade of circular cylinders  with d = 1.414 µm, r 
= 0.35 µm (after [1.46] with the publisher’s permission). 
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A typical band-gap structure of a 2D photonic crystal presented in Fig.1.23b, but its 
surface cut at an angle of 45° with respect to the vertical direction, is given in Fig.1.24 for a 
system having period d = 1.414 µm in both directions, and consists of circular cylindrical rods 
with radius equal to 0.35 µm and optical index of 2.9833 in air as a matrix. The figure 
presents the values of the smallest imaginary part of kz. As can be seen, a forbidden gap in 
both TE and TM polarization exists for [1.97,2.33 m]λ ∈ µ  [1.46, 47]. Inside the band gap 
electromagnetic field intensity diminishes exponentially and the entire incident light is 
reflected back. However, the choice of the ratio of the wavelength and the period allows for 
the propagation of the -1st order in reflection. This gives the possibility to guide the entire 
incident light into this order, thus perfect blazing in the -1st diffracted order can be obtained in 
both polarizations, a property that is strongly desirable in many applications. And indeed, 
Fig.1.25 presents the diffraction efficiency of the system having cylinders with radii of 350 
nm (a) and 150 nm (b). A well-defined spectral region with almost 100% efficiency in 
unpolarized light can be observed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            (a)                                                                                      (b) 

Fig.1.25. Diffraction efficiency in order -1 as a function of the wavelength lying inside the band 
gap. (a) r = 350 nm, (b) r = 150 nm (after [1.46] with the publisher’s permission). 

The property of totally reflecting the incident light whatever the direction, can be of 
great importance for light guiding and manipulation. Light confinement and guiding in a 
single dimension is ensured by using planar waveguides. Channel waveguides and optical 
fibers confine light in two dimensions, but they suffer from two important limitations: 
dispersion and bending losses. High bending angles damage the guiding properties and lead to 
radiation losses. A waveguide constructed with photonic crystal walls can ensure bending, 
Fig.1.26, without losses even at 90°, as predicted numerically [1.48]. 

It is impossible even only to list here the potential applications of photonic crystal 
devices, as for example negative refraction, perfect lenses construction, photonic crystal 
fibers, nonlinear optical applications. The main problem that persists is purely technological: 
while it is relatively easy to fabricate 3D periodically structures working in the microwave 
and far-IR domain, scaling down to the visible and the near-IR presents a lot of challenges to 
optical industry. Fortunately, the process of fiber manufacturing enables literally such 
mechanical scaling of the dimension, transferring the initial large-diameter preform into a thin 
fiber by pulling it. If the preform is carefully drilled with macroscopic holes, they are 
preserved in the final fibers, but scaled to nanodimensions. 
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In the resulting photonic crystal fiber (Fig.1.27), light is preserved in the central hollow 
guide by repulsion from the surrounding structure that presents a forbidden gap for the 
working wavelength. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.26. Light guiding in a cavity formed by photonic crystal walls consisting of cylindrical 
objects 

 
  
 

 

 

 

 

 

 

 

 
Fig.1.27. Schematic representation of a portion of an optical fiber – photonic crystal hybrid 
structure. Small cylindrical holes run along the fiber length. A central hole (shown with a dashed 
line inside the fiber) serves as an energy propagator, which ensured low dispersion, low 
absorption losses and high damage threshold 
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2.1 Introduction

Since the 80’s, specialists of gratings can rely on very powerful grating softwares [1-6]. These
softwares are able to compute grating efficiencies for almost any kind of grating in any domain
of wavelength, even though the progress of grating technologies needs endless extensions of
grating theories to new kinds of structures. These softwares are based on elementary laws of
Electromagnetics. Using mathematics, these laws lead to boundary value problems which can
be solved on computers using adequate algorithms.

However, a grating user should not ignore some general properties of gratings which
can derived directly from the boundary value problem without any use of computer. These
analytic properties are valuable at least for two reasons. First, they strongly contribute to a
better understanding of an instrument which puzzled and fascinated many specialists of Optics
since the beginning of the 20th century. Secondly, they allow a theoretician to check the validity
of a new theory or its numerical implementation, although one must be very cautious: a theory
can fail while its results satisfy some analytic rules. Specially, this surprising remark apply to
properties like energy balance or reciprocity theorem.

The first part of this chapter is devoted to the use of the elementary laws of Electromag-
netics for stating the boundary value problems of gratings in various cases of materials and
polarizations. Then, we deduce from the boundary value problems the most important analytic
properties of gratings.

2.2 From the laws of Electromagnetics to the boundary-value problems

2.2.1 Presentation of the grating problem

Figure 2.1 represents a diffraction grating. Its periodic profile P of period d along the x axis
separates air (region R0) from a grating material (region R1) which is generally a metal or a
dielectric. The y axis is the axis of invariance of the structure and the z axis is perpendicular to
the average profile plane. We denote by zM the ordinate of the top of P , its bottom being located
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Figure 2.1: Notations.

on the xy plane by hypothesis. We suppose that the incident light can be described by a sum
of monochromatic radiations of different frequencies. Each of these can in turn be described
in a time-harmonic regime, which allows us to use the complex notation (with an exp(−iωt)
time-dependence). In this chapter, we assume that the wave-vector of each monochromatic
radiation lies in the cross-section of the grating (xz plane). In the following, we deal with a
single monochromatic radiation.

The electromagnetic properties of the grating material (assumed to be non-magnetic) are
represented by its complex refractive index ν which depends on the wavelength λ = 2πc/ω

in vacuum (c = 1/
√

ε0µ0 being the speed of light, with ε0 and µ0 the permittivity and the per-
meability of vacuum). This complex index respectively includes the conductivity (for metals)
and/or the losses (for lossy dielectrics). It becomes a real number for lossless dielectrics.

In the air region, the grating is illuminated by an incident plane wave. The incident electric

field
−→
E i is given by :

−→
E i =

−→
P exp

(
ik0xsin(θ)− ik0zcos(θ)

)
, (2.1)

with θ being the angle of incidence, from the z axis to the incident direction, measured in the
counterclockwise sense, and k0 being the wavenumber in the air (k0 = 2π/λ , we take an index
equal to unity for air). The wave-vector of the incident wave is given by:

−→
ki

0 =

 k0 sin(θ)
0

−k0 cos(θ)

 . (2.2)

The physical problem is to find the total electric and magnetic fields
−→
E and

−→
H at any point of

space.
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2.2.2 Maxwell’s equations

First, let us notice that the physical problem remains unchanged after translations of the grating
or of the incident wave along the y axis since they do not depend on y. Therefore, if

−→
E (x,y,z)

and
−→
H (x,y,z) are the total fields for a given grating and a given incident wave,

−→
E (x,y+ y0,z)

and
−→
H (x,y+ y0,z) will be solutions too, regardless of the value of y0. Assuming, from the

physical intuition, that the solution of the grating problem is unique, we deduce that
−→
E and

−→
H

are independent of y.
In order to state the mathematical problem, we use the harmonic Maxwell equations in

R0:
∇×−→E = iωµ0

−→
H , (2.3)

∇×−→H =−iωε
−→
E , (2.4)

with:

ε =

{
ε0 in R0,
ε1 = ε0ν2 in R1.

(2.5)

In the following, equations (2.3) and (2.4) will be called first and second Maxwell equations
respectively. We note that Maxwell’s equations ∇.

−→
E = 0 and ∇.

−→
H = 0 are the straightforward

consequences of the first and second Maxwell equations (it suffices to take the divergence of
both members).

We introduce the diffracted fields
−→
Ed and

−→
Hd defined by:

−→
Ed =

{ −→
E −
−→
E i in R0,−→

E in R1,
(2.6)

−→
Hd =

{ −→
H −
−→
H i in R0,−→

H in R1.
(2.7)

The interest of the notion of diffracted field is that it satisfies the so-called radiation condition
(or Sommerfeld condition, or outgoing wave condition), in contrast with the total field which
does not satisfy this condition in R0 since it includes the incident field. This means that the
diffracted fields must remain bounded and propagate upwards in R0 when z→+∞. The same
property must be satisfied in R1, but that time the diffracted fields must remain bounded and
propagate downwards in R1 when z→−∞. Since the incident fields satisfy Maxwell’s equa-
tions in R0, the diffracted fields satisfy these equations as well. Introducing the components of
the diffracted fields on the three axes, Maxwell’s equations yield:

∂Ed
y /∂ z =−iωµ0Hd

x , (2.8a)

∂Ed
y /∂x = iωµ0Hd

z , (2.8b)

∂Ed
z /∂x−∂Ed

x /∂ z =−iωµ0Hd
y , (2.8c)

∂Hd
y /∂ z = iωεEd

x , (2.9a)

∂Hd
y /∂x =−iωεEd

z , (2.9b)

∂Hd
z /∂x−∂Hd

x /∂ z = iωεEd
y . (2.9c)

33



2.4 Gratings: Theory and Numeric Applications, 2012

2.2.3 Boundary conditions on the grating profile

On the grating profile, the tangential component of the electric and magnetic fields must be
continuous1. Thus the boundary condition is given by:

(
−−−→
[Ed]0 +

−−→
[E i]0)×−→n =

−−−→
[Ed]1×−→n , (2.10)

(
−−−→
[Hd]0 +

−−→
[H i]0)×−→n =

−−−→
[Hd]1×−→n , (2.11)

with −→n being the unit normal to P , oriented toward region R0 (figure 2.1) and the symbol
[
−→
F ]p denoting the limit of

−→
F when a point of region Rp tends to the grating profile (with p ∈

(0,1)). As for Maxwell’s equations, we note that the other boundary conditions on the normal
components of the fields are consequences of equations (2.10) and (2.11). It is worth noting
that the linkage between these two boundary conditions is a typical example of an elementary
property which is difficult to establish, at least for those who are not acquainted with the theory
of distributions. Projecting equations (2.10) and (2.11) on the three axes yields:

[Ed
y ]0− [Ed

y ]1 =−[E i
y]0, (2.12a)

nx[Ed
z ]0−nz[Ed

x ]0−nx[Ed
z ]1 +nz[Ed

x ]1 =−nx[E i
z]0 +nz[E i

x]0, (2.12b)

[Hd
y ]0− [Hd

y ]1 =−[H i
y]0, (2.13a)

nx[Hd
z ]0−nz[Hd

x ]0−nx[Hd
z ]1 +nz[Hd

x ]1 =−nx[H i
z]0 +nz[H i

x]0. (2.13b)

2.2.4 Separating the general boundary-value problem into two separated scalar problems

The first conclusion to draw from equations (2.8), (2.9), (2.12) and (2.13) is that they can
be separated into two independent sets. The first one, called TE case, includes equations
(2.8a), (2.8b), (2.9c), (2.12a) and (2.13b). It only contains the transverse component (viz. the
y-component) Ed

y of the electric field and the xz components (orthogonal to the y axis) Hd
x and

Hd
z of the magnetic field. It must be remembered that the incident field

−→
E i is given by equation

(2.1) and thus is not an unknown field. The same remark applies to the complementary set
(TM case), but with the transverse component of the magnetic field and the xz components of
the electric field. As a consequence, the general problem of diffraction by a grating can be
decomposed into two elementary mathematical problems.

2.2.4.1 The TE case problem

In the first one, the xz components of the magnetic field can be expressed as functions of the
transverse component of the electric field using equations (2.8a) and (2.8b). Inserting their
expression in equation( 2.9c) shows that Ed

y satisfies a Helmholtz equation:

∇
2Ed

y + k2Ed
y = 0, (2.14)

1The continuity of the tangential component of the magnetic field is valid for materials having bounded values
of permittivity. When the permittivity of the grating material is infinite, as in the model of perfectly conducting
material, this condition does not hold.
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with:

k =
{

k0 in R0,
k1 = k0ν in R1.

(2.15)

The associated boundary condition on the diffracted electric field can be deduced from equations
(2.12a) and (2.1):[

Ed
y

]
0
−
[
Ed

y

]
1
=−Py exp

(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P, (2.16)

while the associated boundary condition on its normal derivative can be deduced from equations
(2.13b), (2.8a) and (2.8b):[

dEd
y

dn

]
0

−

[
dEd

y

dn

]
1

=−

[
dE i

y

dn

]
0

,

=−iPy
−→n .
−→
ki

0 exp
(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P,

(2.17)

with
dF
dn

denoting the normal derivative −→n .∇F . It can be noticed that equation (2.17) entails
the continuity of the normal derivative of the transverse component of the total electric field.
Equations ( 2.14), (2.16) and (2.17) are not sufficient to define the boundary-value problem for
TE case. A fourth condition must be added: the radiation condition:

Ed
y must satisfy a radiation condition for z→±∞. (2.18)

The boundary value problem allows us to deduce a fundamental property of gratings. Let
us suppose that the incident field is TE polarized, i.e. that the electric incident field is parallel
to the y axis (Px = Pz = 0). In these conditions, the equations associated with the TM case are
homogeneous: they do not contain the incident field since the right-hand member of equation
(2.12b) vanishes. If we believe that the solution of the grating problem is unique, it must be
concluded that the xz component of the diffracted and total electric field vanish. On the other
hand, the magnetic field is parallel to the xz plane. In other words, in the TE case, the grating
problem becomes scalar: we must determine the y-component of the diffracted electric
field. The xz components of the magnetic field deduce the y-component of the diffracted electric
field using equations (2.8a) and (2.8b).

2.2.4.2 The TM case problem

Now, let us deal with the TM case. As for the TE case, it can be shown that the y-component of
the magnetic field satisfies a Helmholtz equation by using equations (2.8c), (2.9a) and (2.9b):

∇
2Hd

y + k2Hd
y = 0. (2.19)

The boundary conditions need the calculation of the incident magnetic field. From equa-
tion (2.1) and Maxwell equation (2.3), it turns out that:

−→
H i =

−→
Q exp

(
ik0xsin(θ)− ik0zcos(θ)

)
, (2.20)
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with:
−→
Q =

1
ωµ0

−→
ki

0 .
−→
P exp

(
ik0xsin(θ)− ik0zcos(θ)

)
. (2.21)

The associated boundary condition on the diffracted magnetic field can be deduced from equa-
tions (2.13a) and (2.20):

[Hd
y ]0− [Hd

y ]1 =−Qy exp
(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P, (2.22)

while the boundary condition on its normal derivative is obtained by inserting the expressions
of the xz components of the electric field (equations (2.9a) and (2.9b)) in equation (2.12b).
Remarking that the incident field satisfies the same equations, we obtain finally:

1
ε0

[
dHd

y

dn

]
0

− 1
ε1

[
dHd

y

dn

]
1

=− 1
ε0

[
dH i

y

dn

]
0

,

=−
iQy

ε0

−→n .
−→
ki

0 exp
(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P.

(2.23)

It can be noticed that equation (2.23) has a simple interpretation: the product
1
ε

dHy

dn
is

continuous across the profile. Finally, the radiation condition yields:

Hd
y must satisfy a radiation condition for z→±∞. (2.24)

Equations (2.19), (2.22), (2.23) and radiation conditions for z→±∞ define the boundary-
value problem for TM case. As for TE case, the uniqueness of the solution shows that that when
the magnetic incident field is parallel to the y axis (Qx = Qz = 0), the equations associated with
the TE case are homogeneous: they do not contain the incident field. It can be concluded that
the xz components of the diffracted and total magnetic fields vanish. On the other hand, the
electric field is parallel to the xz plane. In other words, in the TM case, the grating problem
becomes scalar: we must determine the y-component of the diffracted magnetic field. The
xz components of the electric field deduce from the y-component of the diffracted magnetic field
using equations (2.9a) and (2.9b).

2.2.4.3 TE and TM cases: a unified presentation of the boundary-value problem

In order to deal with both cases simultaneously, we denote by Fd the field defined by:

Fd =

{
Ed

y for TE case,
Hd

y for TM case.
(2.25)

In the same way, by assuming that the incident field has a unit amplitude (Py=1 for TE case and
Qy=1 for TM case), the incident field in both cases is given by:

F i = exp
(
ik0xsin(θ)− ik0zcos(θ)

)
, (2.26)

the total field F being given by:

F =

{
Fd +F i in R0,
Fd in R1.

(2.27)
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Using equations (2.14), (2.16), (2.17), (2.18), (2.19), (2.22), (2.23) and (2.24), it is possible to
gather both cases in a unique set of equations:

∇
2Fd + k2Fd = 0,[
Fd
]

0
−
[
Fd
]

1
=−exp

(
ik0xsin(θ)− ik0zcos(θ)

)
with (x,z) ∈P,

1
τ0

[
dFd

dn

]
0
− 1

τ1

[
dFd

dn

]
1
,

=− i
τ0

−→n .
−→
ki

0 exp
(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P,

Fd must satisfy a radiation condition for y→±∞,

(2.28)

(2.29)

(2.30)

(2.31)

with:

τi =

{
1 for TE case,
εi for TM case, i ∈ (0,1). (2.32)

In the following, this boundary-value problem will be called normalized grating problem. It is
worth noting that equations (2.29) and( 2.30) take a simpler form by introducing the total field
F :

[F ]0 = [F ]1 , (2.33)

1
τ0

[
dF
dn

]
0
=

1
τ1

[
dF
dn

]
1
. (2.34)

2.2.5 The special case of the perfectly-conducting grating

The first grating theories were devoted to perfectly conducting gratings. This case is very impor-
tant since it is realistic for metallic gratings in the microwave domain and far infrared regions.
In the visible and infrared regions, it can provide qualitative results. However, in these regions,
one must be very cautious. The existence of surface plasmons propagating at the vicinity of the
grating surface generates strong resonance phenomena for TM case. Due to these phenom-
ena, the properties of real metallic gratings and those of perfectly-conducting gratings
may completely differ [2].Moreover, the perfect conductivity model allows one to simplify the
grating theory, since the associated boundary-value problems are much simpler.

Basically, the equations associated to the perfect conductivity model are the same as for
real metallic or dielectric gratings, except equations (2.4) and (2.11). Let us give a brief expla-
nation to this property. In Maxwell equation (2.4), the right-hand member includes the volume
current density

−→
j in the metal since this term is proportional to the electric field (

−→
j = σ

−→
E ,

σ being the conductivity of the metal). When the conductivity tends to infinity, the volume
current density and the total fields concentrate more and more on the grating surface since the
skin depth tends to zero. As a consequence, at the limit when the conductivity tends to infinity,
the fields are null in R1 while the volume current density

−→
j becomes a surface current den-

sity
−→
jP . This surface current density cannot be included in the right-hand member of equation

(2.4) since it is a singular distribution (for the specialist of Schwartz distributions [7], it writes−→
jPδP ). Finally, equation (2.4) becomes:

∇×−→H =−iωε̃
−→
E +
−→
jP , (2.35)
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with ε̃ being the permittivity of the material. Furthermore, taking into account that the total
fields vanish inside R1, the boundary condition (equation (2.11)) becomes:

−→n × (
−−−→
[Hd]0 +

−−→
[H i]0) =

−→
jP . (2.36)

This equation reduces to a relation between the surface current density on P and the limit of
the magnetic field above P . It does not constitute any more an element of the boundary-value
problem.

In conclusion, for perfectly conducting gratings, the fields inside R1 vanish and, using
equations (2.3), (2.4), (2.10), (2.6) and (2.7), the basic vector equations for the field in R0 can
be written:

∇×
−→
Ed = iωµ0

−→
Hd, (2.37)

∇×
−→
Hd =−iωε0

−→
Ed, (2.38)

(
−−−→
[Ed]0 +

−−→
[E i]0)×−→n = 0. (2.39)

Following the same lines as in subsections 2.2.4.1 and 2.2.4.2, the boundary value problems for
perfectly conducting gratings are given by:

For TE case:

∇
2Ed

y + k2
0Ed

y = 0,[
Ed

y

]
0
=−Py exp

(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P,

Ed
y must satisfy a radiation condition for z→+∞.

(2.40)

(2.41)

(2.42)

For TM case:

∇
2Hd

y + k2
0Hd

y = 0,[
dHd

y

dn

]
0

=−iQy
−→n .
−→
ki

0 exp
(
ik0xsin(θ)− ik0zcos(θ)

)
, with (x,z) ∈P,

Hd
y must satisfy a radiation condition for z→+∞.

(2.43)

(2.44)

(2.45)

2.3 Pseudo-periodicity of the field and Rayleigh expansion

This section establishes the most famous property of diffraction gratings: the dispersion of
light, which is a consequence of the well known grating formula. In general, this formula is
demonstrated using heuristic considerations of physical optics. Here, we propose a rigorous
demonstration based on the boundary-value problem stated in subsection 2.2.4.3. First, let us
show that the field Fd is pseudo-periodic, i.e. that:

Fd(x+d,z) = Fd(x,z)exp
(
ik0d sin(θ)

)
. (2.46)

With this aim, we consider the function G(x,z) defined by:

G(x,z) = Fd(x+d,z)exp
(
−ik0d sin(θ)

)
. (2.47)
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The pseudo-periodicity of Fd is proved if we show that Fd(x,z) = G(x,z). Owing to the unique-
ness of the solution of the boundary-value problem defined by equations (2.28), (2.29), (2.30)
and (2.31), this equation is satisfied if G obeys the same equations. Obviously, G satisfies these
equations since d is the grating period. Thus Fd is pseudo-periodic, with coefficient of pseudo-
periodicity k0 sin(θ), as well as F i and F . Notice that in normal incidence (θ = 0), pseudo-
periodicity becomes ordinary periodicity, which in that case is a straightforward property since
both grating and incident wave are periodic.

Using the pseudo-periodicity, let us show that the field above and below the grating is a
sum of plane waves. With this aim, we notice from equation (2.28) that Fd(x,z)exp

(
−ik0xsin(θ)

)
has a period d and thus can be expanded in a Fourier series:

Fd(x,z)exp
(
−ik0xsin(θ)

)
=

+∞

∑
n=−∞

Fd
n (z)exp(2iπnx/d). (2.48)

Multiplying both members of equation (2.48) by exp
(
ik0xsin(θ)

)
yields :

Fd(x,z) =
+∞

∑
n=−∞

Fd
n (z)exp(iαnx), (2.49)

with:
αn = k0 sin(θ)+2πn/d. (2.50)

Introducing this expression of Fd(x,z) in Helmholtz equation (2.28), we find :

+∞

∑
n=−∞

(
d2Fd

n (z)/dz2 +(k2−α
2
n )F

d
n (z)

)
exp(iαnx) = 0, (2.51)

and multiplying both members by exp
(
−ik0xsin(θ)

)
,

+∞

∑
n=−∞

(
d2Fd

n (z)/dz2 +(k2−α
2
n )F

d
n (z)

)
exp(2iπnx/d) = 0. (2.52)

It seems, at the first glance, that the left-hand member of equation (2.52) is a Fourier series, and
thus that the coefficients of this Fourier series vanish. This is not correct. Indeed, we have to
bear in mind that k, defined in equation (2.15) is not a constant. As a consequence, if 0< y< zM,
a region called intermediate region in the following, k2 depends on x and the left-hand member
of equation (2.52) is not a Fourier series. However, above and below this intermediate region,
k2 is constant and we can write that the Fourier coefficients vanish:

∀n, d2Fd
n (z)/dz2 + γ

2
0,nFd

n (z) = 0 if y > zM, (2.53a)

∀n, d2Fd
n (z)/dz2 + γ

2
1,nFd

n (z) = 0 if y < 0, (2.53b)

with:
γi,n =

√
(k2

i −α2
n ) i ∈ (0,1). (2.54)

We deduce that:

Fd
n (z) =

{
I0,n exp(−iγ0,nz)+D0,n exp(+iγ0,nz) if y > zM,
D1,n exp(−iγ1,nz)+ I1,n exp(+iγ1,nz) if y < 0, (2.55)
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and therefore, using equation (2.49),

Fd(x,z) =


∑
+∞
n=−∞

(
I0,n exp(iαnx− iγ0,nz)+

+D0,n exp(iαnx+ iγ0,nz)
)

if z > zM,

∑
+∞
n=−∞

(
D1,n exp(iαnx− iγ1,nz)+

+I1,n exp(iαnx+ iγ1,nz)
)

if z < 0.

(2.56)

Let us remark that equation (2.54) does not assign to γi,n a unique value. However, equation
(2.56) shows that its determination can be chosen arbitrarily since a sign change does not modify
the value of the field, provided that I0,n and D0,n are permuted. The determination of these
constants will be given by:

Re(γi,n)+ Im(γi,n)> 0, i ∈ (0,1), (2.57)

with Re(q) and Im(q) denoting the real and imaginary parts of q.
Equation (2.56) shows that the field above and below the intermediate region can be rep-

resented by plane wave expansions. The propagation constants of the plane waves along the x
and z axes are respectively equal to αn and ±γi,n. In the physical problem, some of these plane
waves must be rejected since they do not obey the radiation condition. This condition entails
that I0,n = I1,n = 0 since, according to equation (2.57), the associated plane waves propagate
towards the grating profile. Finally, equations (2.56), (2.27) and the radiation condition allow
us to express the total field by adding the incident field:

F(x,z) =


exp(iα0x− iγ0,0z)+

+∑
+∞
n=−∞ D0,n exp(iαnx+ iγ0,nz) if z > zM,

∑
+∞
n=−∞ D1,n exp(iαnx− iγ1,nz) if z < 0,

(2.58)

the sums being the expression of the scattered field in both regions. The unknown complex
coefficients D0,n and D1,n are the amplitudes of the reflected and transmitted waves respectively.

The conclusion of this subsection is that above and below the intermediate region,
the field reflected and transmitted by the grating takes the form of sums of plane waves
(Rayleigh expansion [8]), each of them being characterized by its order n.

2.4 Grating formulae

According to equation (2.54), almost all the diffracted plane waves (an infinite number) are
evanescent: they propagate along the x axis at the vicinity of the grating profile since they
decrease exponentially when |z| → +∞. For z→ +∞, they correspond to the orders n such

that α2
n ≥ k2

0, thus rendering γ0,n = i
√
(α2

n − k2
0) a purely imaginary number. Only a finite

number of them, called z-propagative orders, propagate towards z = +∞ , with α2
n ≤ k2

0 , thus

γ0,n =
√
(k2

0−α2
n ) being real. Let us notice that among these orders, the 0th order is always

included, since γ0,n = k0 cos(θ). It propagates in the direction specularly reflected by the mean
plane of the profile, whatever the wavelength may be. In contrast, the other z-propagative orders
are dispersive. Indeed, their propagation constants along the x and z axes are equal to αn and
γ0,n, in such a way that the diffraction angle θ0,n of one of these waves, measured clockwise
from the z axis, can be deduced from αn = k0 sin(θ0,n). Using the expression of αn given by
equation (2.50), the angle of diffraction is given by :

sin(θ0,n) = sin(θ)+n
2π

k0d
= sin(θ)+n

λ

d
. (2.59)
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This is the famous grating formula, often deduced from heuristic arguments of physical optics.
For the field below the grooves, the wavenumber k0 is replaced by k1 = k0ν . If the grat-

ing material is a lossless dielectric, the directions of propagation of the transmitted field obey
a grating formula as well. This formula is similar to equation (2.59) but the angles of trans-
mission θ1,n can be deduced from αn = k0ν sin(θ1,n), which yields, using a counterclockwise
convention:

ν sin(θ0,n) = sin(θ)+n
2π

k0d
= sin(θ)+n

λ

d
. (2.60)

The 0th order is always included in the z-propagative orders2. It propagates in the direction of
transmission by an air/dielectric plane interface, whatever the wavelength may be. In contrast,
the other z-propagative orders are dispersive. When the grating material is metallic, the trans-
mitted plane waves are absorbed by the metal and the z-propagating orders below the grooves
no longer exist.

In conclusion of this section, the reflected and transmitted fields include, outside the
grooves, a finite number of plane waves propagating to infinity with scattering angles given
by the grating formulae. All the orders are dispersive, except the 0th orders. The reflected
0th order takes the specular direction while for a lossless material, the transmitted 0th order takes
the direction transmitted by an air/dielectric plane interface. Consequently, a polychromatic
incident plane wave generates in a given order n different from 0 a sum of plane waves
scattered in different directions, i.e. a spectrum. The measurement of the intensity along
this spectrum allows one to determine the spectral power of the incident wave. This dispersion
phenomenon is the most important property of diffraction gratings. It explains why this optical
component has been one of the most valuable tools in the history of Science.

2.5 Analytic properties of gratings

2.5.1 Balance relations

The mathematical balance relations established in this subsection will allow us to demonstrate
very important general properties of gratings. These balance relations state mathematical links
between characteristics of the field in two regions separated by large distances, without consid-
ering the fields in between. They can give a relation between the fields at z =+∞ and the fields
on the grating profile, or the fields at z = −∞ and the fields on the grating profile, or the fields
at z =+∞ and z =−∞.

2.5.1.1 Lemma 1

We consider two pseudoperiodic functions u and v of the two variables x and z, defined in R0,
which belong to the class G0 of functions having the following properties:

• They are pseudo-periodic, with the same coefficient of pseudo-periodicity α , in other
words, u(x,z)exp(−iαx) and v(x,z)exp(−iαx) are periodic,

2This property does not hold if the upper medium is not air but has an index ν̃ greater than the index ν of the
lower medium, provided that the incidence is chosen in such a way that the incident wave is totally reflected by a
plane interface (Total Internal Reflection). In that case, sin(θ) is replaced by ν̃ sin(θ) in equation (2.60), in such a
way that the zeroth order is evanescent if ν̃ sin(θ)> ν .
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• They are solutions of a Helmholtz equation:

∇
2u+ k2

0u = 0, (2.61a)

∇
2v+ k2

0v = 0, (2.61b)

with k0 being real.

• They are bounded for z→ ∞,

• They are square integrable in x and locally square integrable in z,

• Their values on P are square integrable, as well as their normal derivatives.

We introduce the sesquilinear functional defined by:

F0 =
∫
P

(
u

dv
dn
− v

du
dn

)
ds. (2.62)

The symbol
∫
P denotes a curvilinear integral on one period of the profile P of the grating,

with ds being the differential of the curvilinear abscissa on P . Obviously, the value in region
R0 of the fields F(x,z), solutions of the four boundary-value problems defined in subsection
2.2.4, belong to G0, as well as the incident field F i. It is to be noticed that we do not impose
a boundary condition on P or a radiation condition at infinity, but we still impose that these
functions must remain bounded at infinity.

Following the same lines as in section 2.3, it can be shown that above the top of the
grooves, u and v can be represented by plane wave expansions, similar to that of equation
(2.56): if z > zM,

u(x,z) =
+∞

∑
n=−∞

[I0,n exp(iαnx− iγ0,nz)+D0,n exp(iαnx+ iγ0,nz)], (2.63a)

v(x,z) =
+∞

∑
n=−∞

[I′0,n exp(iαnx− iγ0,nz)+D′0,n exp(iαnx+ iγ0,nz)]. (2.63b)

Let us notice that some terms must be eliminated in the Rayleigh expansions. Indeed, the field
must remain bounded at infinity. It is not the case for the incident terms of coefficients I0,n and
I′0,n unless the corresponding plane waves are z-propagating waves. Thus we define the set U0
of orders corresponding to z-propagating waves and equations (2.63) become:

u(x,z) = ∑
n∈U0

I0,n exp(iαnx− iγ0,nz)+
+∞

∑
n=−∞

D0,n exp(iαnx+ iγ0,nz), (2.64a)

v(x,z) = ∑
n∈U0

I′0,n exp(iαnx− iγ0,nz)+
+∞

∑
n=−∞

D′0,n exp(iαnx+ iγ0,nz), (2.64b)

v(x,z) = ∑
n∈U0

I′0,n exp(−iαnx+ iγ0,nz)+

+
+∞

∑
n=−∞

D′0,n exp(−iαnx− iγ0,nz).
(2.64c)
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Figure 2.2: Balance relations.

Now, we show that F0 can be expressed as a function of the Rayleigh coefficients I0,n,
D0,n, I′0,n and D′0,n. With this aim, we multiply equation (2.61a) by v, the conjugate of equation
(2.61b) by u and we substract the first from the second, which yields:

u∇
2v− v∇

2u = 0 in R0. (2.65)

Integrating equation (2.65) in the blue area of figure 2.2 and applying the second Green
identity yields: ∫

Ω0

(
u

dv
dn
− v

du
dn

)
dl = 0, (2.66)

with Ω0 being the boundary of the blue area of figure 2.2 and dl denoting the differential of

the curvilinear abscissa on Ω0. According to equations (2.64a) and (2.64c), u
dv
dx

and v
du
dx

are
periodic. Since the orientations of the normal on verticals OΓ1 and LΓ2 are opposite, the con-
tributions of the integrals on these segments cancel each other. Furthermore, the normal to OΓ1
and LΓ2 is parallel to the z axis and oriented downwords, then equation (2.66) becomes:∫

P

(
u

dv
dn
− v

du
dn

)
ds =

∫
Γ1Γ2

(
u

dv
dz
− v

du
dz

)
dx. (2.67)

Introducing in the right-hand member of equation (2.66) the expressions of u and v given by
equations (2.64a) and (2.64c), separating the terms n ∈U0 from the other ones and taking into
account that

∫ d
x=0 exp in2π

d x = δn,0, with δn,0 being the Kronecker symbol, one can obtain, after
some cumbersome but not difficult calculations that:∫

P

(
u

dv
dn
− v

du
dn

)
ds = ∑

n∈U0

γ0,n(I0,nI′0,n−D0,nD′0,n). (2.68)
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2.5.1.2 Lemma 2

In this section, it is supposed that the grating material is lossless, in such a way that plane waves
can propagate in R1. Lemma 2 is similar as lemma 1, but for region R1. We denote by U1 the
set of orders corresponding to z-propagating waves in R1. The expressions of u and v below the
x axis are given by:

u(x,z) = ∑
n∈U1

D1,n exp(iαnx− iγ1,nz)+
+∞

∑
n=−∞

I1,n exp(iαnx+ iγ1,nz), (2.69a)

v(x,z) = ∑
n∈U1

D′1,n exp(iαnx− iγ1,nz)+
+∞

∑
n=−∞

I′1,n exp(iαnx+ iγ1,nz), (2.69b)

v(x,z) = ∑
n∈U1

D′1,n exp(−iαnx+ iγ1,nz)+

+
+∞

∑
n=−∞

I′1,n exp(−iαnx− iγ1,nz).
(2.69c)

Following the same lines as in section 2.5.1.1 but for the yellow area of figure 2.2 and
noting that the normal is now oriented towards the exterior of the domain, it can be deduced
that: ∫

P

(
u

dv
dn
− v

du
dn

)
ds =− ∑

n∈U1

γ1,n(I1,nI′1,n−D1,nD′1,n). (2.70)

2.5.2 Compatibility between Rayleigh coefficients

In order to state a relation between the Rayleigh coefficients above and below the grating profile,
we assume that the functions u and v satisfy the boundary conditions imposed on the total fields
by equations (2.33) and (2.34). On the other hand, we do not impose radiation conditions at
infinity, but the functions must remain bounded. In other words, u and v can be considered as
solutions of the most general grating problem, in which the incident wave is not restricted to
a single plane wave, but to the sum of all the plane waves generating diffracted waves in the
same directions, with arbitrary amplitudes. It is straightforward to show from equations (2.33)
and (2.34) that the left-hand members of equations (2.68) and (2.70) are proportional, then to
deduce a relation including the coefficients of the Rayleigh expansions of the field only:

1
τ0

∑
n∈U0

γ0,n(I0,nI′0,n−D0,nD′0,n)+

1
τ1

∑
n∈U1

γ1,n(I1,nI′1,n−D1,nD′1,n) = 0.
(2.71)

This equation states the most general relation of compatibility between two solutions of the
general diffraction grating problem associated to different sets of incident waves. When the
grating material is perfectly conducting, it is easy to show that the compatibility equation holds,
provided that the sum n ∈U1 is cancelled in equation (2.71).
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Phenomenological theories of gratings make a wide use of the notion of scattering ma-
trix (or S-matrix). The scattering matrix states the linear relation between the amplitudes of
the diffracted and incident waves. We define the column matrix containing the amplitudes of
the incident waves. More precisely, we define the normalized amplitudes of the incident and

scattered waves by Ĩ0,n =
√

γ0,nI0,n, D̃0,n =
√

γ0,nD0,n, Ĩ1,n =

√
τ0

τ1
γ1,nI1,n, D̃1,n =

√
τ0

τ1
γ1,nD1,n,

n ∈ (0,1), and by definition, the scattering matrix is a square matrix defined by:

D= SI, (2.72)

with I being a column vector containing successively all the incident amplitudes Ĩ0,n for n ∈U0
and all the incident amplitudes Ĩ1,n for n ∈U1, D being a column vector containing successively
all the diffracted amplitudes D̃0,n, and all the incident amplitudes D̃1,n for n ∈U1 . Thus, the
order of column matrices I and D is the sum|U0|+ |U1| of the cardinals of U0 and U1 Using
these notations, equation (2.71) can be expressed in the very simple form:

< D|D′ >=< I|I′ >, (2.73)

the scalar product of two column matrices of order N being defined by:

< P|Q >=
N

∑
j=1

PjQ j. (2.74)

Using equation (2.72) to eliminate D in equation (2.77) yields:

< SI|SI′ >=< (S∗S)I|I′ >=< I|I′ >, (2.75)

with S∗ being the adjoint matrix of S. Since equation (2.75) must be satisfied for any value of I
and I′, we deduce that:

S∗S= 1, (2.76)

with 1 being the identity matrix. Equation (2.76) shows that S is unitary.

2.5.3 Energy balance

The energy balance relation is obtain by taking u = v in equation (2.77), which gives:

< D|D>=< I|I>, (2.77)

or equivalently:
‖D‖= ‖I‖. (2.78)

Let us show why this equation is known as energy balance relation. To this end, it suffices

to use the Poynting theorem and to calculate the flux of the Poynting vector
−→
E ×
−→
H through the

rectangle Γ1Γ2Γ4Γ3 of figure 2.2. Since the grating material is lossless, the flux of the Poynting
vector through this rectangle (with now the normal oriented toward the exterior, in contrast
with figure 2.2) must be null. The contributions of the vertical sides Γ1Γ3 and Γ2Γ4 cancel

each other, thanks to the periodicity of the Poynting vector (
−→
H has a coefficient of pseudo-

periodicity which is the opposite to that of
−→
E ). At the top of the rectangle, the calculation

of the flux of the Poynting vector can be achieved by using the Rayleigh expansion given by
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equations (2.64). Taking into account that
∫ d

x=0 exp in2π

d x = δn, elementary calculations show
that the contributions to this flux of the different plane waves are decoupled and are proportional
to −γ0,n|I0,n|2 and +γ0,n|D0,n|2. At the bottom of the rectangle, we use the Rayleigh expansion
given by equations (2.69). The contributions of the plane waves are decoupled as well and are
proportional to −τ0

τ1
γ1,n|I1,n|2 and +

τ0

τ1
γ1,n|D1,n|2, with the same coefficient of proportionality

as the contributions on the top of the rectangle. Therefore, the energy balance can be written:

∑
n∈U0

γ0,n|D0,n|2 + ∑
n∈U1

τ0

τ1
γ1,n|D1,n|2 =

= ∑
n∈U0

γ0,n|I0,n|2 + ∑
n∈U1

τ0

τ1
γ1,n|I1,n|2.

(2.79)

The first and second terms in the left-hand member of equation (2.79) represent the energy
diffracted upwards and downwords respectively and the corresponding terms in the right-hand
member are the incident energy propagating downwords and upwards respectively.

Coming back to the physical problem where the incident wave is unique and has a unit
amplitude (see equation (2.26)), equation (2.79) becomes:

∑
n∈U0

γ0,n|D0,n|2 + ∑
n∈U1

τ0

τ1
γ1,n|D1,n|2 = γ0,0, (2.80)

the right-hand member representing the incident energy. In that case, the efficiency ρi,n, i ∈
(0,1) is defined as the ratio of the energy diffracted in a given order over the incident energy.
Using equation (2.79) yields:

ρi,n =


γ0,n

γ0,0
|D0,n|2 if i = 0,

τ0

τ1

γ1,n

γ0,0
|D1,n|2 if i = 1,

(2.81)

and the energy balance can be written:

∑
n∈U0

ρ0,n + ∑
n∈U1

ρ1,n = 1. (2.82)

The sum of efficiencies is equal to unity. When the grating is perfectly conducting, it is easy to
show that the energy balance still holds, provided that the sum n ∈U1 is cancelled in equations
(2.79), (2.80) and (2.82). When the grating material is lossy, the sum n ∈U1 must be cancelled
as well and one can show that equation (2.82) becomes:

∑
n∈U0

ρ0,n < 1. (2.83)

The sum of reflected efficiencies is smaller than one, a rather intuitive result if we bear in mind
that a part of the incident energy is dissipated in the grating material.

2.5.4 Reciprocity

In order to demonstrate the well known reciprocity relation, we consider a function u, sum of
the solution of the normalized grating problem (see equations( 2.28), (2.29), (2.30) and (2.31))
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Figure 2.3: The reciprocity theorem: The efficiency in the pth order is the same in the two cases symbolized by red
and blue arrows.

and of the corresponding incident field (in other words, u is the total field). In order to define v,
we consider the pth order of diffraction (p ∈U0) in R0, with diffraction angle θ0,p.

Then, we consider a second problem, but with angle of incidence θ ′′ =−θ0,p , as shown3

in figure 2.3. The incident wave in this second case has a direction of propagation which is just
the opposite of that of the pth diffracted order in the first case and straightforward calculations
show that the corresponding pth order in R0 has a direction of propagation which is the
opposite of that of the incident wave in the first case, which entails θ ′′0,p = −θ . This geo-
metrical property is known in optics as the reversion theorem. The constants of propagation of
the pth diffracted order in this second case are given by α ′′p = −α0 and γ ′′0,p = γ0,0 and more
generally, the constants of propagation of an arbitrary nth diffracted order in this second case
are given by α ′′n =−αp−n and γ ′′0,n = γ0,p−n. Thus v′′ can be written:

v′′(x,z) = exp(−iαpx− iγ0,pz)+
+∞

∑
n=−∞

D′′0,n exp(−iαp−nx+ iγ0,p−nz). (2.84)

Functions u and v′′ do not satisfy the conditions of the equation of compatibility (equation
(2.71)) since they have not the same pseudo-periodicity. It is not so for u and the function v = v′′

which is given by:

v(x,z) = exp(iαpx+ iγ0,pz)+
+∞

∑
n=−∞

D′′0,n exp(iαp−nx− iγ0,p−nz). (2.85)

3It must be remembered that the conventions for the measurements of the angles of incidence and diffraction
in R0 are opposite
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Figure 2.4: Other reciprocity relations: The efficiency is the same in the two cases symbolized by red and blue
arrows.

Identifying the incident and diffracted waves in equation (2.85) yields:

I′0,n = D′′0,p−n, (2.86a)

D′0,n = δn−p, (2.86b)

and from equation (2.71), it turns out that:

γ
′′
0,pD′′0,p = γ0,pD0,p. (2.87)

This is the reciprocity theorem: the products of the amplitudes of the plane waves repre-
sented in figure 2.3 by their propagation constants along the z axis is invariant. In order to
state the reciprocity theorem in a form which is most widespread, we take the modulus square
of both members of equation (2.87):

γ
′′
0,p

2|D′′0,p|2 = γ0,p
2|D0,p|2. (2.88)

Writing equation (2.88) in the form:

γ ′′0,p
γ0,p
|D′′0,p|2 =

γ0,p

γ ′′0,p
|D0,p|2, (2.89)

and bearing in mind that γ0,p = γ ′′0,0 and γ ′′0,p = γ0,0, and using the definition of the efficiencies
given in equation (2.81), equation (2.89) yields:

ρ
′′
0,p = ρ0,p. (2.90)

The efficiency is invariant.
Figure 2.4 illustrates two other cases where the reciprocity theorem applies. These prop-

erties can be demonstrated by following the same lines as in the first part of this section. It is
important to notice that the reciprocity theorem illustrated in figure 2.3 holds for lossy materials
[9]. More surprisingly, the theorem can be generalized to evanescent waves [10].

2.5.5 Uniqueness of the solution of the grating problem

If two different solutions of the normalized grating problem exist, their difference w(x,z) does
not include any incident wave. We will show that such a field vanish. We assume here that the
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grating material is lossless. First, using the compatibility equation (2.71) with u = v = w, it
emerges that:

1
τ0

∑
n∈U0

γ0,n|D0,n|2 +
1
τ1

∑
n∈U1

γ1,n|D1,n|2 = 0. (2.91)

Since τ0, τ1, γ0,n and γ1,nare positive, equation (2.91) implies that D0,n = D1,n = 0. This is an
important result since it means that if w exists, it has no effect on the far field: the solution in the
far field is unique. However, it could exist a function w localized at the vicinity of the grating
profile and tending to zero exponentially at infinity. The interested reader can find a complete
and not straightforward demonstration of the uniqueness in [1], at least for the TE case.

2.5.6 Analytic properties of crossed gratings

Figure 2.5: A crossed grating with periods dx and dz on the x and z axes.

Now, we consider the diffraction problem schematized in figure 2.5. An incident wave
of wavevector

−→
k0 is incident on a doubly-periodic structure separating air (region R0) from

a grating material (region R1). We use all the notations defined in the preceding sections to
characterize the materials. The incident field is schematized in figure 2.6. The direction of
incidence is specified by the polar angles Φ and Ψ (see figure 2.6). In order to define the
polarization of the incident field, we construct the circle MNM’N’ in the plane perpendicular to−→
k0 , with the continuation of NN’ intersecting the z axis and MM’ being perpendicular to NN’.
The polarization angle δ is the angle between M’M and the direction of the incident electric
field

−→
P . With these notations, the incident electric field is given by:

−→
E i =

−→
P exp

(
iαx+ iβy− iγz

)
, (2.92)
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Figure 2.6: Notations for the incident field.

with α = k0 sinΦ cosΨ , β = k0 sinΦ sinΨ and γ = k0 cosΦ . The projection of
−→
P on M’M is

called transverse component of
−→
P and denoted by Pt . Its projection on N’N is called longitudi-

nal (in plane) component and denoted bzPl , in such a way that
−→
P = Pt

−−→
MM′

MM′
+Pl
−−→
NN′

NN′
.

As in the case of classical gratings, it is possible to show that above the top of the grating
(z > zM), the field can be expanded in the form of a sum of plane waves:

−→
E (x,z) =


∑
+∞
n=−∞ ∑

+∞
m=−∞

(−−→
I0,n,m exp(iαnx+ iβmy− iγ0,n,mz)+

+
−−−→
D0,n,m exp(iαnx+ iβmy+ iγ0,n,mz)

)
, if z > zM,

∑
+∞
n=−∞ ∑

+∞
m=−∞

(−−−→
D1,n,m exp(iαnx+ iβmy− iγ1,n,mz)+

+
−−→
I1,n,m exp(iαnx+ iβmy+ iγ1,n,mz)

)
if z < 0.

(2.93)

The wavevectors of all these plane waves must be orthogonal to their vector amplitudes. As
for the incident wave, we can define the transverse and longitudinal components of the vector
amplitudes of the plane waves, the transverse component (for example Dt

0,n,m) being orthogonal
to the z axis in the plane perpendicular to the wavevector (αn,βm,γ0,n,m) and the longitudinal
(for example Dl

0,n,m) its component in the orthogonal direction of the same plane.
Using the Poynting theorem, it can be shown, as in section 2.5.3, that the efficiencies in

the z-propagating orders are given by:

ρi,n,m =


γ0,n,m

γ0,0
|−→D 0,n,m|2 if i = 0,

γ1,n,m

γ0,0
(

1
ν2 |D

l
1,n,m|2 + |Dt

1,n,m|2) if i = 1.
(2.94)
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Of course, the line associated to i= 1 in equation (2.94) must be cancelled if the grating material
is lossy.

We define, as for classical gratings, the sets U0 and U1 of z-propagating orders in R0 and
R1 respectively and, when the grating material is lossless, the energy balance can be written:

∑
(n,m)∈U0

ρ0,n,m + ∑
(n,m)∈U1

ρ1,n,m = 1. (2.95)

We will not demonstrate the reciprocity theorem, the interested reader can find the proof
in [1]. This theorem, in the case of an order (p,q) propagating in R0 can be expressed in the
following form:

γ
−→
P .
−→
D′0,p,q = γ

′−→P′ .−→D 0,p,q. (2.96)

In the first case, the incident electric field with vector amplitude
−→
P and propagation constant

along the z axis −γ generates in R0 in the (p,q) order, with (p,q) ∈ U0, a plane wave of
vector amplitude

−→
D 0,p,q and propagation constant along the z axis γ0,p,q. In the second case,

we consider an incident wave which propagates in the direction which is just the opposite to
that of the (p,q) order in the first case. Thus its constant of propagation along the z axis is
−γ ′ = −γ0,p,q. The vector amplitude of this incident wave is equal to

−→
P′ . It can be shown

that in this second case, the (p,q) order takes the direction which is the opposite of that of
the incident wave in the first case and its vector amplitude is equal to

−→
D′0,p,q. Thus, equation

(2.96) can be expressed in the following form: the scalar product of the vector amplitudes
of the incident and diffracted waves propagating in the opposite directions, multiplied by
the propagation constant of the incident wave along the z axis, is constant. It can be shown
that this relation entails the reciprocity in natural light for the efficiencies:

< ρ0,p,q >=< ρ
′
0,p,q >, (2.97)

with < ρ0,p,q > being the average between the efficiencies in both cases of polarization (δ = 0

and δ =
π

2
).

2.6 Conclusion

We have established the mathematical bases of grating theories: the boundary-value problems.
Most of the formalisms used for solving the grating problems numerically start from these
boundary-value problems, for example the integral theory [1,2].Other theories use some con-
ditions of these problems but deal directly with Maxwell equations, for example the RCWA
method [5].

Without any doubt, the boundary-value problems are necessary to demonstrate the ana-
lytic properties of gratings. Very often, these properties are ignored or neglected. However,
properties like energy balance or reciprocity are needed for a full understanding of the puzzling
properties of this crucial component of optics and nanophotonics. These analytic properties are
also widely used to check new grating softwares. However, they are not more than casting out
nines. They can show that a software fails if they are nor satisfied on its numerical results. It
must be emphasized that they can never prove its validity if they are satisfied.
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Some important analytic properties of gratings have not been mentioned in this chapter.
It is the case for example for the Marechal and Stroke theorem, the only grating property which
allows one to know the field diffracted by a grating without any calculation. This theorem,
which is restricted to perfecly conducting echelette gratings used for TM polarization in very
special conditions will be given in the chapter devoted to the applications of grating properties.

52



D. Maystre: Analytical Properties of Diffraction Gratings 2.23

References:

[1] R. Petit, Ed.: Electromagnetic theory of gratings. Topics in current physics, (Springer-
Verlag, 1980) .

[2] D. Maystre: Rigorous vector theories of diffraction gratings, In:Progress in Optics 21, ed.
by E. Wolf (North-Holland) pp. 1-67 (1984) .

[3] M. Nevière, and E. Popov: Light Propagation in Periodic Media: Differential Theory and
Design, (Marcel Dekker, 2003) .

[4] L. Li, J. Chandezon, J., G. Granet, and J.-P. Plumet : Rigorous and Efficient Grating-
Analysis Method Made Easy for Optical Engineers. Applied Optics 38, 304-313 (1999) .

[5] M. G. Moharam, and T. K. Gaylord : Rigorous coupled-wave analysis of metallic surface-
relief gratings. J. Opt. Soc. Am. 3, 1780-1787 (1986) .

[6] L. C. Botten, M. S.Craig, R.C. McPhedran, J. L. Adams, and J. R. Andrewartha : The
dielectric lamellar diffraction grating. Optica Acta 28, 413 – 428 (1981) .

[7] L. Schwartz: Mathematics for Physical sciences, (Addison-Wesley, London, 1967) .

[8] Rayleigh, Lord: On the dynamical theory of gratings, Proc. Royal Soc. A, 79 pp. 399-416
(1907)

[9] D. Maystre, and R. C. McPhedran: Le théorème de réciprocité pour les réseaux de conduc-
tivité finie: démonstration et applications. Optics Commun. 12, 164-167 (1974) .

[10] R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet: Reciprocity of evanescent electro-
magnetic waves. J. Opt. Soc. Am. A 15, 706-712 (1998) .

53



54



 

 

 

 

 

 

Chapter 3: 

Spectral Methods for Gratings 

John A. DeSanto 

55



Table of Contents:

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 3.2
3.2 Plane Waves in Periodic Media . . . . . . . . . . . . . . . . . . . . . . . . . .  . 3.3
3.3 Green’s Functions in Periodic Media . . . . . . . . . . . . . . . . . . . . . . .  . 3.4
3.4 Integral Methods in Coordinate Space for Scalar Problems . . . . . . . . . . .  . 3.9
3.5 Partial Spectral Methods for Scalar Problems . . . . . . . . . . . . . . . . . .  3.13
3.6 Surface Inversion Using the Partial Spectral Method . . . . . . . . . . . . . . .  3.16
3.7 Full Spectral Methods for Scalar Problems: Physical Optics Modified Fourier

Basis and Floquet-Fourier Expansions . . . . . . . . . . . . . . . . . . . . . .  3.18
3.8 Full Spectral Methods for Scalar Problems: Conjugate Rayleigh Basis . . . . .  3.21
3.9 Integral Equation Methods in Coordinate Space for Electromagnetic Problems .  3.22
3.10 Partial Spectral Methods for Electromagnetic Problems . . . . . . . . . . . . .  3.26
3.11 Full Spectral Methods for Electromagnetic Problems . . . . . . . . . . . . . .  3.27
3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.29

  Appendix 3.A  A Note on Matrix Elements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3.30
  References .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3.31 

56

popov
Texte tapé à la machine



Chapter 3

Spectral Methods for Gratings

John A. DeSanto

Professor Emeritus, Department of Physics
Colorado School of Mines
Golden, CO 80401, USA

jdesanto@mines.edu, bajdesanto@mac.com

Abstract

We present a unified formal treatment of spectral methods applied to scattering from penetrable
gratings for both acoustic (scalar) and electromagnetic (vector) problems. These are derived
from coordinate space representations for both acoustic problems for a one-dimensional grat-
ing, and full electromagnetic problems for a two-dimensional grating. The coordinate space
representations are also derived here. By unified we mean that the electromagnetic results use
a scalar analogy, in that the boundary unknowns are the electric field and its normal derivative.

In coordinate space, the kernels of either the integral representations or integral equations
have two variables, the first relating to the field coordinate (which, for an integral equation,
has been evaluated on the surface), and the second evaluated on the surface as part of the sur-
face integration. We refer to this procedure as coordinate in both variables or simply a CC
method. Partial spectral results involve a spectral replacement of the first coordinate variable,
and we refer to these methods as SC. Full spectral methods involve an additional replacement
of the second (always surface) coordinate variable by a spectral one and we refer to these as SS
methods, or in the case of a conjugate Rayleigh basis as SS∗.

For both scalar and electromagnetic cases, the partial spectral results are derived without
the use of Green’s functions. Instead we use plane wave states in Green’s theorem. The partial
spectral results are also used to generate surface inversion methods involving perturbation the-
ory and the Kirchhoff approximation. For the full spectral scalar case three spectral expansions
are considered, a physical optics modified Fourier expansion, a Floquet-Fourier expansion, and
an expansion in conjugate Rayleigh basis functions. All are Floquet- or quasi-periodic. For the
full spectral electromagnetic case only the conjugate Rayleigh basis expansion is presented.
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3.1 Introduction

In this paper we present formal equations in spectral space to describe the scattering from peri-
odic surfaces or gratings. We do this both for the acoustic case in one dimension for the direct
scattering problem (Secs.4,5,7) and the inverse problem(Sec.6), and in two dimensions for the
general electromagnetic problem (Secs.9,10,11). In order to do this and justify the validity
of the spectral representations in various regions, we derive in each case the coordinate-space
representations for the scattering (Secs.4,9). This includes the two- and three-dimensional pe-
riodic Green’s function (Sec.3) necessary to describe the coordinate-space scattering, and the
development of plane wave expansions in periodic media (Sec.2) which are used throughout the
paper.

For the partial spectral-space equations it is not necessary to use the Green’s function.
Instead we describe a method using plane waves and Green’s theorem in the periodic cell of the
surface to derive the spectral equations directly and simply. One can describe the coordinate-
space integral representations or integral equations to solve the boundary unknowns as equa-
tions in two coordinate spaces, the space of the source or integrated coordinate, and the space
of the field or exterior coordinate. For clarity, we refer to this as a coordinate-coordinate (CC)
representation. Spectral can then refer to one or both of these coordinate spaces transformed,
a partial spectral space when one is transformed (Secs.5,10) where we use first the transform
of the exterior coordinate (following from the plane waves and Green’s theorem) so we are
in a spectral-coordinate (SC) representation which we treat extensively, including its use in the
inverse problem, the problem of surface reconstruction from (known) scattered field data. A sec-
ond version (CS) is referred to93 but not extensively discussed. Using SC we can then represent
the integrated coordinate in spectral space (SS) where we reference extensive computational
results36,37,38,39. What has become of interest lately3 is the transform of the coordinate-space
of integration into the conjugate spectral space S?, and we describe this SS? method extensively
(Secs.8,11) for acoustic and electromagnetic results respectively. Formally this is equivalent to
a dual least squares method.

It is important to define what we mean by the word ”spectral”28. In a general context,
this could mean just Fourier space, and boundary function expansions in pure Fourier series.
However, in our context, this is not correct. The reason is that the boundary fields are limits of
Floquet- or quasi-periodic functions and must themselves be Floquet- or quasi-periodic. This
reflects the nature of the incident field being, in general, incident off the normal. The periodic
surface has right-left symmetry, but the boundary value problem does not (unless the field is
incident normally). By ”spectral” we thus mean here three kinds of expansions, a physical-
optics modified Fourier expansion (Sec.7) where a single plane wave modulates the Fourier
series, an expansion which we term Floquet-Fourier which preserves the quasi-periodicity but
without the modulating plane wave (Sec.7), and an expansion in conjugate plane wave states on
the boundary (Secs.8,11) where plane waves modulate each term in the expansion. These latter
are Rayleigh or Bloch wave type expansions and are useful because, at least in some degenerate
cases, they lead to self-adjoint problems. All expansions are quasi-periodic. Relation of the
results to Rayleigh and Waterman expansions is discussed.

Using the partial spectral methods developed in Sec.5 for the direct scattering problem,
we discuss in Sec.6 how they can be used to find the periodic surface profile from the incident
and scattered fields. Two methods are presented, one based on perturbation theory and the other
on the Kirchhoff approximation, both for the scalar case. Both surface inversion methods were
initially applied to truncated random surfaces111,112 with good results, and the methodology is
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here applied to gratings.
The electromagnetic equations we present are not done in the conventional formalism61

using boundary currents, but are based on earlier work of ours35 which rely on a scalar analogue
of the electromagnetic problem, so the boundary unknowns we use are the electric field and its
normal derivative. The resulting equations become a direct scalar analogue in terms of different
boundary unknowns for the electromagnetic problem. We also do not discuss the computa-
tional solutions of the equations but rely on references where available. Some related equations
have been solved, and we point out the references where appropriate, but a full discussion of
computational issues would require a separate paper.

A very large number of references are cited in the text. Many of these references, some not
specifically attuned to spectral methods, nevertheless contain spectral components in the devel-
opment or in reference to expansions, in particular to the Rayleigh expansion11,12,14,48,50,54,56,57,

64,66,70,76,80,81,82,94,99,100,104, the Waterman expansion105, both4,5,23,24,109, or a combination of
the two expansions62. The gratings we consider are infinite, although spectral methods have
been applied to finite gratings also84, and our gratings are purely deterministic although ran-
dom gratings have also been considered83. Newer results on gratings apply surface integral
methods to periodic nanostructures43, indicating the generality of the methods we describe. We
are mainly interested in scattering methods which produce the scattered and transmitted fields
and their use in inversion, although others prefer to consider the dispersion relation for surface
plasmons and polaritons propagating along the grating46,47,63. Other rigorous theoretical and
computational developments are also available2,6,7,8,16,44,45,49,67,68,77,78,79,87,92,96,113, as well as
approximations65,110, applications9,13,42,51,71,75, and other methodology1,85.

There are very many papers (our many references do not scratch the surface), reviews10,40,

69,88,89,91,98 and books52,103,108 on scattering from gratings, not the least of them being the
important book edited by Petit90 in honor of which this paper is contributed.

3.2 Plane Waves in Periodic Media

In two dimensions~x = (x,z), we write a plane wave as

φ(~x) = exp[ik(α0x+ γ0z)], (3.1)

where α0 = sin(θ), γ0 = cos(θ) =
√

1−α2
0 , and θ is measured clockwise from the positive

z axis. With the time convention exp(−iωt), where ω is circular frequency, this is thus an
up-going plane wave, and satisfies the two-dimensional Helmholtz equation

(∇2
2 + k2)φ(~x) = 0, (3.2)

where k is the wavenumber (here considered to be strictly real). On a one-dimensional surface
z = h(x) we have

φ(~xh) = exp[ik(α0x+ γ0h(x))], (3.3)

where ~xh = (x,h(x)). This is referred to as a Rayleigh function. For one-dimensional periodic
media (here the surface), h(x+L) = h(x), where L is the period, we have the relation

φ(x+L,h(x+L)) = exp(ikα0L)φ(x,h(x)). (3.4)

The same result is true even off the surface, i.e.

φ(x+L,z) = exp(ikα0L)φ(x,z). (3.5)
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These results are referred to as Floquet- or quasi-periodicity. The field scattered from this
periodic surface, ψsc, satisfies the same Helmholtz equation, and is also quasi-periodic because
the ratio ψsc

φ
is periodic, i.e.

ψsc(x+L,z)
φ(x+L,z)

=
ψsc(x,z)
φ(x,z)

, (3.6)

so that
ψ

sc(x+L,z) = exp(ikα0L)ψsc(x,z), (3.7)

and the same is true on the surface z = h(x). In general for any field function ψ satisfying (3.2)
and shifted an integer n number of periods we have

ψ(x+nL,z) = exp(ikα0nL)ψ(x,z). (3.8)

The same is of course true on the surface z = h(x).
In three dimensions any field function which satisfies the three-dimensional Helmholtz

equation
(∇2

3 + k2)ψ(~x) = 0, (3.9)

where~x = (x,y,z), and is quasi-periodic in x with period L1 and in y with period L2 satisfies

ψ(x+n1L1,y+n2L2,z) = exp[ik(α0n1L1 +β0n2L2)]ψ(x,y,z), (3.10)

where α0 = sin(θ)cos(ϕ) and β0 = sin(θ)sin(ϕ) with θ the polar angle, ϕ the azimuthal angle,
and n1 and n2 are integers. In three dimensions the up-going plane wave is now written as

φ(~x) = exp[ik(α0x+β0y+ γ0z)], (3.11)

where γ0 =
√

1−α2
0 −β 2

0 . Although we use some of the same notation in both two and three
dimensions the interpretation will be clear from the context.

We consider the periodic surface z = h(x) in one dimension and z = h(x,y) = h(~x⊥) in
two dimensions which separates two media with wavenumbers k1 for z > h (the upper region
1) and k2 for z < h (the lower region 2). Notationally, subscripts are used to identify the region,
e.g. φ becomes φ1 or φ2, γ0 becomes γ10 or γ20, etc. The paper has a lot of notation, and we
have tried to keep it as clear as possible.

3.3 Green’s Functions in Periodic Media

In two dimensions the free-space Green’s function is

G(2)(~x′,~x) =
i
4

H(1)
0 (k0|~x′−~x|), (3.12)

where H(1)
0 is the Hankel function, and k0 is a generic wave number. It satisfies the equation

(∇2
2 + k2

0)G
(2)(~x′,~x) =−δ (~x′−~x). (3.13)

Its representation as a Fourier transform is

G(2)(~x′,~x) =
1

(2π)2

∫∫ exp[ikx(x′− x)+ ikz(z′− z)]
k2− k2

0+
dkxdkz, (3.14)
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where the integrals run from−∞ to ∞. We have given k0 a small positive imaginary part to define
the integral, and k2 = k2

x + k2
z . If we choose a specific direction, here the fixed direction z, we

can evaluate the kz integration using complex variables. The result is the Weyl representation34

for G(2)

G(2)(~x′,~x) =
iπ

(2π)2

∫
∞

−∞

exp[ikx(x′− x)+ iK0|z′− z|]
K0

dkx, (3.15)

where K0 =
√

k2
0− k2

x for k2
0 > k2

x , and = i
√

k2
x − k2

0 for k2
x > k2

0.
We have two regions. In region 1, we let k0 = k1 in (3.15), scale the integral using kx =

k1α , and we get the Green’s function for region 1 (subscript) in (2)-dimensions (superscript)

G(2)
1 (~x′,~x) =

iπ
(2π)2

∫
∞

−∞

exp[ik1(α(x′− x)+ γ1(α)|z′− z|)]
γ1(α)

dα, (3.16)

where

γ1(α) =
√

1−α2, (α2 < 1) (3.17)

= +i
√

α2−1, (α2 > 1). (3.18)

In region 2, let k0 = k2 in (3.15) and scale using kx = k1α (the same scaling as in region 1) to
get the Green’s function in region 2 (subscript) in (2)-dimensions (superscript)

G(2)
2 (~x′,~x) =

iπ
(2π)2

∫
∞

−∞

exp[ik1(α(x′− x)+ γ2(α)|z′− z|)]
γ2(α)

dα, (3.19)

where

γ2(α) =
√

K2−α2, (α2 < K2) (3.20)

= +i
√

α2−K2, (α2 > K2), (3.21)

and K = k2/k1, the ratio of wavenumbers. The same scaling in both regions can be thought of
as simply a result of Snell’s Law since the x-components of the phases of both functions must
match at a flat interface.

The Green’s functions above are for an infinite space or, in our case, an infinite surface.
To find the periodic Green’s function for a single cell of the surface we use the single or double
layer potentials which occur in Sec.4. For example, define the single layer potential on an
infinite surface h(x) as

(Sψ)(~x′h) =
∫

∞

−∞

G(2)(~x′h,~xh)ψ(~xh)dx, (3.22)

where ψ is any field function (here it is the normal derivative). The result can be written as a
sum over periodic cells

(Sψ)(~x′h) =
∞

∑
n=−∞

In(x′), (3.23)

where

In(x′) =
∫ (2n+1)L/2

(2n−1)L/2
G(2)(~x′h,~xh)ψ(~xh)dx. (3.24)

Use (3.16) or (3.19) in (3.24), shift the integration by defining x′′ = x−nL, and use the Floquet
property of the field function to rewrite (3.22) as

(Sψ)(~x′h) =
∫ L/2

−L/2
G(2p)(~x′h,~xh)ψ(~xh)dx, (3.25)
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where the two-dimensional periodic Green’s function ((2p)-superscript) is given by

G(2p)(~x′h,~xh) =
iπ

(2π)2

∫
∞

−∞

exp[ik1(α(x′− x)+ γ(α)|h(x′)−h(x)|)]
γ(α)

S(α)dα, (3.26)

where the sum S is given by

S(α) =
∞

∑
n=−∞

exp[ink1L(α0−α)], (3.27)

and can be evaluated using the Poisson sum95 to be

S(α) =
2π

ik1

∞

∑
j=−∞

δ (α−α j), (3.28)

where δ represents the delta function and α j = α0 + jλ/L is the grating equation. The result
substituted in (3.26) yields the periodic Green’s function for region 1

G(2p)
1 (~x′h,~xh) =

i
2k1L

∞

∑
j=−∞

exp[ik1(α j(x′− x)+ γ1 j|h(x′)−h(x)|)]
γ1 j

, (3.29)

where

γ1 j =
√

1−α2
j , (α2

j < 1), (3.30)

= +i
√

α2
j −1, (α2

j > 1), (3.31)

and the periodic Green’s function for region 2

G(2p)
2 (~x′h,~xh) =

i
2k1L

∞

∑
j=−∞

exp[ik1(α j(x′− x)+ γ2 j|h(x′)−h(x)|)]
γ2 j

, (3.32)

where

γ2 j =
√

K2−α2
j , (α2

j < K2) (3.33)

= +i
√

α2
j −K2, (α2

j > K2). (3.34)

We have listed the Green’s functions of both regions to stress the exterior scaling k1 for both.
The result is the residual of the k1 in the phase of both terms, Snell’s law, and the same Poisson
sum.

The Green’s functions satisfy the differential equations

(∇2
2 + k2

l )G
(2p)
l (~x′,~x) =−

∞

∑
n=−∞

δ (x′− xn)δ (z′− z), (3.35)

where xn = x+nL and l = 1,2. The periodic Green’s function can also be written as a phased
array of Hankel functions, e.g. for region 1

G(2p)
1 (~x′,~x) =

i
4

∞

∑
n=−∞

exp(ik1α0nL)H(1)
0 (k1

√
(x′− xn)2 +(z′− z)2). (3.36)
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The periodic Green’s functions are also Floquet-periodic. For either Green’s function, using
(3.29) or (3.32) we have that

G(2p)(~x′,~xn) = exp(−ik1α0nL)G(2p)(~x′,~x), (3.37)

where ~xn =~x+ înL. Since the Floquet condition on any field function (3.8) has the conjugate
phase of (3.37), the product of any Green’s function times any field function ψ is periodic,

G(2p)(~x′,~xn)ψ(~xn) = G(2p)(~x′,~x)ψ(~x). (3.38)

This result will be used later to cancel vertical integrals in Green’s theorem for the coordinate-
space representation.

The three-dimensional Green’s function in free space is given by

G(3)(~x′,~x) =
1

4π

exp(ik0|~x′−~x|)
|~x′−~x|

, (3.39)

where k0 is a generic wave number. It satisfies the equation

(∇2
3 + k2

0)G
(3)(~x′,~x) =−δ (~x′−~x), (3.40)

where~x = (x,y,z). Its Fourier representation is

G(3)(~x′,~x) =
1

(2π)3

∫∫∫ exp[ikx(x′− x)+ iky(y′− y)+ ikz(z′− z)]
k2− k2

0+
dkxdkydkz, (3.41)

with k2 = k2
x + k2

y + k2
z . Use complex integration on the preferred z-direction to yield

G(3)(~x′,~x) =
iπ

(2π)3

∫∫ exp[ikx(x′− x)+ iky(y′− y)+ iK0|z′− z|]
K0

dkxdky, (3.42)

where

K0 =
√

k2
0− k2

x − k2
y , (k2

x + k2
y < k2

0) (3.43)

= +i
√

k2
x + k2

y − k2
0, (k2

x + k2
y > k2

0). (3.44)

In the upper region, let k0 = k1 in (3.42), and scale the wavenumbers as kx = k1α and ky = k1β .
This yields the three-dimensional Green’s function for region 1 in the Weyl representation

G(3)
1 (~x′,~x) =

iπk1

(2π)3

∫∫ exp[ik1(α(x′− x)+β (y′− y)+ γ1(α,β )|z′− z|)]
γ1(α,β )

dαdβ , (3.45)

where

γ1 =
√

1−α2−β 2, (α2 +β
2 < 1), (3.46)

= +i
√

α2 +β 2−1, (α2 +β
2 > 1). (3.47)

In the lower region, let k0 = k2 in (3.42), scale the wavenumbers the same (two-dimensional
Snell’s law) to yield the three-dimensional Green’s function for region 2 in the Weyl represen-
tation

G(3)
2 (~x′,~x) =

iπk1

(2π)3

∫∫ exp[ik1(α(x′− x)+β (y′− y)+ γ2(α,β )|z′− z|)]
γ2(α,β )

dαdβ , (3.48)
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where

γ2 =
√

K2−α2−β 2, (α2 +β
2 < K2), (3.49)

= +i
√

α2 +β 2−K2, (α2 +β
2 > K2). (3.50)

The above results are for an infinite surface. To illustrate the reduction to a single cell of
a two-dimensional periodic surface we choose a single layer potential (for either region) with
density ψ which is any field function (here the normal derivative of the velocity potential)

(Sψ)(~x′h) =
∫∫

∞

−∞

G(3)(~x′h,~xh)ψ(~xh)dxdy. (3.51)

Here the surface is doubly periodic (period L1 in x and L2 in y)

h(~x⊥+~xn1n2) = h(~x⊥), (3.52)

where n1 and n2 are integers and~xn1n2 = în1L1 + ĵn2L2. The field function is Floquet-periodic
in two dimensions, see (3.10). We can thus write (3.51) as a double sum over periodic cells

(Sψ)(~x′h) =
∞

∑
n1=−∞

∞

∑
n2=−∞

In1n2(~x
′
h), (3.53)

where

In1n2(~x
′
h) =

∫ (2n2+1)L2/2

(2n2−1)L2/2

∫ (2n1+1)L1/2

(2n1−1)L1/2
G(3)(~x′h,~xh)ψ(~xh)dxdy. (3.54)

Use the Weyl representation (3.45) or (3.48) for G(3), shift the integrations using x′′ = x−n1L1
and y′′ = y−n2L2 to yield

(Sψ)(~x′h) =
∫ L2/2

−L2/2

∫ L1/2

−L1/2
G(3p)(~x′h,~xh)ψ(~xh)dxdy, (3.55)

where the three-dimensional periodic Green’s function is given by

G(3p)(~x′h,~xh) =
iπk1

(2π)3

∫∫ exp[ik1(α(x′− x)+β (y′− y)+ γ|h(~x′⊥)−h(~x⊥)|)]
γ(α,β )

P1P2dαdβ ,

(3.56)
with the Poisson sums

P1(α) =
∞

∑
n1=−∞

exp[in1k1L1(α0−α)] =
2π

k1L1

∞

∑
j=−∞

δ (α j−α), (3.57)

and

P2(β ) =
∞

∑
n2=−∞

exp[in2k1L2(β0−β )] =
2π

k1L2

∞

∑
j′=−∞

δ (β j′−β ). (3.58)

The grating equations are now α j = α0 + jλ/L1 and β j′ = β0 + j′λ/L2. The result is the three-
dimensional periodic Green’s function for region 1 with both coordinates on the surface

G(3p)
1 (~x′h,~xh) =

i
2k1L1L2

∞

∑
j=−∞

∞

∑
j′=−∞

exp[ik1(α j(x′− x)+β j′(y′− y)+ γ1 j j′|h(~x′⊥)−h(~x⊥)|)]
γ1 j j′

,

(3.59)
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where

γ1 j j′ =
√

1−α2
j −β 2

j′, (α2
j +β

2
j′ < 1) (3.60)

= +i
√

α2
j +β 2

j′−1, (α2
j +β

2
j′ > 1). (3.61)

The three-dimensional periodic Green’s function for region 2 is given by

G(3p)
2 (~x′h,~xh) =

i
2k1L1L2

∞

∑
j=−∞

∞

∑
j′=−∞

exp[ik1(α j(x′− x)+β j′(y′− y)+ γ2 j j′|h(~x′⊥)−h(~x⊥)|)]
γ2 j j′

,

(3.62)
where

γ2 j j′ =
√

K2−α2
j −β 2

j′, (α2
j +β

2
j′ < K2) (3.63)

= +i
√

α2
j +β 2

j′−K2, (α2
j +β

2
j′ > K2). (3.64)

We use these Green’s functions later for three-dimensional electromagnetic problems. Note
again that the scaling is k1 in front of both (3.59) and (3.62). Note also the obvious remark that
for a two-dimensional surface h(~x⊥) we have two spectral parameters, j and j′.

Both Green’s functions satisfy a two-dimensional Floquet condition

G(3p)(~x′h,~xh +~xn1n2) = exp[−ik1(α0n1L1 +β0n2L2)]G(3p)(~x′h,~xh). (3.65)

Combined with the two-dimensional Floquet condition on any field function (3.10), the product
of any Green’s function times a field function is periodic

G(3p)(~x′h,~xh +~xn1n2)ψ(~xh +~xn1n2) = G(3p)(~x′h,~xh)ψ(~xh). (3.66)

We use this property later to cancel side integrals in Green’s theorem. Techniques for computing
these periodic Green’s functions are available101,102.

3.4 Integral Methods in Coordinate Space for Scalar Problems

We first present the coordinate-space representation of the scattering from a periodic surface
as comparison and contrast to that of the spectral representations in later sections. In addition,
these yield rigorous representations for the scattered field above the highest surface excursion
and for the transmitted field below the lowest surface excursion, as well as projections on lines
above and below the surface.

The total field in region 1, ψ1, equals the sum of incident plus scattered fields, ψ1 =
ψ in +ψsc, and it satisfies the scalar Helmholtz equation

(∇2
2 + k2

1)ψ1(~x) = 0, (3.67)

as do both incident and scattered fields. We do Green’s theorem using ψ1 and G(2p)
1 . Cross

multiply (3.67) and (3.35), multiply by the characteristic function of region 1

Θ1(~x) = θ(L/2− x)θ(x+L/2)θ(z−h(x))θ(H1− z), (3.68)
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where θ is the step function, θ(x) = 1 when x > 0, and θ(x) = 0 when x < 0, and integrate by
parts. To express the results conveniently, introduce the bracket notation

[G(2p)
1 ,ψ1;~x′,S] =

∫∫
S
[G(2p)

1 (~x′,~xS)∂lψ1(~xS)−∂lG
(2p)
1 (~x′,~xS)]nlds, (3.69)

where ∂l is the partial derivative (∂x for l = 1 and ∂z for l = 2), nl is the non-unit surface
normal, and ds the arc length along the surface. Repeated subscripts are summed. There are
four surfaces S: x = ±L/2 (h < z < H1), z = h, and z = H1, both with −L/2 < x < L/2. The
result is

ψ1(~x′)Θ1(~x′) = [G(2p)
1 ,ψ1;~x′,L/2]− [G(2p)

1 ,ψ1;~x′,−L/2]+ [G(2p)
1 ,ψ1;~x′,H1]− [G(2p)

1 ,ψ1;~x′,h].
(3.70)

Using (3.38), the first two brackets on the right hand side of (3.70) cancel by Floquet periodicity.
For the moment assume the integral on H1 represents the incident field (proof below), i.e.

ψ
in(~x′) = [G(2p)

1 ,ψ1;~x′,H1]. (3.71)

We thus have three results. Inside region 1, h(x′)< z′ < H1, Θ1 = 1, we have

ψ1(~x′) = ψ
in(~x′)− [G(2p)

1 ,ψ1;~x′,h]. (3.72)

Outside region 1, where Θ1 = 0, we have from (3.70)

ψ
in(~x′) = [G(2p)

1 ,ψ1;~x′,h], (3.73)

which is an Extinction Theorem, and on the surface z′ = h(x′), taking into account the disconti-
nuity of the double layer potential in (3.72), we have

1
2

ψ1(~x′h) = ψ
in(~x′h)− [G(2p)

1 ,ψ1;~x′h,h]. (3.74)

In particular, we can write the scattered field above the highest surface excursion, z′ >
max(h), using (3.72). The absolute value in the Green’s function in (3.72) is not present, i.e. we
use the representation

G(2p)
1 (~x′,~xh) =

i
2k1L

∞

∑
j=−∞

exp[ik1(α j(x′− x)+ γ1 j(z′−h(x)))]
γ1 j

. (3.75)

The result is that the scattered field above the highest surface excursion can be written exactly
as a plane wave expansion of upgoing waves

ψ
sc(~x′) =

∞

∑
j=−∞

A j exp[ik1(α jx′+ γ1 jz′)], (3.76)

where A j can be written as the integral

A j =
1
L

∫ L/2

−L/2
A( j,x)exp[−ik1(α jx+ γ1 jh(x))]dx, (3.77)
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and the integrand A( j,x) is in terms of the boundary unknowns

A( j,x) =
−i

2k1γ1 j

{
∂ψ1

∂n
(~xh)+ ik1(γ1 j−α jh′(x))ψ1(~xh)

}
. (3.78)

We have written A( j,x) as a function of two variables, the first a discrete spectral (S) variable
j which has replaced the field coordinate variable, and the second a continuous coordinate (C)
variable x, which is the surface integration variable. This is the basis for the spectral-coordinate
(SC) approach used in Sec. 5.

There remains to prove (3.71). This time the representation for the Green’s function
evaluated on z = H1 is with~x1 = (x,H1)

G(2p)
1 (~x′,~x1) =

i
2k1L

∞

∑
j=−∞

exp[ik1(α j(x′− x)+ γ1 j(H1− z′))]
γ1 j

. (3.79)

Using (3.79) in (3.71) and the representation (3.76) for the scattered field it is straighforward to
show that

[G(2p)
1 ,ψsc;~x′,H1] = 0. (3.80)

Further, if we assume a general plane wave decomposition of the incident field in terms of
downgoing waves

ψ
in(~x) = ∑

n
In exp[ik1(αnx− γ1nz)], (3.81)

the relation
[G(2p)

1 ,ψ in;~x′,H1] = ψ
in(~x′), (3.82)

follows immediately. Alternatively, one can view the integrand in (3.71)

∂ψ1

∂ z
(x,H1)− ik1γ1 jψ1(x,H1), (3.83)

as projecting out only the downgoing waves and canceling the scattered waves. The combina-
tion of (3.80) and (3.82) is the proof of (3.71).

In the region below the surface, region 2, the total field ψ2 satisfies the Helmholtz equation

(∇2
2 + k2

2)ψ2(~x) = 0, (3.84)

where the wavenumber k2 = Kk1 is written in terms of a scale factor K. The region is defined
by the characteristic function

Θ2(~x) = θ(L/2− x)θ(x+L/2)θ(h(x)− z)θ(z−H2). (3.85)

The Green’s function G(2p)
2 is given by

G(2p)
2 (~x′,~x) =

i
2k1L

∞

∑
j=−∞

exp[ik1(α j(x′− x)+ γ2 j|z′− z|)]
γ2 j

, (3.86)

where γ2 j is defined in (3.33). Green’s theorem in this region, the cancellation of integrals along
x =±L/2 by Floquet periodicity, and the vanishing of the integral along H2 since at this value
of z the total field consists of downward propagating waves, yields the result

ψ2(~x′)Θ2(~x′) = [G(2p)
2 ,ψ2;~x′,h]. (3.87)
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On the boundary, the limit of (3.87) is

1
2

ψ2(~x′h) = [G(2p)
2 ,ψ2;~x′h,h]. (3.88)

For z′<min(h), (3.87) yields a representation of the total field in region 2 in terms of downward
propagating plane waves

ψ2(~x′) =
∞

∑
j=−∞

B j exp[ik1(α jx′− γ2 jz′)], (3.89)

where

B j =
1
L

∫ L/2

−L/2
B( j,x)exp[−ik1(α jx− γ2 jh(x))]dx, (3.90)

and B( j,x) is in terms of the boundary values from region 2

B( j,x) =
i

2k1γ2 j

{
∂ψ2(~xh)

∂n
− ik1(γ2 j +α jh′(x))ψ2(~xh)

}
. (3.91)

We have assumed that ψ is a velocity potential. Then the continuity conditions at the
boundary are written as the continuity of velocity

∂ψ2

∂n
(~xh) =

∂ψ1

∂n
(~xh)=̇N(~xh), (3.92)

and continuity of pressure
ρ2ψ2(~xh) = ρ1ψ1(~xh), (3.93)

where ρ j are the densities. In (3.92) we defined the normal derivative boundary unknown as N,
and we define the surface field boundary unknown as ψ(~xh) = ψ1(~xh), so that ψ2(~xh) =

1
ρ

ψ(~xh)

where ρ = ρ2/ρ1. Using these unknowns, (3.78) and (3.91) become

A( j,x) =
−i

2k1γ1 j
[N(~xh)+ ik1(γ1 j−α jh′(x))ψ(~xh)], (3.94)

and
B( j,x) =

i
2k1γ2 j

[N(~xh)−
ik1

ρ
(γ2 j +α jh′(x))ψ(~xh)]. (3.95)

We can summarize these results using single(S) and double(D) layer potentials

(S ju)(~x′) =
∫ L/2

−L/2
G(2p)

j (~x′,~xh)u(~xh)dx, (3.96)

and

(D jv)(~x′) =
∫ L/2

−L/2

∂G(2p)
j

∂n
(~x′,~xh)v(~xh)dx, (3.97)

and write the integral equations (3.74) and (3.88) in symbolic form as

1
2

ψ = ψ
in− (S1N)+(D1ψ), (3.98)
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and
1
2

ψ = ρ(S2N)− (D2ψ). (3.99)

Various combinations of these equations and integral equations formed by first taking the nor-
mal derivative of the field representations (3.72) and (3.87) and passing to the surface limit
can be used to solve for the boundary unknowns ψ and N. For the Dirichlet problem, ψ = 0
and ρ = 0 so (3.99) disappears and (3.98) is an integral equation of first kind for N. For the
Neumann problem, first divide (3.99) by ρ , then let ρ → ∞ and set N = 0.

Direct integral equation methods have been used to computationally solve this prob-
lem21,22,67. Other integral equation solutions36,37,38,39 have been compared to the solutions of
spectral methods presented later in this paper. Other methods have also been employed18,19,20,73,74,86.
Point collocation questions arise10,25,53,60,72 for any coordinate based method.

3.5 Partial Spectral Methods for Scalar Problems

In this section we use a direct method to generate integral equations in a partial spectral repre-
sentation. The method uses Green’s theorem again, but not the Green’s function. Define the up-
and down-going plane wave states in region 1

φ
±
1 j(~x) = exp[ik1(−α jx± γ1 jz)], (3.100)

which satisfy the same Helmholtz equation as ψ1, (3.67),

(∇2
2 + k2

1)φ
±
1 j(~x) = 0. (3.101)

For convenience, in (3.100) we have chosen the conjugate in the x-coordinate. In the Green’s
function this occurs naturally. Cross multiply (3.67) and (3.101) and subtract the results, multi-
ply by Θ1 from (3.68), integrate over all space, and then integrate by parts. Since all fields are
Floquet periodic, the integrals along x = ±L/2 cancel. The results can be expressed with the
collapsed bracket notation

[u,v;S] =
∫

S
[u(~xS)∂lv(~xS)− v(~xS)∂lu(~xS)]nlds, (3.102)

where, unlike the bracket notation in Sec.4, no exterior coordinate-space variable appears.
There are two surfaces, z = h with −L/2 < x < L/2, and z = H1 with −L/2 < x < L/2. The
result is

[φ±1 j,ψ1;h] = [φ±1 j,ψ1;H1]. (3.103)

The result can be thought of as an analytic continuation from the periodic surface z = h to a flat
plane z = H1 above the surface. The right hand side of (3.103) can be evaluated explicitly using
(3.76) and (3.81) to give

[φ±1 j,ψ1;H1] = 2ik1Lγ1 j
{−I j

A j

}
. (3.104)

Here the up-going plane waves φ
+
1 j project out the down-going spectral components of the inci-

dent wave I j, and the down-going plane waves φ
−
1 j project out the up-going spectral components

of the scattered waves A j. Combining this with the left hand side of (3.103) we get the set of
equations for region 1

1
L

∫ L/2

−L/2
φ
±
1 j(~xh)U±j (~xh)dx = γ1 j

{−I j
A j

}
, (3.105)
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where
U±j (~xh) =

1
2ik1

[N(~xh)− ik1(±γ1 j +α jh′(x))ψ(~xh)]. (3.106)

We have incorporated the boundary unknowns defined following (3.92). Note that U−j =

γ1 jA( j,x) from (3.94).
In region 2, the up- and down-going plane waves are given by

φ
±
2 j(~x) = exp[ik1(−α jx± γ2 jz)], (3.107)

which satisfy the Helmholtz equation

(∇2
2 + k2

2)φ
±
2 j(~x) = 0. (3.108)

Cross multiply (3.84) and (3.108), multiply the result by Θ2 from (3.85), integrate over all
space, then integrate by parts. The Floquet periodicity cancels the integrals on x = ±L/2 and
the result is the analytic continuation

[φ±2 j,ψ2;h] = [φ±2 j,ψ2;H2]. (3.109)

The right hand side of (3.109) can be evaluated using (3.89) for ψ2 to yield

[φ±2 j,ψ2;H2] =−2ik1Lγ2 j
{B j

0

}
. (3.110)

Combined with (3.109), and incorporating the definitions of the boundary values following
(3.92) yields the equations from the lower region

1
L

∫ L/2

−L/2
φ
±
2 j(~xh)L±j (~xh)dx =−γ2 j

{B j
0

}
. (3.111)

where
L±j (~xh) =

1
2ik1

[N(~xh)−
ik1

ρ
(±γ2 j +α jh′(x))ψ(~xh)]. (3.112)

The lower equation in (3.111) is a spectral version of the Extinction Theorem.
The procedure is to solve the combined U+ equation in (3.105) and the L− equation in

(3.111) for the boundary unknowns N and ψ , and to evaluate the U− and L+ equations for the
scattered (A j) and transmitted (B j) amplitudes. The scattered and transmitted fields can be then
found from (3.76) and (3.89) respectively. In order to find field values in the surface wells, we
must use these boundary unknowns in (3.72) and (3.87) respectively.

The advantage of the method is that there are no Green’s functions to compute. Instead,
the results are projected onto plane wave based basis functions (really Rayleigh functions since
they’re on the surface). The Green’s function does this in an alternate way.

It is useful with any theory to check simple special cases. It is also necessary that the
general results reduce to simple solvable cases. Here we take the flat surface limit (h = 0), and
derive from them the Fresnel reflection and transmission coefficients as a necessary check on
the general results. For h = 0, let L→ ∞, so that for any finite j, limL→∞ α j = α0, so that the
only surviving waves are the 0th order reflection (A0) and transmission (B0) amplitudes. The
surface fields N and ψ thus have two different flat-surface field representations which are

ψ1(x,0) = (I0 +A0)exp[ik1α0x], (3.113)
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N1(x,0) =−ik1γ10(I0−A0)exp[ik1α0x], (3.114)

ψ2(x,0) = B0 exp[ik1α0x], (3.115)

and
N2(x,0) =−ik1γ20B0 exp[ik1α0x]. (3.116)

From (3.105) and (3.111) we have

A0 =
1

2ik1γ10
lim
L→∞

1
L

∫ L/2

−L/2
[N(x,0)+ ik1γ10ψ(x,0)]exp[−ik1α0x]dx, (3.117)

and

B0 =
−1

2ik1γ20
lim
L→∞

1
L

∫ L/2

−L/2
[N(x,0)− ik1

ρ
γ20ψ(x,0)]exp[−ik1α0x]dx. (3.118)

If we use the flat-surface field representations on the surface from region 1, (N1 and ψ1), in
the A0 equation, and the flat-surface field representations from region 2, (N2 and ψ2), in the B0
equation, we just get identities. Instead, use the opposite procedure, i.e. write A0 and B0 as

A0 =
1

2ik1γ10
lim
L→∞

1
L

∫ L/2

−L/2
[N2(x,0)+ ik1γ10ψ2(x,0)]exp[−ik1α0x]dx, (3.119)

and

B0 =
−1

2ik1γ20
lim
L→∞

1
L

∫ L/2

−L/2
[N1(x,0)−

ik1

ρ
γ20ψ1(x,0)]exp[−ik1α0x]dx. (3.120)

Using (3.113) through (3.116) in (3.119) and (3.120) we get two equations

A0 =
ργ10− γ20

2γ10
B0, (3.121)

and

B0 =
γ10[I0−A0]+ (γ20/ρ)[I0 +A0]

2γ10
. (3.122)

These can be solved to yield the Fresnel reflection coefficient

A0

I0
=

ργ10− γ20

ργ10 + γ20
, (3.123)

and the Fresnel transmission coefficient

B0

I0
=

2γ10

ργ10 + γ20
. (3.124)

Finally we have that

1+
A0

I0
= ρ

B0

I0
, (3.125)

as expected.
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3.6 Surface Inversion Using the Partial Spectral Method

We can use the partial spectral results from Sec.5 to develop simple algorithms to reconstruct
the surface height h(x) from the knowledge of the incident and scattered field amplitudes I j and
A j. For simplicity, we choose the Dirichlet problem, ψ(~xh) = 0. This is a perfectly reflecting
case, and (3.111) vanishes identically (multiply it by ρ , and then set ρ = 0). The resulting
equations (3.105) become

1
L

∫ L/2

−L/2
φ
±
1 j(~xh)N(~xh)dx = 2ik1γ1 j

{−I j
A j

}
. (3.126)

We describe two methods, the first is perturbation theory in the surface height, and the second
is the use of the Kirchhoff approximation for the normal derivative N. The full details of both
methods with numerical results were presented in111,112. There the methods were applied to
truncated rough surfaces. Some other methods can be found in59 for uniqueness questions
and17 for more detailed reconstruction algorithms.

For perturbation theory (3.100) is used on the surface, and becomes

φ
±
1 j(~xh)≈ exp[−ik1α jx](1± ik1γ1 jh(x)). (3.127)

Substituting (3.127) in (3.126), and adding and subtracting the resulting equations yields the
two results

1
L

∫ L/2

−L/2
exp[−ik1α jx]N(~xh)dx =−ik1γ1 j(I j−A j), (3.128)

and
1
L

∫ L/2

−L/2
exp[−ik1α jx]N(~xh)h(x)dx =−(I j +A j). (3.129)

Fourier inverting both equations yields

N(~xh) =−ik1

∞

∑
j=−∞

exp[ik1α jx](I j−A j), (3.130)

and

N(~xh)h(x) =−
∞

∑
j=−∞

exp[ik1α jx](I j +A j). (3.131)

Divide (3.131) by (3.130) (so that we factor out the boundary condition) and take the real part
to get the approximation to the surface profile hPT produced by perturbation theory

hPT (x) =
1
k1

Im

{
∑

∞
j=−∞(I j +A j]exp[ik1α jx]

∑
∞
j=−∞(I j−A j)exp[ik1α jx]

}
. (3.132)

where (Im) is the imaginary part. The equation simplifies for a single incident wave (I j = δ j0I0)
to be

hPT (x) =
1
k1

Im

{
I0 +∑

∞
j=−∞ A j exp[i2π jx/L]

I0−∑
∞
j=−∞ A j exp[i2π jx/L]

}
. (3.133)

These equations (3.132) and (3.133) express the surface in terms of the amplitudes of the inci-
dent and scattered fields.
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For the Kirchhoff approximation (KA), assume a single plane wave incidence

ψ
in(~x) = I0 exp[ik1(α0x− γ10z)], (3.134)

and approximate the normal derivative on the surface in (3.126) by twice the normal derivative
of the incident field

N(~xh)≈ NKA(~xh) = 2nl∂lψ
in(~xh). (3.135)

For the lower equation in (3.126) this yields

1
L

∫ L/2

−L/2
[γ10 +α0h′(x)]exp[−ik1(p jx+q jh(x))]dx =−γ1 jA j/I0, (3.136)

where
p j = α j−α0, (3.137)

and
q j = γ1 j + γ0 j. (3.138)

The h′(x) term in (3.136) can be integrated by parts to yield

1
L

∫ L/2

−L/2
exp[−ik1(p jx+q jh(x))]dx =− f−j A j/I0, (3.139)

where

f−j =
γ1 j(γ1 j + γ10)

γ1 jγ10 +(1−α jα0)
. (3.140)

We can re-express p j and q j using trig identities as

p j = sin(θ sc
j )− sin(θ in) = 2cos

{
θ sc

j +θ in

2

}
sin

{
θ sc

j −θ in

2

}
, (3.141)

and

q j = cos(θ sc
j )+ cos(θ in) = 2cos

{
θ sc

j +θ in

2

}
cos

{
θ sc

j −θ in

2

}
. (3.142)

We thus have that p j and q j are confined to an Ewald circle

p2
j +q2

j 6 4. (3.143)

and we further have |p j| 6 2 and |q j| 6 2. This restricts the acceptable j values to a set J and
correspondingly restricts the acceptable scattering angles (modulo the incident angle), and thus
the scattered amplitudes and fields used for the inversion. For fixed q j, say q j1 , (3.139) is a
periodic Fourier transform restricted in p j and thus restricted in the set J. As q j1 increases, p j
decreases, which is equivalent to a low-pass filter. As q j1 decreases, more data near grazing
illumination and scattering is involved, where the Kirchhoff approximation gets worse. For
fixed q j1 , assume the integral in (3.139) can be approximately inverted to yield

exp[−ik1q j1h(x)] =
−1
I0

∑
J

f−j A j exp[ik1 p jx]
.
= R(x). (3.144)
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Taking the real Re and imaginary Im parts of (3.144) (and neglecting periodic phase shifts)
yields hKA, the Kirchhoff approximation of the surface height

hKA(x,q j1) =
1

k1q j1
arctan

{
−Im(R(x))
Re(R(x))

}
, (3.145)

which again produces the surface height function in terms of the scattered field amplitudes this
time modulated by the Kirchhoff components. Each q j1 produces a different value of hKA.
For a non-periodic truncated random surface the method was used successfully to reconstruct
ensemble surface height functions with approximately twice the rms height as for perturbation
theory112. The cited paper also contains a discussion of the various angle combinations for
different reconstructions.

3.7 Full Spectral Methods for Scalar Problems: Physical Optics Modified Fourier Basis
and Floquet-Fourier Expansions

In Sec.4, both the exterior and interior (integration) variables were in coordinate space. The
equations generated were formally exact for the solution of the boundary values ψ(~xh) and
N(~xh). Once the boundary values were found, the scattered and transmitted fields anywhere
away from the surface wells could be evaluated via either direct transforms or summation meth-
ods in the resulting plane wave cum evanescent wave expansions. The periodic Green’s function
was used and had to be computed. Acceleration methods to do this are available101,102.

In Sec.5, we used plane/evanescent waves to derive another set of equations, again for-
mally exact, for the boundary unknowns which avoided the use of the periodic Green’s func-
tions. The equations to be solved were similar to the equations to be evaluated in the sense
that both involved a close interplay between spectral and coordinate parameters in ”parallel” as
distinct from the ”serial” presentation of methods in Sec.4.

Solution of the boundary unknowns in Secs.4 and 5 using direct discretization methods
involves matrix inversion where the rows and columns of the matrix are both sampled in co-
ordinate space, and the sampling methods are flexible. In Sec.5 the columns are sampled in
coordinate space, but the rows are sampled in spectral space, and this is proscribed in terms
of the Bragg waves. Convergence and the usefulness of the two sets of solutions have been
discussed36,37,38,39. The major point is that the limits of convergence, stability and errors are
numerical and directly related to the solution of exact formal equations and not to any strictly
”physical” approximations.

That changes when we attempt to approximate the surface fields in some spectral basis,
and thus to write equations fully in spectral space. The first question is what do we mean by
spectral space in this context? The second is what do we know about possible expansions? The
main thing we know is that the surface fields are the limits of Floquet-periodic functions, so
they must also be Floquet-periodic. In particular, they should not be expanded in a pure Fourier
series (no matter the temptation) since the latter are only valid for normal incidence (α0 = 0),
where the Floquet periodicity reduces to ordinary periodicity. The validity of a pure Fourier
expansion deteriorates for non-normal incidence.

In this section we briefly describe the use of a pure Floquet type expansion which defines
”spectrum” in one particular way. It is also a physical optics (PO) expansion explained below.
From this we are able to infer the results for what we refer to as a Floquet-Fourier (FF) expan-
sion, and these latter results are presented at the end of the section. The PO expansions for the
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boundary unknowns are

ψ(~xh) = exp[−ik1γ10h(x)]
∞

∑
j′=−∞

ψ
(PO)
j′ exp[ik1α j′x], (3.146)

or, written in another form

ψ(~xh) = exp[ik1α0x− ik1γ10h(x)]
∞

∑
j′=−∞

ψ
(PO)
j′ exp[i2π j′x/L], (3.147)

where the term outside the summation can be written using the complex conjugate of (3.100)

exp[ik1α0x− ik1γ10h(x)] = φ̄
+
10(~xh). (3.148)

The term is the physical optics or Kirchhoff approximation of a down-going plane wave evalu-
ated on the boundary. It serves to modulate the remaining Fourier series, and can be viewed as a
precursor to more general Waterman-type expansions105 in terms of down-going waves. (If the
h term is not present in (3.146), the expansion is still a Floquet-periodic expansion, and, since
it is a generalization of the Fourier expansion, has the advantage of being invertible. Its result
can be inferred from the results below, and are presented at the end of this section.) The normal
derivative is similarly expanded

N(~xh) = ik1 exp[−ik1γ10h(x)]
∞

∑
j′=−∞

N(PO)
j′ exp[ik1α j′x]. (3.149)

Here we have scaled the normal derivative term by ik1 for convenience. The expansion was
initially introduced as a physical optics modified Fourier expansion31,32,33, and used by several
others15,26,27,55,106,107. The reference33 can be viewed as the exact version of the approximate
Rayleigh-Fano equations97 valid in perturbation theory for shallow surfaces. The expansions
can be substituted into (3.105) and (3.111) to yield

∞

∑
j′=−∞

M±1 j j′(PO)[N(PO)
j′ ∓ γ1 jψ

(PO)
j′ ]−α j

∞

∑
j′=−∞

M̃±1 j j′(PO)ψ
(PO)
j′ = 2γ1 j

{−I j
A j

}
, (3.150)

and

∞

∑
j′=−∞

M±2 j j′(PO)[N(PO)
j′ ∓ ik1

ρ
γ2 jψ

(PO)
j′ ]− ik1

ρ
α j

∞

∑
j′=−∞

M̃±2 j j′(PO)ψ
(PO)
j′ =−2γ2 j

{B j
0

}
, (3.151)

where the physical optics (PO) matrix elements are (p = 1,2)

M±p j j′(PO) =
1
L

∫ L/2

−L/2
exp(ik1[(±γp j− γ10)h(x)+(α j′−α j)x])dx, (3.152)

(note that M+
10 j′(PO) = δ j′0) and

M̃±p j j′(PO) =
1
L

∫ L/2

−L/2
h′(x)exp(ik1[(±γp j− γ10)h(x)+(α j′−α j)x])dx. (3.153)
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The latter is written in such a way that integration by parts is obvious. Using integration by
parts, the equations reduce to a simple form

∞

∑
j′=−∞

M±1 j j′(PO)[N(PO)
j′ ∓a±1 j j′ψ

(PO)
j′ ] = 2γ1 j

{−I j
A j

}
, (3.154)

where

a±1 j j′ =
±(1−α jα j′)− γ1 jγ10

±γ1 j− γ10
, (3.155)

and
∞

∑
j′=−∞

M±2 j j′(PO)[N(PO)
j′ ∓a±2 j j′ψ

(PO)
j′ ] =−2γ2 j

{B j
0

}
, (3.156)

where

a±2 j j′ =
±(K2−α jα j′)− γ2 jγ10

ρ(±γ2 j− γ10)
. (3.157)

Finally, it is useful to rewrite the physical optics matrix elements as

M±p j j′(PO) =
1
L

∫ L/2

−L/2
exp[−i2π( j− j′)x/L+ ik1(±γp j− γ10)h(x)]dx, (3.158)

which displays the Fourier part explicitly. Note that for a flat surface, the only elements of
(3.158) which survive are the diagonal elements j = j′ (which equal 1). Further, M̃±p j j′(PO) = 0,
a±1 j j′ = γ1 j, a±2 j j′ = γ2 j/ρ , and, for a single plane wave incidence (I j = δ j0), the usual flat surface
limit of (3.154) and (3.156) follows directly.

A Floquet-Fourier (FF) expansion for the boundary unknowns can be written as

ψ(~xh) =
∞

∑
j′=−∞

ψ
(FF)
j′ exp(ik1α j′x), (3.159)

and

N(~xh) = ik1

∞

∑
j′=−∞

N(FF)
j′ exp(ik1α j′x). (3.160)

The equations corresponding to (3.154) and (3.156) are thus

∞

∑
j′=−∞

M±1 j j′(FF)[N(FF)
j′ ∓a1 j j′ψ j′(FF)

] = 2γ1 j
{−I j

A j

}
, (3.161)

and
∞

∑
j′=−∞

M±2 j j′(FF)[N(FF)
j′ ∓a2 j j′ψ

(FF)
j′ ] =−2γ2 j

{B j
0

}
, (3.162)

where

a1 j j′ =
1−α jα j′

γ1 j
, (3.163)

a2 j j′ =
K2−α jα j′

ργ2 j
, (3.164)
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and, for p = 1,2, the matrix elements are

M±p j j′(FF) =
1
L

∫ L/2

−L/2
exp[−i2π( j− j′)x/L± ik1γp jh(x)]dx. (3.165)

The FF equations follow from (3.154) through (3.158) by setting the γ10 term to zero. These
provide an alternative set of equations to solve for the alternative boundary function coefficients
to produce the same coefficients for the scattered and transmitted fields58.

3.8 Full Spectral Methods for Scalar Problems: Conjugate Rayleigh Basis

A further spectral expansion consists in modifying the physical optics expansion by making the
single physical optics plane wave dependent on the Bragg mode, so that the phase height term
is dependent on the mode, and this leads to a conjugate Rayleigh (CR) expansion using the
complex conjugate of the plane wave states (3.100) evaluated on the surface as

ψ(~xh) =
∞

∑
j′=−∞

ψ
(CR)
j′ exp[ik1α j′x− ik1γ̄1 j′h(x)] =

∞

∑
j′=−∞

ψ
(CR)
j′ φ̄

+
1 j′(~xh), (3.166)

and the scaled expansion for the normal derivative

N(~xh) = ik1

∞

∑
j′=−∞

N(CR)
j′ φ̄

+
1 j′(~xh), (3.167)

where the overbar is complex conjugation. Substituting these expansions in (3.105) and (3.111),
and carrying out the integration by parts necessary to simplify the slope terms as in Sec.7 yields
equations similar in form to (3.154) and (3.156). For the upper region equation we get

∞

∑
j′=−∞

M±1 j j′(CR)[N(CR)
j′ ∓b±1 j j′ψ

(CR)
j′ ] = 2γ1 j

{−I j
A j

}
, (3.168)

where
b±1 j j′ =

1−α jα j′∓ γ1 jγ̄1 j′

γ1 j∓ γ̄1 j′
, (3.169)

and the matrix elements are defined as

M±1 j j′(CR) =
1
L

∫ L/2

−L/2
exp[−i2π( j− j′)x/L+ ik1(±γ1 j− γ̄1 j′)h(x)]dx =< φ

±
1 j,φ

+
1 j′ > . (3.170)

It is obvious that M+
1 j j′(CR) is self-adjoint, positive definite and thus invertible, and this fact

was used with success in solving the Dirichlet problem3. That is,

[M+
1 j j′]

?(CR) = M+
1 j j′(CR), (3.171)

where the symbol ? represents the adjoint.
The same expansion for the equations in region 2 yields the equations

∞

∑
j′=−∞

M±2 j j′(CR)[N(CR)
j′ ∓b±2 j j′ψ

(CR)
j′ ] =−2γ2 j

{B j
0

}
, (3.172)
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where
b±2 j j′ =

1
ρ

K2−α jα j′∓ γ2 jγ̄1 j′

γ2 j∓ γ̄1 j′
, (3.173)

and the matrix elements are

M±2 j j′(CR) =
1
L

∫ L/2

−L/2
exp[−i2π( j− j′)x/L+ ik1(±γ2 j− γ̄1 j′)h(x)]dx =< φ

±
2 j,φ

+
1 j′ > . (3.174)

3.9 Integral Equation Methods in Coordinate Space for Electromagnetic Problems

Up to now we have considered one-dimensional surfaces and acoustic problems. These corre-
spond directly to electromagnetic scattering problems where there is no change in polarization
for the scattered and transmitted fields. The general electromagnetic problem for a periodic
dielectric interface is for a two-dimensional surface z = h(~x⊥) = h(x,y) which separates media
of different dielectric constants ε j for j = 1,2 and permeability µ j. The wave numbers for the
two regions are k j = k0

√
ε jµ j where k0 = ω/c, ω is the circular frequency and c the speed of

light. There is now a change in polarization in the scattered and transmitted fields.
For the source-free electric field ∂iEi = 0, and each component of the electric field Ei with

i = 1,2,3 satisfies the same Helmholtz equation as the scalar field, viz. in region 1

(∇2
3 + k2

1)E1i(~x) = 0, (3.175)

where E1i is the ith electric field component in region 1, and the Laplacian is three-dimensional.
This is just the vector analogue of (3.67). We can use this to write the vector analogues of
the scalar equations in Sec.4, using Green’s theorem, the three-dimensional periodic Green’s
functions G(3p) from (3.59) and (3.62), the two-dimensional Floquet periodicity of the field,
and the characteristic function defining the region, e.g. for region 1

Θ1(~x) = θ(L1/2− x)θ(x+L1/2)θ(L2/2− y)θ(y+L2/2)θ(z−h(~x⊥))θ(H1− z). (3.176)

In region 1 the result is

E1i(~x′)Θ1(~x′) = E in
i (~x′)− [G(3p)

1 ,E1i;~x′,h], (3.177)

where E in
i is the incident field, and the two-dimensional bracket is explicitly

[G(3p)
1 ,E1i;~x′,h] =

∫∫
D
[G(3p)

1 (~x′,~xh)N1i(~xh)−N(3p)
1 (~x′,~xh)E1i(~xh)]d~x⊥, (3.178)

where ~x⊥ = (x,y), the domain of integration D is xε[−L1/2,L1/2], yε[−L2/2,L2/2], and the
normal derivatives are

N1i(~xh) = nl(~x⊥)∂lE1i(~xh), (3.179)

and
N(3p)

1 (~x′,~xh) = nl(~x⊥)∂lG
(3p)
1 (~x′,~xh), (3.180)

the normal derivatives of the boundary unknown and the periodic Green’s function respectively.
From (3.177), the field representation in D is found by setting Θ1 = 1, the Extinction Theorem
by setting Θ1 = 0, the scattered field is just the bracket term

Esc
1i (~x

′) =−[G(3p)
1 ,E1i;~x′,h], (3.181)
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and the boundary integral equation is

1
2

E1i(~x′h) = E in
i (~x′h)−

∫∫
D
[G(3p)

1 (~x′h,~xh)N1i(~xh)−N(3p)
1 (~x′h,~xh)E1i(~xh)]d~x⊥, (3.182)

with the boundary unknowns E1i and its normal derivative N1i.
Green’s theorem in region 2 yields the representation for the total transmitted field

E2i(~x′)Θ2(~x′) = [G(3p)
2 ,E2i;~x′,h], (3.183)

where Θ2 = 1−Θ1, and the boundary integral equation becomes

1
2

E2i(~x′h) =
∫∫

D
[G(3p)

2 (~x′h,~xh)N2i(~xh)−N(3p)
2 (~x′h,~xh)E2i(~xh)]d~x⊥, (3.184)

with boundary unknowns E2i and its normal derivative N2i. Equations (3.182) and (3.184) are
similar to the scalar equations (3.74) and (3.88), but the fields and their normal derivatives are
not the usual electromagnetic boundary values, the latter being typically written in terms of
normal field components and currents61. So to continue we must relate these usual boundary
conditions to our boundary unknowns.

For the electric field on the boundary we have the continuity condition of the normal
component of the displacement vector ~D = ε~E which becomes

ε~n ·~E2 =~n ·~E1, (3.185)

where ε = ε2/ε1, and the continuity of the magnetic current

~n×~E2 =~n×~E1. (3.186)

These are four equations, three of which are independent. These three can be solved directly,
or the four equations solved using a Moore-Penrose pseudo inverse to yield the boundary con-
ditions on the electric field (in index notation) as

E2i(~xh) =Ci j(~xh)E1 j(~xh), (3.187)

with repeated subscripts summed from 1 to 3 and

Ci j(~xh) = δi j +(ε−1−1)n̂in̂ j, (3.188)

with n̂ representing the unit normal. These boundary conditions were introduced some time
ago35 and used successfully for scattering from a body of revolution41.

The continuity conditions on the normal derivative components are more involved. The
full details are in35. Briefly we introduce the bracket notation for when we set the field on the
surface first and then differentiate

{Em}=̇Em(x,y,h(x,y)). (3.189)

Then the transverse (”t”) derivatives (x and y) are given by

∂x{Em}= {∂xEm}+hx{∂zEm}, (3.190)

and
∂y{Em}= {∂yEm}+hy{∂zEm}. (3.191)
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Using this notation and the continuity of the electric surface current ~Ke =−~n× ~H, where ~H is
the magnetic field, in index form

Ke
2i(~xh) = Ke

1i(~xh), (3.192)

we can write the continuity condition for the normal derivative as35

{N2i}= µ{N1i}+(ε−1−1)Vi(~xh), (3.193)

where Vi can be written in terms of transverse partial derivatives involving the normal compo-
nents of the electric field as

Vi(~xh) = nm∂it{n̂mn̂ jE1 j}−ni∂qt{n̂qt n̂ jE1 j}. (3.194)

This Vi term looks awkward, but it can be integrated by parts. First, choose the boundary
unknowns as

E1i(~xh) = {E1i}=̇{Ei}, (3.195)

and
N1i(~xh) = {N1i}=̇{Ni}. (3.196)

Then we can write the equation for the upper region (3.182) as

1
2
{E ′i}+

∫∫
D
[G(3p)

1 (~x′h,~xh){Ni}−N(3p)
1 (~x′h,~xh){Ei}]d~x⊥ = E in

i (~x′h). (3.197)

Here {E ′i} means the exterior primed variable placed on the surface, i.e. ~x′h. The equation
(3.197) is diagonal in the index. The coupling is from the lower equation (3.184) written using
(3.193) through (3.196) as

1
2

Ci j(~x′h){E ′j}=
∫∫

D
[G(3p)

2 (~x′h,~xh)(µ{Ni}+(ε−1−1)Vi(~xh))−N(3p)
2 (~x′h,~xh)Ci j(~xh){E j}]d~x⊥.

(3.198)
The Vi term can be integrated by parts to yield∫∫

D
G(3p)

2 (~x′h,~xh)Vi(~xh)d~x⊥ =
∫∫

D
Vi j(~x′h,~xh){Ei}d~x⊥, (3.199)

where

Vi j(~x′h,~xh) = ∂qt{niG
(3p)
2 (~x′h,~xh)}n̂qt n̂ j−∂it{nmG(3p)

2 (~x′h,~xh)}n̂mn̂ j. (3.200)

We can simplify (3.200) to yield

Vi j(~x′h,~xh) = N(3p)
2 (~x′h,~xh)n̂in̂ j−{∂iG

(3p)
2 (~x′h,~xh)}n j, (3.201)

where now the derivative of the Green’s function is taken first, and then the result set on the
surface. Combining these results we can rewrite (3.198) as

1
2

Ci j(~x′h){E ′j}=
∫∫

D
[G(3p)

2 (~x′h,~xh)µ{Ni}−Wi j(~x′h,~xh){E j}]d~x⊥, (3.202)

where
Wi j(~x′h,~xh) = N(3p)

2 (~x′h,~xh)δi j +(ε−1−1){∂iG
(3p)
2 (~x′h,~xh)}n j. (3.203)

80



J. DeSanto: Spectral Methods for Gratings 3.25

Note that (3.197) and (3.202), if put in matrix form, are diagonal in three of the four matrix
blocks multiplying the six-dimensional vector of boundary unknowns [{Ei},{Ni}]T where T
is transpose. The only coupling occurs in the single block of the electric fields from (3.202).
We note this in contrast to pre-conditioning methods used to sparsify matrix inversion problems.
Here the results are exact and highly sparse as formulated. They have been used computationally
to treat the scattering from a body of revolution41.

We can use these representations to write plane wave representations for the scattered and
transmitted fields, above and below the largest surface excursions. From (3.177) we can write
the scattered field above the highest surface excursion (z′ > max(h)) as

Esc
i (~x′) =−

∫∫
D
[G(3p)

1 (~x′,~xh){Ni}−N(3p)
1 (~x′,~xh){Ei}]d~x⊥, (3.204)

where now the Green’s function is, following (3.59), with the field point above the surface

G(3p)
1 (~x′,~xh) =

i
2k1L1L2

∞

∑
j=−∞

∞

∑
j′=−∞

exp[ik1(α j(x′− x)+β j′(y′− y)+ γ1 j j′(z′−h(~x⊥))]
γ1 j j′

,

(3.205)
and

N(3p)
1 (~x′,~xh) = nq∂qG(3p)

1 (~x′,~xh). (3.206)

Combining these results we can write the scattered field exactly above the highest surface ex-
cursion as a plane wave expansion in terms of purely up-going waves as

Esc
i (~x′) =

∞

∑
j=−∞

∞

∑
j′=−∞

Ai j j′ exp[ik1(α jx′+β j′y
′+ γ1 j j′z

′)], (3.207)

where

Ai j j′ =
1

L1L2

∫∫
D

Ai j j′(~x⊥)exp[−ik1(α jx+β j′y+ γ1 j j′h(~x⊥))]d~x⊥, (3.208)

and

Ai j j′(~x⊥) =
−i

8π2k1γ1 j j′
[{Ni}+ ik1(γ1 j j′−α jhx−β j′hy){Ei}], (3.209)

in terms of the boundary unknowns.
Similarly, from (3.183), we have the transmitted field below the lowest surface excursion

(z′ < min(h))

E2i(~x′) =
∫∫

D
[G(3p)

2 (~x′,~xh)N2i(~xh)−N(3p)
2 (~x′,~xh)E2i(~xh)]d~x⊥, (3.210)

where now

G(3p)
2 (~x′,~xh) =

i
8π2k1L1L2

∞

∑
j=−∞

∞

∑
j′=−∞

exp[ik1(α j(x′− x)+β j′(y′− y)− γ2 j j′(z′−h(~x⊥))]
γ2 j j′

,

(3.211)
and

N(3p)
2 (~x′,~xh) = nq∂qG(3p)

2 (~x′,~xh). (3.212)
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The result is the plane wave spectral representation for the transmitted field below the lowest
surface excursion in terms of purely down-going waves as

E2i(~x′) =
∞

∑
j=−∞

∞

∑
j′=−∞

Bi j j′ exp[ik1(α jx′+β j′y
′− γ2 j j′z

′)], (3.213)

where

Bi j j′ =
1

L1L2

∫∫
D

Bi j j′(~x⊥)exp[−ik1(α jx+β j′y− γ2 j j′h(~x⊥))]d~x⊥, (3.214)

and
Bi j j′(~x⊥) =

i
8π2k1γ2 j j′

[N2i(~xh)− ik1(γ2 j j′+α jhx +β j′hy)E2i(~xh)], (3.215)

written in terms of the boundary values from the lower region. Using the boundary conditions
(3.187) and (3.193) and integration by parts we can rewrite (3.215) in terms of the boundary
unknowns as

Bi j j′(~x⊥) =
i

8π2k1γ2 j j′
[µ{Ni}−Wi j j′l(~x⊥){El}], (3.216)

where

Wi j j′l(~x⊥) = ik1[α jhx +β j′hy + γ2 j j′)δil− (ε−1−1)(δi1α j +δi2β j′−δi3γ2 j j′)nl]. (3.217)

Equations (3.207) and (3.213) are the exact plane wave representations in the appropriate re-
gions. In the next section we write general partial spectral representations of the fields, and
show the relations between them and the plane wave spectral representations here which are
valid in limited domains.

3.10 Partial Spectral Methods for Electromagnetic Problems

We develop this section in analogy with the scalar results in Sec.5. This is the electromagnetic
version of the Spectral-Coordinate approach. We define the three-dimensional plane wave states
in the upper region 1 for up(+)- and down(−)-going waves as

φ
±
1 j j′(~x) = exp[ik1(−α jx−β j′y± γ1 j j′z), (3.218)

where γ1 j j′ is defined following (3.59). The function satisfies the three-dimensional Helmholtz
equation

(∇2
3 + k2

1)φ
±
1 j j′(~x) = 0. (3.219)

The incident electric field can be written as a general plane wave expansion of down-going
waves

E in
i (~x) =

∞

∑
j=−∞

∞

∑
j′=−∞

Ii j j′ exp[ik1(α jx+β j′y− γ1 j j′z)]. (3.220)

Apply Green’s theorem in the domain defined by Θ1 in (3.176) to φ
±
1 j j′ and E1i, use the two-

dimensional Floquet conditions to cancel the side integrals as in Sec.9 and the result is

1
L1L2

∫∫
D

φ
±
1 j j′(~xh)U±i j j′(~xh)d~x⊥ = γ1 j j′

{−Ii j j′
Ai j j′

}
, (3.221)
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where U is defined as

U±i j j′(~xh) =
1

2ik1
[{Ni}− ik1(±γ1 j j′+α jhx +β j′hy){Ei}]. (3.222)

The Ai j j′ are the spectral coefficients of the scattered field from (3.207). Recall that the scat-
tered field is evaluated on a flat surface (z = H1) above the highest surface excursion, so the
representation (3.207) is rigorously valid and not a Rayleigh approximation. We also used the
boundary values (3.195) and (3.196). In (3.221), the up-going plane wave states φ+ project out
the down-going incident field spectral components Ii j j′ , and the down-going plane wave states
φ− project out the up-going scattered field spectral components Ai j j′ . Equations (3.221) and
(3.222) are the vector generalizations of (3.105) and (3.106).

For the lower region 2, the three-dimensional up- and down-going plane wave states are
defined as

φ
±
2 j j′(~x) = exp[ik1(−α jx−β j′y± γ2 j j′z)], (3.223)

where γ2 j j′ is defined following (3.62). The functions satisfy the three-dimensional Helmholtz
equation

(∇2
3 + k2

2)φ
±
2 j j′(~x) = 0. (3.224)

Green’s theorem on φ
±
2 j j′ and the total transmitted field E2i in the domain defined by Θ2(~x) =

1−Θ1(~x) yields the relations

1
L1L2

∫∫
D

φ
±
2 j j′(~xh)L±i j j′(~xh)d~x⊥ =−γ2 j j′

{Bi j j′
0
}
, (3.225)

where
L±i j j′(~xh) =

1
2ik1

[N2i(~xh)− ik1(±γ2 j j′+α jhx +β j′hy)E2i(~xh)], (3.226)

in terms of the boundary values from the lower region. Using the boundary values (3.195) and
(3.196) and integration by parts, (3.226) can be rewritten as

L±i j j′(~xh) =
1

2ik1
[µ{Ni}−W±i j j′l(~xh){El}], (3.227)

with a sum over l = (1,2,3) and where

W±i j j′l(~xh) = ik1[(α jhx +β j′hy± γ2 j j′)δil− (ε−1−1)(α jδi1 +β j′δi2∓ γ2 j j′δi3)nl]. (3.228)

Note that W+
i j j′l is just Wi j j′l from (3.217). Equations (3.225) and (3.227) are the vector gener-

alizations of (3.111) and (3.112). The procedure is to solve the upper equation (3.221) and the
lower equation (3.225) for the boundary unknowns {Ni} and {Ei} and evaluate the remaining
equations for the scattered and transmitted amplitudes.

3.11 Full Spectral Methods for Electromagnetic Problems

In this section we develop the full spectral methods using the conjugate Rayleigh basis in anal-
ogy with Sec.8 for the scalar case. In (3.221) and (3.225) we use the following expansions in
the conjugate Rayleigh basis,

{Ei}=
∞

∑
l=−∞

∞

∑
l′=−∞

Eill′ φ̄
+
1ll′(~xh), (3.229)
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and

{Ni}= ik1

∞

∑
l=−∞

∞

∑
l′=−∞

Nill′ φ̄
+
1ll′(~xh), (3.230)

with the normal derivative on the boundary scaled by ik1 and where φ
+
1ll′ is from (3.218). The

overbar is complex conjugation. Integrate the slope terms by parts as for example

< φ
±
1 j j′,hxφ

+
1ll′ >=

α j−αl

±γ1 j j′− γ̄1ll′
< φ

±
1 j j′,φ

+
1ll′ >, (3.231)

and the equations for the upper region can be written using (3.221) as

∞

∑
l=−∞

∞

∑
l′=−∞

< φ
±
1 j j′,φ

+
1ll′ > [Nill′−U±( j j′, ll′)Eill′] = 2γ1 j j′

{−Ii j j′
Ai j j′

}
, (3.232)

where

U±( j j′, ll′) =
1−α jαl−β j′βl′∓ γ1 j j′ γ̄1ll′

±γ1 j j′− γ̄1ll′
. (3.233)

We have written the double spectral values j j′ and ll′ as arguments of U in illustration of
the fact that they are each replacing coordinate sampling/integration along two-dimensional
surfaces denoted by~x′h and~xh respectively, as well as to indicate that the equations (3.232) are
diagonal in the vector index ′′i′′. That is, the ith component of A is related to the ith components
of N and E. There is no coupling in this index for the equations from region 1. It can be shown
that the matrix < φ

+
1 j j′,φ

+
1ll′ > is self-adjoint, positive definite and hence invertible.

For the lower region 2 these same expansions and integration of the slope terms yields
from (3.225)

∞

∑
l=−∞

∞

∑
l′=−∞

< φ
±
2 j j′,φ

+
1ll′ > [µNill′−L±ip( j j′, ll′)Epll′] =−2γ2 j j′

{Bi j j′
0
}
, (3.234)

where there is an implicit sum over the repeated subscript p = (1,2,3). The full coupling of
these equations resides in this summation. Here the L term can be written as

L±ip( j j′, ll′) =
M±ip( j j′, ll′)

±γ2 j j′− γ̄1ll′
, (3.235)

where M can be written as a diagonal (D) part and a full (F) part, the latter of which contains
the coupling,

M±ip( j j′, ll′) = D±( j j′, ll′)δip +F±ip ( j j′, ll′), (3.236)

where
D±( j j′, ll′) = K2−α jαl−β j′βl′∓ γ2 j j′ γ̄1ll′, (3.237)

and

F±ip ( j j′, ll′)= (ε−1−1)(α jδi1+β j′δi2∓γ2 j j′δi3)[(α j−αl)δp1+(β j′−βl′)δp2−(±γ2 j j′− γ̄1ll′)δp3].
(3.238)

The procedure is to solve the upper equation (3.232) and the lower equation (3.234), which is a
spectral extinction equation, for the unknown expansion coefficients Nill′ and Eill′ , and evaluate
the remaining equations for the scattered Ai j j′ and transmitted Bi j j′ spectral coefficients.
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3.12 Summary

We have derived exact formal sets of equations, in both coordinate and various spectral domains,
to describe the scattering from deterministic gratings. Both acoustic scalar one-dimensional
problems and full electromagnetic two-dimensional problems were considered. Both involved
a grating surface separating two homogeneous regions of space. Both involved coordinate-
space representations from which proceeded rigorous plane wave spectral representations valid
for the scattered field above the highest surface excursion and for the transmitted field below
its lowest excursion. The electromagnetic development was treated in analogy with the scalar
problem, with boundary conditions derived for the electric field and its normal derivative from
the standard boundary conditions on currents and the normal components of the displacement
vector.

From these coordinate representations we proceeded first to partial spectral representa-
tions where the word ”partial” refers to the field variables. These could be derived in a straight-
forward way just using plane waves and Green’s theorem, and without involving the Green’s
function explicitly. We stress again that the equations are exact. In addition, these led to surface
inversion examples for the scalar case using perturbation theory (where the boundary values
could be factored out), and the Kirchhoff approximation (where the boundary values were ap-
proximated).

The full spectral equations involved expanding the boundary unknowns in some set of
functions, and it is here where the Rayleigh and Waterman assumptions come into play. For
the scalar case we presented three expansions. The first was a physical optics modified Fourier
expansion with a single plane wave modulating the surface fields. The second was what we
referred to as a Floquet-Fourier basis which modulated the Fourier expansion by still preserving
the Floquet-periodicity of the surface fields but without the full plane waves, and the third was an
expansion in the conjugate Rayleigh basis where each term in the expansion could be thought of
as modulated by a plane wave. For the electromagnetic case only the expansion in the conjugate
Rayleigh basis was considered. Since we used a scalar analogy for the electromagnetic problem
the resulting equations were formally analogous to the scalar equations with the additional
complication being first a vector problem, and second the Bragg modal sampling in two two-
dimensional spaces, the spaces of boundary and field points.

We pointed out in the paper where any of these equations have been solved, but we repeat
that the full computational results and the comparisons of different computational results for
this problem require at least a separate paper if not a separate book.
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Appendix 3.A. A Note on Matrix Elements

For the fully spectral methods in Secs.7 and 8 for the acoustic case and Sec.11 for the elec-
tromagnetic case, the matrix elements have a characteristic form. In the one-dimensional case,
after projection on the various basis sets considered in this paper, (see (3.158), (3.165), (3.170),
and (3.174)), they have the general form

M(a,b) =
1
L

∫ L/2

−L/2
exp[iax+ ik1bh(x)]dx. (3.239)

For all the cases in question, a = 2π( j′− j)/L which is the Fourier part common to all, and b =
±γp j− γ10 for the physical optics case with one overall plane wave, b = ±γp j for the Floquet-
Fourier case with no plane waves modulating the field expansion, and b = ±γp j− γ̄1 j′ for the
conjugate Rayleigh case with plane waves related to each Bragg mode in the sum. They have a
general validity in surface scattering problems due to the presence of Green’s functions or plane
wave type expansions. For example, for a random surface, these functions M were referred
to as interaction functions in a Feynman diagram expansion114,29,30, essentially a perturbation
expansion in the functions.

In addition, for many surfaces, not necessarily analytic ones, the integral can be expressed
in closed form in terms of special functions. For example, a cosine surface yields Bessel func-
tions for M, a symmetric sawtooth function yields simple exponentials, a quadratic surface
yields Fresnel integrals, a vortex-like surface involving a logarithm yields cosine integrals which
can be evaluated in closed form (or, in a different form, confluent hypergeometric functions), a
cycloid can be evaluated in terms of Bessel functions, a full-wave rectified surface in terms of
a Bessel series, and a periodic array of semicircular cylinders (bosses)98 in terms of a Bessel
series. These closed form solutions can be useful in computations or for approximations. The
details can be found in32. Two-dimensional integrals occurring in the electromagnetic problem
can be developed in a similar way for egg-crate surfaces of the form h(x,y) = h1(x)+h2(y).
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4.1. Introduction 
Integral methods for scattering problems represent a class of mathematical methods based on 
integral equations. In this chapter, all the integral equations are deduced from boundary value 
problems of scattering and are classified as Fredholm integral equations. They can be written 
in the form: 

 c u(r) v(r) W(r, r )u(r )dr ,′ ′ ′= + ∫
     


 (4.1) 

in which  may represent for example the surface of a three-dimension diffracting object or 
the cross-section boundary of a two-dimension (cylindrical) object, v and u are continuous 
functions in  . The kernel W of the equation is also continuous in  , and c 0 or 1=
according to whether the equation is of the first or second kind. The mathematical problem is 
to determine u if v and W are known [1]. This kind of method is widely employed in many 
domains of physics [1,2], where it is usual to extend it to cases in which u, v, and W are only 
peasewise continuous or can even be singular. A typical example of use in electromagnetism 
can be found by applying the second theorem of Green for expressing the field in a given 
volume in terms of its values and of the values of its normal derivative on the surrounding 
surface. In that case, the kernels of the integral equations include combinations of Green’s 
functions and of their normal derivatives on the boundaries of the scattering objects. 

The theory of integral equations can be described in a rigorous, elegant and concise way 
using distribution theory [3-5] that extends derivatives and other differential operators to 
discontinuous functions (a famous example is the so-called Dirac function that, for the 
mathematician, should not be called function). The interested reader can find a detailed 
presentation of rigorous use of the distribution theory in the electromagnetic theory of 
gratings in [6,7].  

The first application of the integral method in grating theory was proposed almost 
simultaneously for the case of perfectly conducting gratings by Petit and Cadilhac [8], Wirgin 
[9], and Uretski [10]. The first numerical implementation was reported by Petit [11,12] for TE 
polarization (called also P, or //E , or s polarization). The first extension of this integral 
equation to the other polarization (TM or S or p) led to a non-integrable kernel. This problem 
was solved by Pavageau, who proposed for both polarizations new integral equations having 
continuous and bounded kernels [13]. 

Soon after, Wirgin [14], Neureuther and Zaki [15], and Van den Berg [16] gave 
formulations of the integral method applied to gratings made of metals with finite 
conductivity or dielectrics. The approach was based on the resolution of two coupled integral 
equations containing two unknown functions. Problems of limited memory storage and time-
computation on computers in the late ‘60s restricted the numerical implementation of this 
theory to dielectric gratings only, for which very rare numerical results were published. This 
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restriction was not considered as dramatic by grating specialists at that time. Indeed, it was 
generally considered that in the visible and infrared regions in which the reflectivity of usual 
metals exceeds 90%, the model of perfectly conducting grating is accurate. However, 
development of space optics and astronomy at that time required a precise treatement of the 
problem of metallic gratings used in the ultraviolet, a domain where the metal reflectivity 
starts to drop down as approaching electron plasma frequencies. This need required a new 
approach proposed by Maystre in 1972 [17] by using a single integral equation for a single 
unknown function. Solving the difficulties in the summation of the series in the kernels and in 
their integration, the integral method in this formulation was the first one to result in a 
computer code that was able to correctly model diffraction gratings behaviour over the entire 
spectrum for almost all commercial gratings profiles [18]. One of the most important 
conclusions for the practical applications and grating manufacturers was the definite 
demonstration of the inadequacy of the model of perfectly conducting grating in the near-
infrared, visible and ultraviolet regions [19]. 

However, the method was unable to treat some kinds of gratings, for example gratings 
having large periods and steep facets (echelle gratings, for example) or gratings with profile 
that cannot be represented by Fourier series (rod gratings, cavity gratings, etc.). A further 
development of this approach was proposed by Maystre [20]. It was numerically implemented 
in the early ‘90s in the code ‘Grating 2000’ by the author, which is used in many academic 
and industrial centers in the world. Other development was required for other exotic cases that 
started to find applications and thus required theoretical support for modeling. This 
development covered conical mountings and specially gratings with dielectric multilayer 
coatings [21,22], buried gratings and bimetallic gratings [23-26]. 

It must be emphasized that in this chapter, the authors use, without complete 
demonstrations, some analytic properties of gratings demonstrated in chapter 2. Thus, it is 
recommended to read this chapter before the present one.  

First, we will deal with the most frequent problem: the bare metallic or dielectric 
grating. Then, extensions will be given to other kinds of gratings like perfectly conducting 
gratings, dielectric coated gratings or gratings in conical diffraction.   

 

4.2. The integral method applied to a bare, metallic or dielectric grating. 
4.2.1. The physical model 
 
The grating surface S of period d separates a region V+ with real relative electric permittivity 
and magnetic permeability +ε  and +μ respectively and a region V- with real or complex 

relative electric permittivity and magnetic permeability -ε  and -μ  (figure 4.1). The indices 
+n  and n−  of these media are given by + + +n ε μ=  and n ε μ− − −= . We consider the 

classical diffraction case with incident wavevector ik


 lying in the xz plane, i.e. the plane 
perpendicular to the grooves. The incidence angle iθ  is measured in the counterclockwise 

sense from the z axis and 2λ=
k
π  denotes the wavelength of light in vacuum. The ordinate of 

the top of the profile is denoted by 0z  and unit normal SN


 is oriented towards V+. We denote 
by s the curvilinear abscissa on S , with origin being located at the origin of the Cartesian 
coordinates, and ds  denoting the curvilinear abscissa of the point of S of abscissa x d= . 
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Figure 4.1. Notations 
 
In this chapter, we use the complex notation with a time-dependence in ( )exp iωt− . Let 

F denote the y-component of the electromagnetic field. In TE polarization, it stays for the y-
component Ey of the electric field, and in TM case for the y-component Hy of the magnetic 
field.  
 
4.2.2. The boundary value problem. 
 
It is shown in chapter 2 that in that case of classical diffraction, the total field 

T+ +
T

T

 F  in V ,
F =

F  in V− −





is invariant along the y axis and that it is pseudo-periodic in x: 

 ( ) ( ) ( )T T
0F x+d,z F x,z exp iα d ,=  (4.2) 

with: 

 0
2k n sin , k .+ π

α = θ =
λ

i  (4.3) 

Moreover, the scattered field is defined by: 

 
T i

T

F F F in V ,
F

F F in V ,

+ + +

− − −

 = −= 
=

 (4.4) 

with the incident field iF  in V+  being given by: 

 
i

0i x ikn cos ziF (x, z) e .
+α − θ=  (4.5) 

The interest of the notion of scattered field is that it satisfies a radiation condition (also called 
Sommerfeld condition, or outgoing wave condition, see chapter 2) for z → ±∞ . The radiation 
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condition states that the scattered field at infinity must remain bounded and must propagate 
upward in +V  and dawnward in V− . The scattered field also satisfies Helmholtz equations: 

 ( )22 2F k n F 0    in V .± ± ± ±∇ + =  (4.6) 

The invariance along the y axis allows one to reduce the scattering problem to a two-
dimension problem while the pseudo-periodicity restricts the study of the field to a single 
period of the grating. Consequently, it can be considered that V±  are no more volumes but 
surfaces extending on a single period of the grating. 

In order to periodize the scattered field, we introduce the function 
+ + U  in V ,

U=
U  in V ,− −





:  

 ( ) ( )0i xU x, z e F x, z .− α=  (4.7) 

We denote by ( )ψ s±  the limit values of U±  on S and ( )s±φ  the values of 0iα x

S

dFe
dN

±
− , with 

S

dF
dN

±
being the normal derivative of F±  on S. 

The Helmholtz equations and the radiation condition are not sufficient to define the 
boundary value problem satisfied by the scattered field F . A third kind of condition must be 
added: the boundary conditions of the electromagnetic field components across S. The 
tangential components of the electric and magnetic fields are continuous across this interface, 
as far as the permittivities and permeabilities of the two media take finite values. For both 
polarizations, this property yields: 

 
i

(s) (s) (s),+ −ψ + ψ = ψ  (4.8) 

with iψ  being the value of the periodized incident field, obtained from equation (4.5): 

 [ ]i i
0F x(s), z(s) exp( i x(s)) exp ikn cos z(s) .+ ψ = − α = − θ 

i  (4.9) 

Using Maxwell equations, the continuity of the tangential component of the magnetic field 
(for TE polarization) and that of the electric field (for TM polarization) leads to the following 
relation: 

 iq (s) (s) q (s),+ + − − φ + φ = φ   (4.10) 

with  

 
( ) ( ) ( )

i
i

0
S

Fexp( i x)
N

dz s dx s
ikn sin cos exp ikn cos z(s) ,

ds ds
+ +

∂
φ = − α =

∂

 
= − θ + θ − θ 

 
i i i

 (4.11) 

and 
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1 , for TE polarization,
q

1 , for TM polarization.

±
±

±


 µ= 

 ε

 (4.12) 

4.2.3. Integral equation 
 

The theoretical basis of the integral method lies on a general property of the 
electromagnetic field: the field inside a given surface of the xz plane can be expressed from 
the values of the field and of its normal derivatives on the curve surrounding the surface, 
according to the second Green’s theorem. The value of U±  at a point of V±  of coordinates 
x and z be deduced from its values on S using equation (4.139) of appendix 4.A: 

 
ds

s ' 0
U (x, z) (x, z,s ') (s ') (x, z,s ') (s ') ds ',± ± ± ± ±

=

 = ± φ + ψ ∫ G N  (4.13) 

with 

 ( ) ( ){ }m
m m

1 1(x, z,s ') exp imK x x ' s ' i z z ' s ' ,
2id

∞
± ±

±
=−∞

= − + γ −  γ
∑G  (4.14) 

 
( )

( ) ( ){ }

m

m m

m

1 dx(s ') dz '(s ')(x, z,s ') sgn z z ' s '
2d ds ' ds '

exp imK x x ' s ' i z z ' s ' ,

∞
±

±
=−∞

±

 α = − − ×    γ  

× − + γ −  

∑N
 (4.15) 

where: 

 m 0 mK,α = α +  (4.16) 

 2K ,
d
π

=  (4.17) 

 ( )2 2
m mkn ,± ±γ = − α  (4.18) 

 
with s’ being the curvilinear abscissa on a point of S with coordinates x '(s ') and z'(s') . 

According to section 4.A.4, the values of (s ')±ψ  and (s ')±φ  are linked by a relation of 
compatibility. Using eqs. (4.146), (4.147) and (4.148) we obtain: 

 
ds

s ' 0

(s ')(s,s ') (s ') (s,s ') (s ') ds ' 0
2

+
+ + + +

=

ψ φ + ψ − = ∫




G N , (4.19) 

 
ds

s ' 0

(s ')(s,s ') (s ') (s,s ') (s ') ds ' 0
2

−
− − − −

=

ψ φ + ψ + = ∫




G N , (4.20) 

with: 
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 ( ) ( )( ) ( ) ( )m
m m

1 1(s,s ') exp imK x s x ' s ' i z s z ' s '
2id

∞
± ±

±
=−∞

 = − + γ − γ
∑G , (4.21) 

 
( ) ( )( )

( ) ( )( ) ( ) ( )

m

m m

m

1 dx ' dz '(s,s ') sgn z s z ' s '
2d ds ' ds '

exp imK x s x ' s ' i z s z ' s ' .

∞
±

±
=−∞

±

 α
= − − × 

γ  
 × − + γ − 

∑N
 (4.22) 

Introducing in eq. (4.20) the values of i(s) (s) (s)− +ψ = ψ + ψ  and i
q(s) (s) (s)
q

+
− +

−
 φ = φ + φ   

given by the continuity conditions on the grating profile (eqs (4.8), (4.9), (4.10), (4.11) and 
(4.12)) yields a second integral equations with two unknown functions +ψ  and +φ : 

 

ds

s ' 0

i i

i

(s,s ') (s,s ') ds '

                                             0.
2

q (s ') (s ') (s ') (s ')
q

(s ') (s ')

− −

=

+
+ +

−

+

   φ + φ ψ + ψ 
  + 
  

ψ + ψ

 

+ =

∫ G N
 (4.23) 

Eqs (4.19) and (4.23) constitute a system of two integral equations with two unknown 
functions, which can be solved on a computer. The amplitudes mr  and mt of the plane waves 
reflected and transmitted by the grating can be deduced from the solution of the integral 
equation using eqs. (4.184) and (4.185) of appendix 4.A: 

 ( ) ( )d
m

s
imKx s i z s m

m
m ms 0

i (s)1 dx(s) dz(s)r e (s) ds,
2d ds ds

+ +
− − γ +

+ +
=

  − φ α
= + − ψ   γ γ   

∫  (4.24) 

 ( ) ( )d
m

s
imKx s i z s m

m
m ms 0

i (s)1 dx(s) dz(s)t e (s) ds,
2d ds ds

− −
− + γ −

− +
=

  φ α
= + + ψ   γ γ   

∫  (4.25) 

 
with 0z  being the ordinate of the top of the grating profile. For non-evenescent reflected 
orders, diffraction efficiencies mρ  can be obtained using eq. (4.187): 

 2m
m m

0
r .

+

+
γ

ρ =
γ

 (4.26) 

For gratings made of a lossless dielectric material in V− , transmitted efficiencies can be 
defined as well: 

 2m
m m

0

q t .
q

+−

+ +
γ

τ =
γ

 (4.27) 

In that case the energy balance (see chapter 2) can be expressed by: 

 m P m Pm m
1,+ −∈ ∈ρ + τ =∑ ∑  (4.28) 
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with P+  and P−  denoting respectively the set of non-evanescent reflected and transmitted 
orders. The numerical implementation of the integral equations will be described in section 6.  
In contrast with the two coupled equations obtained in this section, the integral equation 
obtained by Maystre is unique. This feature requires the definition of a single and well 
adapted unknown function. The mathematical definition of this function needs the use of tools 
of applied mathematics described in appendix A. Appendix B contains a mathematical 
description of this mathematical function and of the integral equation. Here, we give a 
heuristic description of this function for TE polarization. First, we replace the material in V−  
by the same material as in V+ , the entire space being thus homogeneous. It can be shown that 
it exists one (and only one) distribution of surface current density Φ  parallel to the y axis, 
placed on S (this surface separates now two identical media), which generates in V+  a field 
equal to the actual diffracted field in the physical problem. Intuitively, it is easy, from this 
surface current density, to express in an integral form the actual scattered field in V+ , this 
current distribution being nothing else than a set of current lines placed in a homogeneous 
medium. From the expression of the scattered field in V+ , simple mathematical calculations 
allow one to deduce the scattered field and its normal derivative above S, thus (s)+ψ  and 

(s)+φ  from the unique unknown function Φ .  
Now, we abandon the field generated by the fictitious surface current density Φ , except 

the integral expressions of (s)+ψ  and (s)+φ  containing Φ , and we come back to the actual 
physical grating problem. The continuity conditions for the tangential components of the field 
permit the calculation of (s)−ψ  and (s)−φ  thus, using the second Green theorem, of the 
actual physical field below S. At that point it has been shown that the four unknown functions 
contained in the classical theory previously described in this section can be derived from a 
single one and that, in some way, there is a redundancy in the use of multiple unknown 
functions. It is easy to understand that this single unknown function can be calculated from a 
single integral equation. This equation can be obtained for example by writing the continuity 
on S of the integral expressions of the field in V+  and V− .  

This method was the first one to show that, in contrast with the second Green theorem, 
it exists a formula that allows one to express the field inside a given domain from a single 
function defined on its boundary. This function is neither the field nor its normal derivative, 
but both can be deduced from it through simple integrals. These integrals automatically 
satisfy the compatibility condition. 

 

4.3. The bare, perfectly conducting grating 
Perfectly conducting gratings were historically the first gratings to be modeled using rigorous 
electromagnetic theories. They represent accurate models for metallic gratings working in far 
infrared and microwaves regions. The pioneering works appear in the ‘60s [8] and were 
followed by many papers. Various formulations of the integral method have been published. 
They differ either in the form of the integral equation ot in the numerical implementation. A 
review of this matter may be found in [27, 6, 28].  

 
4.3.1. Perfectly conducting gratings in TE polarization 
 
Two different approaches will be presented in this section. The first one, published by R. Petit 
and M. Cadilhac in [8], leads to a Fredholm integral equation of the fist kind with a singular 
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kernel. A version leading to a Fredholm integral equation of the second kind with a non-
singular kernel was proposed by Pavageau et al. [13] using the ideas of Maue [29]. 

The total field in V+  is pseudo-periodic, it satisfies the Helmholtz equation: 

 ( )22 T 2 TF k n F 0    in V ,+ + + +∇ + =  (4.29) 

and a radiation condition at infinity. Thus we can apply the generalized compatibility 
condition of section 4.A.5: 

 ( )
ds

i

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds ' s ,
2

+
+ + + +

=

Ψ Φ + Ψ + ψ = ∫ G N  (4.30) 

with (s ')+Ψ  and (s ')+Φ  denoting the limit of the total field on S and its normal derivative. 
The boundary condition on S is straightforward: the total electric field, which is parallel to the 
y axis thus tangential to the metal, vanishes on S. This property entails that (s) 0+Ψ =  and 
thus, eq. (4.30) becomes, in operator notation: 

 i+ +Φ = −ψG . (4.31) 

with (s,s ')+G  given by eq. (4.147) 

 ( ) ( )( ) ( ) ( )m
m m

1 1(s,s ') exp imK x s x ' s ' i z s z ' s ' .
2id

∞
+ +

+
=−∞

 = − + γ − γ
∑G  (4.32) 

This is a Fredholm integral equation of the first kind, with a singular kernel.  
The amplitudes of the reflected waves are deduced from eq. (4.186): 

 ( ) ( ) ( )
ds

m m
m s 0

1r exp imKx s i z s s ds
2id

+ +
+

=

 = − − γ Φ γ ∫ . (4.33) 

The efficiencies 2m
m m

0
r

+

+
γ

ρ =
γ

 satisfy the energy balance relation: 

 m
P

1
+

ρ =∑ , (4.34) 

with P+ denoting the set of non-evanescent orders. 
An integral equation of the second kind with a regular continuous kernel can be found 

using the same function +Φ . It is shown in section 4.A5 that the normal derivative 
S

dF
dN

+
 can 

be calculated in that case (eq. (4.172)). This integral equation can be written either by writing 

that 0i x

S

dF e
dN

+
α+= φ  is equal to ( ) 0i xi e α+Φ − φ . The final equation is given by:  

 ( ) ( ) ( )
d

0

s
i xi

s ' 0

s
s (s,s ')e s ds '

2

+
α +

=

Φ
= φ + Φ∫ K , (4.35) 
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with: 

 ( ) ( ) mimK x x ' i z z 'm

m , m

1 dx dz(s,s ') sgn z z ' e
2d ds ds

+− + γ −
+

=−∞ +∞

 α
= − − 

γ  
∑K . (4.36) 

 
4.3.2. Perfectly conducting gratings for TM polarization 
 
Once again, the generalized compatibility condition is used (eq. (4.158): 

 ( )
ds

i

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds ' s .
2

+
+ + + +

=

Ψ Φ + Ψ + ψ = ∫ G N  (4.37) 

In that case too, the tangential component of the electric field vanishes on the profile. It is 
shown in chapter 2 from Maxwell equations that this condition entails that the normal 
derivative of the total field vanishes on S, thus : 

 0+Φ = , (4.38) 

so that 

 ( )
ds

i

s ' 0

(s)(s,s ') (s ')ds ' s ,
2

+
+ +

=

Ψ
Ψ + ψ =∫ N  (4.39) 

with (s,s ')+N  given by eq. (4.22) and (4.148): 

 
( ) ( )( )

( ) ( )( ) ( ) ( )

m

m m

m

1 dx ' dz '(s,s ') sgn z s z ' s '
2d ds ' ds '

exp imK x s x ' s ' i z s z ' s ' .

∞
+

±
=−∞

+

 α
= − − × 

γ  
 × − + γ − 

∑N
 (4.40) 

The Fredholm integral equation of the second kind with a regular continuous kernel is very 
close to that obtained for TE polarization (eq. (4.35)).  

The amplitudes of the reflected waves are deduced from eq. (4.186): 

 ( ) ( ) ( )
ds

m
m m

ms 0

1 dx(s) dz(s)r exp imKx s i z s s ds
2d ds ds

+
+

=

 α = − − γ − Ψ    γ 
∫ , (4.41) 

As for TE polarization, the efficiencies 2m
m m

0
r

+

+
γ

ρ =
γ

 satisfy the energy balance relation: 

 m
P

1
+

ρ =∑ . (4.42) 

4.4. Multiprofile gratings 
The use of dielectric coatings has many applications even for diffraction gratings use. For 
example, metallic gratings are covered by a thin layer of dielectric material in order to avoid 
oxidation of the metal. Dielectric gratings can require an antireflection coating consisting of a 
thin layer or a stack of layers. Conversely, a stack of layers is used to increase the metal 
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reflectivity or even to replace it, in order to reduce the absorption of light beams for high 
power laser applications. 

Up to our knowledge, the first numerical results in the study of coated gratings was 
made by Van de Berg [16] for a single-layer perfectly conducting grating with the layer filling 
up the space between the grating surface and a plane surface. Although at that time the 
interest in such geometry remained mostly academic, further development of technology 
made it possible to fabricate such layer by dielectric coating and polishing. Another important 
application comes from the process of replication of dielectric gratings using an epoxy layer 
to transfer the replica to a plane surface of the substrate, or to have epoxy as grating layer 
itself. 

After this initial work, two integral methods were proposed. The first one [20] is 
theoretically able to deal with an arbitrary multilayer grating without limitations concerning 
the shape of the profile or the conductivity of the layers. The second method [21] can deal 
with a multilayer grating without interpenetration of the profiles.Botten has solved the 
problem with a single-profile grating that has a stack of plane layers below and, eventually, 
above it [22, 23], by introducing a new form of Green’s function, adapted to the multilayer 
system, which leeds to a single integral equation. 

In what follows, we will at first describe the method for a single interface inside a stack, 
when the layer is relatively thin so that the upper and the lower interface interpenetrate. It is 
important to distinguish the two cases, with and without interpenetration, because in the latter 
case, it is possible to define a plane layer in between that does not cross the upper or the lower 
interface. This possibility enables one to use the plane-wave Rayleigh expansion of the 
electromagnetic field between the interfaces, whereas in the former case it is necessary to 
write and to solve a system of coupled integral equations that link the field components on the 
top and bottom of each layer. 
 
4.4.1. Thin-layer gratings 
 
 
 
 

 

 
 
 
 

Figure 4.2. Single layer inside a stack of a multilayer grating 
 

Let us consider the case of a multilayer grating having profiles that interpenetrate. In other 
words, it is impossible to introduce inside the layer a plane surface that does not cross one of 
the profiles. Then it is impssible to use the plane-wave expansion between the interfaces and 
we are led to solve integral equations that are coupled on the two interfaces of each layer.  

We introduce in figure 4.2 a grating made of M materials (numbered from 0 to M, 
separated by M-1 profiles (numbered from 1 to M). We introduce the following functions: 

Vj–1 

Vj 

Vj+1 

Sj 

Sj+1 
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 0 0i x i xi
j j,M j

j
F e F e in V

U .
0 elsewhere.

− α − α − δ= 


 (4.43) 

The function Uj inside each layer can be expressed from the fields and normal derivatives on 
the lower and upper interface, for j=1, M-1: 

j j

j 1 j 1

j j j j j j j j j j j
S S

j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1
S S

U (x, y) (x, y,s ) (s )ds ' (x, y,s ) (s )ds

(x, y,s ) (s )ds (x, y,s ) (s )ds .
+ +

+ + + +

− − − −
+ + + + + + + + + +

′ ′ ′ ′ ′= φ + ψ

′ ′ ′ ′ ′ ′− φ − ψ

∫ ∫

∫ ∫

G N

G N
 (4.44) 

The expression being limited to the second one if j = 0 and to the first one for j = M. 
The functions derived from the Green functions in the various materials depend on the 

interface number: 

 ( ) ( ){ }j j j,m j
m j,m

1 1(x, y,s ') exp imK x x ' s i z z ' s
2id

∞
± ±

±
=−∞

 ′ ′= − + γ − γ
∑G , (4.45) 

 
( )

( ) ( ){ }

jm
j j

m j,m

j j,m j

dz '(s )1 dx '(s )(x, y,s ) sgn z z ' s
2d ds ' ds '

exp imK x x ' s i z z ' s ,

∞
±

±
=−∞

±

 ′′ α  ′ ′= − − ×   γ  

 ′ ′× − + γ − 

∑N
 (4.46) 

with: 

 ( )2 2
j,m j 1,m j mkn+ −

+γ = γ = − α . (4.47) 

It can be shown it the same manner as in eq. (4.146) that a compatibility condition on the jth 
interfacewritten in a matrix form is given by:  

 j
j j j j j, j 1 j 1 j, j 1 j 12

+
+ + + + − − − −

+ + + +
ψ

= φ + ψ − φ − ψG N G N  . (4.48) 

Another compatibility equation is obtained on the (j+1)th interface: 

 j 1
j 1, j j j 1, j j j 1 j 1 j 1 j 12

−
+ + + − + − − − −

+ + + + + +
ψ

= φ ψ − φ − ψ+ G NG N . (4.49) 

In eqs. (4.48) and (4.49), we use the double-index Greens functions that are derived on two 
consecutive profiles: j, j 1 j j j 1(s ,s )− −

+ +′≡G G , j 1, j j j 1 j(s ,s )+ +
+ + ′≡G G , and similarly for N . 

The computability equation becomes, for the upper and lower media: 

 M
M M M M2

+
+ + + +ψ

= φ + ψG N , (4.50) 

 1
1 1 1 12

−
− − − −ψ

= − φ − ψG N
 
. (4.51) 
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By combining eqs (4.48)  with eq. (4.49), we obtain the link between the unknows on the 
upper and on the lower interface of the jth layer, for j=1, M-1: 

 
j, j 1 j, j 1 j jj 1 j

j 1 j 1 j 1 jj 1, j j 1, j

2

2

− − + +− ++ + +

− − − ++ ++ + + + +

      −ψ ψ      
      + φ φ         



 =
N G

N G

N G

N G
. (4.52) 

This equation gives the transmission operator of the unknown amplitudes across the jth layer, 
i.e. from the jth to the (j+1)st interface, for j=1,M-1: 

 

1
j, j 1 j, j 1 j j

j 1, j
j 1 j 1 j 1, j j 1, j

2T

2

−− − + ++ +

+ − − + ++ + + +

   −   
   

+   
   



=
N G

N G

N G

N G
. (4.53) 

The transmission operator includes an inverse operator. Numerically, this inversion leads to 
the inversion of a matrix, as we will see in section 4.6. 

The transmission matrix across the jth interface for j = 1, …, M–1 is obtained using the 
continuity of the tangential and normal field components, as given by eqs.(4.8) and (4.10): 

 
j j

jj j
j j

j

0

qT , T
0

q

+ −
−+− +−

+ −
+

 
   ψ ψ  
   = =  
     φ φ     

 




, j M≠ . (4.54) 

The advantage of this presentation is that there are no exponentially growing terms in 
the transmission matrices, since all the components of the two variable functions contain only 
scattered propagating or decreasing evanescent waves, in contrast with the other methods 
(differential, Fourier modal, Rayleigh, etc.). However, this formulation requires calculating 
the cross-layer functions between the interfaces, which leads to computation times equal to 
those of single-interface functions. As a consequence, the total computation time is almost 
multiplied by a factor 2 with respect to the case where cross-layer kernels can be avoided, as 
discussed in the next section. 

Finally, it can be deduced from eqs. (4.53) and (4.54): 

 
i

M 1
M M,M 1 2 2,1 1i

M 1
T T ... T T T .

+ −
+− +− +−

−+ −

     ψ ψ ψ
     + =
     φ φ φ     

 (4.55) 

Finally, eqs. (4.55), (4.50) and (4.51) form an operator system of 4 equations with 4 
unknown functions, which can be solved on a computer after representing each operator by a 
matrix, as described in section 6. 

 
4.4.2. Profiles without interpenetration 
 
This case is simpler than the situation in sec.4.4.1 because it is possible to use the plane-wave 
expansion between the grating profiles and thus to decouple the integral presentation used in 
eq.(4.44). The idea is illustrated in figure 4.3. 

If it is possible to introduce a plane layer between the profiles, the plane wave 
expansion is valid inside this layer. The advantage is that the plane waves (propagating and 
evanescent) that represent each diffraction order m can be easily separated into to sets: (i) 
upgoing waves having amplitudes of the y-component of the field equal to j,mr  that are 

108



D. Maystre and E. Popov: Integral Method for Gratings 4.13 
 
 
generated by the lower surface Sj, (ii) downgoing waves with amplitudes j,mt  generated by 

the upper grating surface Sj+1.   
 
 
 
 
 
 
 
 
 
 
 

 
Figure.4.3. Layer with two profiles that are separable by a plane layer 

 
Let us first rewrite eqs.(4.184) at z > jz+ : 

 ( ) ( ) ( ) ( )
j,d

j,m j j j j,m

s

j j
s

jm
0

j, jr N s s G s s ds+ + + +

=

ψ + φ =  ∫ , (4.56) 

with 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

j,m j j j,m j
j,m

j jm
j,m j j j,m j

j jj,m

                                      
1                G s exp imKx s i z s ,

2id

dx s dz s1N s exp imKx s i z s .
2d ds ds

+ +
+

+ +
+

 = − − γ γ

 α   = − − − γ  γ 

 (4.57) 

and with js  denoting the curvilinear abscissa on the jth profile, j,ds  being the curvilinear 

abscissa of the point of Sj of abscissa x = d. 
We then can directly use eq.(4.48) to express the field on the interface z = j 1z(s )+ : 

( )j 1 j 1
j 1 j,m j 1 j,m j 1 j 1 j 1 j 1

m

s
exp imKx(s ) i z(s ) r

2

−
+ + + + − − − −

+ + + + + +
ψ

 = + γ − φ − ψ ∑ G N . (4.58) 

Let us consider the sum in eq. (4.58): 

 j 1 j 1 j,m j 1 j,m
m

exp imKx(s ) i z(s ) r+
+ + + ζ = + γ ∑ . (4.59) 

Inserting in this equation the value of j,mr  given by eq. (4.56) yields: 

x 

z 

jz+  

jz−  

 

 

Vj–1 

Vj 

Vj+1 

Sj 

Sj+1 
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( ) ( ) ( ) ( )

j,d

j

j 1 j 1
s

j 1 j,m j 1 j,m j j j j,m j j j j
m s 0

(s )

exp imKx(s ) i z(s ) N s s G s s ds ,

+ +

+ + + + +
+ +

=

ζ =

   + γ ψ + φ   ∑ ∫
(4.60) 

which can be written in operator form: 

 j 1 j, j 1 j j, j 1 j ,+ + + +
+ + +ζ = ψ + φN G  (4.61) 

where the operators j, j 1
+

+N  and j, j 1
+

+G  are obtained from a summation in m and an integral in 

js . Thus we can write eq. (4.58) in the operator form: 

 j 1
j, j 1 j j, j 1 j j 1 j 1 j 1 j 1.

2

−
+ + + + + − − − −

+ + + + + +
ψ

= ψ + φ − φ − ψG NN G  (4.62) 

The second relation comes from eq. (4.49) by using the amplitudes of the diffraction 
orders coming down from the upper interfaces and valid below z = j 1z−

+ . Following the same 
lines as in the previous paragraph yields: 

 j
j 1, j j 1 j 1, j j 1 j j j j2

−
− − − − + + + +
+ + + +

ψ
= ψ + φ φ ψN G + G +N . (4.63) 

The transmission matrix between the jth and the j+1st interface takes a form similar to the case 
of interpenetrating layers, eq.(4.53). However, the difference is essential, because each series 
used in (4.63) is evaluated on a single interface: 

 

1
j 1, j j 1, j j j

j 1, j
j 1 j 1 j, j 1 j, j 1

2T

2

−− − + ++ +

+ − − + ++ + + +

   −   
   

+   
   




N G

=
N G

N G

N G
. (4.64) 

The second difference is that the exponential terms are explicitly given in the j, j 1
+

+N , 

j 1, j
−
+N , j, j 1

+
+G  and j 1, j

−
+G  through the functions  j 1 j,m j 1exp imKx(s ) i z(s )+

+ + + γ   and 

j j,m jexp imKx(s ) i z(s )+ − γ   in such a way that it can be extracted from each of these 

operators a part containing all the growing and decreasing exponential terms, which allow a 
much better stability of the numerical implementation through adequate treatments, for 
example the S-matrix algorithm described in appendix A and B of Chapter 7.  

 

4.5. Gratings in conical mounting 
When classical gratings with one-dimensional periodicity are used with incidence plane 
perpendicular to the grooves, the diffraction orders lie in the same plane. Off-plane incidence 
brings the diffraction orders out of the plane and their directions lie on a cone , which explains 
the term of conical diffraction. One of the first experimental works can be found in [24, 25]. 
The use of conical mount is typical for concave gratings and in some spectrographs aiming to 
separate off-plane the incident and the diffracted directions. 
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The first theoretical studies were made in 1971 using the integral [26] and the 
differential [30] methods. An interesting theoretical development came in 1972 when Maystre 
and Petit demonstrated that under special conditions, mechanically ruled perfectly conducting 
gratings can have very high and constant efficiency over a large spectral domain [31]. They 
also established the theorem of invariance [32] that gives an expression of the diffraction 
efficiency of a perfectly conducting gratings in conical mounting, expressed as a linear 
combination of efficiencies in an in-plane (classical) mount for the two fundamental 
polarizations. Since the theorem is not valid for finitely conducting metals, later development 
of the integral method allowed studies of diffraction gratings behaviour in conical mount 
when working in the UV and visible [33, 34]. An interested reader can find the demonstration 
of the invariance theorem in [7, 33].  

 

 
Figure 4.4. Parameters of the incident wave in conical mount.The angle ϕ denotes the angle 

between the incident wavevector ik


 and its projection i
xzk


 on the xz plane. The angle iθ  is the 

angle between the z axis and i
xzk


. In order to define the polarization of the incident field, we 

construct the circle MNM'N' in the plane perpendicular to the incident wavevector ik


, with the 
continuation of NN' intersecting the z axis and MM' being perpendicular to NN'. The polarization 

angle δ  is the angle between M'M and the direction of the incident wavevector ik .


 
 
The notations are summarized in figure 4.4. The mathematical formulation of the 

invariance theorem takes the form of an equivalence between the conical case and an 
associated classical case: 
(i) conical case: 

With incident angles θi  and ϕ, incident polarization angle δ, incident wavelength λ, 
the efficiencies in the various orders are denoted by ( )i

m , , ,ρ θ ϕ δ λ . 

(ii) fictitious equivalent classical case: 
The wavelength is increased to / cos ,′λ = λ ϕ  the angle ′ϕ  is now equal to 0 (in-plane 

incidence), the angle ′θ = θi i , then efficiencies in TE and TM polarizations are denoted by 

( )ΤΕ i
mρ , ′θ λ  and ( )ΤM i

mρ , ′θ λ , respectively. It can be noticed that the projection i
xzk


 of the 
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wavevector of the incident wave on the xz plane in conical mount identifies with the 
wavevector of the incident waves in the fictitious equivalent case. 

The invariance theorem states that: 

 ( ) ( ) ( ) ( ) ( )2 2i ΤΕ i ΤM i
m m m, , , cos ρ , sin ρ ,′ ′ρ θ ϕ δ λ = δ θ λ + δ θ λ . (4.65) 

It is to be noticed that, as for the incident wavevector, the projections of the wavevectors of 
the scattered waves on the xz plane in conical mount are identical to the wavevectors of the 
scattered waves in the fictitious equivalent case. 

 

4.6. Numerical tools for an efficient numerical implementation 
4.6.1. Integration schemes for the integral equation 
 
All the integral equations in this chapter link the value of an unknown function u(s) at a given 
point of S to its value on its entire domain of definition: 

 
ds

0
c u(s) v(s) W(s,s ')u(s ')ds '= + ∫ , (4.66) 

where all functions are periodical, with v and W being known functions, W being possibly 
singular but integrable. The constant c takes values 0 or 1 according to whether the integral 
equation is of the first or second kind. 

There are many different ways to solve such an equation for the grating problem. 
Pavageau et al. proposed an iterative method [13] that does not require any matrix inversion, 
like the well known Born method for scattering problems. Unfortunately, it may diverge [35, 
36]. 

A well known general methods is based on the periodicity of all functions of the 
equation, which allows a projection of these functions and of the equation on the Fourier 
space: 

 m s s
dm

2u(s) u exp(imK s), K ,
s
π

= =∑  (4.67) 

and similar expressions for v and W. The integral equation is transformed into a linear system 
of algebraic equations: 

 ( )nm nm m n
m

W c u v , n− δ = ∀∑ , (4.68) 

which can be solved numerically after truncation. However, this approach requires computing 
a double Fourier decomposition: 

 
d ds s

nm s s
0 0

W W(s,s ')u(s ') exp( inK s imK s ')ds ds '= − −∫ ∫ . (4.69) 

The method has been applied to gratings with profiles consisting of few straight segments, 
because in that case the double Fourier integral can be calculated in closed form. It is so for 
triangular profiles [11] or trapezoidal gratings [37]. 

The most widespread method is the so-called point-matching (or discretization) method. 
Instead ot using discrete Fourier components, the unknown function is discretized on the 
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grating profile and represented by its vales j ju u(s )=  inside the interval of integration. Ther 
integration process leads toan  equation quite similar to eq.(4.68) 

 ( )jp jp p j
p

W c u v , j [1,P]− δ = ∀ ∈∑ , (4.70) 

with P being the number of matching points. It is worth noting that the value of jpW  may 

differ from the value of ( )j pW s ,s  obtained through the rectangular rule of integration 

(multiplied by the weight of integration) and can require much more complicated treatments, 
specially if W is singular. The sophistication of this treatment is one of the decisive keys for 
the precision of the solution of the integral solution. The second key is the analytical study of 
the kernel, which is described in the next two sections. 

When W is regular, continuous, with a continuous first derivative, the rectangular rule 
of integration is quite precise since the function to be integrated is periodic and it can be 
noticed that the rectangular and trapezoidal rules are completely equivalent in that case. 
However, the derivative of W(s,s’) is generally discontinuous when s = s’ and a trapezoidal 
rule or higher order treatment provide a better precision [38, 39]. In what follows we assume 
that u(s) is a continuous function. This is obviously the case when the grating profile has no 
edges. Several more detailed arguments in favour of the rectangular rule can be found in [6, 
7]. Let us shortly repeat one of them. We consider an integral of a periodical continuous 
function a(s): 

 
ds

0
0

a a(s)ds= ∫ . (4.71) 

The exact integral is equal to the 0th term in the Fourier expansion of a(s): 

 m s
m

a(s) a exp(imK s)= ∑ . (4.72) 

Simple calculations show that when using the rectangular rule with P discretization points, the 
integration error is proportional to the Pth Fourier coefficient of a(x). Since it is continuous, 
the Fourier series converges like 1/P2 at least. 

The implementation of the rectangular rule is very simple. We define the values of jpW  
in the following manner: 

 d
j,p d d

s j pW W s , s , j, p 1,..., P 1
P P P

 = = − 
 

. (4.73) 

Using this result, the product of the unknown functions u(s) with the non-singular parts of the 
kernels can be integrated in the form of a simple matrix product: 

 
ds

j j,p p
p0

W(s , xs)u(s ')ds ' W u≈ ∑∫ . (4.74) 

In the case of multilayer gratings with profiles interpenetration, there are two main 
situations that can complicate the numerical evaluation of the cross-layer functions which link 
the fields and normal derivatives on both sides of a layer: 
(i) The wavelength λ is much larger than the layer thickness t. In that case the profiles are 
located too close to each other, compared to λ, so that the functions G and N become large in 
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modulus for j 1 js s+ →  . This behaviour has the same origin as the singularities of the kernels 
G and N for a bare grating , which will be discussed in section 6.3 and can be eliminated in a 
similar manner. Numerical results show no problems as long as layer thicknesses exceed λ/20. 
(ii) The period d is much greater than the layer thickness t. If the wavelength is not too 
much larger than t, then the kernels have no singularities, but their moduli present peaks when 
the distance j 1,p j,qP P+  between two points located on the two different profiles is small with 

respect to the discretization distance between the points located on the same profile. The 
width of these maxima is of the order of magnitude of the layer thickness, thus the correct 
implementation the trapezoidal integration rule requires the distance between two consecutive 
points of the profile discretization j,p j,p 1s s −∆ = −  to be less than the width of the maxima. 

As a rule of thumb, if pd N∆ ≈ , where Np is the number of integration points, then its lower 
limit is determined by the relation: 

 p,min
dN
t

∝ . (4.75) 

Thus, for echelles, a values of d of about 10 µm and t of 20 nm requires the number of 
integration points to exceed 500. Note that Np directly determines the number of unknown 
values of φ j and ψj and thus the size of the matrices to be used. Practically, it is not worth 
nowadays for Np to exceed 10 000, because of the computation time, memory requirements, 
round-off errors and limited digits. As a consequence, it is necessary to find another way of 
integration instead of the trapezoidal rule. 

There is another problem that can come from the matrix inversion in the construction of 
the transmission matrix between the layers, eq.(4.53). Contrary to the transmission matrix that 
contains growing and decreasing exponential terms in the plane wave expansion, (thus 
requires some type of recursive algorithm to contain the contamination of the growing 
exponentials, S-matrix algorithm, for example, see appendix 4.C), the distance between the 
profiles in the z-direction that appears in the kernels in eqs. (4.45) and (4.46) restricts the 
terms to only propagation or evanescently decreasing ones. However, the matrix inversion of 
these terms that is required in eq.(4.53) can create exponentially growing terms. Two 
situations can appear: 
1. The matrix inversion in eq.(4.53) can be done without numerical problems. This happens 

when the layer thickness is not quite large. In that case it is possible to progress upwards in 
the stack of layers by following the S-matrix algorithm. 

2. The matrix inversion does not work. This could happen if the distance between two 
consecutive interface is large. Two different geometries can be concerned: 

(i)  there is no interpenetration of these two profiles. In that case one can easily apply the 
technique described in the next section. 

(ii) there is interpenetration of two very deep interfaces. It is possible to use directly 
eq.(4.52) in the S-matrix algorithm without inverting the matrix to calculate the entire T-
matrix in eq. (4.53). The formulation of the S-matrix algorithm to an equation having the 
form given in (4.52) is quite similar to the classical aplication, but it requires one 
additional iteration step. The advantage is that it avoids the inversion of small terms that 
can lead to singular matrices. This special technique is given in Appendix 7.B and is not 
quite popular, but can be used in other methods that apply for multilayer stack, for 
example, in the coordinate transformation method.  
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4.6.2. Summation of the kernels 
 
There are several problems in the calculation of the functions included in eqs (4.19) and 
(4.23): 

 ( ) ( ) ( ) ( )mimK x s x ' s ' i z s z ' s '

m m

1 1(s,s ') e
2id

±∞ − + γ − ±  
±

=−∞
=

γ
∑G , (4.76) 

 ( ) ( )( ) ( ) ( ) ( ) ( )mimK x s x ' s ' i z s z ' s 'm

m m

1 dx ' dz '(s,s ') sgn z s z ' s ' e ,
2d ds ' ds '

±∞ − + γ − ±  
±

=−∞

 α
= − − 

γ  
∑N  (4.77) 

 ( ) ( ) ( ) ( ) ( )mimK x s x ' s ' i z s z ' s 'm

m , m

1 dx dz(s,s ') sgn z z ' e ,
2d ds ds

±− + γ −  
+

=−∞ +∞

 α
= − − 

γ  
∑K  (4.78) 

with: 

 m 0 mKα = α + , (4.79) 

 ( )2 2
m mkn± ±γ = − α . (4.80) 

For the sake of simplicity, we assume here that n 1± =  and we cancel the superscript ±  in 

m,±γ  ±G  and ±N . 

Let us at first evaluate the asymptotic values of mγ  and mα  for large values of m: 

 

m
m
2

m m 0
mm

2

3 mm m m

                mK,

iki i mK ,
2

1 1 k 1 .
i i m K2i

→∞

→∞

→∞

α →

γ ≈ α − → α +
α

≈ + →
γ α α

 (4.81) 

We consider the function 

 [ ]{ }m
m m

1 1(s,s ) exp imK x(s) x(s ) i z(s) z(s )
2id

∞

=−∞

′ ′ ′= − + γ −
γ

∑G . (4.82) 

At point s s′= , it is obvious that the sum does not converge since the terms decrease in 1 m . 
Of course, a very slow convergence can be expected when the two points are close to each 
other. Different techniques have been proposed to accelerate the convergence. Neureuther and 
Zaki [15] have employed a transformation technique based on the use of Mellin transforms. 
Other authors have proposed accelerating processes [40-43]. Here we describe a direct 
approach [7]. Let us determine at first the asymptotic expression of the kernel. If we replace 
(4.81) into eq.(4.82), we obtain the asymptotic term in the sum: 
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[ ]

[ ]

0

0

mK x(s) x(s ) i z(s) z(s )x(s) x(s )

m 1

mK x(s) x(s ) i z(s) z(s )x(s) x(s )

m 1

1(s,s ) e e
4 m

1e e ,
4 m

−∞ ′ ′− + − ′α −  
∞

=−
∞ ′ ′− − − − ′−α −  

=

′ =
π

−
π

∑

∑

G

 (4.83) 

which contains two sums of the form m

m 1
/ m

∞

=
ξ∑  and can be summed in closed form: 

[ ]

[ ]

0

0

K x(s) x(s ) i z(s) z(s )x(s) x(s )

K x(s) x(s ) i z(s) z(s )x(s) x(s )

1(s,s ) e log 1 e
4
1 e log 1 e .

4

′ ′− − + − ′α −  
∞

′ ′− − − − ′−α −  

 ′ = − π  
 + − π  

G
 (4.84) 

The calculation of the kernel in (4.82) is achieved by subtracting the asymptotic value: 

 ( )∞ ∞= + −G G G G . (4.85) 

The first term in the right-and side is explicitely given in (4.84). It is singular for s = s’e. This 
singularity is integrable and is be treated in the next section. 

The term between parenthesis in eq.(4.85) is obtained by combining the terms in the 
sums in eqs.(4.82) and (4.83). As far as the second one is the asymptotic value of the former, 
the series converges, whatever the values of s and s’. Furthermore, it is possible to show that 
by combining the terms m and –m in the sum, we finally obtain a rapidly converging series, 
whose terms decrease as m–3 when s s′= , as shown later in eq.(4.87) Moreover, in this case 
this series is continuous and its value is simply given by: 

 ( )
0 ms s m 0

1 1 1
2id 2id 4 m∞

′= ≠

 
− = + +  γ γ π 

∑G G . (4.86) 

Using the third identity of eq.(4.81), for large values of m, the term in the sum is equal to: 

 
2 2

2 33
m m

k

4d

1 1 d 1
2id 4 m 8 m

+ → − → −
γ π πλα

. (4.87) 

Obviously, the singularity and the slow convergence of G  have been carried out by 
introducing the series ∞G . Fortunaley, this singularity is logarithmic and thus integrable, as 
shown in the next section. 

Let us now deal with the second function defined in eq. (4.77): 

 [ ] [ ] mimK x(s) x(s ) i z(s) z(s )m

m m

1 dx(s ) dz(s )(s,s ) sgn z(s) z(s ) e .
2d ds ds

∞
′ ′− + γ −

=−∞

 ′ ′α ′ ′= − − ′ ′γ  
∑N (4.88) 

At the first glance, the term [ ]sgn z(s) z(s )′−  suggests us that this function is not continuous 

for s’ = s, at least if dz ' 0
ds '

≠  for s’ = s. To deal with this term, we proceed in the same way as 

in eq.(4.85), by introducing an asymptotic value ∞N  and we set now: 
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 ( )∞ ∞= + −N N N N , (4.89) 

with 

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

0

0

x(s) x(s ) mK x(s) x(s ) imK z(s) z(s )

m 1

x(s) x(s ) mK x(s) x(s ) imK z(s) z(s )

m

1(s,s ) sgn z(s) z(s )
2d

1 dx(s ) dz(s )+ sgn z(s) z(s ) i e e
2d ds ds

1 dx(s ) dz(s )sgn z(s) z(s ) i e e .
2d ds ds

∞

∞
′ ′ ′−α − − − + −

=

′ ′ ′α − − + −

′ ′= −

′ ′ ′− − ′ ′ 

′ ′ ′+ − + ′ ′ 

∑

N

1

−∞

=−
∑

(4.90) 

The sums can be evaluated in a closed form: 

[ ]

[ ]
[ ]

[ ] [ ]

[ ]
[ ]

[ ] [ ]

0

0

x(s) x(s )

K x(s) x(s ) imK z(s) z(s )

x(s) x(s )

K x(s) x(s ) imK z(s) z(s )

1(s,s ) sgn z(s) z(s )
2d

1 dx(s ) dz(s ) esgn z(s) z(s ) i
2d ds ds e 1

1 dx(s ) dz(s ) esgn z(s) z(s ) i .
2d ds ds e 1

∞

′−α −

′ ′− − −

′α −

′ ′− + −

′ ′= −

′ ′ ′+ − − ′ ′  −

′ ′ ′+ − + ′ ′  −

N

 (4.91) 

As noticed for G , the term ∞−N N  must be considered as a series each term of which is 
obtained by making the difference of the corresponding terms in the sums in eqs.(4.88) and 
(4.90). This series converges much more rapidly than the series in eq. (4.88) and it is 
continuous at s = s’.  

The limit of N  when s ' s→  can be determined calculating the limits of the two terms 

∞N  and ( )∞−N N . After tedious calculations, we can deduce that this limit exists and is 

given by: 
2

2m
2 2s' s 0 mm

d z
dz i 1 1 ds(s,s) lim (s,s )
ds 2 2d 4 dx dz

ds ds

∞

→ =−∞

 α′= = − + +  πα γ π      +   
   

∑N N . (4.92) 

This interesting results established by Pavageau and Bousquet [44] is very important for the 
numerical applications, because it shows that (s,s)N  contains a series that canverges like 
1/m3 (after adding the terms with negative and positive values of m). 

Let us notice that the second derivative of the profile function appears in eq.(4.92) and 
it clearly requires the continuity of the first derivative, i.e., the absence of edges. 

The third kernel (s,s ')K , given by eq. (4.36): 

 [ ] [ ] mimK x(s) x(s ') i z(s) z(s ')m

m , m

1 dx dz(s,s ') sgn z(s) z(s ') e
2d ds ds

+− + γ −
+

=−∞ +∞

 α
= − − 

γ  
∑K  (4.93) 
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is deduced from (s,s )′N  by replacing the derivatives dx '
ds '

 and dz '
ds '

 by dx
ds

 and dz
ds

 and its 

study is quite similar. After  after tedious calculations it can be shown that: 
2

2m
0 2 2s ' s 0 mm

d z
dz i 1 1 ds(s,s) lim (s,s )
ds 2 2d 4 dx dz

ds ds

∞

→ =−∞

 α′= = − + −  πα γ π      +   
   

∑K N . (4.94) 

 
4.6.3. Integration of kernel singularities 
 
Clearly, the asymptotic part of  (s,s )∞ ′G  in eq.(4.84) is singular when s s′→ . After some 
calculations, it can be found that  

 [ ] [ ]{ }( )s s

2 221(s,s ) ln K x(s) xli (s ) z(s) z(s )
4

m
′→

∞ ′ ′ ′= − + −
π

G . (4.95) 

Noting that dxx(s) x(s ) (s s )
ds

′ ′− ≈ −  and dzz(s) z(s ) (s s )
ds

′ ′− ≈ − , eq.(4.95) yields: 

 
2

s

2

s

s s1 1 dx dz(s,s ) ln(2 ) ln ln
2 2 ds ds d

lim ∞′→

   ′−    ′ = π + + +     π        
G . (4.96) 

The first two terms represent regular parts that can be integrated by using the rectangular rule, 

as shown later. Unfortunately, 
s s

ln
d

′−
 is not periodic and the rectangular rule is very poor 

when applied to nonperiodic functions. It is possible to overcome this difficulty [7] by 
considering another function defined on (0, d): 

 
s s s s1(s,s ) ln ln 1 , s,s (0,d)

2 d d∞
 ′ ′−  − 

′ ′= + − ∈  π    
G , (4.97) 

which has the same singularity as 
s s1 ln

2 d
′−

π
 in the interval (0, d), because d s s′− −  never 

vanishes when s,s (0,d)′∈ . The advantage of his new function is that it is continuous except 
on the singularity, and all its derivatives with respect to s are the same on s′  = 0 and s′  = d 
and thus we can use the rectangular rule. 

We perform the integration of (s,s )∞ ′G  by setting: 

d d ds s s

0 0 0
(s,s ) (s )ds (s,s ) (s ) (s,s ) (s) ds (s,s ) (s)ds∞ ∞ ∞ ∞ ′ ′ ′ ′ ′ ′ ′ ′ ′φ = φ − φ + φ ∫ ∫ ∫ G G G G . (4.98) 

The term in the square bracket is non-singular and can be integrated using the rectangular 
rule, if we take into account that: 

2 2

s s

1 1 dx dzlim (s,s ) (s ) (s,s ) (s) ln(2 ) ln (s)
2 2 ds ds∞ ∞′→

       ′ ′ ′φ − φ = π + + φ       π        

G G . (4.99) 
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The second term in eq.(4.98) contains the singular part, but it can be integrated analytically: 

 
d ds s

0 0

d(s,s ) (s)ds (s) (s,s )ds (s)∞ ∞′ ′ ′ ′φ = φ = − φ
π∫ ∫ G G . (4.100) 

In conclusion, the integration of the singular kernel is made by introduction at first  
,∞G  which permits to define a series ∞−G G  that is continuous and rapidly converging 

hence easily integrable by the use of the rectangular rule. Second, the integration of the term 
containing ∞G  is performed by defining a new function ∞

G , which has the same singularity 

as ∞G , has the property of a periodic function, and can be analytically integrated. 
 

4.6.4. Kernel singularities for highly conducting metals 
 
When the conductivity of a metallic grating tends to infinity, the Green function in the metal 
tends to a delta function. This property is rather obvious: for very large conductivities, the 
field generated by a line current (delta function) placed in the metal decreases very rapidly 
since it is absorbed on very short distances. This behaviour have drastic consequences on the 
kernels of the integral equations dealing with metallic gratings, which are directly derived 
from the Green function: the two variable functions relative to the metallic part of the grating 
tend to delta functions as well. The integration of such functions through a point matching 
method requires more and more points of discretization around s’ = s and, since s can take any 
value in the interval (0, sd) the integration and the inversion of the final linear system of 
equations (bearing in mind that its size is the total number of discretization points) becomes 
impossible. This remarks explains why the first attempts at implementing the integral 
equations on computers were not able to give any result for metallic gratings in the visible and 
infrared regions. 

A very efficient way to overcome this difficulty is to apply an approach called local 
summation [7], using another form of the Green function [45]: 

 ( )0imd
0

m

1 ˆ(r r ') e H k r r ' md x , r (x, z)
4i

α +− − − =∑    

G = , (4.101) 

with x̂  being the unit vector of the x axis. This form is the direct consequence of the fact that 

( )0
1 H k r r '
4i

+ −
   is the Green function of the Helmholtz equation: 

 ( ) ( ) ( )2 2
0 0

1 1H k r r ' H k r r ' r r '
4i 4i

k+ +   − − −     
+


∇ = δ

      . (4.102) 

Since the pseudo-periodic Green function (r r ')−
 

G  in vacuum is defined by: 

 mi d2 2

m ,
ˆ(r, r ') k (r, r ') e (r r ' md x)α

=−∞ +∞
∇ + = δ − −∑     

 G G , (4.103) 

it follows that (r r ')−
 

G  is a sum of Green functions ( )0
1 ˆH k r r ' md x
4i

+ − −
   satisfying: 
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( ) ( )

( )

n n
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i d i d2 2

i d
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ˆ                                  e r

1 1

r ' m

H k H k
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.

+ +α α

α

   
     

∇ − − + − − =

= δ − −



   

 

 (4.104) 

Inserting the value of (r r ')−
 

G  given by eq. (4.101) inside the integral 
ds

0
(s,s ) (s )ds′ ′ ′φ∫ G , 

then making the change of variable ˆr ' md x r ''− =
  , and finally gathering the infinite sum of 

integrals on one period into a single integral from −∞  to +∞  yields: 

 
d

0

s
i (x x)

0
0

1(s,s ) (s )ds H (k r r ' ) e (s )ds .
4i

∞
′α −+

−∞

′ ′ ′ ′ ′φ − φ∫ ∫
 

G =  (4.105) 

In the same way it can be shown that  

 
d

0

s
i (x x)

1
0

dzz z (x x)ik ds(s,s ) (s )ds H (k r r ' ) e (s )ds .
4 r r '

∞
′α −+

−∞

′ ′− − −
′′ ′ ′ ′ ′ψ − ψ

−∫ ∫
 

 

N =  (4.106) 

When the permittivity becomes very large in modulus, the functions (s,s )− ′G  and (s,s )− ′N  

are obtained by replacing k by kn−  in (s,s )′G  and (s,s )′N . Since the value of n− is close to 

an imaginary number in the visible and infrared regions for usual metals (for example, n−  = 
1.3 +i 7.11 for aluminum at 650 nm), the Hankel functions 0H (k r r ' )+ −

   and 1H (k r r ' )+ −
   

become very close to the modified Bessel functions ( )0K k n r r '− −  
   and 

( )1K k n r r '− −  
   (see [45]) and tend to delta functions when n− → ∞ . Thus, these 

functions vary much more rapidly than the unknown function φ , which can be considered as 
a constant. Thus, remarking that when x x′ ≈  

 

[ ]

2

2
2

2

0

dz        r r ' x x 1 ,
dx

dz 1 d zz z (x x) (x x) ,
dx 2 dx

            exp i (x x) 1,

 ′− − +  
 

′ ′ ′− − − ≈ − −

′ −

≈

α ≈

 

 (4.107) 

yields finally: 

 ( )
d

0

s
i (x x)

0 2
0

(s) (s)(s,s ) (s )ds H (k n r r ' ) e ds ,
4i dz2ik 1

dx

∞
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−∞

φ φ′ ′ ′ ′φ ≈ − ≈
 +  
 

∫ ∫
 

G  (4.108) 

and 
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3/220

d z (s)
dx(s,s ) (s )ds

dz4ik 1
dx

ψ
′ ′ ′ψ ≈

  +  
   

∫ N . (4.109) 

It is not surprising to note that in this approximation, the calculations of the integrals require 
neither summation of the kernels, nor integration of the singularities, nor matrix 
multiplication. As the kernels tend toward delta-distributions with amplitudes determining the 
coefficients in eqs.(4.108) and (4.109), their matrix representations tend to diagonal matrices. 

Numerical results have shown that this simpler formulation not only successfully 
applies in the domain where the summation and integration processes defined in the previous 
sections fail, but also remains valid with a good accuracy (about 10-3 in relative value) in a 
large domain of metals and wavelengths. For example, with aluminum, this approach works 
in the visible, a domain in which the classical method of integration can be used as well (but 
with a greater computation time), wheras the local summation is necessary for metals in the 
far-infrared and microwaves domain. It is very important to notice that, using the local 
summation and assuming that | n |− → ∞ , it can be shown that the integral equation for 
metallic gratings described in appendix 4.B tends towards the integral equations obtained for 
perfectly conducting metals. 

 
4.6.5. Problems of edges and non-analytical profiles 
 
When the grating profile has edges or corners (in 2D case), fundamental difficulties appear. 
First, the uniqueness of the solution of the electromagnetic field is not ensured. The 
hypothesis of the integrability of the unknown function u(x) in the integral equation is 
equivalent to the Meixner condition of integrability [46], although it is singular.  

The second problem lies in the validity of the boundary condition of electromagnetic 
field on the grating profile. Indeed, on the edges, the normal and tangential direction on the 
profile are not defined in a unique manner. Moreover, when establishing these boundary 
conditions, the demonstration does not work if the surface has edges; However, these 
warnings are not dramatic. The demonstration of Archimede theorem is also questionable if 
the object presents edges. Does it exist any doubt about the validity of this theorem?  

The third problem in the integral method lies in the process of integration in the vicinity 
of the edges. The kernels become discontinuous or even meaningless, depending on whether 
the point of calculation of the integral coincides with the edge point or not, see eq.(4.90) - 
(4.92). Moreover, the integration can fail due to the eventual singularity of the unknown 
function on the edge [44]. 

To overcome the edge problem, there exist several approaches. The most direct one 
consists in replacing the actual profile z = f(x) with its truncated Fourier representation: 

 
M

imKx
M m

m M
f (x) f e

=−
= ∑ . (4.110) 

The new profile has no edges and in most cases of ruled or holographic gratings, it mimics 
quite well the true profile. Numerical tests have shown a very good convergence of results 
with respect to the number 2M+1 of Fourier terms and the number P of discretization points, 
provided the empirical rule P > 4(2M + 1). This method can be used to describe some profiles 
that are not represented by continuous functions, for example lamellar gratings, provided that 
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M is larger than 10. Unfortanately, there are several important cases of classical gratings and 
classes of relatively new types of gratings and periodic systems that cannot be treated using 
this simple approach. 

The first problem covers the case of echelle gratings, working in grazing incidence in 
high and very high orders (see Chapter 1). The fact that the period is some tens or hundreds 
times larger than the wavelength λ, and that the working facet is quite steep (sometimes going 
up to 86° groove angle), requires that its geometry is represented in the method with an error 
smaller than λ/20. Simple but incorrect estimations show that this rule of thumb would be 
acceptable for numerical treatment: if the period is close to 50 wavelengths, we need about 
1000 points of discretization and thus 250 Fourier harmonics, according to the rule P > 4(2M 
+ 1). However, Gibbs phenomenon will significantly modify the form of the working facet, 
which could be almost vertical. In order to correctly describe the field on this facet, we need 
to have at least 5 to 10 points per wavelength along the the working facet, rather than along 
its projection on the x-axis. With a 85° groove angle, the length of this facet is about 11 times 
its x-projection, in such a way that the number of discretization points must be multiplied by a 
factor 10. The number of Fourier components in the profile follows the same rule. 

 
 
 
 
 
 
 
 
 

Figure 4.5. Schematic representation of an etched grating profile with non-analytical function 
description. 

 
 
 
 
 
 
 
 

Figure 4.6. Grating made of inclined rectangular cross-section rods. 
 

Another class of problems consists of unconventional geometries, like inverted slope 
grooves, obtained during groove etching technologies, as seen in Figure.4.5, or rod gratings, 
shown in Figure.4.6. We have noticed that the problem of vertical segments adds difficulties. 
For example, the problem of edges cannot be solved any longer by a Fourier expansion of the 
profile. It exists a possibility to simultaneously solve the two problems by introducing a 
curvilinear coordinate that follows the grating profile. As far as the integration is made along 
the profile, this curvilinear integration comes as a natural way of calculating the integrals in 
the integral equations. Moreover, adaptive meshing can be used to reduce the influence of 
edges. 

In the real life, edges do not exist. On each edge there is at least one atom that has no 
edges, even though the light has a wavelength much larger than the atom dimensions. Edges 
of nuclear particles are not discussed even in the most exotic theories. Thus the idea is to 
replace the edges by arcs, where the partial derivatives can be well defined till the second 
order, which is sufficient for integral equations as remarked in section 4.6.2. An adaptive 
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density of discretization points gives the possibility to significantly increase the density of the 
points close to the initial edges, and not elsewhere. Let us, for example, consider a rod grating 
having a straight rectangular cross section. The segments 1 and 3 are parallel to Ox, the 
segments 2 and 4, to Oz. Let us assume the origin of the curvilinear coordinate at the bottom-
left corner (figure 4.7). 
 
 
 
 
 
 
 
 
 
 

Figure 4.7. Left: rounding of corners of a rectangular cross-section rod with side lengths a and b, 
together with x, y, and s coordinate lines. Right: schematic representation of different straight and 
arc segments to obtain the links between the Cartesian and the curvilinear coordinates. 
 
The coordinate s starts at x = R and z = 0, and follows the interface along its different 

parts: 
1) the first horizontal segment, 0 s a 2R :< < −   
 

 
x(s) R s,
   z(s) 0.

= +
=

 (4.111) 

Here the final value of s is equal to 1,maxs a 2R := −  

2) the circular rounding of the bottom-right corner, defined by the equation: 

 [ ] ( )2 2 2x (a R) z R R− − + − = . (4.112) 

Here, 1,max0 s s R :
2
π

< − <  

 

1,max

1,max

1,max

                   s R s ,

s s
x a R R sin( ) a R R sin ,

R
s s

    z R R cos( ) R R cos .
R

= ϕ +

−
= − + ϕ = − +

−
= − ϕ = −

 (4.113) 

Here, 2,max 1,maxs R s
2
π

= +  

3) the next vertical segment at x = a, 2,max0 s s b 2R :< − < −  
 

 
2,max

         x a,
z s s R,

=
= − +  (4.114) 

z 

x 

s 

a 

b 

(R, 0) 
(a – R, 0) 

C = (a – R, R)  
(a, R) 
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and the same for the rest of the profile. The process is straightforward and needs an adapted 

application for each class of profiles. The advantage is that the derivatives dx
ds

 and dz
ds

 exist 

and are continuous everywhere on the profile. Thus, the second-order derivatives, which are 
required for the explicit summation and integration of the kernels, exist at least piesewisely, 
too. This could easily be checked at the point (a – R, 0), for example. For 1,maxs s< , we use 
eqs.(4.111):  

 x(s) z(s)1; 0
ds ds

= = . (4.115) 

For 1,max 2,maxs s s< < it is necessary to use eqs.(4.113): 

 

1,max
1,max

1,max
1,max

s sdx(s) cos 1 for s s ,
ds R

s sdz(s) sin 0 for s s .
ds R

−
= = =

−
= = =

 (4.116) 

The comparison of (4.115) and (4.116) points out the existence and continuity of the first 
derivatives. 

It is worth noting that, in contrast with the adaptive spatial resolution used in several 
other methods (FEM, FDTD, RCW, coordinate transformation methods), here it is more 
convenient to call it adaptive profile resolution method, as far as it represents a 1D curvilinear 
coordinate adaptation. 

Let us impose the requirement that the arc segments require Narc times larger density 
points than on the straight segments. The entire length along s of the profile in figure.4.7 (left) 
is equal to Ltot = 2a + 2b – 8R + 2πR. The total number of discretization points is related to 
the length ot the segments, R, and to Narc. If the distance between the points along the straight 
segments is ∆, it will be equal to arc/ N∆ on the arcs. Thus the total number of points for a 
single-rod per period is equal to: 

 arc2a  2b –  8R  2 RNP   + + π
=

∆
. (4.117) 

In practice, unless some automatic scheme of determining the technical parameters of the 
computation is used, this equation determines ∆  when the total number of integration points 
is chosen. 

Starting from s = 0 in figure 4.7 (right), the abscissa values along s of the points on the 
interface are given by consecutively adding the values of the point number j to the end values 
of the previous segment: 
1) first horizontal segment, 1,max0 s s :< <  j j 1s s −= + ∆ , 

2) circular rounding of the bottom-right corner, 1,max 2,maxs s s :< <  j j 1
arc

s s
N−

∆
= + , 

3) next vertical segment at x = a, 2,max 2,maxs s b 2R s :< < − +  j j 1s s −= + ∆ , 
4) so on to close the rod, then eventually going to another object inside the same grating 

period. 
An additional improvement can be performed by making a smooth transfer from ∆ to 

arcN∆ , i.e., to smoothly go from the density defined on the straight segments and on the 
arcs. This could be important for large-period systems with respect to the wavelength, if there 

124



D. Maystre and E. Popov: Integral Method for Gratings 4.29 
 
 
is a restriction in the total number of points in the profile discretization. If so, we can lay on 
the fact that the smaller the curvature of the segment (i.e., the larger its length), the smoother 
the behaviour of the kernels and of the unknown functions. Thus in the middle of a straight 
segment we will place points that are more distant to each other than close to the extremeties 
of the segments. Maystre has adapted such approach in his code Grating 2000, by defining a 
specific distance along the large segments starting from their edges, so that the density of the 
discretization points increases when approaching the ends of the segments. This approach 
gave the possibility to model echelle gratings working in very high diffraction orders (600 or 
more) in the ‘90s, when no alternative approach was able to provide reliable results. The 
method was unbeatable for echelles, before Li and Chandezon [47] formulated an 
improvement of the coordinate transformation method to work for profiles with edges. 
However, the latter does not apply to rod gratings, or to profiles having the form as given in 
figure.4.5. 

 

4.7. Examples of numerical results 
All the results shown in this section are obtained using the code Grating 2000. 

 
4.7.1. Sinusoidal perfectly conducting grating 
 
Table 1 shows the efficiencies in the two non-evanescent orders (-1st and 0th) of a sinusoidal 
perfectly conducting grating of period 600 nm and height 180 nm  (from the bottom to the top 
of the groove) illuminated under incidence angle 30° and wavelength 600 nm. In this case, the 
-1st order is scattered with an angle of scattering (measured anticlockwise, in contrast with 
incident angle) of -30°, which entails that it propagates just in the direction which is the 
opposite to that of the incident wave (this is called Littrow mounting by specialists of 
gratings). 

The number of discretisation points is P and the series included in the kernel are 
summed from –M to +M. The symbol mρ∑  denotes the sum of the two efficiencies, the 

energy balance being satisfied when m 1ρ =∑ . 
 

                   TE polarization                   TM polarization 
    P,M      −1ρ       −0ρ      mρ∑       −1ρ       −0ρ      mρ∑  
4,2 0.4658 0.5437 1.0095 0.9466 0.0514 0.9980 
6,3 0.4703 0.5288 0.9991 0.9581 0.0411 0.9992 
25,10 0.4669 0.5336 1.0005 0.9579 0.0421 1.0000 
50,20 0.4659 0.5334 0.9993 0.9579 0.0421 1.0000 
110,50 0.4659 0.5341 1.0000 0.9579 0.0421 1.0000 
 

Table 4.1. The sinusoidal perfectly conducting grating. 
 

It is worth noting that a precision better than 0.01 is reached as soon as P > 4 and M > 2!. A 
precision of 10-3 needs P > 50 and M > 20.  

 
4.7.2. Echelette perfectly conducting grating 
 
The echelette grating is a grating with triangular groove (figure 4.8). The blaze angle b (angle 
of the large facet with the x axis) is equal to 30° and the apex angle A (angle between the two 
facets) to 90°. The other parameters are the same as in section 7.1. It must be noticed that the 
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incidence angle and the blaze angle are equal, which entails that the incident wavevector is 
orthogonal to the large facet. In these conditions, it can be shown that for TM polarization, the 
grating problem can be solved in closed form: the efficiency in the -1st order is equal to unity 
while in the 0th order it vanishes [48].  

The demonstration is straightforward: the sum of the incident wave and of a plane wave 
with unit amplitude propagating in the opposite direction satisfies all the conditions of the 
boundary value problem stated in section 4.3. The reader can notice that this sum satisfies the 
Helmholtz equation. In addition, this sum of two plane waves propagating in opposite 
directions constitute an interference system that presents white areas and dark lines. The 
maximum of white lines coincide with the large facets of the grating, and on these lines, the 
derivative of the field (thus the normal derivative) vanishes. The normal derivative with 
respect to the small facet vanishes as well since the field is invariant in the normal direction. 
At the first glance, this property is obvious since the field is “reflected” by the large facets, or 
in other words, the scattering phenomenon reduces in that case to a simple reflection 
phenomenon. This reasoning fails since the same phenomenon is not observed for TE 
polarization: it is dangerous to invoke reflection phenomena on the large facets when the 
width of these facets has the same order of magnitude as the wavelength of the light! The 
concentration of the incident energy in a single order is called ‘blazing effect’ and the theorem 
of Marechal and Stroke is the origin of the name ‘blazed gratings’ given sometimes to ruled 
gratings.  
 

 
 

Figure 4.8: A ruled grating 
 

 
                   TE polarization                   TM polarization 
    P,M      −1ρ       −0ρ      mρ∑       −1ρ       −0ρ      mρ∑  
6,3 0.6531 0.4451 1.0982 1.4452 0.0012 1.4464 
25,10 0.5838 0.4123 0.9961 0.9976 0.0001 0.9977 
50,20 0.5838 0.4123 0.9961 0.9976 0.0001 0.9977 
110,50 0.5929 0.4055 0.9984 0.9984 0.0000 0.9984 
250,100 0.5932 0.4035 0.9967 0.9989 0.0000 0.9989 
 

Table 4.2. The echelette perfectly conducting grating and the Marechal and Stroke theorem. 
 
Table 4.2 shows that the convergence is significantly slower than for the sinusoidal 

grating, due to the edges. Nevertheless, a precision of about 0.01 is obtained when P > 25 and 
M > 10. With the same values, the Marechal and Stroke theorem is satisfied with a precision 
better than 0.003. The computation time is always less than 1second on a PC computer except 
for the last line, for which 2 seconds are required. 
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4.7.3. Lamellar perfectly conducting grating 
 
The profile of a lamellar grating is shown in figure 4.9. The widths of the hole and of the 
bump are denoted by t and b and the height by h. In this example, b = t = 300 nm, and h = 180 
nm. 
 

 
 

Figure 4.9. A lamellar grating 
 
 

                   TE polarization                   TM polarization 
    P,M      −1ρ       −0ρ      mρ∑       −1ρ       −0ρ      mρ∑  
6,3 0.7770 0.6999 1.4769 23.66 5.09 28.75 
25,10 0.3490 0.6394 0.9884 0.8293 0.1724 1.0016 
50,20 0.3347 0.6569 0.9915 0.8191 0.1705 0.9896 
150,70 0.3279 0.6659 0.9938 0.8201 0.1718 0.9919 
250,100 0.3288 0.6733 1.0021 0.8214 0.1725 0.9939 
 

Table 4.3. The echelette perfectly conducting grating and the Marechal and Stroke theorem 
 
The main conclusion to draw from Table 4.3 is that the convergence for lamellar 

gratings is even slower than for echelette gratings. This is not surprising if we notice that the 
number of edges is multiplied by 2. A precision of about 0.02 is obtained when P > 50 and M 
> 20. The results for P = 6 and M = 3 are aberrant, specially for TM polarization. 

 
4.7.4. Aluminum sinusoidal grating in the near infrared 
 
We consider a sinusoidal aluminum grating with period d = 400 nm, a height h = 100 nm, 
illuminated with incidence angle 10° and wavelength 300 nm. With these parameters, three 
plane waves (-1st, 0th and +1st) are reflected. The optical index of aluminum at 300 nm is equal 
to 4.2+ i 21.5. We give in Table 4.4 the efficiency in the -1st order and the sum of the three 
efficiencies. 

 
        TE polarization        TM polarization 
    P,M      −1ρ      mρ∑       −1ρ      mρ∑  
6,3  0.5205 0.9582 0.4367 0.9618 
10,4  0.5201 0.9649 0.4325 0.9521 
30,13  0.5203 0.9655 0.4321 0.9518 
100,45  0.5204 0.9655 0.4320 0.9518 

 
Table 4.4. The aluminum sinusoidal grating 
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Table 4.4 shows a very good convergence of the results, similar to the convergence 
observed for sinusoidal perfectly conducting gratings, thanks to the local summation of the 
two variable functions of the kernel derived from the Green function in aluminum. 

 
4.7.5. Buried echelette silver grating in the visible. 
 
The buried silver grating is shown in figure 4.10. A symmetric echelette silver grating with 
period 900 nm has been covered by a dielectric of index 1.5, the maximum depth e of 
dielectric being equal to 800 nm. This grating is illuminated in normal incidence .by a plane 
wave of wavelength 600 nm. The index of siver for this wavelength is equal to 0.006 + i 3.75. 
Table 4.5 gives the efficiency in the 0th order and the total of efficiencies of the three reflected 
orders (-1st, 0th and +1st).   
  

 
 

Figure 4.10. A symmetric silver grating coated by dielectric 
 

 
        TE polarization        TM polarization 
    P,M      0ρ      mρ∑       0ρ      mρ∑  
10,4  0.4892D 0.9830 0.6316 1.0622 
30,13  0.5164 0.9651 0.5665 0.9339 
100,45  0.5153 0.9600 0.6062 0.9178 
200,90 0.5153 0.9593 0.6168 0.9153 

 
Table 4.5. The buried silver grating 

 
The convergence is slower than in the preceding case and the results for P = 10 and M = 

4 are not correct, specially for TM polarization. For TE polarization, a convergence of the 
results with a precision better than 0.006 is obtained for P = 30 and M = 13. This is not so for 
TM polarization, in which it is necessary to reach P = 100 and M = 45 to get a precision of the 
order of 0.003. Here, the method of local summation is not used, but this fact does not explain 
the slower convergence since the modulus of the optical index is not large. The main reason 
can be found in the edges of the profile. The slower convergence for TM polarization is rather 
general for metallic gratings, due to the existence of plasmon resonances on the grating 
surface.  

 
4.7.6. Dielectric rod grating. 
 
The grating is made of dielectric elliptic rods with optical index 1.4, width w = 600 nm and 
height h = 400 nm (figure 4.11). The period is equal to 800 nm. It is illuminated with 
incidence 20° by a plane wave with wavelength 600 nm. Two orders (-1st and 0th) are 
reflected and transmitted. We give in Table 4.6 the efficiency in the 0th transmitted order and 
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the sum of efficiencies of the 4 scattered orders, which should be equal to 1 for a perfect 
energy balance. 

 
 

Figure 4.11. A dielectric rod grating 
 
 

        TE polarization        TM polarization 
    P,M      0τ  mρ∑ +

mτ∑  

     0τ  mρ∑ +

mτ∑  
10,4  0.1824D 0.9139 0.7893 1.2489 
30,13  0.2163 0.9961 0.8161 1.0054 
100,45  0.2073 1.0005 0.8187 1.0004 
200,90 0.2070 1.0001 0.8187 1.0001 

 
Table4. 6. The dielectric rod grating with elliptic rods 

 
The precision for P = 30 and M = 13 is equal to 0.01 and for P = 100 and M = 90, it 

reaches 0.0004.  
 

4.7.7. Flat perfectly conducting rod grating 
 
The grating is similar to that of figure 4.11, but its height is very small (8 nm). In order to 
obtain a significant reflection, the dielectric has been replaced by a perfectly conducting 
material 
 

 
 TE polarization TM polarization 

P,M 0τ  mρ∑ +

mτ∑  
0τ  mρ∑ +

mτ∑  
100,45 0.0598 1.1414 0.8940 0.9759 
200,90 0.0634 1.0086 0.0292 0.9887 
300,140 0.0639 1.0006 0.1059 0.9996 
400,190 0.0639 1.0000 0.1119 1.0000 

 
Table4.7. The flat perfectly conducting rod grating. 

 
The convergence is very slow and it is necessary to reach P = 300 and M = 140 to 

obtain a precision better than 0.006, the energy balance being satisfied with a precision better 
than 10-3. The reason must be found in the small height of the rods, as explained in section 
6.1. The functions included in the kernel of the integral equation become very large in 
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modulus and very small in width for two points located on both sides of the rod for the same 
abscissa, thus the integration needs a large density of discretization points. 
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Appendix 4.A. Mathematical bases of the integral theory 

 
4.A.1. Presentation of the mathematical problem 

We consider (figure 4.1) a function ( ) ( )
( )

+ + F x,z  in V ,
F x,z =

F x,z  in V ,− −





 which satisfies the following 

conditions: 
• it is pseudo-periodic along the x axis: 

 ( ) ( ) ( )0F x+d,z F x,z exp iα d ,=  (4.118) 

• it satisfies a Helmholtz equation: 

 ( )22 2F k n F 0    in V ,± ± ± ±∇ + =  (4.119) 

• it satisfies a radiation condition for z → ±∞ . 
The aim of this appendix is to use the second Green’s identity and basic theorems on 

boundary value problems in order to find an integral expression of this function and to 
analyze the properties of this integral expression. We will deduce the basic keys for writing an 
integral equation from a boundary value problem. 

 
4.A.2. Calculation of the Green function 
 
The first step of the calculation is to find the pseudo-periodic elementary solutions (r)+ G  and 

(r)− G  of the two Helmholtz equations condensed in eq. (4.119) (with constants 22k (n )+  for 
+G  and with constant 22k (n )+  for −G , which satisfy the radiation conditions for z → ±∞  

and the following equations : 

 ( ) mi d22 2 + -

m ,
ˆ(r) k (r) e (r md x),  in V  and ,n Vα+ +

=−∞ +∞

+∇ + = δ −∑  

G G  (4.120) 

 ( ) mi d22 2 + -

m ,
ˆ(r) k (r) e (r md x),  in V  and ,n Vα− −

=−∞ +∞

−∇ + = δ −∑  

G G  (4.121) 

 0i dˆ(r d x) (r)e α± ±+ =
 

G G , (4.122) 

with: 

 m 0
2mK, K
d
π

α = α + = , (4.123) 

and x̂  being the unit vector of the x axis. 
We must emphasize that, in contrast with eq. (4.119), in which F+  and F−  do not 

satisfy the same Helmholtz equation, each Green function satisfies a unique Helmholtz 
equation in the entire space, with constant 22k (n )+  for +G  and with constant 22k (n )+  for 

−G . 
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After expanding the periodic function ±G 0i xe− α  in Fourier series, then multiplying the 

Fourier series by 0i xe α , it can be deduced that: 

 mi x
m

m ,
(x, z) G (z)e α± ±

=−∞ +∞
= ∑G . (4.124) 

On the other hand, the right-hand member of eq. (4.120) , called Dirac comb, can also be 
expanded in series: 

 m mi d i x

m , m

1ˆe (r ndx) (z) e
d

α α

=−∞ +∞
δ − = δ∑ ∑ . (4.125) 

Introducing equations (4.124) and (4.125) in equation (4.120), multiplying by 0i xe− α  then 
identifying the coefficients of the Fourier series yield: 

 ( )2
m m m

1G ''(z) G (z) (z)
d

± ± ±+ γ = δ , (4.126) 

with ( ) ( )2 22 2
m mk n± ±γ = − α . 

For z 0≠ , eq.(4.126) becomes the well-known one-dimension propagation equation in a 
homogeneous media without sources and have for solutions exponentials. We are searching 
for plane waves that satisfy the radiation condition for z → ±∞ , thus: 

 
m m

m
m m

A exp i z , if z 0,
G (z)

B exp i z , if z 0.

± ±
±

± ±

  γ >  = 
  − γ < 

 (4.127) 

Distribution theory proves that the solution mG± of eq.(4.126) is a continuous function of z and 
that its derivative has a jump equal to 1/d at z 0= . These two conditions allow one to find the 
unknown amplitudes: 

 ( )
m m

m m m m

         A B ,
1i A i B ,
d

± ±

± ± ± ±

=

γ − − γ =
 (4.128) 

and thus: 

 ( )m m
m

1G (z) exp i z
2i d

± ±
±= γ

γ
. (4.129) 

The final form of ±G  becomes: 

 m m
m m

1 1(r) exp i x i z
2id

± ±
±

 = α + γ γ
∑

G . (4.130) 

Once the source is not in the origin, the Green functions is the function (r r ')± −
 

G . 

Notice that  ±G  symbolizes the Green functions. 
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4.A.3. Integral expression 
 
Now, we apply the second Green theorem in order to find the expression of the function F± . 
First, we consider the expression of F−  in V− : 

( ) ( ) ( )

T T
S SS S

d x x ', z z 'dF (x ', z ')F x, z x x ', z z ' ds ' F (x ', z ')ds '
dN dN

−−
− − −− −

= − − −∫ ∫
G

G , (4.131) 

with the normal SN


 being oriented towards the exterior of V− , x x(s),=  x x(s )′ ′= , and 

similar expressions for z and z’. The curve TS  includes four parts: the vertical lines LS  at x = 
0 and RS  at x = d, the horizontal segment HS  at  Hz z 0= <  (figure 4.12), and, finally, one 

period of S. The variable s’ denotes the curvilinear abscissa on TS− , with origine being located 
at the origin of the Cartesian coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12. Application of the second Green theorem. 
 
The pseudo-periodicity in x’ of F (x ', z ')−  (and of SdF (x ', z ') dN− ) is opposite to that 

of ( )x x ', z z '− −-G  (or of ( ) Sd x x ', z z dN'− −-G ), which entails that 

( )
S

dF (x ', z ')x x ', z z '
dN

−
− −-G  and ( )

S

d x x ', z z '
F (x ', z ')

dN
−− −-G

 are periodic. Furthermore, 

taking into account the orientation of the normal on RS  and  LS , 
s

dF (x ', z ') dF (x ', z ')
dN dx

− −
= −   

and ( ) ( )
S

d x x ', z z ' d x x ', z z '
dN dx
− − − −

= −
- -G G

on LS , while 
s

dF (x ', z ') dF (x ', z ')
dN dx

− −
= +  on 

RS .  Thus, the integrals on  RS  and  LS  in eq. (4.131) cancel each other. On HS , ds’ and dx’ 
identify and the integral takes the form:   

SL SR 

SH 

S 

x 

z 

P−  

SP  

V−  

V+  SN

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( ) ( )

( ) ( )

( )m

H

m H

H

S

d

H H
0

s S

i z z imK x x '

m m

i z z imKx

m m
H,m H,m

1e (

d x x ', z z 'dF (x ', z ')x x ', z z ' F (x ', z ') ds '
dN dN

1 e dx '
2d

1          

s ') (s ')
i

1
i

  e ,
2

−

−

−−
− −

∞
γ − −

−
=−∞

∞
γ

− −

−−

=

−+
−

−∞

 − −
− −

 
φ + ψ 

  

φ + ψ

− 
  

=
γ

 
=   γ 

∫

∑

∑

∫

G
G

 (4.132) 

where H,m
−φ  and H,m

−ψ  are the mth Fourier components of the periodic functions 

( ) 0

s
H

i x 'dF (x ', z ') e
dN

s '
−

− α−φ =  and  ( ) 0H
i x 'F (x ',s ' z ')e−− α−ψ =  defined on HS . Here, we can take 

advantage of the fact that the segment is parallel to the x axis and  lies outside the groove 
region, which entails that H,m

−φ  and H,m
−ψ  are related through the plane wave expansion valid 

in the homogeneous region (see chapter 2): 

 m mi x i z
m

m ,
F t e     if z < 0

−α − γ−

=−∞ +∞
= ∑ , (4.133) 

which yields: 

 H,m m H,mi− − −ψ = − γ φ . (4.134) 

This relation allows us to cancel the integral along HS  and thus the values of F (x, z)−  can be 
determined by an integral along a single groove of S: 

 ( ) ( ) ( )d ds s

s Ss ' 0 s ' 0

d x x ', z z 'dF (x ', z ')F x, z x x ', z z ' ds ' F (x ', z ')ds ',
dN dN

−−
− − −

= =

− −
= − − −∫ ∫

G
G  (4.135) 

with ds  being the curvilinear abscissa of the point of S of abscissa d, the origin of curvilinear 
abscissa being the origin of the Cartesian coordinates system. 

Similar considerations apply to F (x, z)+ , so that, after elementary calculations: 

( ) ( )d
0 00 0

s
i x x ' i x x 'i x ' i x '

s ' 0
F (x, z) (x, z,s ')e (s ')e (x, z,s ')e (s ')e ds 'α − α −α α± ± ± ± ±

=

 = ± φ + ψ  ∫ G  N (4.136) 

 with: 

( ) ( ) ( )( ) ( )mimK x x ' s ' i z z ' s '

m m

1 1             (x, z,s ') (x, z, x s ' , z s ' ) e ,
2id

±∞ − + γ −± ±
±

=−∞
= =

γ
∑G G  (4.137) 
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( ) ( )

( ) ( ) m

s

imK x x ' i z z 'm

m m

                    (x, z,s ') (x, z, x ' s ' , z ' s ' )
N

1 dx ' dz 'sgn z z ' e ,
2d ds ' ds '

±

±
±

∞
− + γ −

±
=−∞

∂
= − =

∂

 α
= − − 

γ  
∑

G
N

 (4.138) 

with 0i x '(s ') F (x ', z ')e− α± −ψ =   and 0i x '

s

dF (x ', z ')(s ') e
dN

−
− α±φ =  being defined on the grating 

profile S. Defining the periodic function 0i xU (x, z) F (x, z)e− α± ±=  yields: 

 
ds

s 0
U (x, z) (x, z,s ') (s ') (x, z,s ') (s ') ds '± ± ± ± ±

′=

 = ± φ + ψ ∫ G N . (4.139) 

 
4.A.4. Equation of compatibility 
 
In this section, we establish a crucial property of the integral theory of gratings, which 
unfortunately is ignored in most of the reference books of Electromagnetics. With this aim, it 
is necessary to point out a fundamental property of the expression of  U (x, z)±  given by eqs. 
(4.13) and (4.139). Let us suppose that we introduce in eq. (4.136) arbitrary periodic functions 

(s ')−φ  and (s ')−ψ . Since we have not introduced the actual physical values (s ')−φ  and 

(s ')−ψ of  these functions, we cannot expect to obtain the actual value of F (x, z)− , but 

another function F (x, z)−
 . More important, if the point P (x, z)−  of V−  tends towards a point 

PS of curvilinear abscissa s located on the profile (figure 4.12), the limit of F (x, z)−
  below 

the profile, denoted { }lim F (x, z)−
−
  is not  equal to 0i x '(s ')e α−ψ . The same remark can be 

made for the normal derivative 
s

dF (x, z)lim
dN

−

−
  
 
  



, which is different from 0i x '(s ')e α−φ . In 

order to understand this surprising property, it is necessary to give two results which can be 
demonstrated using the theory of distributions. Let us give these two fundamental results 
without demonstration. 

1. The integral expression of F (x, z)−
  inside V−  satisfies the Helmholtz equation in 

V−  like the actual field. What happens to the same integral expression of F (x, z)−
 , but now 

calculated in region V+ ? Denoting by extF (x, z)−
  the function equal to F (x, z)−

  in V−  and to 

this integral extension in V+ , it is easy to verify that extF (x, z)−
  satisfies in the entire space the 

Helmholtz equation satisfied by F (x, z)−
  in V− , with constant 22k (n )− . 
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2. The jumps { }+ extlim F (x, z)−
 – { }extlim F (x, z)−

−
  and ext

+
s

dF (x, z)lim
dN

−  
 
  



–

ext

s

dF (x, z)lim
dN

−

−
  
 
  



 of extF (x, z)−
  and of its normal derivative across S (difference between the 

values in V+  and in V− ) are respectively equal to 0i x '(s ')e α−−ψ  and 0i x '(s ')e α−−φ . 

The conclusion to draw from these properties is that the limit of F (x, z)−
  and of its normal 

derivative on S are equal to 0i x '(s ')e α−ψ  and 0i x '(s ')e α−φ  in one case only: if  extF (x, z)−
  

vanishes throughout V+ . Indeed, if this property is satisfied, the jumps are nothing but 

{ }extlim F (x, z)−
−−   and ext

s

dF (x, z)lim
dN

−

−
  −  
  



, thus { } 0i x
extlim F (x, z) (s)e α− −

− = ψ

  and 

0i xext

s

dF (x, z)lim (s)e
dN

−
α−

−
   = φ 
  



 . This case occurs if the values of (s ')−ψ  and (s ')−φ  

introduced in the integral expression are equal to the actual physical values (s ')−ψ  and 

(s ')−φ .  
This result is not surprising for the specialist of boundary value problems. Indeed, using 

the second Green theorem in V− , we introduce in the integral expression of the field the limit 
values of both the field and of its normal derivative below S. In the domain of boundary value 
problems, it is well known that if a function must satisfy a Helmholtz equation in V−  and a 
radiation condition for z → −∞ , one cannot impose the limit values of both this function and 
its normal derivative on S. In fact, we can impose either the limit values of this function or 
that of its normal derivative on S: in both cases, the solution of the boundary value problem 
exists and is unique. Unfortunately, it does not exist any tool of applied mathematics which 
enables one to express the field in an integral form including either the limit values of the 
field, or that of its normal derivative on S: a prior solution of an integral equation is required, 
which is much more difficult.  

On the other hand, if both the actual values of the field and of its normal derivative are 
known, the field can directly be expressed in an integral form through the second Green 
theorem, without any integral equation, and this is why the second Green theorem is 
considered as a basic tool of the integral mathods of scattering. It must be emphasized that in 
that case, we know a priori  that the the limit values of the field and of its normal derivative 
are the actual ones, thus that they are compatible, which is not the case for arbitrarily chosen 
limits. 

This fundamental property shows that when the second Green theorem is used with 
unknown values of the limits of the field and of its normal derivative, we must impose to 
these limits an equation of compatibility. This compatibility is satisfied if we impose to the 
limit { }extlim F (x, z)−

−
 of the integral expression of extF (x, z)−

  to be equal to 0i x(s)e α−ψ  or if 

we impose  to the limit { }+ extlim F (x, z)−
 of the integral expression of extF (x, z)−

  to be equal to 

zero, these two conditions being equivalent. Indeed, if { }+ extlim F (x, z) 0− = , the expression of  

extF (x, z)−
  in V+  satisfies a Helmholtz equation, a radiation condition at infinity and its limit 
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on S vanishes. The obvious solution of this boundary value problem is extF (x, z) 0− =  in V+ , 
and we have seen that the solution of this boundary value problem is unique, thus it is the 

solution. The consequence is that ext
+

s

dF (x, z)lim 0
dN

−   = 
  



, thus ext

s

dF (x, z)lim
dN

−

−
   = 
  



 

0i x(s)e α−φ . 
In order to implement this condition of compatibility, we have to express 

ext
+

s

dF (x, z)lim
dN

−  
 
  



 or ext

s

dF (x, z)lim
dN

−

−
  
 
  



. We can use a first equation: 

 { } { } 0i x
+ ext - extlim F (x, z) lim F (x, z) (s)e α− − −− = −ψ 

 , (4.140) 

or equivalently: 

 { } { }+ ext - extlim U (x, z) lim U (x, z) (s)− − −− = −ψ 

 . (4.141) 

In order to find a second equation, we can consider eq. (4.139) which gives the 
expression of 0i xU (x, z) F (x, z)e− α− −= . If z is fixed, this expression is a Fourier series in x, 
which is discontinuous on S. It is well known that the value on S of this Fourier series is the 
average value of the limits on both sides of S, thus: 

 { } { }
ds

+ ext - ext
s ' 0

lim U (x, z) +lim U (x, z) 2 (s,s ') (s ') (s,s ') (s ') ds ',− − − − − −

=

 = − φ + ψ ∫  

G N  (4.142) 

with (s,s ')−G  and (s,s ')−N  being the integral expressions of (x, z,s ')−G  and (x, z,s ')−N  
when the point of coordinates x,z becomes a point of S of curvilinear abscissa s: 

 ( ) ( )(s,s ') (x s , z s ,s ')− −=G G , (4.143) 

 ( ) ( )(s,s ') (x s , z s ,s ')− −=N N . (4.144) 

From eqs. (4.141) and (4.142), we deduce the limits of U−
  on both sides of S, and we derive 

the equation of compatibility in V− : 

 
ds

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds ' 0
2

−
− − − −

=

ψ φ + ψ + = ∫




G N . (4.145) 

Achieving a similar calculation for V+  yields the general equation of compatibility in V± : 

 
ds

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds ' 0
2

±
± ± ± ±

=

ψ φ + ψ = ∫





G N , (4.146) 

 ( ) ( )( ) ( ) ( )mimK x s x ' s ' i z s z ' s '

m m

1 1(s,s ') e
2id

±∞ − + γ −±
±

=−∞
=

γ
∑G , (4.147) 
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 ( ) ( )( ) ( ) ( )( ) ( ) ( )mimK x s x ' s ' i z s z ' s 'm

m m

1 dx ' dz '(s,s ') sgn z s z ' s ' e .
2d ds ' ds '

±∞ − + γ −±
±

=−∞

 α
= − − 

γ  
∑N  (4.148) 

It can be shown [7] that (s,s ')±G  has an integrable logarithmic singularity (it behaves 
like 0 1a a Log s s '+ −  when s ' s→ , 0a  and 1a  complex numbers)  which can be taken into 

account in the integral by removing the singularity 1a Log s s '−  from (s,s ')±G  then by 

integrating it in closed form. At the first glance, (s,s ')±N  cannot be continuous, due to the 
discontinuity of ( ) ( )( )sgn z s z ' s '−  for s=s’. In fact, a careful analysis of this function around 
s = s’ shows that it is continuous and that its limit when s ' s→  can be expressed in closed 
form [44,7], as stated in section 4.6.3. 

 
4.A.5. Generalized compatibility 
 
In the physical problem, the total field in V+  includes the incident field. Here, we give an 
extension of the compatibility equation to the total field which allows a significant 
simplification of the use of integral theory. 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.13. generalized: generalized compatibility 

 

We define (figure 4.13) a function 
+ T+ + i +

i

 =F =F +F  in V ,
=

=F  in V .− −

 ΓΓ 
Γ

 

F+  being the field scattered in V+  by a grating illuminated by the incident field iF . −Γ  is 
the expression of the incident field in V− . Thus, in contrast with the preceding section, the 
function considered in this section does not satisfy a radiation condition at infinity in V+ . 
According to eq. (4.136), the value of F+  is given by: 

 

( )

( )

d
0 0

0 0

s
i x x ' i x '

s ' 0
i x x ' i x '

F (x, z) (x, z,s ')e (s ')e

(x, z,s ')e (s ')e ds ',

α − α+ + +

=

α − α+ +

= φ

ψ 

∫ G

          + N

 (4.149) 

thus +Γ  can be written: 
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( ) ( )

( )

d
0 0

0 0

s
i x x ' i x 'i

s ' 0
i x x ' i x '

(x, z) F x, y (x, z,s ')e (s ')e

(x, z,s ')e (s ')e ds '.

α − α+ + +

=

α − α+ +

Γ = + φ

+ ψ 

∫ G

           N

 (4.150) 

We denote by i+ +Ψ = ψ + ψ  and i+ +Φ = φ + φ  the limits of +Γ  on S and its normal 
derivative respectively. Introducing these values in eq. (4.149) yields: 

 

( ) ( )
( ) ( )

d
0 0

0 0

s
i x x ' i x 'i

s ' 0
i x x ' i x 'i

F (x, z) (x, z,s ')e (s ') (s ') e

(x, z,s ')e (s ') (s ') e ds '.

α − α+ + +

=

α − α+ +

= Φ − φ

+ Ψ − ψ 

∫ G

           N

 (4.151) 

Thus, the integral expression of the total field +Γ  is given by: 

 

( ) ( )
( ) ( )

d
0 0

0 0

s
i x x ' i x 'i i

s ' 0
i x x ' i x 'i

(x, z)        F (x, z) (x, z,s ')e (s ') (s ') e

(x, z,s ')e (s ') (s ') e ds ',

 

α − α+ + +

=

α − α+ +

Γ = + Φ − φ

+ Ψ − ψ 

∫ G

           N  (4.152) 

or, gathering the terms containing the incident field: 

( ) ( )

( ) ( )

d
0 00 0

d
0 00 0

s
i x x ' i x x 'i x ' i x 'i i i

s ' 0
s

i x x ' i x x 'i x ' i x '

s ' 0

(x, z)

F (x, z) (x, z,s ') e (s ')e (x, z,s ')e (s ') e ds '

(x, z,s ')e (s ')e (x, z,s ')e (s ')e ds '.

+

α − α −α α+ +

=

α − α −α α+ + + +

=

Γ =

− φ + ψ 

 + Φ + Ψ  

∫

∫

G N

G N

 (4.153) 

 
In order to simplify this equation, we consider the part of the integral containing the incident 
field, the middle line in the equation above. This part is equal to 0. Indeed, we know that 

i (s ')φ  and i (s ')ψ  are compatible in V−  since they are derived from the actual values of the 

incident field in V−  (figure 4.13). We have shown in the preceding section that the integral 
expression of such a function vanishes in V+ . Remarking that (x, z,s ') (x, z,s ')− +=G G  and 

(x, z,s ') (x, z,s ')− +=N N  since +Γ  and −Γ  satisfy the same Helmholtz equation (with 

constant 2 2k (n )+ ), we can write than in V+ : 

 ( ) ( )d
0 00 0

s
i x x ' i x x 'i x ' i x 'i i

s ' 0
(x, z,s ')e (s ')e (x, z,s ')e (s ') e ds ' 0α − α −α α+ +

=

 φ + ψ = ∫ G N . (4.154) 

Thus finally the expression of +Γ  is given by: 
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( )

( )

d
0 0

0 0

s
i x x ' i x 'i

s ' 0
i x x ' i x '

    (x, z)  F (x, z) (x, z,s ')e (s ')e

(x, z,s ')e (s ')e ds '.

α − α+ + +

=

α − α+ +

Γ = + Φ

+ Ψ 

∫ G

           N

 (4.155) 

The result is that the expression of the total field in V+  can be obtained from its limit value 
+Ψ on S and from its normal derivative +Φ , by adding the incident field to the integral 

expression deduced from the Green theorem. 
The generalized compatibility equation is derived from the compatibility equations for 

F+  in V+  and for iF  in V− : 

 
ds

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds ' 0,
2

+
+ + + +

=

ψ φ + ψ − = ∫ G N  (4.156) 

 
ds i

i i

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds ' 0.
2

+ +

=

ψ φ + ψ + = ∫ G N  (4.157) 

By adding these two equations, we deduce that: 

 
ds

i

s ' 0

(s)(s,s ') (s ') (s,s ') (s ') ds '
2

+
+ + + +

=

Ψ Φ + Ψ + ψ = ∫ G N . (4.158) 

The remarkable result is that the compatibility equation given in the preceding section can be 
extended to the total field: the left-hand side of eq. (4.158) represents the expression of the 
total field on S and the right-hand, one half of its limit on S. Thus the generalized 
compatibility condition can be stated in the following way: 

The compatibility condition for a field in V+  including incident and/or diffracted waves 
and satisfying the two conditions: 

 
• it is pseudo-periodic along the x axis: 

 ( ) ( ) ( )0F x+d,z F x,z exp iα d ,=  (4.159) 

• it satisfies a Helmholtz equation: 

 2 2 2F k (n ) F 0    in V ,± ± ± ±∇ + =  (4.160) 

 
can be stated in the following way: The value on S of the total field, obtained by adding the 
incident wave to the integral expression deduced from the second Green theorem (but in 
which the limits are those of the total field) is equal to the half of its limit value on S. 

A similar generalized compatibility condition can be obtained for a total field in V−  
when an incident wave propagating upward in V−  (supposed to contain a lossless dielectric) 
illuminates the grating surface, but this case is not worth in the frame of this chapter. 
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4.A.6. Normal derivative of a field continuous on S. 
 
The calculation of the normal derivative of F±  on the grating surface in the general case is 
difficult. However, this aim can be reached at least in one case: when it is possible to define 
both F+  and F−  which satisfy three conditions: 

• F is continuous across S, or equivalently ( ) ( )s s+ −ψ = ψ , 

• F+  and F−  satisfy the same Helmholtz equation, with constant 22k (n )+ , or 

equivalently n n+ −= . 
• F satisfies a radiation condition at infinity. 

 
Due to the second condition, it seems that this case does not make sense: if n n+ −= , one 
cannot expect any scattering phenomenon. However, the study of this purely mathematical 
problem is crucial, for example in the study of perfectly conducting gratings.  

First, it is worth noting that, thanks to the first condition, the gradient of F  can be 
calculated without any use of distributions, which is not the case if F  is discontinuous on S. 
Since m m

− +γ = γ , (x, z,s ') (x, z,s ')− +=G G  and  (x, z,s ') (x, z,s ')− +=N N  it can be deduced 
from eq. (4.139) that: 

 
d

0 0

s
i x i x

s ' 0
F (x, z) (x, z,s ')e (s ') (x, z,s ')e (s ') ds 'α α+ + + + +

=

 = φ + ψ ∫ G N , (4.161) 

 

 
d

0 0

s
i x i x

s ' 0
F (x, z) (x, z,s ')e (s ') (x, z,s ')e (s ') ds 'α α− + − + −

=

 = − φ + ψ ∫ G N . (4.162) 

 
We have seen in this appendix that, if  (s ')+φ  and  (s ')+ψ  are compatible, the expression of  

F (x, z)+  given by eq. (4.161) vanishes in V− . The same property holds for the  expression of  

F (x, z)−  given by eq. (4.162), which vanishes in V+  if (s ')−φ  and  (s ')−ψ  are compatible. 

Bearing in mind that ( ) ( )s s+ −ψ = ψ , the expression of F in the entire space is given by 
adding the right-hand sides of eqs. (4.161) and (4.162): 

( )
d

0

s
i x

s ' 0
F (x, z) F (x, z) F (x, z) (x, z,s ')e (s ') (s ') ds 'α+ − + + −

=

= + = φ − φ∫ G . (4.163) 

Thanks to the continuity of F on S, the expression of its value on the profile does not make 
problem and is given by: 

 ( )
d

0

s
i x

s ' 0
F (s) (s,s ')e (s ') (s ') ds 'α+ + −

=

= φ − φ∫ G . (4.164) 

In order to obtain the normal derivative of F, let us calculate its gradient: 
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 ( )
d

0

s
i x

(x,z)
s ' 0

F (x, z) (x, z,s ')e (s ') (s ') ds 'α+ + −

=

 ∇ = ∇ φ − φ ∫ G , (4.165) 

 

( )

( )

m0

0

m0

imK x x ' i z z 'i xm

m , mi x
imK x x ' i z z 'i x

m ,

e e
1(x, z,s ')e
2d e e

+

+

− + γ −α
+

=−∞ +∞α+

− + γ −α

=−∞ +∞

α 
 γ  ∇ =   
  
 

∑

∑
G . (4.166) 

 
The components of the normal SN



 are given by: 

 S

dy
dsN

dx
ds

 − 
=  

  
 



, (4.167) 

and thus: 

 

( ) ( )

0

m0

i x

S

imK x x ' i z z 'i xm

m , m

d (x, z,s ')e
                               

dN

1 dx dylim sgn z z ' e e .
2d ds ds

+

±α+

− + γ −α
± +

=−∞ +∞

 
  =
  

  α − −  
γ    

∑

G

 (4.168) 

 
Using eqs. (4.165) and (4.168) yields: 

 ( )
0d i xs

S Ss ' 0

d (x, z,s ')edF (s ') (s ') ds '
dN dN

±α+±
+ −

=

 
 = φ − φ
  

∫
G

. (4.169) 

In order to eliminate the use of limits in the expression of  
0i x

S

d (x, z,s ')e
dN

±α+ 
 
  

G
 given 

by eq. (4.168), it can be remembered that, by definition, 

 0i x

S S

dF dF (s) (s) e
dN dN

+ −
α+ − − = φ − φ  . (4.170) 

Moreover, it is to be noticed that, when z is constant, the components of 0i x(x, z,s ')e α+ ∇  G  

given by eq. (4.166) are Fourier series in x. Using again the property of discontinuous Fourier 
series on the discontinuity, it can be derived that: 
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( ) ( )d
m0

S S
s

imK x x ' i z z 'i xm

m ms' 0

dF dF                                             
dN dN

1 dx dysgn z z ' e e (s ') (s ') ds '.
d ds ds

+

+ −

+∞
− + γ −α + −

+
=−∞=

+ =

 α  − − φ − φ   γ  
∑∫

 (4.171) 

 
From equations (4.170) and (4.171), we deduce: 

 ( ) ( ) d
0 0

s
i x i x

S s ' 0

s sdF e (s,s ')e (s ') (s ') ds '
dN 2

+ −±
α α + −

=

φ − φ  = ± + φ − φ ∫ K , (4.172) 

with: 

( ) ( ) mimK x x ' i z z 'm

m , m

1 dx dy(s,s ') sgn z z ' e
2d ds ds

+− + γ −
+

=−∞ +∞

 α
= − − 

γ  
∑K . (4.173) 

It is interesting to notice that the expression of function (s,s ')K  is very close to that of  

(s,s ')N , the only difference being that dx '
ds '

 and dy '
ds '

 are replaced by dx
ds

 and dy
ds

. 

Like (s,s ')±N , (s,s ')K  is continuous and its limit when s ' s→  can be expressed in 
closed form [44,7], as stated in section 4.6.3. 

 
4.A.7. Limit values of a field with continuous normal derivative on S. 
 
We consider a function F satisfying the following conditions 

• F has the same normal derivative on both sides of S, or equivalently ( ) ( )s s+ −φ = φ , 

• F+  and  F−  satisfy the same Helmholtz equation, or equivalently n n+ −= . 
• F satisfies a radiation condition at infinity. 

 
The aim of this section is to calculate the limits of F on both parts of S.  

From the secong Green theorem (eq. (4.136)), F can be expressed from the values of 
( )s+φ , ( )s−φ , ( )s+ψ  and ( )s−ψ : 

 

( )

( )

d
0 0

0 0

s
i x x ' i x '

s ' 0
i x x ' i x '

F (x, z) (x, z,s ')e (s ')e

(x, z,s ')e (s ')e ds ',

α − α+ + +

=

α − α+ +

= φ

+ ψ 

∫ G

           N

 (4.174) 

and, bearing in mind that ( ) ( )s s− +φ = φ  and that n n− += , (x, z,s ') (x, z,s ')− +=G G  and 

(x, z,s ') (x, z,s ')− +=N N :  
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( )

( )

d
0 0

0 0

s
i x x ' i x '

s ' 0
i x x ' i x '

F (x, z) (x, z,s ')e (s ')e

(x, z,s ')e (s ')e ds '.

α − α− + +

=

α − α+ −

= − φ

+ ψ 

∫ G

            N

 (4.175) 

It has been shown in section 4.A.4 that, if  (s ')+φ  and (s ')+ψ  are compatible, the expression 

of F (x, z)+  given by eq. (4.174) vanishes in V− . The same property holds for the expression 

of F (x, z)−  given by eq. (4.175), which vanishes in V+ , thus we can write that, if the 
compatibility equations are satisfied: 

 ( )
d

0

s
i x

s ' 0
F (x, z) F (x, z) F (x, z) (x, z,s ')e s ' ds 'α+ − +

=

= + = Ψ∫ N , (4.176) 

or 

 ( )
d

0

s
i x

s ' 0
U(x, z) F(x, z)e (x, z,s ') s ' ds '− α +

=

= = Ψ∫ N , (4.177) 

with: 

 ( )s ' (s ') (s ')+ −Ψ = ψ − ψ . (4.178) 

In order to express the limits { }lim U (x, z)+  or { }lim U (x, z)−  on both parts of S,. we 

can use a first equation: 

 { } { }+lim U (x, z) lim U (x, z) (s)+ −
−− = Ψ . (4.179) 

To find a second equation, we can consider eqs. (4.176) and (4.177) which gives the 
expression of U(x, z) . If z is fixed, the expression of U(x, z) is a Fourier series in x, which is 
discontinuous on S. The value on S of this Fourier series is the average value of the limits on 
both sides of S, thus: 

 { } { }
ds

+
s ' 0

lim U (x, z) +lim U (x, z) 2 (s,s ') (s ')ds '+ − +
−

=

= Ψ∫ N . (4.180) 

From eqs. (4.179) and (4.180), we deduce the two limits: 

 ( ){ } ( ) ds

s ' 0

s
lim U x, y (s,s ') (s ')ds '

2
+

±
=

Ψ
= ± + Ψ∫ N . (4.181) 

 
4.A.8. Calculation of the amplitudes of the plane wave expansions at infinity. 
 
For z → ±∞ , the expression of F±  given by eq. (4.136) can be simplified since 

( )sgn z z ' 1− = ±  and ( )z z ' z z '− = ± − , in such a way that the expression of F at infinity 
becomes a sum of plane waves: 
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 ( )m m m 0
m

F (x, y) r exp i x i z if z z
∞

+ +

=−∞
= α + γ >∑ , (4.182) 

 ( )m m m
m

F (x, y) t exp i x i z if z 0
∞

− −

=−∞
= α − γ <∑ , (4.183) 

 

 ( ) ( )d
m

s
imKx s i z s m

m
m ms 0

i (s)1 dx(s) dz(s)r e (s) ds
2d ds ds

+ +
− − γ +

+ +
=

  − φ α
= + − ψ   γ γ   

∫ , (4.184) 

 ( ) ( )d
m

s
imKx s i z s m

m
m ms 0

i (s)1 dx(s) dz(s)t e (s) ds
2d ds ds

− −
− + γ −

− +
=

  φ α
= + + ψ   γ γ   

∫ , (4.185) 

 
with 0z  being the ordinate of the top of the grating profile. It must be noticed that a finite 
number of orders m, called propagating orders, are non-evanescent and propagate at infinity. 
They correspond to real values of m

+γ  (for reflected orders) or m
−γ  (for transmitted orders, if 

the optical index n−  is real only). 
Equation (4.184) can easily be generalized to the case in which we know the limit value 

of the total field on S (including incident waves) and its normal derivative. It suffices to 
analyze the behaviour at infinity of eq. (4.155) instead of eq. (4.136). The result is that it 
suffices to replace the values (s)+φ  and (s)+ψ  relative to the scattered field by the values 

(s)+Φ  and (s)+Ψ  relative to the total field: 

 ( ) ( )d
m

s
imKx s i z s m

m
m ms 0

i (s)1 dx(s) dz(s)r e (s) ds
2d ds ds

+ +
− − γ +

+ +
=

  − Φ α
= + − Ψ   γ γ   

∫ . (4.186) 

 
Diffraction efficiencies mρ in the reflected orders propagating above the grating can be 

obtained by using the Poynting theorem on segments of one period parallel to the x axis: 

 2m
m m

0
r

+

+
γ

ρ =
γ

. (4.187) 

When the grating is made of a lossless dielectric, the transmitted efficiencies mτ  are given 
by: 

 2m
m m

0

q t .
q

+−

+ +
γ

τ =
γ

 (4.188) 
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Appendix 4.B. Integral method leading to a single integral equation for bare, metallic or 
dielectric grating 
 
Historically, the formalism presented in this Appendix was the first one to lead to a single 
integral equation for a dielectric or metallic grating. The steps of the method are summarized 
in figure 4.14. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.14. Steps of the integral formalism leading to a single equation 

 
 
4.B.1. Definition of the unknown function 

The single unknown function Φ  is defined from a function 
+ +

-

  in V ,
=

 in V ,−

 ΓΓ 
Γ







satisfying the 

following conditions: 
• it satisfies the same Helmholtz equation in the entire space, except may be on 

the profile S,: 

 ( )22 2k n 0,+∇ Γ + Γ =   (4.189) 

• it has the same pseudo-periodicity as the actual solution of the grating problem: 

 0i d(x d, z) (x, z)e αΓ Γ+ =  , (4.190) 

 
• it identifies to the actual physical solution of the grating problem in +V : 

 F+ +Γ ≡ , (4.191) 

• it is continuous across S, 
• it satisfies a radiation condition for y → ±∞ . 

We denote by 0i x 'eψ '± α  and 0i x '' e± αφ  the limit values of Γ  and of its normal derivative

S

d
dN

Γ  on S, bearing in mind that by definition, ψ ' ψ+ +≡  and ' + +φ ≡ φ .  
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The question which arises is to know if −Γ  is well defined. The continuity of Γ  across 
S imposes the value of −Γ  on S: ψ ' ψ ' ψ− + +≡ ≡ . In addition, −Γ  satisfies a Helmholtz 
equation and a radiation condition at infinity. It is worth noting that, in contrast with the 
function Γ  introduced in Appendix 4.A, here the function Γ  does not include the incident 
field and thus has no physical meaning below the profile. As mentioned in Appendix 4.A, the 
solution of this boundary value problem (since we impose that − +Γ = Γ  ) exists and is unique, 
thus Γ  is correctly defined in the entire space. The unknown function Φ  of the integral 
equation is defined as the jump of the normal derivative of Γ  across S, more precisely: 

 ' '+ −Φ = φ − φ . (4.192) 

As regards the physical interpretation of Φ , it can be shown easily that Φ 0i xe α  is the 
surface current density which, placed on S, generates in +V  the actual scattered field. In other 
words, we have considered a fictitious structure consisting of an infinitely thin, perfectly 
conducting metallic sheet supporting a surface current density ( ) ˆj s y  placed on the grating 
surface, this surface separating two media having identical optical properties (refractive index
n+ ). The unknown Φ  is proportional to j. 

 
4.B.2. Expression of the scattered field, its limit on S and its normal derivative from Φ . 
 
It must be noticed that the function Γ  satisfies all the conditions of the function F of section 
4.A.5. Since Γ  is continuous on S, the calculation of Γ  from Φ  can be achieved using eqs. 
(4.163) and (4.137): 

 
d

0

s
i x

s ' 0
(x, z) (x, z,s ')e (s ')ds 'α+

=

Γ = Φ∫ G , (4.193) 

 ( ) m
m m

1 1(x, y,s ') exp imK x x ' i z z '
2id

∞
+ +

+
=−∞

 = − + γ − γ
∑G . (4.194) 

The value of the limit ( ) 0i x' s e α+ψ  of (x, z)+Γ  on S does not make problem, thanks to its 
continuity: 

 
ds

s ' 0
(s) (s,s ') (s ')ds '+ +

=

ψ = Φ∫' G , (4.195) 

with (s,s ')+G  the value on S of (x, y,s ')+G , given by eq. (4.147): 

 ( ) ( )( ) ( ) ( )mimK x s x ' s ' i z s z ' s '

m m

1 1(s,s ') e
2id

+∞ − + γ −+
+

=−∞
=

γ
∑G , (4.196) 

and finally its normal derivative can be derived from eq. (4.172) and (4.173): 

 ( ) ( ) ( )
ds

s ' 0

s
s (s,s ') s ' ds '

2
+

=

Φ
φ = + Φ∫ K , (4.197) 
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 ( ) ( ) mimK x x ' i z z 'm

m , m

1 dx dy(s,s ') sgn z z ' e
2d ds ds

+− + γ −
+

=−∞ +∞

 α
= − − 

γ  
∑K . (4.198) 

It is worth noting that the values of the limits of the field  and its normal derivative on S 
that are the two unknown functions in the classical integral theory (section 2), are now 
expressed from the single function ( )sΦ . This is not surprising since the limits on S of the 
function Γ  given by eq. (4.193) satisfy automatically a relation of compatibility, whatever the 
function ( )s 'Φ  introduced in the integral may be: it is the field generated by a surface current 
on S. As a consequence, we have not to include in the theory a relation of compatibility in 
V+ , which was the first integral equation in the classical formalism. 

 
4.B.3. Integral equation 
 
The single integral equation will be obtained by writing the relation of compatibility in V− , 
considered now to be filled by the actual grating material, i.e. a material of index n− . With 
this aim, we calculate the limits in V−  of the field and its normal derivative on S. inserting in 
the continuity conditions of the field given by eqs (4.8) and (4.10) the the limit values given 
by eqs (4.195) and (4.197): 

 
ds

i

s ' 0
(s) (s) (s,s ') (s ')ds '− +

=

ψ = ψ + Φ∫ G , (4.199) 

 ( ) ( ) ( ) ( )
ds

i

s ' 0

sqs s (s,s ') s ' ds '
2q

+
−

−
=

 Φ
 φ = + φ + Φ
  

∫ K , (4.200) 

with q±  given by eq. (4.12).  

The field in V−  can be deduced from eqs. (4.199) and (4.200) using eq. (4.136): 

 
d

0

s
i x

s ' 0
F (x, z) e (x, z,s ') (s ') (x, z,s ') (s ') ds 'α− − − − −

=

 = − φ + ψ ∫ G  N , (4.201) 

and the equation of compatibility is given by eq. (4.146): 

( ) ( ) ( )

( ) ( )

d d

d d

s s
i

s ' 0 s '' 0

s si
i

s '' 0 s ' 0

s 'q (s,s ') s ' (s ',s '') s '' ds ''
2q

(s) 1(s,s ') (s ') (s ',s '') s '' ds '' ds ' (s,s ') s ' ds ' 0,
2 2

+
−

−
= =

− + +

= =

  Φ  + φ + Φ
   

  ψ + ψ + Φ + + Φ =
  

∫ ∫

∫ ∫

G K

N G G

 (4.202) 

which yields, after simplification: 

 i iq q(s)
2 2 2q q

+ +
− + − − −

− −

      + + Φ = − + ψ + φ      
       

  
N G G K + N G , (4.203) 
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with the symbol ηO  denoting the function ( )
ds

s ' 0
(s,s ') s ' ds '

=

η∫ O  in operator notation. 

For z → +∞ , the expression of F+ +Γ ≡  given by eq. (4.193) can be simplified since 
( )sgn z z ' 1− = ±  and ( )z z ' z z '− = ± − , in such a way that the expression of F+  at infinity 

becomes a sum of plane waves: 

 ( )m m m 0
m

F (x, y) r exp i x i z if z z
∞

+ +

=−∞
= α + γ >∑ , (4.204) 

with amplitudes given by: 

 ( ) ( ) ( )
d

m

s
imKx s i z s

m
m s 0

1r e s ds
2id

+− − γ
+

=

= Φ
γ ∫ . (4.205) 

The diffraction efficiencies of the reflected waves are then deduced by: 

 2m
m m

0
r

+

+
γ

ρ =
γ

. (4.206) 

Similarly, it can be derived from eq. (4.201) that the transmitted field can be represented 
by a sum of plane waves below the profile: 

 ( )m m m
m

F (x, y) t exp i x i z if z 0
∞

− −

=−∞
= α + γ <∑ . (4.207) 

The amplitudes of the transmitted plane waves are derived from eq. (4.185) after 
calculating the functions −φ  and −ψ  from eqs. (4.199) and (4.200): 

 ( ) ( )d
m

s
imKx s i z s m

m
m ms 0

i (s)1 dx(s) dz(s)t e (s) ds
2d ds ds

− −
− + γ −

− +
=

  φ α
= + + ψ   γ γ   

∫ . (4.208) 

It is interesting to notice that this method has been extended to other problems 
(including 3D problems of scattering) by many specialists of theoretical physics and applied 
mathematics [49-52]. 
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Chapter 5

Finite Element Method

Guillaume Demésy, Frédéric Zolla, André Nicolet, and Benjamin Vial

Aix-Marseille Université, École Centrale Marseille, Institut Fresnel,
13397 Marseille Cedex 20, France

guillaume.demesy@fresnel.fr

5.1 Introduction

Finite element methods (FEM) represent a very general set of techniques to approximate solu-
tions of partial derivative equations. Their main advantage lies in their ability to handle arbitrary
geometries via unstructured meshes of the domain of interest: The discretization of oblic ge-
ometry edges is natively built in. Finite Element Methods have been widely developed in many
areas of physics and engineering: mechanics, thermodynamics. . .

But until the early 80’s, two major drawbacks prevented them from being used in electro-
magnetic problems. On the one hand, existing nodal element basis did not satisfy the physical
(dis)continuity of the vector fields components and lead to spurious solutions [1]. On the other
hand, there was no proper way to truncate unbounded regions in open wave problems.

These two major limitations were both overcome in the early 80’s: Vector elements have
been developed by Nédélec [2, 3], and Perfectly Matched Layers (PMLs) were discovered by
Bérenger [4]. Since then, it has been shown that PMLs could be described in the general frame-
work of transformation optics [5, 6, 7, 8].

All the mathematical and computational ingredients now exist and the goal of this chapter
is to show how to combine them to implement a general 3D numerical scheme adapted to
gratings using Finite Elements. In fact, we are now facing the physical difficulties inherent to
the infinite spatial characteristics of the grating problem, whereas the computation domain has
to be bounded in practice: (i) Both the superstrate and the substrate are infinite regions, (ii)
there is an infinite number of periods and, last but not least, (iii) the sources of the incident field
(a plane wave) are located in the superstrate at an infinite distance from the grating.

In this chapter, the infinite extension of the superstrate and substrate is addressed using
cartesian PMLs. In the framework of transformation optics, we demonstrate that Bérenger’s
original PMLs can be extended to the challenging numerical cases of grazing incidence in order
to deal with extreme oblic incidences or configurations near Wood’s anomalies. The second is-
sue of infinite number of period can be addressed via Bloch conditions. Finally, we are dealing
with the distant plane wave sources through an equivalence of the diffraction problem with a ra-
diation one whose sources are localized inside the diffractive element itself. The unknown field
to be approximated using Finite Elements is a radiated field with sources inside the computation
box and allows to retrieve easily the total field with the plane wave source.

In a first section, we derive and implement this approach in the so-called 2D non-conical,
or scalar, case. We are dealing with the infinite issues rigorously in both TE and TM polarization
cases. It results in a radiation problem with sources localized in the diffractive element itself.
We mathematically split the whole problem into two parts. The first one consists in the classical
calculation of the total field solution of a simple interface. The second one amounts to looking
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for a radiated field with sources confined within the diffractive obstacles and deduced from
the first elementary problem. From this viewpoint, the later radiated field can be interpreted
as an exact perturbation of the total field. We show that our approach allows to tackle some
kind of anisotropy without increasing the computational time or resource. Through a battery of
examples, we illustrate its independence towards the geometry of the diffractive pattern. Finally,
we present an Adaptative PML able to tackle grazing incidences or configurations near Wood’s
anomaly.

In a second section, we extend this approach to the most general configuration of vector
diffraction by crossed gratings embedded in arbitrary multilayered stack. The main advantage
of this method is, again, its complete independence towards the shape of the diffractive element,
whereas other methods often require heavy adjustments depending on whether the geometry of
the groove region presents oblique edges. This approach combined with the use of second order
edge elements allows us to retrieve the few numerical academic examples found in the literature
with an excellent accuracy. Furthermore, we provide a new reference case combining major
difficulties: A non trivial toroidal geometry together with strong losses and a high permittivity
contrast. Finally, we discuss computation time and convergence as a function of the mesh
refinement as well as the choice of the direct solver.

5.2 Scalar diffraction by arbitrary mono-dimensional gratings : a Finite Element for-
mulation

5.2.1 Set up of the problem and notations

We denote by x, y and z, the unit vectors of the axes of an orthogonal coordinate system Oxyz.
We deal only with time-harmonic fields; consequently, the electric and magnetic fields are rep-
resented by the complex vector fields E and H, with a time dependance in exp(−iω t).

Besides, in this chapter, we assume that the tensor fields of relative permittivity ε and
relative permeability µ can be written as follows:

ε =

 εxx ε̄a 0
εa εyy 0
0 0 εzz

 and µ =

 µxx µ̄a 0
µa µyy 0
0 0 µzz

 , (5.1)

where εxx,εa, . . .µzz are possibly complex valued functions of the two variables x and y and
where ε̄a (resp. µ̄a) represents the conjugate complex of εa (resp. µa). These kinds of materials
are said to be z–anisotropic. It is of importance to note that with such tensor fields, lossy
materials can be studied (the lossless materials correspond to tensors with real diagonal terms
represented by Hermitian matrices) and that the problem is invariant along the z–axis but the
tensor fields can vary continuously (gradient index gratings) or discontinuously (step index
gratings). Moreover we define k0 := ω/c.

The gratings that we are dealing with are made of three regions (See Fig. 5.1 ).

• The superstratum (y > hg) which is supposed to be homogeneous, isotropic and lossless
and characterized solely by its relative permittivity ε+ and its relative permeability µ+

and we denote k+ := k0
√

ε+µ+

• The substratum (y < 0) which is supposed to be homogeneous and isotropic and there-
fore characterized by its relative permittivity ε− and its relative permeability µ− and we
denote k− := k0

√
ε−µ−
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• The groove region (0 < y < hg) which can be heterogeneous and z–anisotropic and thus
characterized by the two tensor fields εg(x,y) and µg(x,y). It is worth noting that the
method does work irrespective of whether the tensor fields are piecewise constant. The
groove periodicity along x–axis will be denoted d.

hg

d
z x

y

u0

θ0k+
p

ud

ud

superstrate

diffractive
element

substrate

ε+, µ+

εg(x,y),µg(x,y)

ε−, µ−

Fig. 5.1: Sketch and notations of the grating studied in this section.

This grating is illuminated by an incident plane wave of wave vector k+
p = α x−β+ y =

k+ (sinθ0x− cosθ0y), whose electric field (TM case) ( resp. magnetic field (TE case)) is lin-
early polarized along the z–axis:

E0
e = A0

e exp(ik+
p · rrr)z (resp. H0

m = A0
m exp(ik+

p · rrr)z) , (5.2)

where A0
e (resp. A0

m) is an arbitrary complex number and rrr = (x,y)T. In this section, a plane
wave is characterized by its wave-vector denoted k{+,−}

{p,c} . The subscript p (resp. c) stands
for “propagative” (resp. “counter-propagative”). The superscript + (resp. −) refers to the
associated wavenumber k+ (resp. k−), and indicates that we are dealing with a plane wave
propagating in the superstrate (resp. substrate).The magnetic (resp. electric) field derived from
E0

e (resp. H0
m) is denoted H0

e (resp. E0
m) and the electromagnetic field associated with the

incident field is therefore denoted (E0,H0) which is equal to (E0
e ,H0

e) (resp. (E0
m,H0

m)).
The diffraction problem that we address consists in finding Maxwell equation solutions

in harmonic regime i.e. the unique solution (E,H) of:{
curl E = iω µ0 µ H (5.3a)

curl H =−iω ε0 ε E (5.3b)

such that the diffracted field (Ed,Hd) := (E−E0
e ,H−H0

m) satisfies an Outgoing Waves Condi-
tion (O.W.C. [9]) and where E and H are quasi-periodic functions with respect to the x coordi-
nate.
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5.2.2 Theoretical developments of the method

5.2.2.1 Decoupling of fields and z–anisotropy

We assume that δ (x,y) is a z–anisotropic tensor field (δxz = δyz = δzx = δzy = 0). Moreover, the
left upper matrix extracted from δ is denoted δ̃ , namely:

δ̃ =

(
δxx δ̄a
δa δyy

)
. (5.4)

For z–anisotropic materials, in a non-conical case, the problem of diffraction can be split into
two fundamental cases (TE case and TM case). This property results from the following equality
which can be easily derived:

− curl
(

δ
−1 curl(uz)

)
= div

(
δ̃

T
/det(δ̃ )∇u

)
z , (5.5)

where u is a function which does not depend on the z variable. Relying on the previous equality,
it appears that the problem of diffraction in a non conical mounting amounts to looking for
an electric (resp. magnetic) field which is polarized along the z–axis ; E = e(x,y)z (resp.
H = h(x,y)z). The functions e and h are therefore solutions of similar differential equations:

Lξ ,χ(u) := div
(

ξ ∇u
)
+ k2

0χ u = 0 (5.6)

with
u = e, ξ = µ̃

T/det(µ̃), χ = εzz , (5.7)

in the TM case and
u = h, ξ = ε̃

T/det(ε̃), χ = µzz , (5.8)

in the TE case.

5.2.2.2 Boiling down the diffraction problem to a radiation one

In its initial form, the diffraction problem summed up by Eq. (5.6) is not well suited to the
Finite Element Method. In order to overcome this difficulty, we propose to split the unknown
function u into a sum of two functions u1 and ud

2 , the first term being known as a closed form
and the latter being a solution of a problem of radiation whose sources are localized within the
obstacles.

We have assumed that outside the groove region (cf. Fig. 5.1), the tensor field ξ and

the function χ are constant and equal respectively to ξ
− and χ− in the substratum (y < 0) and

equal respectively to ξ
+ and χ+ in the superstratum (y > hg). Besides, for the sake of clarity,

the superstratum is supposed to be made of an isotropic and lossless material and is therefore
solely defined by its relative permittivity ε+ and its relative permeability µ+, which leads to:

ξ
+ =

1
µ+

Id2 and χ
+ = ε

+ in TE case (5.9)

or
ξ
+ =

1
ε+

Id2 and χ
+ = µ

+ in TM case, (5.10)
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where Id2 is the 2× 2 identity matrix. With such notations, ξ and χ are therefore defined as
follows:

ξ (x,y) :=


ξ
+ for y > hg

ξ
g(x,y) for hg > y > 0

ξ
− for y < 0

, χ(x,y) :=


χ+ for y > hg

χg(x,y) for hg > y > 0
χ− for y < 0 .

(5.11)

It is now apropos to introduce an auxiliary tensor field ξ
1

and an auxiliary function χ1:

ξ
1
(x,y) :=

{
ξ
+ for y > 0

ξ
− for y < 0

, χ1(x,y) :=
{

χ+ for y > 0
χ− for y < 0 ,

(5.12)

these quantities corresponding, of course, to a simple plane interface. Besides, we introduce the
constant tensor field ξ

0
which is equal to ξ

+ everywhere and a constant scalar field χ0 which is

equal to χ+ everywhere. Finally, we denote u0 the function which equals the incident field uinc

in the superstratum and vanishes elsewhere (see Fig. 5.1):

u0(x,y) :=
{

uinc for y > hg

0 for y < hg (5.13)

We are now in a position to define more precisely the diffraction problem that we are
dealing with. The function u is the unique solution of:

Lξ ,χ(u) = 0 , such that ud := u−u0 satisfies an O.W.C. (5.14)

In order to reduce this diffraction problem to a radiation problem, an intermediate function is
necessary. This function, called u1, is defined as the unique solution of the equation:

Lξ
1
,χ1

(u1) = 0 , such that ud
1 := u1−u0 satisfies an O.W.C. (5.15)

The function u1 corresponds thus to an annex problem associated to a simple interface and can
be solved in closed form and from now on is considered as a known function. As written above,
we need the function ud

2 which is simply defined as the difference between u and u1:

ud
2 := u−u1 = ud−ud

1 . (5.16)

The presence of the superscript d is, of course, not irrelevant: As the difference of two diffracted
fields, the O.W.C. of ud

2 is guaranteed (which is of prime importance when dealing with PML
cf. 5.2.2.4). As a result, the Eq. (5.14) becomes:

Lξ ,χ(u
d
2) =−Lξ ,χ(u1) , (5.17)

where the right hand member is a scalar function which may be interpreted as a known source
term −S1(x,y) and the support of this source is localized only within the groove region. To
prove it, all we have to do is to use Eq. (5.15):

S1 := Lξ ,χ(u1) = Lξ ,χ(u1)−Lξ
1
,χ1

(u1)︸ ︷︷ ︸
=0

= Lξ−ξ
1
,χ−χ1

(u1) . (5.18)
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Now, let us point out that the tensor fields ξ and ξ
1

are identical outside the groove region and
the same holds for χ and χ1. The support of S1 is thus localized within the groove region as
expected. It remains to compute more explicitly the source term S1. Making use of the linearity
of the operator L and the equality u1 = ud

1 +u0, the source term can be split into two terms

S1 = S 0
1 +S d

1 , (5.19)

where
S 0

1 = Lξ−ξ
1
,χ−χ1

(u0) (5.20)

and
S d

1 = Lξ−ξ
1
,χ−χ1

(ud
1) . (5.21)

Now, bearing in mind that u0 is nothing but a plane wave u0 = exp(ik+
p · r) (with k+

p = αx−
β+y), it is sufficient to give ∇u0 = ik+

p u0 for the weak formulation associated with Eq. (5.17):

S 0
1 =

{
idiv

[(
ξ
+−ξ

)
k+

p exp(ik+
p · r)

]
+ k2

0
(
χ
+−χ

)
exp(ik+

p · r)
}
. (5.22)

The same holds for the term associated with the diffracted field. Since, in the superstrate, we
have of course ud

1 = ρ exp(ik+
c · r) with k+

c = αx+β+y,

S d
1 = ρ

{
idiv

[(
ξ
+−ξ

)
k+

c exp(ik+
c · r)

]
+ k2

0
(
χ
+−χ

)
exp(ik+

c · r)
}
, (5.23)

where ρ is simply the complex reflection coefficient associated with the simple interface:

ρ =
p+− p−

p+− p−
with p± =


β± in the TM case

β±
ε± in the TE case

(5.24)

5.2.2.3 Quasi-periodicity and weak formulation

The weak formulation follows the classical lines and is based on the construction of a weighted
residual of Eq. (5.6), which is multiplied by the complex conjugate of a weight function u′ and
integrated by part to obtain:

Rξ ,χ(u,u
′) =−

∫
Ω

(
ξ ∇u

)
·∇u′+ k2

0χ u u′ dΩ+
∫

∂Ω

u′
(

ξ ∇u
)
·n dS (5.25)

The solution u of the weak formulation can therefore be defined as the element of the space
L2(curl,d,α) of quasiperiodic functions (i.e. such that u(x,y) = u#(x,y)eiαx with u#(x,y) =
u#(x+d,y), a d-periodic function) of L2(curl) on Ω such that:

Rξ ,χ(u,u
′) = 0 ∀u′ ∈ L2(curl,d,α). (5.26)

As for the boundary term introduced by the integration by part, it can be classically set to zero
by imposing Dirichlet conditions on a part of the boundary (the value of u is imposed and the
weight function u′ can be chosen equal to zero on this part of the boundary) or by imposing
homogeneous Neumann conditions (ξ ∇u) · n = 0 on another part of the boundary (and u is
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Γl Γru(x+d,y) = u(x,y) eiαd

Fig. 5.2: Quasi-periodicity of the field and sample of a d-periodic mesh.

therefore an unknown to be determined on the boundary). A third possibility are the so-called
quasi-periodicity conditions of particular importance in the modeling of gratings.

Denote by Γl and Γr the lines parallel to the y–axis delimiting a cell of the grating (see
Fig. 5.2) respectively from its left and right neighbor cell. Considering that both u and u′ are in
L2(curl,d,α), the boundary term for Γl ∪Γr is∫

Γl∪Γr

u′
(

ξ ∇u
)
·n dS =

∫
Γl∪Γr

u′#e−iαx
(

ξ ∇(u#e+iαx)
)
·n dS =

∫
Γl∪Γr

u′#
(

ξ (∇u# + iαu#x)
)
·n dS = 0 ,

because the integrand u′#
(

ξ (∇u# + iαu#x)
)
·n is periodic along x and the normal n has opposite

directions on Γl and Γr so that the contributions of these two boundaries have the same absolute
value with opposite signs. The contribution of the boundary terms vanishes therefore naturally
in the case of quasi-periodicity.

The finite element method is based on this weak formulation and both the solution and the
weight functions are classically chosen in a discrete space made of linear or quadratic Lagrange
elements, i.e. piecewise first or second order two variable polynomial interpolation built on a
triangular mesh of the domain Ω (cf. Fig. 5.3a). Dirichlet and Neumann conditions may be used
to truncate the PML domain in a region where the field (transformed by the PML) is negligible.
The quasi-periodic boundary conditions are imposed by considering the u as unknown on Γl
(in a way similar to the homogeneous Neumann condition case) while, on Γr, u is forced equal
to the value of the corresponding point on Γl (i.e. shifted by a quantity −d along x) up to the
factor eiαd . The practical implementation in the finite element method is described in details in
[10, 11]

5.2.2.4 Perfectly Matched Layer for z–anisotropic materials

The main drawback encountered in electromagnetism when tackling theory of gratings through
the finite element method is the non-decreasing behaviour of the propagating modes in super-
stratum and substratum (if they are made of lossless materials): The PML has been introduced
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by [4] in order to get round this obstacle. The computation of PML designed for z–anisotropic
gratings is the topic of what follows.

In the framework of transformation optics, a PML may be seen as a change of coordinate
corresponding to a complex stretch of the coordinate corresponding to the direction along which
the field must decay [12, 13, 14]. Transformation optics have recently unified various techniques
in computational electromagnetics such as the treatment of open problems, helicoidal geome-
tries or the design of invisibility cloaks ([15]). These apparently different problems share the
same concept of geometrical transformation, leading to equivalent material properties. A very
simple and practical rule can be set up ([10]): when changing the coordinate system, all you
have to do is to replace the initial materials properties ε and µ by equivalent material properties
εs and µs given by the following rule:

εs = J−1
ε J−T det(J) and µs = J−1

µ J−T det(J), (5.27)

where J is the Jacobian matrix of the coordinate transformation consisting of the partial deriva-
tives of the new coordinates with respect to the original ones (J−T is the transposed of its
inverse).
In this framework, the most natural way to define PMLs is to consider them as maps on a
complex space C3, which coordinate change leads to equivalent permittivity and permeability
tensors. We detail here the different coordinates used in this section.

• (x,y,z) are the cartesian original coordinates.

• (xs,ys,zs) are the complex stretched coordinates. A suitable subspace Γ ⊂ C3 is chosen
(with three real dimensions) such that (xs,ys,zs) are the complex valued coordinates of a
point on Γ (e.g. x =Re(xs), y =Re(ys), z =Re(zs)).

• (xc,yc,zc) are three real coordinates corresponding to a real valued parametrization of
Γ⊂ C3.

We use rectangular PMLs ([12]) absorbing in the y-direction and we choose a diagonal
matrix J = diag(1,sy(y),1), where sy(y) is a complex-valued function of the real variable y,
defined by:

ys(y) =
∫ y

0
sy(y′)dy′. (5.28)

The expression of the equivalent permittivity and permeability tensors are thus:

εs =

 syεxx εa 0
εa s−1

y εyy 0
0 0 syεzz

 and µs =

 syµxx µa 0
µa s−1

y µyy 0
0 0 syµzz

 . (5.29)

Note that the equivalent medium has the same impedance than the original one as ε an µ

are transformed in the same way, which guarantees that the PML is perfectly reflectionless.
Now, let us define the so-called substituted field FFFs = (Es,Hs), solution of Eqs. (5.3) with
ξ = ξ s and χ = χs. It turns out that FFFs equals the field FFF in the region yb < y< yt (with yb =−h−

and yt = hg +h+, see Fig. 5.3a), provided that sy(y) = 1 in this region. The main feature of this
latest field FFFs is the remarkable correspondence with the first field FFF ; whatever the function
sy provided that it equals 1 for yt < y < yb, the two fields FFF and FFFs are identical in the region
yt < y < yb[8]. In other words, the PML is completely reflection-less. In addition, for complex
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valued functions sy (ℑm{sy} strictly positive in PML), the field FFFs converges exponentially
towards zero (as y tends to ±∞, cf. Fig. 5.3c and 5.3d) although its physical counterpart FFF
does not. Note that in Fig. 5.3d, the value of the computed radiated field ud

2 on each extreme
boundary of the PMLs is at least 10−8 weaker than in the region of interest. As a consequence,
FFFs is of finite energy and for this substituted field a weak formulation can be easily derived
which is essential when dealing with Finite Element Method.

Still remains to give a suitable function sy. Let us consider the complex coordinate map-
ping y(yc), which is simply defined as the derivative of the stretching coefficient sy(y) with
respect to yc. With simple stretching functions, we can obtain a reliable criterion upon proper
fields decay. A classical choice is:

sy(y) =


ζ− if y < yb

1 if yb < y < yt

ζ+ if y > yt

(5.30)

where ζ± = ζ
′,±+ iζ

′′,± are complex constants with ζ
′′,± > 0.

In that case, the complex valued function y(yc) defined by Eq. (5.28) is explicitly given by:

y(yc) =


yb +ζ−(yc− yb) if yc < yb

yc if yb < yc < yt

yt +ζ+(yc− yt) if yc > yt

, (5.31)

Finally, let us consider a propagating plane wave in the substratum un(x,y) := exp(i(αx−
β−n y)). Its expression can be rewritten as a function of the stretched coordinates in the PML as
follows:

usc
n (xc,yc) := un(x(xc),y(yc)) = eiαxce−iβ−n (yb+ζ−(yc−yb)) (5.32)

The behavior of this latest function along the yc direction is governed by the function U sc(yc) :=
e−iβ−n ζ−yc . Letting β

′,−
n := ℜe{β−n }, β

′′,−
n := ℑm{β−n }, ζ ′,− := ℜe{ζ−} and ζ ′′,− := ℑm{ζ−},

the non-oscillating part of the function U sc(yc) is given by exp
(
(β ′,−n ζ ′′,− +β

′′,−
n ζ ′,−)yc

)
.

Keeping in mind that β
′,−
n and/or β

′′,−
n are positive numbers, the function U sc decreases expo-

nentially towards zero as yc tends to −∞ (Fig. 5.3d) provided that ζ− belongs to C+ := {z ∈
C,ℜe{z}> 0, and ℑm{z}> 0}. In the same way, it can be shown that ζ+ belongs to C+.

Let us conclude this section with two important remarks:

1. Practical choice of PML parameters. As for the complex stretch parameters, setting
ζ± = 1+ i is usually a safe choice. For computational needs, the PML has to be truncated
and the other constitutive parameter of the PML is its thickness ĥ (see Fig. 5.3a). Setting
ĥ± = λ0/

√
ε± leads to a PML thick enough to “absorb” all incident radiation. These

specific values will be used in the sequel, unless otherwise specified.

2. Special cases. The reader will notice that a configuration where β
′,−
n is a very weak

positive number compared to k0 with β
′′,−
n (this is precisely the case of a plane wave at

grazing incidence on the bottom PML) leads to a very slow exponential decay of U sc.
In such a case, close to so-called Wood’s anomalies or at extreme grazing incidences,
classical PML fail. We will address this tricky situation extensively in Section 5.2.4.
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1

2

3

4

5

Ω

x

y

z

yb

yt

0

yg
h+

hg

h-

h-̂

h+^

(a) Computational
domain Ω and its five
constituent regions.

(b) Coarse triangle
meshing of the
cell Ω. Maximum
element side size:
λ/(2

√
ε)

(c) Radiated field:
ℜe{ud

2} in V/m
(d) Radiated field:
log(|ud

2 |)

Fig. 5.3: Example of computation of the radiated field ud
2 (TM case).

5.2.2.5 Synthesis of the method

In order to give a general view of the method, all information is collected here that is neces-
sary to set up the practical Finite Element Model. First of all, the computation domain Ω (cf.
Fig. 5.3a) corresponds to a truncated cell of the grating which is a finite rectangle divided into
five horizontal layers. These layers are respectively from top to bottom upper PML, the su-
perstratum, the groove region, the substratum, and the lower PML. The unknown field is the
scalar function ud

2 defined in Eq. (5.16). Its finite element approximation is based on the second
Lagrange elements built on a triangle meshing of the cell (cf. Fig. 5.3b). A complex algebraic
system of linear equations is constructed via the Galerkin weighted residual method, i.e. the set
of weight functions u′ is chosen as the set of shape functions of interpolation on the mesh [10].

• In region 1 (upper PML, see Fig. 5.3a),

R
ξ
+

s
,χ+

s
(ud

2,u
′) = 0 , (5.33)

with ξ
+

s
and χ+

s depending on the equivalent anisotropic properties of the PML given by
Eq. (5.7), Eq. (5.8) and Eqs. (5.29).

• In region 2 (superstratum),
R

ξ
+,χ+(ud

2,u
′) = 0 , (5.34)

with ξ
+ and χ+ depending on the homogeneous isotropic properties of the superstratum

given by Eq. (5.7), Eq. (5.8), Eq. (5.9) and Eq. (5.10).
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• In region 3 (groove region),

Rξ
g,χg(ud

2,u
′) =−Rξ

g,χg(S1,u′) , (5.35)

with ξ
g and χg depending on the heterogeneous possibly anisotropic properties given by

Eq. (5.7), Eq. (5.8), Eq. (5.11) and S1 given by Eq. (5.19) , Eq. (5.22), Eq. (5.23) and
Eq. (5.24).

• In region 4 (substratum),
R

ξ
−,χ−(u

d
2,u
′) = 0 , (5.36)

with ξ
− and χ− depending on the homogeneous isotropic properties of the substratum

given by Eq. (5.7), Eq. (5.8), Eq. (5.9) and Eq. (5.10).

• In region 5 (lower PML),
R

ξ
−
s
,χ−s

(ud
2,u
′) = 0 , (5.37)

with ξ
−
s

and χ−s depending on the equivalent anisotropic properties of the PML given by
Eq. (5.7), Eq. (5.8) and Eqs. (5.29).

5.2.2.6 Energy balance: Diffraction efficiencies and absorption

The rough result of the FEM calculation is the complex radiated field ud
2 . Using Eq. (5.16),

it is straightforward to obtain the complex diffracted field ud solution of Eq. (5.14) at each
point of the bounded domain. We deduce from ud the diffraction efficiencies with the following
method. The superscripts + (resp. −) correspond to quantities defined in the superstratum (resp.
substratum) as previously.

On the one hand, since ud is quasi-periodic along the x–axis , it can be expanded as a
Rayleigh expansion (see for instance [9]):

for y < 0 and y > hg, ud(x,y) = ∑
n∈Z

ud
n(y)eiαnx (5.38)

where

ud
n(y) =

1
d

∫ d/2

−d/2
ud(x,y)e−iαnx dx with αn = α +

2π

d
n (5.39)

On the other hand, introducing Eq. (5.38) into Eq. (5.6) leads to the Rayleigh coefficients:

ud
n(y) =


u+n (y) = rn e iβ+

n y +an e−iβ+
n y for y > hg

u−n (y) = tn e−iβ−n y +bn e iβ−n y for y < 0
with β

±2

n = k±
2−α

2
n (5.40)

For a temporal dependance in e−iωt , the O.W.C. imposes an = bn = 0. Combining Eq. (5.39)
and (5.40) at a fixed y0 altitude leads to:

rn =
1
d

∫ d/2

−d/2
ud(x,y0)e−i(αnx+β+

n y0) dx for y0 > hg

tn = 1
d

∫ d/2

−d/2
ud(x,y0)e−i(αnx−β−n y0) dx for y0 < 0

(5.41)
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We extract these two coefficients by trapezoidal numerical integration along x from a cutting of
the previously calculated field map at y0. It is well known that the mere trapezoidal integration
method is very efficient for smooth and periodic functions (integration on one period) [16].
Now the restriction on a horizontal straight line crossing the whole cell in homogeneous media
(substratum and superstratum) is of C∞ class. From a numerical point of view, it appears that the
interpolated approximation of the unknown function, namely ud

2 preserves the good behaviour
of the numerical computation of these integrals. From this we immediately deduce the reflected
and transmitted diffracted efficiencies of propagative orders (Tn and Rn) defined by:

Rn := rn rn
β+

n
β+ for y0 > hg

Tn := tn tn
β−n
β−

γ+

γ− for y0 < 0
with γ

± =


1 in the TM case

ε± in the TE case
(5.42)

This calculation is performed at several different y0 altitudes in the superstratum and the sub-
stratum, and the mean value found for each propagative transmitted or reflected diffraction order
is presented in the numerical experiments of the following section.

Normalized losses Q can be obtained according to Poynting’s theorem through the straight-
forward computation of the following ratio:

Q :=

∫
S

ω ε0 ℑm(εg′)E ·Eds∫
L

ℜe{E0×H0} ·ndl
, (5.43)

The numerator in Eq. (5.43) clarifies losses in Watts by period of the considered grating and are
computed by integrating the Joule effect losses density over the surface S of the lossy element.
The denominator normalizes these losses to the incident power, i.e. the time-averaged incident
Poynting vector flux across one period (a straight line L of length d in the superstrate parallel to
Ox, whose normal oriented along decreasing values of y is denoted n).

Finally, combining Eqs. (5.42) and Eq. (5.43), a self consistency check of the whole
numerical scheme consists in comparing the quantity B:

B := ∑
n

Tn +∑
m

Rm +Q (5.44)

to unity. In Eq. (5.44), the summation indexed by n (resp. m) corresponds to the sum over the
efficiencies of all transmitted (resp. reflected) propagative diffraction orders in the substrate
(resp. superstrate). We give interpretations and concrete examples of such numerical energy
balances over non trivial grating profiles in sections 5.2.3.2 and 5.2.3.3.

5.2.3 Numerical experiments

5.2.3.1 Numerical validation of the method

We can refer to [17] in order to test the accuracy of our method. The studied grating is isotropic,
since we lack numerical values in the literature in anisotropic cases. We compute the following
problem (cf. Fig. 5.4), as described in [18] and [17]. The wavelength of the plane wave is set to
1 µm and is incoming with an angle of π/6 with respect to the normal to the grating.

We present the R0 efficiency (cf. Table 5.1) in both cases of polarization versus the mesh
refinement. So we have a good agreement to the reference values, and the accuracy reached is
independent from the polarization case.
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500 nm

1 μm

ε            = 1    superstrate

substrateε          = - 44.9757 + 2.9524 i  

1 μm

Fig. 5.4: Rectangular groove grating: This pattern is repeatedly set up with a period d = 1 µm. This
grating has been studied by [17] and is one of our points of reference

Maximum element size RTE
0 RTM

0
λ0/(4

√
ε) 0.7336765 0.8532342

λ0/(6
√

ε) 0.7371302 0.8456592
λ0/(8

√
ε) 0.7347466 0.8482817

λ0/(10
√

ε) 0.7333739 0.850071
λ0/(12

√
ε) 0.7346569 0.8494844

λ0/(14
√

ε) 0.7341944 0.8483238
λ0/(16

√
ε) 0.7342714 0.8484774

Result given by [17] 0.7342789 0.8484781

Tab. 5.1: Reflected efficiencies versus mesh refinement. Note that the efficiencies are properly com-
puted (two significant digits) even for a rather coarse mesh.

5.2.3.2 Experiment set up based on existing materials

The method proposed in this section is adapted to z–anisotropic materials, such as transparent
CaCO3 [19], LiNbO3 [20] or Ni:YIG [21] and lossy CoPt or CoPd [22]. Let us now consider
a trapezoidal (cf. Fig. 5.5) anisotropic grating made of aragonite (CaCO3) deposited on an
isotropic substratum (SiO2, εSiO2 = 2.25). Along the anisotropic crystal axis, its dielectric
tensor can be written as follows [19]:

ε
CaCO3

=

 2.843 0 0
0 2.341 0
0 0 2.829

 and µ
CaCO3

=

 µ0 0 0
0 µ0 0
0 0 µ0

 (5.45)

300 nm

500 nm

600 nm

600 nm

Fig. 5.5: Diffractive element pattern. This element is made of aragonite for which the dielectric
tensor is given by Eq. (5.46) and is deposited on a silica substrate with a period d = 600nm.

Now let’s assume that the natural axis of our aragonite grating are rotated by 45◦ around
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the grating infinite dimension. The dielectric tensor becomes:

ε
45◦

CaCO3
=

 2.592 0.251 0
0.251 2.592 0

0 0 2.829

 (5.46)

We shall here remind that our method remains strictly the same whatever the diffractive element
geometry is. The 2D computational domain is bounded along the y–axis by the PMLs and
along the x since we consider only one pseudo period. We propose to calculate the diffractive
efficiencies at λ0 = 633nm in both polarization cases TE and TM, and for different incoming
incidences (0◦, 20◦ and 40◦). Since both µ and ε are Hermitian, the whole incident energy is
diffracted and the sum of theses efficiencies ought to be equal to the incident energy, which will
stand for validation of our numerical calculation.

Finally, the resulting bounded domain is meshed with a maximum mesh element side size
of λ0/10

√
ε . Efficiencies are still post-processed in accordance with the calculation presented

section 5.2.2.6.

TM T−2 T−1 T0 T1 R−1 R0 R1 total
0◦ - 0.203133 0.585235 0.203138 - 0.008473 - 0.999978

20◦ - 0.399719 0.575625 0.004643 0.004412 0.015630 - 1.000029
40◦ 0.025047 0.420714 0.493491 - 0.002541 0.058238 - 1.000031
TE T−2 T−1 T0 T1 R−1 R0 R1 total
0◦ - 0.322510 0.538165 0.124722 - 0.014683 - 1.000080

20◦ - 0.538727 0.444403 0.000369 0.005372 0.011180 - 1.000051
40◦ 0.012058 0.434191 0.541090 - 0.005032 0.007686 - 1.000057

Tab. 5.2: Transmitted and reflected efficiencies of propagative orders deduced from field maps shown
Fig. 5.6

At normal incidence, the h field in the TE case (cf. Fig. 5.6b) is non symmetric whereas
the e field in the TM case is (cf. Fig. 5.6a). This is illustrated by the obvious non-symmetry of
T TE
−1 and T TE

1 (cf. Table 5.2: 0.322510 versus 0.124722!), whereas T TM
−1 = T TM

1 = 0.20313.
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TM TE

(a) ℜe{e} in V/m at θ0 = 0◦ (b) ℜe{h} in A/m at θ0 = 0◦

(c) ℜe{e} in V/m at θ0 = 20◦ (d) ℜe{h} in A/m at θ0 = 20◦

(e) ℜe{e} in V/m at θ0 = 40◦ (f) ℜe{h} in A/m at θ0 = 40◦

Fig. 5.6: Real part of the total calculated field depending on θ0 and the polarization case

5.2.3.3 A non trivial geometry

Since the beginning of this chapter, we have laid great stress upon the independence of the
method towards the geometry of the pattern. But we have considered so far diffractive objects
of simple trapezoidal section. Let us tackle a way more challenging case and see what this
approach is made of.

We can obtain an quite winding shape by extracting the contrast contour of an arbitrary
image (see Fig. 5.7a-5.7b). The contour is approximated by a set of splines, and the resulting
domain is finely meshed (Fig. 5.7c). Finally, as shown in Fig. 5.7b, the formed pattern (hg/λ0 =
1.68), breathing in free space (εsubstrat = 1), is supposed to be periodically repeated d/λ0 = 1.26
on a plane ground of glass (εSiO2 = 2.25). The element is considered to be “made of” a lossy
material of high optical index (εmarsu = 40+ 0.1 i). The response of this system to a incident
s-polarized plane wave at oblic incidence (θ0 =−30◦) is finally calculated. The real part of the
quasi-periodic total field is represented in Fig. 5.7d for three periods.

Indeed, we do not have any tabulated data available to check our results. But what we
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do have is a pretty reliable consistency check through the computation of the energy balance
described by Eqs. (5.42) and (5.43). As shown in Fig. 5.7e, we obtain at least 7 significative
digits on the energetic values. The total balance of 1.00000019 is computed taking into account
(i) values of the total field inside the diffractive elements, (ii) values of the diffracted field at
altitudes spanning the whole (modeled) superstrate, (iii) values of the total field at altitudes
spanning the entire (modeled) substrate. Finally, (iv) the calculated field ud

2 also nicely decays
exponentially inside both PML. These four points allow us to check a posteriori the validity of
the field everywhere in the computation cell.

substrateε          = 2.25 

superstrateε            = 1

marsuε       = 40 + 0.1 i 

R 0 0.13436549
R− 1 0.10229352
T−2 0.00802646
T−1 0.00870891
T0 0.00666213
T+1 0.00359647
Q 0.73634721

TOTAL 1.00000019

ENERGY BALANCE

(a)

x

y

30°
k+

(b) (c)

(e)(d)

Fig. 5.7: (a) Initial contrasted image. (b) Proposed set up. (c) Sample mesh. (d) ℜe{Ez} in V/m.
(e) Energy balance of the problem.
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5.2.4 Dealing with Wood anomalies using Adaptative PML

As we have noticed at the end of Section 5.2.2.4, PMLs based on “traditional coordinate stretch-
ing” are inefficient for periodic problems when dealing with grazing angles of diffracted orders,
i.e. when the frequency is near a Wood’s anomaly ([23, 24]), leading to spurious reflexions and
thus numerical pollution of the results. An important question in designing absorbing layers
is thus the choice of their parameters: The PML thickness and the absorption coefficient. To
this aim, adaptative formulations have already been set up, most of them employing a posteri-
ori error estimate [25, 18, 26]. In this section, we propose Adaptative PMLs (APMLs) with a
suitable coordinate stretching, depending both on incidence and grating parameters, capable of
efficiently absorbing propagating waves with nearly grazing angles. This section is dedicated
to the mathematical formulation used to determine PML parameters adapted to any diffraction
orders. We provide at the end a numerical example of a dielectric slit grating showing the
relevance of our approach in comparison with classical PMLs.

5.2.4.1 Skin depth of the PML

hg

εg(x,y),
µg(x,y)

h+ ε+, µ+

ĥ+ ε̂
+(x,y), µ̂

+(x,y)

h− ε−, µ−

ĥ− ε̂
−(x,y), µ̂

−(x,y)

d

z x

y

top PML

truncated
superstrate

groove region

truncated
substrate

bottom PML

Fig. 5.8: The basic cell used for the FEM computation of the diffracted field ud
2 .

As explained in Section 5.2.2.6, the diffracted field ud can be expanded as a Rayleigh
expansion, i.e. into an infinite sum of propagating and evanescent plane waves called diffraction
orders. As detailed at the end of Section 5.2.2.4, we are now in position to rewrite easily the
expression of, say, a transmitted diffraction order into the substrate. Similar considerations
also apply to the reflected orders in the top PML. Combining Eq. (5.32) and (5.40) lead to the
expression u−n,s(yc) of a transmitted propagative order inside the PML:

u−n,s(yc) = u−n (y(yc)) = tne−iβ−n [yt+ζ−(yc−yt)].
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The non oscillating part of this function is given by:

U−n (y) = tn exp
(
(β ′,−n ζ

′′,−+β
′′,−
n ζ

′,−)yc
)
,

where β−n = β
′,−
n + iβ ′′,−n . For a propagating order we have β

′,−
n > 0 and β

′,−
n = 0, while for

an evanescent order β
′,−
n = 0 and β

′′,−
n > 0. It is thus sufficient to take ζ ′,− > 0 and ζ ′′,− > 0

to ensure the exponential decay to zero of the field inside the PML if it was of infinite extent.
But, of course, for practical purposes, the thickness of the PML is finite and has to be suitably
chosen. Two pitfalls must be avoided:

1. The PML thickness is chosen too small compared to the skin depth. As a consequence,
the electromagnetic wave cannot be considered as vanishing: An incident electromagnetic
“sees the bottom of the PML”. In other words, this PML of finite thickness is no longer
reflection-less.

2. The PML thickness is chosen much larger than the skin depth. In that case, a significant
part of the PML is not useful, which gives rise to the resolution of linear systems of
unnecessarily large dimensions.

Then remains to derive the skin depth, l−n , associated with the propagating order n. This charac-
teristic length is defined as the depth below the PML at which the field falls to 1/e of its value
near the surface:

U−n (y− l−n ) =
U−n (y)

e
.

Finally, we find l−n = (β ′,−n ζ ′′,−+β
′′,−
n ζ ′,−)−1 and we define l− as the largest value among the

l−n :

l− = max
n∈Z

l−n .

The height of the bottom PML region is set to ĥ− = 10l−.

5.2.4.2 Weakness of the classical PML for grazing diffracted angles

Let us consider the (bottom) PML adapted to the substrate. Similar conclusions will hold for the
top PML. The efficiency of the classical PML fails for grazing diffracted angles, in other words
when a given order appears/vanishes: this is the so-called Wood’s anomaly, well known in the
grating theory. In mathematical terms, there exists n0 such that β−n0

' 0. The skin depth of the
PML then becomes very large. To compensate this, it is tempting to increase the value of ζ ′′,−,
but it would lead to spurious numerical reflections due to an overdamping. For a fixed value
of ĥ−, if ζ ′′,− is too weak, the absorption in the PMLs is insufficient and the wave is reflected
on the outward boundary of the PML. To illustrate these typical behaviors (cf. Fig. 5.9), we
compute the field diffracted by a grating with a rectangular cross section of height hg = 1.5µm
and width Lg = 3µm with εg = 11.7, deposited on a substrate with permittivity ε− = 2.25. The
structure is illuminated by a p-polarized plane wave of wavelength λ0 = 10µm and of angle
of incidence θ0 = 10◦ in the air (ε+ = 1). All materials are non magnetic (µr = 1) and the
periodicity of the grating is d = 4µm. We set ĥ− = 10l−0 and ζ ′,− = 1.

172



G. Demésy et al.: Finite Element Method 5.19

y

ĥ

|t0|

|t0||

e

− = 10 l0
−

 l0
−

-h−

|u
0 
(y

)|
−

ζ ′′,−

ζ ′′,−

ζ ′′,−

= 1

= 0.1

= 20

 substrate PML

 1.5

2

 1

 0.5

 0

Fig. 5.9: Zeroth transmitted order by a grating with a rectangular cross section (see parameters
in text, part 5.2.4.2) for different values of ζ ′′,−: blue line, ζ ′′,− = 1, correct damping; green line,
ζ ′′,− = 0.1, underdamping; red line, ζ ′′,− = 20, overdamping.

5.2.4.3 Construction of an adaptative PML

To overcome the problems pointed out in the previous section, we propose a coordinate stretch-
ing that rigorously treats the problem of Wood’s anomalies. The wavelengths “seen” by the
system are very different depending on the order at stake:

• if the diffracted angle θn is zero, the apparent wavelength λ0/cosθn is simply the incident
wavelength,

• if the diffracted angle is near ±π/2 (grazing angle), the apparent wavelength λ0/cosθn
is very large.

Thus if a classical PML is adapted to one diffracted order, it will not be for another, and vice
versa. The idea behind the APML is to deal with each and every order when progressing in the
absorbing medium.

Once again the development will be conducted only for the PML adapted to the substrate.
We consider a real-valued coordinate mapping yd(y), the final complex-valued mapping is then
yc(y) = ζ−yd(y), with the complex constant ζ−, with ζ ′,− > 0 and ζ ′′,− > 0, accounting for the
damping of the PML medium.

We begin with transforming the equation β±n
2
= k±2−α±n

2, so that the function with
integer argument n 7→ β−n becomes a function with real argument continuously interpolated
between the imposed integer values. Indeed, the geometric transformations associated to the
PML has to be continuous and differentiable in order to compute its Jacobian. To that extent,
we choose the parametrization:

α(yd) = α0 +
2π

d
yd

λ0
, (5.47)
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so that the application β− defined by β−(yd)
2
= k2

0ε−−α(yd)
2 is continuous. Thus, the prop-

agation constant of the nth transmitted order is given by β−n = β−(nλ0). The key idea is to
combine the complex stretching with a real non uniform contraction (given by the continuous
function y(yd), Eq. (5.49)). This contraction is chosen in such a way that for each order n there
is a depth yn

d such that, around this depth, the apparent wavelength corresponding to the order
in play is contracted to a value close to λ0. At that point of the PML, this order is perfectly
absorbed thanks to the complex stretch. We thus eliminate first the orders with quasi normal
diffracted angles at lowest depths up to grazing orders (near Wood’s anomalies) which are ab-
sorbed at greater depths. In mathematical words, the translation of previous considerations on
the real contraction can be expressed as:

exp [−iβ−(yd)y(yd)] = exp(−ik0yd) (5.48)

The contraction y(yd) is thus given by:

y(yd) =
k0yd

β−(yd)
=

yd√
ε−− (sinθ0 + yd/d)2

(5.49)

The function y(yd) has two poles, denoted y?d,± = d(±
√

ε−− sinθ0). When y?d,± =±nλ0 with
n ∈N?, β−(y?d,±) = β−(±nλ0) = β

−
± = 0, i.e. we are on a Wood’s anomaly associated with the

appearance/disappearance of the ±nth transmitted order. We now search for the nearest point to
y∗d,± associated with a Wood’s anomaly, denoting:

n?+/ D+ = min
n?+∈N?

|y?d,+−n?+λ0|

n?−/ D− = min
n?−∈N?

|y?d,−+n?−λ0|
.

In a second step, we look for the point y0
d = n?λ0 such that:

n?/ D = min
n?∈{n?+,n?−}

(D+,D−) . (5.50)

To avoid the singular behaviour at yd = y?d,±, we continue the graph of the function yd(y) by
a straight line tangent at y0

d , which equation is t0(yd) = s(y0
d)(yd − y0

d)+ y(y0
d), where s(yd) =

∂y
∂yd

(yd) is the so-called stretching coefficient. The final change of coordinate is then given by :

ỹ(yd) =


y(yd) for yd ≤ y0

d

t0(yd) for yd > y0
d.

(5.51)

Figure 5.10 shows an example of this coordinate mapping. Eventually, the complex stretch sy
used in Eq. (5.29) is given by:

sy(yd) = ζ
− ∂ ỹ

∂yd
(yd). (5.52)

Equipped with this mathematical formulation, we can tailor a layer that is doubly perfectly
matched:

• to a given medium, which is the aim of the PML technique, through Eq. (5.27),

• to all diffraction orders, through the stretching coefficient sy, which depends on the char-
acteristics of the incident wave and on opto-geometric parameters of the grating.
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 15
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2λ0λ0

|y(yd)|
t0(yd)
y(yd)
~

yd*yd
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y (µm)

Fig. 5.10: Example of a coordinate mapping ỹ(yd) used for the APML (black solid line). The graph
of yd(y) (blue solid line) is continued by a straight line t0(yd) tangent at y0

d (red dashed line) to avoid
the singular behaviour at yd = y?d .

5.2.4.4 Numerical example

We now apply the method described in the preceding parts to design an adapted bottom PML for
the same example as in part 5.2.4.2. The parameters are the same, and we choose the wavelength
of the incident plane wave close to the Wood’s anomaly related to the +1 transmitted order
(λ0 = 0.999y?d,+).Moreover, we set the length of the PML ĥ− = 1.1y?d,+ and choose absorption
coefficients ζ+ = ζ− = 1+ i. For both cases (PML and APML), parameters are alike, the only
difference being the complex stretch sy.

The field maps of the norm of Hz, Ex and Ey are plotted in logarithmic scale on Fig. 5.11,
for the case of a classical PML and our APML. We can observe that the field Hz that is effec-
tively computed is clearly damped in the bottom APML (leftmost on Fig. 5.11(b)) whereas it
is not in the standard case (leftmost on Fig. 5.11(a)), causing spurious reflections on the outer
boundary. The fields Ex and Ey are deduced from Hz thanks to Maxwell’s equations. The high
values of Ey at the tip of the APML (rightmost on Fig. 5.11(b)) are due to very high values of
the optical equivalent properties of the APML medium (due to high values of sy), which does
not affect the accuracy of the computed field within the domain of interest.
Another feature of our approach is that it efficiently absorbs the grazing diffraction order, as
illustrated on Fig. 5.12: the +1 transmitted order does not decrease in the standard PML (blue
solid line), and reaches a high value at y = −ĥ−, whereas the same order tends to zero as
y→−ĥ− in the case of the adapted PML (blue dashed line).
To further validate the accuracy of the method, we compare the diffraction efficiencies com-
puted by our FEM formulation with PML and APML to those obtained by another method.
We choose the Rigorous Coupled Wave Analysis (RCWA), also known as the Fourier Modal
Method (FMM, [27]). For the chosen parameters, only the 0th order is propagative in reflexion
and the orders −1, 0 and +1 are non evanescent in transmission. We can also check the energy
balance B = R0 +T−1 +T0 +T+1 since there is no lossy medium in our example. Results are
reported in Table 5.3, and show a good agreement of the FEM with APML with the results from
RCWA. On the contrary, if classical PML are used, the diffraction efficiencies are less accurate
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Fig. 5.11: Field maps of the logarithm of the norm of Hz, Ex and Ey for the dielectric slit grating at
λ0 = 0.999y?d,+ (same parameters as in part 5.2.4.2). (a): classical PML with inefficient damping of
Hz in the bottom PML. (b): APML where the Hz field is correctly damped in the bottom PML. For
both cases the thickness of the PML is ĥ− = 1.1y?d,+.

PML substrate
0

1

2

3

4
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y

|u
n
(y

)|

n= 1
n= 0
n= −1
n= 1 adapted
n= 0 adapted
n= −1 adapted

Fig. 5.12: Modulus of the un for the three propagating orders with adapted (dashed lines) and
classical PMLs (solid lines). Note that the classical PMLs are efficient for all orders except for the
grazing one (n = 1) as expected. This drawback is bypassed when using the adaptative PML.

compared to those computed with RCWA. Checking the energy balance leads the same conclu-
sions: the numerical result is perturbed by the reflection of the waves at the end of the PML if
it is not adapted to the situation of nearly grazing diffracted orders.
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R0 T−1 T0 T+1 B
RCWA 0.1570 0.3966 0.1783 0.2680 0.9999

FEM + APML 0.1561 0.3959 0.1776 0.2703 0.9999
FEM + PML 0.1904 0.4118 0.1927 0.2481 1.0430

Tab. 5.3: Diffraction efficiencies R0, T−1, T0 and T+1 of the four propagating orders, and energy
balance B = R0 +T−1 +T0 +T+1, computed by three methods: RCWA (line 1), FEM formulation
with APML (line 2), FEM formulation with classical PML (line 3).

1 2 3 4 5 6 7 8 9 10
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g 1
0a

h0 = (1+10−n)y!d,+
h0 = (1−10−n)y!d,+

Fig. 5.13: Mean value of the norm of Hz along the outer boundary of the bottom PML γ =
〈|Hz(−ĥ−)|〉x, for λ0 approaching the Wood’s anomaly y?d,+ by inferior values (λ0 = (1−10−n)y?d,+,
red squares) and by superior value (λ0 = (1+10−n)y?d,+, blue circles) as a function of n.

Eventually, to illustrate the behavior of the adaptative PML when the incident wave-
length gets closer to a given Wood’s anomaly, we computed the mean value of the norm of
Hz along the outer boundary of the bottom PML γ = 〈|Hz(−ĥ−)|〉x, when λ0 = (1+10−n)y?d,+
and λ0 = (1− 10−n)y?d,+, for n = 1,2, ...10. The results are shown in Fig. 5.13. As the wave-
length gets closer to y?d,+, γ first increases but for n > 3, it decreases exponentially. However,
in all cases, the value of γ remains small enough to ensure the efficiency of the PMLs.

5.2.5 Concluding remarks

A novel FEM formulation was adapted to the analysis of z-anisotropic gratings relying on a
rigorous treatment of the plane wave sources problem through an equivalent radiation problem
with localized sources. The developed approach presents the advantage of being very general
in the sense that it is applicable to every conceivable grating geometry.

Numerical experiments based on existing materials at normal and oblique incidences in
both TE and TM cases showed the efficiency and the accuracy of our method. We demonstrated
we could generate strongly imbalanced symmetric propagative orders in the TE polarization
case and at normal incidence with an aragonite grating on a silica substratum.
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We also introduced the adaptative PML for grazing incidences configurations. It based on
a complex-valued coordinate stretching that deals with grazing diffracted orders, yielding an ef-
ficient absorption of the field inside the PML. We provided an example in the TM polarization
case (but similar results hold for the TE case), illustrating the efficiency of our method. The
value of the magnetic field on the outward boundary of the PML remains small enough to con-
sider there is no spurious reflection. The formulation is used with the FEM but can be applied to
others numerical methods. Moreover, the generalization to the vectorial three-dimensional case
is straightforward: the recipes given in this last section do work irrespective of the dimension
and whether the problem is vectorial.

In the next section, the scalar formulation adapted to mono-dimensional gratings is ex-
tended to the the most general case of bi-dimensional grating embedded in an arbitrary multi-
layered dielectric stack with arbitrary incidence.
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5.3 Diffraction by arbitrary crossed-gratings : a vector Finite Element formulation

5.3.1 Introduction

In this section, we extend the method detailed in Sec. 5.2 to the most general case of vector
diffraction by an arbitrary crossed gratings. The main advantage of the Finite Element Method
lies in its native ability to handle unstructured meshes, resulting in a build-in accurate discretiza-
tion of oblique edges. Consequently, our approach remains independent of the shape of the
diffractive element, whereas other methods require heavy adjustments depending on whether
the geometry of the groove region presents oblique edges (e.g. RCWA [28], FDTD. . . ). In this
section, for the sake of clarity, we recall again the rigorous procedure allowing to deal with the
issue of the plane wave sources through an equivalence of the diffraction problem with a radi-
ation one whose sources are localized inside the diffractive element itself, as already proposed
in Sec. 5.2 [29, 30].

This approach combined with the use of second order edge elements allowed us to re-
trieve with a good accuracy the few numerical academic examples found in the literature. Fur-
thermore, we provide a new reference case combining major difficulties such as a non trivial
toroidal geometry together with strong losses and a high permittivity contrast. Finally, we dis-
cuss computation time and convergence as a function of the mesh refinement as well as the
choice of the direct solver.

5.3.2 Theoretical developments

5.3.2.1 Set up of the problem and notations

We denote by x, y and z the unit vectors of the axes of an orthogonal coordinate system Oxyz.
We only deal with time-harmonic fields; consequently, electric and magnetic fields are repre-
sented by the complex vector fields E and H, with a time dependance in exp(−iω t). Note that
incident light is now propagating along the z-axis, whereas y-axis was used in the 2D case.

Besides, in this section, for the sake of simplicity, the materials are assumed to be isotropic
and therefore are optically characterized by their relative permittivity ε and relative permeability
µ (note that the inverse of relative permeabilities are denoted here ν). It is of importance to
note that lossy materials can be studied, the relative permittivity and relative permeability being
represented by complex valued functions. The crossed-gratings we are dealing with can be split
into the following regions as suggested in Fig. 5.14:

• The superstrate (z> z0) is supposed to be homogeneous, isotropic and lossless, and there-
fore characterized by its relative permittivity ε+ and its relative permeability µ+(= 1/ν+)
and we denote k+ := k0

√
ε+µ+, where k0 := ω/c,

• The multilayered stack (zN < z < z0) is made of N layers which are supposed to be homo-
geneous and isotropic, and therefore characterized by their relative permittivity εn, their
relative permeability µn(= 1/νn) and their thickness en. We denote kn := k0

√
εn µn for

n integer between 1 and N.

• The groove region (zg < z < zg−1), which is embedded in the layer indexed g (εg,µg) of
the previously described domain, is heterogeneous. Moreover the method does work ir-
respective of whether the diffractive elements are homogeneous: The permittivity and
permeability can vary continuously (gradient index gratings) or discontinuously (step
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index gratings). This region is thus characterized by the scalar fields εg′(x,y,z) and
µg′(x,y,z)(= 1/νg′(x,y,z)). The groove periodicity along the x–axis, respectively (resp.)
y–axis, is denoted dx, resp. dy, in the sequel.

• The substrate (z < zN) is supposed to be homogeneous and isotropic and therefore char-
acterized by its relative permittivity ε− and its relative permeability µ−(= 1/ν−) and we
denote k− := k0

√
ε−µ−,

Let us emphasize the fact that the method principles remain unchanged in the case of several
diffractive patterns made of distinct geometry and/or material.

p

Fig. 5.14: Scheme and notations of the studied bi-gratings.

The incident field on this structure is denoted:

Einc = Ae
0 exp(ik+

p · r) (5.53)

with

k+ =

 α0
β0
γ0

= k+

 −sinθ0 cosϕ0
−sinθ0 sinϕ0
−cosθ0

 (5.54)

and

Ae
0 =

 E0
x

E0
y

E0
z

= Ae

 cosψ0 cosθ0 cosϕ0− sinψ0 sinϕ0
cosψ0 cosθ0 sinϕ0 + sinψ0 cosϕ0
−cosψ0 sinθ0

 , (5.55)
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where ϕ0 ∈ [0,2π], θ0 ∈ [0,π/2] and ψ0 ∈ [0,π] (polarization angle).
We recall here the diffraction problem: finding the solution of Maxwell equations in

harmonic regime i.e. the unique solution (E,H) of:{
curl E = iω µ0 µ H (5.56a)
curl H =−iω ε0 ε E (5.56b)

such that the diffracted field satisfies the so-called Outgoing Waves Condition (OWC [31] ) and
where E and H are quasi-bi-periodic functions with respect to x and y coordinates.

One can choose to calculate arbitrarily E, since H can be deduced from Eq. (5.56a). The
diffraction problem amounts to looking for the unique solution E of the so-called vectorial
Helmholtz propagation equation, deduced from Eqs. (5.56a,5.56b):

Mε,ν :=−curl(ν curlE)+ k2
0 ε E = 0 (5.57)

such that the diffracted field satisfies an OWC and where E is a quasi-bi-periodic function with
respect to x and y coordinates.

5.3.2.2 From a diffraction problem to a radiative one with localized sources

According to Fig. 5.14, the scalar relative permittivity ε and inverse permeability ν fields asso-
ciated to the studied diffractive structure can be written using complex-valued functions defined
by part and taking into account the notations adopted in Sec. 5.3.2.1:

υ(x,y,z) :=


υ+ for z > z0
υn for zn−1 > z > zn with 1≤ n < g
υg′(x,y,z) for zg−1 > z > zg
υn for zn−1 > z > zn with g < n≤ N
υ− for z < zN

(5.58)

with υ = {ε,ν} , z0 = 0 and zn =−∑
n
l=1 el for 1≤ n≤ N.

It is now convenient to introduce two functions defined by part ε1 and ν1 corresponding to the
associated multilayered case (i.e. the same stack without any diffractive element) constant over
Ox and Oy:

υ1(x,y,z) :=


υ+ for z > 0
υn for zn−1 > z > zn with 1≤ n≤ N
υ− for z < zN

(5.59)

with υ = {ε,ν}.
We denote by E0 the restriction of Einc to the superstrate region:

E0 :=
{

Einc for z > z0
0 for z≤ z0

(5.60)

We are now in a position to define more explicitly the vector diffraction problem that we are
dealing with in this section. It amounts to looking for the unique vector field E solution of:

Mε,ν(E) = 0 such that Ed := E−E0 satisfies an OWC. (5.61)

In order to reduce this diffraction problem to a radiation one, an intermediary vector field de-
noted E1 is necessary and is defined as the unique solution of:

Mε1,ν1(E1) = 0 such that Ed
1 := E1−E0 satisfies an OWC. (5.62)
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The vector field E1 corresponds to an ancillary problem associated to the general vectorial
case of a multilayered stack which can be calculated independently. This general calculation is
seldom treated in the literature, we present a development in Appendix. Thus E1 is from now
on considered as a known vector field. It is now apropos to introduce the unknown vector field
Ed

2 , simply defined as the difference between E and E1, which can finally be calculated thanks
to the FEM and:

Ed
2 := E−E1 = Ed−Ed

1 . (5.63)
It is of importance to note that the presence of the superscript d is not fortuitous: As a difference
between two diffracted fields (Eq. (5.63), Ed

2 satisfies an OWC which is of prime importance in
our formulation. By taking into account these new definitions, Eq. (5.61) can be written:

Mε,ν(Ed
2) =−Mε,ν(E1) , (5.64)

where the right-hand member is a vector field which can be interpreted as a known vectorial
source term −S1(x,y,z) whose support is localized inside the diffractive element itself. To
prove it, let us introduce the null term defined in Eq. (5.62) and make the use of the linearity of
M , which leads to:

S1 := Mε,ν(E1) = Mε,ν(E1)−Mε1,ν1(E1)︸ ︷︷ ︸
=0

= Mε−ε1,ν−ν1(E1) . (5.65)

5.3.2.3 Quasi-periodicity and weak formulation

The weak form is obtained by multiplying scalarly Eq. (5.61) by weighted vectors E′ chosen
among the ensemble of quasi-bi-periodic vector fields of L2(curl) (denoted L2 (curl,(dx,dy),k))
in Ω:

Rε,ν(E,E′) =
∫

Ω

−curl(ν curlE) ·E′+ k2
0 ε E ·E′ dΩ (5.66)

Integrating by part Eq. (5.66) and making the use of the Green-Ostrogradsky theorem lead to:

Rε,ν(E,E′) =
∫

Ω

−ν curlE · curlE′+ k2
0 ε E ·E′ dΩ−

∫
∂Ω

(n× (ν curlE)) ·E′ dS (5.67)

where n refers to the exterior unit vector normal to the surface ∂Ω enclosing Ω.
The first term of this sum concerns the volume behavior of the unknown vector field

whereas the right-hand term can be used to set boundary conditions (Dirichlet, Neumann or so
called quasi-periodic Bloch-Floquet conditions).

The solution Ed
2 of the weak form associated to the diffraction problem, expressed in its

previously defined equivalent radiative form at Eq. (5.64), is the element of L2 (curl,(dx,dy),k)
such that:

∀E′ ∈ L2(curl,dx,dy,k), Rε,ν(Ed
2,E

′) =−Rε−ε1,ν−ν1(E1,E′) . (5.68)
In order to rigorously truncate the computation a set of Bloch boundary conditions are

imposed on the pair of planes defined by (y = −dy/2,y = dy/2) and (x = −dx/2,x = dx/2).
One can refer to [11] for a detailed implementation of Bloch conditions adapted to the FEM. A
set of Perfectly Matched Layers are used in order to truncate the substrate and the superstrate
along z axis (see [32] for practical implementation of PML adapted to the FEM). Since the
proposed unknown Ed

2 is quasi-bi-periodic and satisfies an OWC, this set of boundary conditions
is perfectly reasonable: Ed

2 is radiated from the diffractive element towards the infinite regions
of the problem and decays exponentially inside the PMLs along z axis. The total field associated
to the diffraction problem E is deduced at once from Eq. (5.63).
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5.3.2.4 Edge or Whitney 1-form second order elements

In the vectorial case, edge elements (or Whitney forms) make a much more relevant choice [33]
than nodal elements. Note that a lot of work (see for instance [34]) has been done on higher
order edge elements since their introduction by Bossavit [35]. These elements are suitable to the
representation of vector fields such as Ed

2 , by letting their normal component be discontinuous
and imposing the continuity of their tangential components. Instead of linking the Degrees Of
Freedom (DOF) of the final algebraic system to the nodes of the mesh, the DOF associated to
edges (resp. faces) elements are the circulations (resp. flux) of the unknown vector field along
(resp. across) its edges (resp. faces).

Let us consider the computation cell Ω together with its exterior boundary ∂Ω. This
volume is sampled in a finite number of tetrahedron according to the following rules: Two
distinct tetrahedrons have to either share a node, an edge or a face or have no contact. Let us
denote by T the set of tetrahedrons, F the set of faces, E the set of edges and N the set of
nodes. In the sequel, one will refers to the node n= {i}, the edge e= {i, j}, the face f = {i, j,k}
and the tetrahedron t = {i, j,k, l}.

Fig. 5.15: Degrees of freedom of a second order tetrahedral element.

Twelve DOF (two for each of the six edges of a tetrahedron) are classically derived from
line integral of weighted projection of the field Ed

2 on each oriented edge e = {i, j}:
ϑi j =

∫ j

i
Ed

2 · ti j λi dl

ϑ ji =
∫ i

j
Ed

2 · t ji λ j dl
, (5.69)

where ti j is the unit vector and λi, the barycentric coordinate of node i, is the chosen weight
function.

According to Yioultsis et al. [36], a judicious choice for the remaining DOF is to make
the use of a tangential projection of the 1-form Ed

2 on the face f = {i, j,k}.
ϑi jk =

∫
f

(
Ed

2×n+
i jk

)
·gradλ j ds

ϑik j =
∫

f

(
Ed

2×n−i jk

)
·gradλk ds

. (5.70)
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The expressions for the shape functions, or basis vectors, of the second order 1-form Whitney
element are given by:{

wi j = (8λ 2
i −4λi) gradλ j +(−8λi λ j +2λ j) gradλi

wi jk = 16λi λ j gradλk−8λ j λk gradλi−8λk λi gradλ j
. (5.71)

This choice of shape function ensures [37] the following fundamental property: every degree of
freedom associated with a shape function should be zero for any other shape function. Finally,
an approximation of the unknown Ed

2 projected on the shape functions of the mesh m (Ed,m
2 ) can

be derived:
Ed,m

2 = ∑
e∈E

ϑe we + ∑
f∈F

ϑ f w f . (5.72)

Weight functions E′ (c.f. Eq. (5.68) are chosen in the same space than the unknown Ed
2 ,

L2(curl,(dx,dy),k). According to the Galerkin formulation, this choice is made so that their
restriction to one bi-period belongs to the set of shape functions mentioned above. Inserting
the decomposition of Ed

2 of Eq. (5.72) in Eq. (5.68) leads to the final algebraic system which is
solved, in the following numerical examples, thanks to direct solvers.

5.3.3 Energetic considerations: Diffraction efficiencies and losses

Contrarily to modal methods based on the determination of Rayleigh coefficients, the rough
results of the FEM are three complex components of the vector field Ed interpolated over the
mesh of the computation cell. Diffraction efficiencies are deduced from this field maps as
follows.

As a difference between two quasi-periodic vector fields (see Eq. (5.61)), Ed is quasi-bi-
periodic and its components can be expanded as a double Rayleigh sum:

Ed
x (x,y,z) = ∑

(n,m)∈Z2

ud,x
n,m(z)ei(αn x+βm y), (5.73)

with αn = α0 +
2π

dx
n, βm = β0 +

2π

dy
m and

ud,x
n,m(z) =

1
dx dy

∫ dx/2

−dx/2

∫ dy/2

−dy/2
Ed

x (x,y,z)e−i(αn x+βm y) dxdy . (5.74)

By inserting the decomposition of Eq. (5.73), which is satisfied by Ed
x everywhere but in the

groove region, into the Helmholtz propagation equation, one can express Rayleigh coefficients
in the substrate and the superstrate as follows:

ud,x
n,m(z) = ex,p

n,m e−iγ+n,m z + ex,c
n,m e iγ+n,m z (5.75)

with γ±
2

n,m = k±
2−α2

n −β 2
m, where γn,m (or −iγn,m) is positive. The quantity ud,x

n,m is the sum of
a propagative plane wave (which propagates towards decreasing values of z, superscript p) and
of a counterpropagative one (superscript c). The OWC verified by Ed imposes:

∀(n,m) ∈ Z2
{

ex,p
n,m = 0 for z > z0

ex,c
n,m = 0 for z < zN

(5.76)

Eq. (5.74) allows to evaluate numerically ex,c
n,m (resp. ex,p

n,m) by double trapezoidal integration of
a slice of the complex component Ed

x at an altitude zc fixed in the superstrate (resp. substrate).
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It is well known that the mere trapezoidal integration method is very efficient for smooth and
periodic functions (integration on one period). The same holds for Ed

y and Ed
z components as

well as their coefficients ey,{c,p}
n,m and ez,{c,p}

n,m .
The dimensionless expression of the efficiency of each reflected and transmitted (n,m)

order [38] is deduced from Eqs. (5.75,5.76):
Rn,m = 1

|Ae|2
γ+n,m

γ0
ec

n,m(zc) · ec
n,m(zc) for zc > z0

Tn,m = 1
A2

e

γ−n,m
γ0

ep
n,m(zc) · ep

n,m(zc) for zc < zN

, (5.77)

with e{c,p}n,m = ex,{c,p}
n,m x+ ey,{c,p}

n,m y+ ez,{c,p}
n,m z.

Furthermore, normalized losses Q can be obtained through the computation of the follow-
ing ratio:

Q =

∫
V

1
2

ω ε0 ℑm(εg′)E ·EdV∫
S

1
2

ℜe{E0×H0} ·ndS
. (5.78)

The numerator in Eq. (5.78) clarifies losses in watts by bi-period of the considered crossed-
grating and are computed by integrating the Joule effect losses density over the volume V of
the lossy element. The denominator normalizes these losses to the incident power, i.e. the time-
averaged incident Poynting vector flux across one bi-period (a rectangular surface S of area
dx dy in the superstrate parallel to Oxy, whose normal oriented along decreasing values of z is
denoted n). Since E0 is nothing but the plane wave defined at Eqs. (5.54,5.55), this last term
is equal to (A2

e
√

ε0/µ0 dx dy)/(2cos(θ0)). Volumes and normal to surfaces being explicitly
defined, normalized losses losses Q are quickly computed once E determined and interpolated
between mesh nodes.

Finally, the accuracy and self-consistency of the whole calculation can be evaluated by
summing the real part of transmitted and reflected efficiencies (n,m) to normalized losses:

Q+ ∑
(n,m)∈Z2

ℜe{Rn,m}+ ∑
(n,m)∈Z2

ℜe{Tn,m} ,

quantity to be compared to 1. The sole diffraction orders taken into account in this conservation
criterium correspond to propagative orders whose efficiencies have a non-null real part. Indeed,
diffraction efficiencies of evanescent orders, corresponding to pure imaginary values of γ±n,m for
higher values of (n,m) (see Eq. (5.75)) are also pure imaginary values as it appears clearly in
Eq. (5.77). Numerical illustrations of such global energy balances are presented in the next
section.
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5.3.4 Accuracy and convergence

5.3.4.1 Classical crossed gratings

There are only a few references in the literature containing numerical examples. For each of
them, the problem only consists of three regions (superstrate, grooves and substrate) as summed
up on Figure 5.16. For the four selected cases, among six found in the literature, published

Fig. 5.16: Configuration of the studied cases.

results are compared to ones given by our formulation of the FEM. Moreover, in each case, a
satisfying global energy balance is detailed. Finally a new validation case combining all the
difficulties encountered when modeling crossed-gratings is proposed: A non-trivial geometry
for the diffractive pattern (a torus), made of an arbitrary lossy material leading to a large step
of index and illuminated by a plane wave with an oblique incidence. Convergence of the FEM
calculation as well as computation time will be discussed in Sec. 5.3.4.2.
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Checkerboard grating In this example worked out by L. Li [27], the diffractive element
is a rectangular parallelepiped as shown Fig. 5.17a and the grating parameter highlighted in
Fig. 5.16 are the following: ϕ0 = θ0 = 0◦, ψ0 = 45◦, dx = dy = 5λ0

√
2/4, h = λ0, ε+ = εg′ =

2.25 and ε− = εg = 1.

(a) (b)

Fig. 5.17: Diffractive element with vertical edges (a). ℜe{Ex} in V/m (b).

FMM [27] FEM
T−1,−1 0.04308 0.04333
T−1,0 0.12860 0.12845
T−1,+1 0.06196 0.06176
T0,−1 0.12860 0.12838
T0,0 0.17486 0.17577
T0,+1 0.12860 0.12839
T+1,−1 0.06196 0.06177
T+1,0 0.12860 0.12843
T+1,+1 0.04308 0.04332

∑
(n,m)∈Z

ℜe{Rn,m} - 0.10040

TOTAL - 1.00000

Tab. 5.4: Energy balance [27].

Our formulation of the FEM shows good agreement with the Fourier Modal Method de-
veloped by L. Li ([27], 1997) since the maximal relative difference between the array of values
presented in Table 5.4 remains lower than 10-3. Moreover, the sum of the efficiencies of prop-
agative orders given by the FEM is very close to 1 in spite of the addition of all errors of
determination upon the efficiencies.
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Pyramidal crossed-grating In this example firstly worked out by Derrick et al. [39], the
diffractive element is a pyramid with rectangular basis as shown Fig. 5.18a and the grating
parameters highlighted in Fig. 5.16 are the following: λ0 = 1.533, ϕ0 = 45◦, θ0 = 30◦, ψ0 = 0◦,
dx = 1.5, dy = 1, h = 0.25, ε+ = εg = 1 and ε− = εg′ = 2.25. Results given by the FEM show

(a) (b)

Fig. 5.18: Diffractive element with oblique edges (a). ℜe{Ey} in V/m (b).

Given in [39] [40] [41] [42] FEM
R−1,0 0.00254 0.00207 0.00246 0.00249 0.00251
R0,0 0.01984 0.01928 0.01951 0.01963 0.01938
T−1,−1 0.00092 0.00081 0.00086 0.00086 0.00087
T0,−1 0.00704 0.00767 0.00679 0.00677 0.00692
T−1,0 0.00303 0.00370 0.00294 0.00294 0.00299
T0,0 0.96219 0.96316 0.96472 0.96448 0.96447
T1,0 0.00299 0.00332 0.00280 0.00282 0.00290
TOTAL 0.99855 1.00001 1.00008 0.99999 1.00004

Tab. 5.5: Comparison with the results given in [39, 40, 41, 42].

good agreement with ones of the C method [39, 42], the Rayleigh method [40] and the RCWA
[41]. Note that, in this case, some edges of the diffractive element are oblique.
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Bi-sinusoidal grating In this example worked out by Bruno et al. [43], the surface of the
grating is bi-sinusoidal (see Fig. 5.19a) and described by the function f defined by:

f (x,y) =
h
4

[
cos
(

2π x
d

)
+ cos

(
2π y

d

)]
(5.79)

The grating parameters et al.highlighted in Fig. 5.16 are the following: λ0 = 0.83, ϕ0 = θ0 =
ψ0 = 0◦, dx = dy = 1, h = 0.2, ε+ = εg = 1 and ε− = εg′ = 4. Note that in order to define this

(a) (b)

Fig. 5.19: Diffractive element with oblique edges (a). ℜe{Ez} in V/m (b).

[43] FEM
R−1,0 0.01044 0.01164
R0,−1 0.01183 0.01165
T−1,−1 0.06175 0.06299

∑
(n,m)∈Z

ℜe{Rn,m} - 0.10685

∑
(n,m)∈Z

ℜe{Tn,m} - 0.89121

TOTAL - 0.99806

Tab. 5.6: Energy balance [43].

surface, the bi-sinusoid was first sampled (15× 15 points), then converted to a 3D file format.
This sampling can account for the slight differences with the results obtained using the method
of variation of boundaries developed by Bruno et al. (1993).
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Circular apertures in a lossy layer In this example worked out by Schuster et al. [44], the
diffractive element is a circular aperture in a lossy layer as shown Fig. 5.20a and the grating
parameter highlighted in Fig. 5.16 are the following: λ0 = 500nm, ϕ0 = θ0 = 0◦, ε+ = εg = 1,
εg′ = 0.8125+5.2500 i and ε− = 2.25.

(a) (b)

Fig. 5.20: Lossy diffractive element with vertical edges (a). ℜe{Ey} in V/m (b).

[45] [27] [44] FEM
R0,0 0.24657 0.24339 0.24420 0.24415

∑
(n,m)∈Z

ℜe{Tn,m} − − − 0.29110

∑
(n,m)∈Z

ℜe{Rn,m} − − − 0.26761

Q − − − 0.44148
TOTAL − − − 1.00019

Tab. 5.7: Comparison with [45, 27, 44] and energy balance.

In this lossy case, results obtained with the FEM show good agreement with the ones
obtained with the FMM [27], the differential method [44, 46] and the RCWA [45]. Joule losses
inside the diffractive element can be easily calculated, which allows to provide a global energy
balance for this configuration. Finally, the convergence of the value R0,0 as a function of the
mesh refinement will be examined.
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Lossy tori grating We finally propose a new test case for crossed-grating numerical methods.
The major difficulty of this case lies both in the non trivial geometry (see Fig. 5.21a) of the
diffractive object and in the fact that it is made of a material chosen so that losses are optimal
inside it. The grating parameters highlighted in Fig. 5.16 and Fig. 5.21a are the following:
λ0 = 1, ϕ0 = ψ0 = 0◦, dx = dy = 0.3, a = 0.1, b = 0.05, R = 0.15, h = 500nm, ε+ = εg = 1,
εg′ =−21+20 i and ε− = 2.25.

(a) (b)

Fig. 5.21: Torus parameters (a). Coarse mesh of the computational domain (b).

FEM 3D θ = 0◦ θ = 40◦

R0,0 0.36376 0.27331
T0,0 0.32992 0.38191
Q 0.30639 0.34476
TOTAL 1.00007 0.99998

Tab. 5.8: Energy balances at normal and oblique incidence.

Tab. 5.8 illustrates the independence of our method towards the geometry of the diffractive
element. εg′ is chosen so that the skin depth has the same order of magnitude as b, which max-
imizes losses. Note that energy balances remain very accurate at normal and oblique incidence,
in spite of both the non-triviality of the geometry and the strong losses.
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5.3.4.2 Convergence and computation time

Convergence as a function of mesh refinement When using modal methods such as the
RCWA or the differential method, based on the calculation of Rayleigh coefficients, a number
proportional to NR have to be be determined a priori. Then, the unknown diffracted field is
expanded as a Fourier serie, injected under this form in Maxwell equations, which annihilates
x− and y−dependencies. This leads to a system of coupled partial differential equations whose
coefficients can structured in a matrix formalism. The resulting matrix is sometimes directly
invertible (RCWA) depending on whether the geometry allows to suppress the z−dependance,
which makes this method adapted to diffractive elements with vertically (or decomposed in
staircase functions) shaped edge. In some other cases, one has to make the use of integral
methods in order to solve the system, as in the pyramidal case for instance, which leads to the so-
called differential method. The diffracted field map can be deduced from these coefficients. If
the grating configuration only calls for a few propagative orders and if the field inside the groove
region is not the main information sought for, these two close methods allow to determine the
repartition of the incident energy quickly. However, if the field inside the groove region is the
main piece of information, it is advisable to calculate many Rayleigh coefficients corresponding
to evanescent waves which increases the computation time as (NR)

3 or even (NR)
4.

FEM relies on the direct calculation of the vectorial components of the complex field.
Rayleigh coefficients are determined a posteriori. The parameter limiting the computation time
is the number of tetrahedral elements along which the computational domain is split up. We
suppose that it is necessary to calculate at least two or three points (or mesh nodes) per period
of the field (λ0/

√
ℜe{ε}). Figure 5.22 shows the convergence of the efficiency R0,0 (circu-

lar apertures case, see Fig. 5.20a) as a function of the mesh refinement characterized by the
parameter NM: The maximum size of each element is set to λ0/(NM

√
ℜe{ε}).
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Fig. 5.22: Convergence of R0,0 in function of Nm (circular apertures crossed-grating).
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It is of interest to note that even if NM < 3 the FEM still gives pertinent diffraction effi-
ciencies: R0,0 = 0.2334 for NM = 1 and R0,0 = 0.2331 for NM = 2. The Galerkin method (see
Eq. (5.67)) corresponds to a minimization of the error (between the exact solution and the ap-
proximation) with respect to a norm that can be physically interpreted in terms of energy-related
quantities. Therefore, the finite element methods usually provide energy-related quantities that
are more accurate than the local values of the fields themselves.

Computation time All the calculations were performed on a server equipped with 8 dual
core Itanium1 processors and 256Go of RAM. Tetrahedral quadratic edge elements were used
together with the direct solver PARDISO. Among different direct solvers adapted to sparse
matrix algebra (UMFPACK, SPOOLES and PARDISO), PARDISO turned out to be the less
time-consuming one as shown in Tab 5.9.

Solver Computation time for 41720 DOF Computation time for 205198 DOF
SPOOLES 15mn32s 14h44mn
UMFPACK 2mn07s 1h12mn
PARDISO 57s 16mn

Tab. 5.9: Computation time variations from solver to solver.
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Fig. 5.23: Computation time and number of DOF as a function of NM .

Figure 5.23 shows the computation time required to perform the whole FEM computa-
tional process for a system made of a number of DOF indicated on the right-hand ordinate.
It is of importance to note that for values of NM lower than 3, the problem can be solved in
less than a minute on a standard laptop (4Go RAM, 2×2GHz) with 3 significant digits on the
diffraction efficiencies. This accuracy is more than sufficient in numerous experimental cases.
Furthermore, as far as integrated values are at stake, relatively coarse meshes (NM ≈ 1) can be
used trustfully, authorizing fast geometric, spectral or polarization studies.

Nowadays, the efficiency of the numerical algorithms for sparse matrix algebra together
with the available power of computers and the fact that the problem reduces to a basic cell with a
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size of a small number of wavelengths make the finite element problem very tractable as proved
here.

5.4 Concluding remarks

In this chapter, we demonstrate a general formulation of the FEM allowing to calculate the
diffraction efficiencies from the electromagnetic field diffracted by arbitrarily shaped gratings
embedded in a multilayered stack lightened by a plane wave of arbitrary incidence and polar-
ization angle. It relies on a rigorous treatment of the plane wave sources problem through an
equivalent radiation problem with localized sources. Bloch conditions and a new dedicated
PML have been implemented in order to rigorously truncate the computational domain.

The principles of the method were discussed in detail for mono-dimensional gratings
in TE/TM polarization cases (2D or scalar case) in a first part, and for the most general bi-
dimensional or crossed gratings (3D or vector case) in a second part. Note that the very same
concepts could be applied to the intermediate case of mono-dimensional gratings enlighten by
an arbitrary incident plane wave (so-called conical case). The reader will find detail about the
element basis relevant to this case in [11].

The main advantage of this formulation is its complete generality with respect to the
studied geometries and the material properties, as illustrated with the lossy tori grating non-
trivial case. Its principle remains independent of both the number of diffractive elements by
period and number of stack layers. Its flexibility allowed us to retrieve with accuracy the few
numerical academic examples found in the literature and established with independent methods.

The remarkable accuracy observed in the case of coarse meshes, makes it a fast tool for
the design and optimization of diffractive optical components (e.g. reflection and transmission
filters, polarizers, beam shapers, pulse compression gratings. . . ). The complete independence of
the presented approach towards both the geometry and the isotropic constituent materials of the
diffractive elements makes it a handy and powerful tool for the study of metamaterials, finite-
size photonic crystals, periodic plasmonic structures. . . The method described in this chapter
has already been successfully applied to various problems, from homogenization theory [47]
or transformation optics [48] to more applied concerns as the modeling of complex CMOS
nanophotonic devices [49] or ultra-thin new generation solar cells [50].

194



G. Demésy et al.: Finite Element Method 5.41

5.A APPENDIX

This appendix is dedicated to the determination of the vector electric field in a dielectric stack
enlightened by a plane wave of arbitrary polarization and incidence angle. This calculation,
abundantly treated in the 2D scalar case, is generally not presented in the literature since, as
far as isotropic cases are concerned, it is possible to project the general vectorial case on the
two reference TE and TM cases. However, the presented formulation can be extended to a fully
anisotropic case for which this TE/TM decoupling is no longer valid and the three components
of the field have to be calculated as follows.

Let us consider the ancillary problem mentioned in Sec. 5.3.2.2, i.e. a dielectric stack
made of N homogeneous, isotropic, lossy layers characterized by there relative permittivity
denoted ε j and their thickness e j. This stack is deposited on a homogeneous, isotropic, possibly
lossy substrate characterized by its relative permittivity denoted εN+1 = ε−. The superstrate is
air and its relative permittivity is denoted ε+ = 1. Finally, we denote by z j the altitude of
the interface between the jth and j + 1th layers. The restriction of the incident field Einc to
the superstrate region is denoted E0. The problem amounts to looking for (E1,H1) satisfying
Maxwell equations in harmonic regime (see Eqs. (5.56a,5.56b)).

Across the interface z = z j

By projection on the main axis of the vectorial Helmholtz propagation equation (Eq. (5.57)),
the total electric field inside the jth layer can be written as the sum of a propagative and a
counter-propagative plane waves:

E1(x,y,z) =

 Ex, j,+
1

Ey, j,+
1

Ez, j,+
1

exp
(

j (α0 x+β0 y+ γ j z)
)
+

 Ex, j,−
1

Ey, j,−
1

Ez, j,−
1

exp
(

j (α0 x+β0 y− γ j z)
)

(5.80)
where

γ
2
j = k2

j −α
2
0 −β

2
0 (5.81)

What follows consists in writing the continuity of the tangential components of (E1,H1) across
the interface z = z j, i.e. the continuity of the vector field Ψ defined by:

Ψ =


Ex

1
Ey

1
iHx

1
iHy

1

 . (5.82)

The continuity of Ψ along Oz together with its analytical expression inside the jth and j+ 1th

layers allows to establish a recurrence relation for the interface z = z j.
Then, by projection of Eqs. (5.56a,5.56b) on Ox,Oy and Oz: iβ0 Hz

1−
∂Hy

1
dz

∂Hx
1

dz − iα0 Hz
1

iα0 Hy
1 − iβ0 Hx

1

=−iω ε

 Ex
1

Ey
1

Ez
1

 (5.83)
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and  iβ0 Ez
1−

∂Ey
1

∂ z
∂Ex

1
∂ z − iα0 Ez

1
iα0 Ey

1− iβ0 Ex
1

= iω µ

 Hx
1

Hy
1

Hz
1

 . (5.84)

Consequently, tangential components of H1 can be expressed in function of tangential compo-
nents of E1: ω µ 0 β0

0 ω µ −α0
−β0 α0 −ω ε


︸ ︷︷ ︸

B

iHx
1

iHy
1

iHz
1

=


∂Ey

1
dz

−∂Ex
1

dz
0

 . (5.85)

By noticing the invariance and linearity of the problem along Ox and Oy, the following notations
are adopted: {

U j,±
x = Ex, j,±

1 exp(± iγ j z)
U j,±

y = Ey, j,±
1 exp(± iγ j z)

(5.86)

and

Φ j =


U+, j

x

U−, jx

U+, j
y

U−, jy

 . (5.87)

Thanks to Eq. (5.80) and Eq. (5.84) and letting M = B−1, it comes for the jth layer:

Ψ(x,y,z) = exp(i(α0 x+β0 y))


1 1 0 0
0 0 1 1

γ j M j
12 −γ j M j

12 −γ j M j
11 γ j M j

11
γ j M j

22 −γ j M j
22 −γ j M j

21 γ j M j
21


︸ ︷︷ ︸

Π j


U+, j

x

U−, jx

U+, j
y

U−, jy

 . (5.88)

Finally, the continuity of Ψ at the interface z = z j leads to:

Φ j+1(z j) = Π
−1
j+1 Π j Φ j(z j). (5.89)

Normal components can be deduced using Eqs. (5.83,5.84).

Traveling inside the j+1th layer

Using Eq. (5.80), a simple phase shift allows to travel from z = z j to z = z j+1 = z j− e j+1:

Φ j+1(z j+1)=


exp(−iγ j+1 e j+1) 0 0 0

0 exp(+iγ j+1 e j+1) 0 0
0 0 exp(−iγ j+1 e j+1) 0
0 0 0 exp(+iγ j+1 e j+1)


︸ ︷︷ ︸

Tj+1

Φ j+1(z j)

(5.90)
Thanks to Eq. (5.90) and Eq. (5.89), a recurrence relation can be formulated for the analytical
expression of E1 in each layer:

Φ j+1(z j+1) = Tj+1 Π
−1
j+1 Π j Φ j(z j) (5.91)
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Reflection and transmission coefficients

The last step consists in the determination of the first term Φ0, which is not entirely known,
since the problem definition only specifies U0,+

x and U0,+
y , imposed by the incident field E0.

Let us make the use of the OWC hypothesis verified by Ed
1 (see Eq. (5.62)). This hypothesis

directly translates the fact that none of the components of Ed
1 can either be traveling down in

the superstrate or up in the substrate: UN+1,−
y = UN+1,−

x = 0. Therefore, the four unknowns
U0,−

x , U0,−
y ,UN+1,+

y and UN+1,+
x , i.e. transverse components of the vector fields reflected and

transmitted by the stack, verify the following equation system:

ΦN+1(zN) = (ΠN+1)
−1

ΠN

N−1

∏
j=0

TN− j (ΠN− j)
−1

ΠN− j−1 Φ0(z0) (5.92)

This allows to extend the definition of transmission and reflection widely used in the scalar case.
Finally, ΦN+1 is entirely defined. Making the use of the recurrence relation of Eq. (5.91) and of
Eq. (5.80) leads to an analytical expression for Ed

1 in each layer.
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6.1 Introduction to particulate gratings

Lattice sums of spherical harmonic functions are well suited for modeling gratings composed
of periodic arrays of identical discrete particles, henceforth referred to as particulate gratings
(cf. fig. (6.1)). By discrete particles, we mean that the particles have a physical boundary such
that there exists a region between the individual particles that is governed by the host material’s
constitutive relations. This feature makes particulate gratings somewhat different from most
of the other diffraction grating problems studied in this book which are usually characterized
by a substrate and a superstrate with distinct constitutive parameters. The techniques of this
chapter can be extended to include the effects of a nearby planar interface,[26, 27, 28] but such
considerations complicate the problem somewhat and this chapter therefore concentrates on
substrate-free particulate gratings.

Figure 6.1: Particulate grating with lattice vectors aaa and bbb.

Theoretical analysis of the particulate grating problem can draw on both single-particle
scattering theory and techniques originally developed for solid state physics. The solid state
analogy is clear from the similarity of this problem to the scattering of waves by crystal lattices,
particularly in the “muffin tin” approximation[25]. Summations of the spherical harmonic fields
scattered by the (infinite) number of particles in the lattice involve semi-convergent series and
will generally go under the name of “lattice sums”. By lattice sum, we mean sums of the form
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∑Λ Φ
(
rrr j
)

where Λ refers to the ensemble of points, rrr j, in a periodic lattice, and Φ is a given
function.

Lattice sums have applications in many fields and their study dates back to the 19th cen-
tury treating conditionally convergent sums of solutions to the Laplace equations (most notably
in the Madelund constant of ionic crystals). Nevertheless, they were not always recognized
as a specific branch of study, and their derivations tended to be scattered throughout the liter-
ature. This situation is changing however with the appearance of extensive reviews in recent
years[15, 16, 19, 20]. Furthermore, another monograph, dedicated entirely to lattice sums, is
appearing at the same time as this one.[3]

As developed in detail in the aforementioned monograph, the study of the (scale invari-
ant) Laplace equation lattice sums have generated a number of important analytic results. The
grating problem on the other hand involves propagating waves and consequently requires lattice
sums of Helmholtz-type solutions. Although there are fewer fully analytic results for the (scale
dependent) Helmholtz lattice sums than for the Laplace equation case, analytic manipulations
remain essential for regularizing and accelerating a numerical analysis.

In solid-state physics, Helmholtz (i.e. Schrödinger) equation lattice sums are a key aspect
of the Korringa-Kohn-Rostoker (KKR) methods for band-structure calculations in crystals.[22,
14, 13] In KKR theory, lattice sums intervene in the calculation of the “structure constants” of
the lattice Green function and their regularization generally goes under the name of Ewald sum
techniques. The Ewald sum method is quite intricate, but its basic principle can be viewed as
separating a semi-convergent sum into slowly and rapidly convergent parts and then to transform
the slowly convergent part into reciprocal space via the Poisson sum formula where it becomes
a rapidly convergent series.

Although Ewald sum methods are proven to be quite efficient for most of the prob-
lems encountered in solid state physics, there utility has been repeatedly criticized for grating-
type applications (requiring numerically unwieldy evaluations of incomplete Gamma functions
with negative real arguments[32], poor numerical properties for high multipole orders or large
wavenumber, k ). A number of authors have consequently looked for alternative lattice sum
techniques since the pioneering work of Kerker over 30 years ago. In this chapter, we simply
discuss and compare some of our preferred methods in the appendices. Our emphasis will in-
stead be placed on painting a complete gratings-picture analysis capable of describing both near
and far-field phenomenon in particulate gratings.

The matrix elements of the Ω propagation matrix introduced in section 6.3.3 correspond
to the “structure constants” of a KKR theory. More precisely, due to the differences between
the Schrödinger equation and Maxwell’s propagation equation, the Ω matrix elements can be
written as a superposition of the KKR structure constants. In both KKR and particulate grating
theory, one desires to calculate the lattice Green function. A fundamental method choice in this
chapter is to use the language of T-matrices. Notably, we will see that the quasi-periodic Green
function can be expressed as a lattice sum of multiple-scattering T-matrices. The multiple-
scattering T-matrices themselves are calculated in terms of the single-particle T-matrices, and
the Ω matrix.

The T-matrix manipulations are carried out on a basis set of solutions to the Helmholtz
equation, which we generally refer to as partial waves, (PWs), also commonly referred to as
spherical wave functions (SWFs). This T-matrix approach is also generally adopted in the KKR
calculations[22], but in the light scattering community, the terminology “T-matrix method” is
often considered to be synonymous with extended boundary condition technique (also called
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Null-field methods), but the T-matrix is a general theoretical construct that relates the field
incident on a particle to the field scattered by the particle. As such, it can be seen as providing
a complete solution to the single-particle scattering problem. In practice, the T-matrix can be
generated by a wide variety of techniques including DDA, method of moments, and fictitious
source techniques.

The T-matrix of an individual particle depends on the shape and the constitutive parame-
ters of the particles, both of which can be quite arbitrary as long as the particle response is linear
(including anisotropic constitutive parameters, magnetic permeability contrast etc.). However,
since the T-matrix can be viewed as being the complete solution of a 1-body problem, its deter-
mination can be viewed as being separate from the grating problem. In this chapter, we simplify
the T-matrix part of the problem by considering only isotropic spherical scatterers. The T-matrix
of such scatterers is diagonal in the partial wave basis with its elements being determined an-
alytically from Mie theory. We insist however, that for particulate gratings composed of more
exotic scatterers, it generally suffices to insert the appropriate T-matrix to obtain the response of
lattices composed of such scatterers. We refer the interested to reader to reviews of the T-matrix
methods.[17, 18]

The methods developed in this chapter can be adapted to the study gratings composed
of periodic infinite cylinders. However, there are fundamental differences in the mathematics,
since this problem is usually addressed by solving 2-dimensional Helmholtz equations. We
therefore neglect this problem in order to concentrate on the fully 3-dimensional problem of
particulate gratings like those of figure 6.1.

The first five sections constitute the heart of this chapter since they describe the gen-
eral mathematical analysis of gratings using spherical harmonic lattice sums. The last four
sections treat numerical methods for calculating lattice sums and special functions. Support
material, corrections, and erratum will be made available and updated during the year 2013 at
www.fresnel.fr/perso/stout/index.htm.

6.2 Waves and partial waves

A fundamental aspect of the particulate gratings is that they can be viewed as a multiple-scatting
phenomenon with light propagating through the host medium between individual scatterings
events. The wave equation for light in this homogeneous isotropic medium is:

∇∇∇×∇∇∇×EEE + k2EEE = 000 , (6.1)

where k =
√

εrµr
ω

c is the wavenumber of the host medium. Solutions of eq.(6.1) satisfy both
the vector Helmholtz equation,

∆EEE + k2EEE = 000 , (6.2)

and the additional constraint that the longitudinal field components are null:

∇∇∇ ·EEE = 0 . (6.3)

A basis set for solutions to the vector Helmholtz equation of eq.(6.2) can be readily con-
structed starting from the scalar Helmholtz equation:

∆ϕ + k2
ϕ = 0 . (6.4)
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As well established in textbooks, eq.(6.4) can be solved by separation of variables in spherical
coordinates with ‘regular’ solutions taking the form of spherical harmonics, Yn,m multiplied by
spherical Bessel functions, jn (kr), that are regular for all values of r. There are also ‘irregu-
lar’ solutions spherical Neumann functions, yn (kr), that have essential singularities as kr→ 0.
Details concerning the properties and calculation of the Yn,m (θ ,φ) are given in section 6.8.1.

The spherical coordinate solutions to eq.(6.4) will henceforth be referred to as scalar
partial waves and will be defined as:

Jn,m (krrr)≡ jn (kr)Yn,m (r̂rr) , and Yn,m (krrr)≡ yn (kr)Yn,m (r̂rr) . (6.5)

The regular partial waves, Jn,m, can serve as a basis set for any source free incident field
solution to eq.(6.4). Outgoing partial waves solutions of the Helmholtz equation, denoted Hn,m,
will be of primary interest in grating theory since they will be used to describe fields scattered
by the grating. They are defined as a superposition of the regular and irregular partial waves:

Hn,m (krrr)≡ hn (kr)Yn,m (r̂rr) = Jn,m (krrr)+ iYn,m (krrr) . (6.6)

Incident field solutions to the vector Helmholtz equation of eq.(6.2) can be expressed as
scalar partial waves associated with unit vectors along each axis i.e.:

EEE inc (rrr) = x̂xx ∑
n,m

α
(x)
n,mJn,m (krrr)+ ŷyy ∑

n′,m′
α
(y)
n′,m′Jn′,m′ (krrr)+ ẑzz ∑

n′′,m′′
α
(z)
n′′,m′′Jn′′,m′′ (krrr) . (6.7)

The field scattered field scattered by a particle in the context of the vector Helmholtz equation
can likewise be developed in terms of the outgoing spherical waves:

EEEscat (rrr) = x̂xx ∑
n,m

β
(x)
n,mHn,m (krrr)+ ŷyy ∑

n′,m′
β
(y)
n′,m′Hn′,m′ (krrr)+ ẑzz ∑

n′′,m′′
β
(z)
n′′,m′′Hn′′,m′′ (krrr) , (6.8)

provided that the coordinate system origin is chosen to lie inside the particle and that the field
description is applied only to regions lying outside the particle. The field in eq.(6.8) repre-
sents the field scattered by a single scatterer, so the grating problem in terms of partial waves
must sum over the field scattered by all the particles in the lattice. Finding efficient ways for
calculating the lattice sum will therefore figure prominently in the subsequent sections of this
chapter.

Before studying T-matrices in the next section, we first address an important technical
issue. The field expansions in eq.(6.7) and eq.(6.8) have both transverse and longitudinal com-
ponents and therefore are not generally solutions of the light propagation problem of eq.(6.1).
The transverse wave condition of eq.(6.3) can be satisfied by requiring that the Cartesian field
coefficients, α

(x,y,z)
n,m , (and respectively β

(x,y,z)
n,m ) satisfy certain relations amongst themselves.

The important point is to remark that the constraint conditions, although somewhat complex
in spherical coordinates, only affect the partial wave coefficients, and not the partial waves
themselves. Consequently, in the rest of this chapter, we can generally restrain our attention to
lattice sums of scalar partial wave sums even though the end goal is describe electromagnetic
field scattering.

Expressing the transverse vector partial waves in terms of the Cartesian axis partial waves
of eq.(6.7) or eq.(6.8) is a relatively complex affair involving angular momentum coupling
formalism, coordinate transformations, and recurrence relations.[21] Consequently, it is more
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common to invoke one of the various methods that have been devised over the years to directly
generate transverse partial waves: Debye potentials, Hertz potentials, the Boulenkamp-Casimir
approach[10], pilot vector techniques[5], etc. Whatever one’s “preferred” technique and nota-
tion, the two types of transverse partial waves, ΨΨΨJ ,q,p (often denoted MMMJ ,p and NNNJ ,p in the
literature), can be expressed:

ΨΨΨJ ,1,p (krrr)≡ jn (kr)XXXn,m(r̂rr)

ΨΨΨJ ,2,p (krrr)≡ 1
kr

{√
n(n+1) jn (kr)YYY n,m(r̂rr)+ [kr jn (kr)]′ZZZn,m(r̂rr)

}
, (6.9)

where XXXn,m, YYY n,m, and ZZZn,m are the vector spherical harmonics (VSHs), (described in section
eq.(6.9.3)). The first subscript, J , on ΨΨΨJ ,q,p serves to indicate that the radial dependence is
governed by spherical Bessel functions. A value of q = 1 in the second subscript indicates a
“transverse electric” (TE) type wave (i.e. possessing no radial electric field component), while
q= 2 indicates transverse magnetic (TM) waves. In order to minimize the number of subscripts,
we adopt the common procedure that the third subscript p of ΨΨΨJ ,q,p, replaces the two multipole
subscripts n and m by defining its value such that[31]:

p(n,m)≡ n(n+1)−m . (6.10)

With the notation of eq.(6.9), one can express any incident field satisfying equation (6.1)
in terms of the transverse vector partial waves:

EEE inc (rrr) = E ∑
q=1,2

∞

∑
p=1

ΨΨΨJ ,q,p (krrr)aq,p , (6.11)

where aq,p are (dimensionless) field coefficients, and E is a constant with the dimension of
electric field and which can be used to adjust the field strength. With this notation, the field
scattered by a particle whose circumscribing sphere is centered at a position xxx j can be written:

EEEscat
(
rrr j
)
= E ∑

q=1,2

∞

∑
p=1

ΨΨΨH ,q,p
(
krrr j
)

f ( j)
q,p , (6.12)

where rrr j ≡ rrr−xxx j, and f ( j)
q,p are the scattering coefficients of the particle j. The index, H . on the

ΨΨΨH ,q,p indicates that the radial dependence should be governed by spherical Hankel functions,
hn (kr), rather than the spherical Bessel functions, jn (kr), found in the ΨΨΨJ ,q,p functions of
eq.(6.9).

6.3 T-matrix theory

6.3.1 Green functions and T-matrices

The fundamental object that one would like to calculate in a multiple-scattering system (like
a particulate grating) is the system Green’s function. However, the dyadic Green’s function
for a homogeneous medium has a strongly singular behavior and needs to be defined in the
context of distributions.[5] The T-matrix formalism allows us to largely circumvent this singular
behavior, and also to work directly in terms of fields which is often more manageable than the
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relatively intricate dyadic Green’s function formalism. For instance, the operator form of the
Green function of a single object in a homogeneous medium can be written:

GGG = ggg+gggtttggg , (6.13)

where ttt is the isolated particle (or 1-body) T-matrix operator, and ggg is the Green function oper-
ator of the homogeneous medium (sometimes called a propagator). In this formalism, the sin-
gular behavior is relegated to the propagator, ggg, leaving the (non-singular) scattering response
due to the object being described by ttt.

Furthermore, when considering excitations outside the scatterer, the homogeneous Green
function, ggg to the right of the ttt operator acting on the sources generates the incident field, while
the ggg to the left of it generates the scattered field.[24] In the partial wave basis, ttt then truly
takes the form of a matrix, henceforth denoted, t, that relates the incident field coefficients to
the scattered field coefficients:

f = ta , (6.14)

where a and f are column matrices composed respectively of the incident field and scattered
field coefficients (cf. eqs.(6.11 and (6.12)).[30] The 1-body T-matrix, t, in this expression is
now truly a matrix relating field coefficients of partial wave field decompositions.

This T-matrix formalism can be extended to include systems containing N particles. The
system Green function can be written,

GGG = ggg+ggg

(
N

∑
j=1

TTT ( j)

)
ggg , (6.15)

where the multiple-scattering (or N-body) T-matrix operators, TTT ( j), are associated with each
particle and which incorporates all the multiple-scattering effects due to the presence of the
N− 1 other particles in the system. Passing once again to a partial wave field description, the
multiple-scattering T-matrix, T ( j), generates the field scattered by each particle in terms of the
field incident on the system:

f ( j) = T ( j)a( j) , (6.16)

where a( j) indicates the incident field developed on a coordinate system centered on the jth

particle. All multiple-scattering phenomenon and some rather subtle technical difficulties have
all been incorporated into the definition of T ( j), but nowadays they can be calculated rather
readily for systems with a finite number of particles starting from the 1-body T-matrices, t( j),
of the individual particles.[30]

The number of particles in a grating problem is infinite (from the ideal mathematical
standpoint), which given their physical content would render exact calculations of T ( j) im-
possible. Nevertheless, the fact that the system is identical when viewed from any lattice site
allows the T ( j) matrices to be calculated as a lattice sum as we shall see in section 6.3.3. We
first rapidly review below our notation and terminology for lattices.

6.3.2 Direct and reciprocal lattices

A lattice, Λ, of dimension dΛ, is invariant under a coordinate system translation along any
vector, rrr jjj, that can be expressed

rrr jjj =
dΛ

∑
i=1

jiaaai , (6.17)
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where aaai are the primitive lattice vectors, and jjj ≡ ( j1, ..., jdΛ
) is a shorthand notation for a set

of dΛ relative integers, ji ∈Z. In order to diminish the number of subscripts, we will sometimes
employ an alternative notation for the primitive lattice vectors: aaa ≡≡≡ aaa1, bbb ≡≡≡ aaa2, and ccc ≡≡≡ aaa3.
It also proves convenient to define the x and y axis of the system so that the primitive lattice
vectors can be expressed: aaa = (a,0,0), bbb = (bx,by,0), and ccc = (cx,cy,cz).

When dΛ = 3, the rrr jjj ensemble defines a crystalline type lattice, henceforth denoted (L), as
frequently encountered in photonic crystals and “meta-materials”. A two-dimensional grating,
or mono-layer lattice (ML), like that of figure 6.1, occurs when the system invariance only
occurs for 2D displacements of rrr jjj = jaaaa+ jbbbb. Finally, linear chains (C) are only invariant with
respect to translations of rrr j = jaaa.

The reciprocal lattice, Λ∗, is defined in terms of lattice ‘wave-vectors’, pppggg, defined in
terms of the primitive reciprocal lattice vectors, ãaai:

pppggg = 2π

dΛ

∑
i=1

giãaai , (6.18)

where gi ∈ Z. The primitive reciprocal vectors, ãaa j, are defined such that their scalar products
with respect to aaa j satisfy:

aaai · ãaa j = δi j i, j = 1, ...,dΛ . (6.19)

From eqs.(6.17) (6.18) and (6.19), one readily finds that the reciprocal lattice vectors, pppggg, of
eq.(6.18), have the property

rrr jjj · pppggg = 2πN , (6.20)

where N is some integer (which results in exp
(
irrr jjj · pppggg

)
= 1 for all rrr jjj and pppggg).

The unit cell “volume”, A , appears repeatedly in theories of particulate lattices. For
lattice dimensions of dΛ = 1, 2, and 3, the corresponding A1,2,3 is given by:

A1 = |aaa| dΛ = 1
A2 = |aaa×××bbb| dΛ = 2
A3 = |(aaa×××bbb) · ccc| dΛ = 3

, (6.21)

with dimensions of “length” for dΛ = 1, “area” for dΛ = 2 and “volume” for dΛ = 3. The
corresponding “volume” of the reciprocal space lattice sites are given by A −1.

6.3.3 Grating T-matrices

Each site of a lattice is identical to all the others so that the multiple scattering T-matrices of
eq.(6.16) are all equal, i.e. T ( j) = T . The scattering coefficients f ( j) are then given by:

f ( j) = Ta( j) . (6.22)

The trouble with this equation is that the coefficients f ( j) and a( j) are expressed on localized
partial wave basis, but the long range nature of scattered fields would require the T -matrices to
act on very high multipole orders in order to account for these long-rang interactions.

Since manipulating high multipole orders is numerically inefficient, one considerably
simplifies this problem by only calculating the multiple-scattering T -matrices for incident fields
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satisfying a quasi-periodic condition. Quasi-periodicity can be viewed as requiring the partial-
wave decomposition of the incident field on each lattice site, rrr jjj, to satisfy,

a( j) = eiβββ ·rrr jjja , (6.23)

where ‘a’ corresponds to the incident field coefficients at the origin, and βββ , the ‘on-shell’ quasi-
periodicity vector. The term ‘on-shell’ indicates that the quasi-periodic vector satisfy |βββ | = k,
and although this considerably restricts the type of incident fields (and modes) that one can
treat, it does correspond to many situations of physical interest including both homogeneous
and inhomogeneous plane-waves incident on diffraction gratings.

The quasi-periodic condition can be viewed as a partial Fourier transform description in
that the overall field behavior is of an oscillatory nature, while the quasi-periodic T-matrix,
Tβββ , describes local-field perturbations due to the presence of the particles. Consequently, one
expects the Tβββ matrices to be well approximated on a truncated (i.e. finite) partial-wave basis
(similar to the behavior of the isolated particle T-matrices[30]). The quasi-periodic condition
allows the Foldy-Lax equations for the multiple-scattering T-matrices to take the form:

Tβββ = t + tΩβββ Tβββ , (6.24)

where the Ωβββ matrix designates a quasi-periodic lattice sum of the irregular translation-addition
matrices:

Ωβββ (k,aaai≤d) = ∑
rrr jjj∈Λ

rrr jjj 6=000

eiβββ ·rrr jjjH
(
krrr jjj
)
. (6.25)

The analytical properties of the irregular translation-addition matrix, H (xxx), are described in
section 6.8.3 where one also gives expressions for its matrix elements.

The exclusion of the ‘origin’ lattice site, rrr jjj = 000, from the sum in Ωβββ has a physical
significance in that it accounts for propagation of the light scattered by all the other particles
in the lattice onto the particle at the origin (the light ‘scattered’ by the particle onto itself has
already been included in the individual T-matrix, t). One finds in section 6.8.3 that each matrix
element of the translation-addition matrix, H

(
krrr jjj
)
, can be written:[

H
(
krrr jjj
)]

p,q;p′,q′ = ∑
l,m

Cl,m
(

p,q; p′,q′
)

hl
(
kr jjj
)

Yl,m
(
r̂rr jjj
)
, (6.26)

where the sum over the multipole indices, (l,m) is finite. Expressions for the Cl,m (p,q; p′,q′)
coefficients[31, 5, 29] are given in the section 6.8. Inserting eq.(6.26) into eq.(6.25) and rear-
ranging the summations, we find[

Ωβββ

]
p,q;p′,q′ = ∑

l,m
Cl,m

(
p,q; p′,q′

)
∑

rrr jjj∈Λ

rrr jjj 6=000

eiβββ ·rrr jjjhl
(
kr jjj
)

Yl,m
(
r̂rr jjj
)

≡∑
l,m

Cl,m
(

p,q; p′,q′
)

Sl,m (k,βββ ) . (6.27)

where we have defined Sl,m (k,βββ ) as a Hankel function lattice sum such that:

Sn,m (k,βββ )≡ SH
n,m (k,βββ )≡ ∑

rrr jjj∈Λ

rrr jjj 6=000

eiβββ ·rrr jjjHn,m
(
krrr jjj
)
. (6.28)
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We recall that Hn,m (xxx) was defined in eq.(6.6) as a partial wave of the spherical Hankel function
type.

It will occasionally prove useful to calculate the analogous lattice sums over the partial
waves of the Bessel or Neumann types, denoted respectively, SJ

n,m (k,βββ ) and SY
n,m (k,βββ ). Since

we will principally be concerned with the partial wave lattice sums of the Hankel function type,
Sn,m without a superscript will always indicate a lattice sum of the Hankel function type. We
also remark that the exclusion of the origin position from the lattice sum is important from a
mathematical standpoint since the Hankel functions have an essential singularity at their origin.

The solution to eq.(6.24) for the multiple-scattering T-matrix is readily formulated in
terms of matrix inversion:

Tβββ =
[
t−1−Ωβββ

]−1
. (6.29)

Once the Tβββ matrix is known, the scattering field coefficients for any particle, j, in the lattice is
the same as the coefficients at the origin but multiplied by a eiβββ ·rrr jjj phase factor. In the matrix
notation, this is simply expressed:

f ( j)
βββ

= eiβββ ·rrr jjj fβββ = eiβββ ·rrr jjjTβββ a , (6.30)

where a is the column matrix composed of the incident field coefficients developed around the
origin.

6.3.3.1 Far-fields

The field ‘scattered’ by the grating (i.e. ‘transmitted’ and ‘reflected’ diffraction orders) can be
determined by inserting eq.(6.30) into eq.(6.12) wherein the scattered field takes the form of
a lattice sum of the transverse-outgoing-vector partial waves, ΨΨΨH ,q,p, described in eq.(6.9) of
section 6.2:

EEEs,Λ (rrr) = E ∑
rrr jjj∈Λ

eiβββ ·rrr jjjΨΨΨH

(
krrr jjj
)

fβββ

≡ E ∑
q=1,2

∞

∑
p=1

[
∑

rrr jjj∈Λ

ΨΨΨH ,q,p
(
krrr jjj
)

eiβββ ·rrr jjj

][
fβββ

]
q,p . (6.31)

We will see in eq.(6.62) of section 6.4.4 that for each multipole order, p = 1, ...∞, and
transverse wave type q = 1,2; the term in brackets can be re-expressed as an infinite sum of
plane waves. Only a finite subset of these waves are of the propagative type however (the rest
are all of an evanescent nature). Consequently, the multipole summation of eq.(6.31) allows
one to calculate the efficiency of each reflected or transmitted order in the far field.

6.3.3.2 Near-fields

Another quantity of physical interest is that of near fields in a particulate grating (non-linear
effects, SERS, etc.). The plane wave expansion discussed above for far fields could be invoked
in principal, but for near fields one must also calculate the (infinite) evanescent orders that one
could neglect in the far field. The convergence of the plane wave expansion will generally be
poor near the grating, which renders this approach unattractive.
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As long as the incident field is quasi-periodic with respect to the grating, one needs only
to determine the near fields in a single Brillouin zone around a given lattice site (the site at
the origin being the most practical). In this case, it seems clear that the localized multipolar
field developments are well adapted to the development of the local field in the Brillouin zone.
In multiple scattering theory, the fβββ coefficients give the field scattered by the particle at the
origin, while the excitation field corresponds to the field at that was ‘incident’ on this particle,
i.e. the superposition of the field incident on the grating and the field scattered by all the other
particles in the system. This excitation field can be developed on the regular partial waves and
its coefficients, eβββ , related to the scattering coefficients via the 1-body T-matrix via the relation:

eβββ = t−1 fβββ . (6.32)

The total field in the Brillouin zone is simply a superposition of the scattered and excitation
field:

EEE(B.z.)
t (rrr) = E

(
ΨΨΨH (krrr) fβββ +ΨΨΨJ (krrr) t−1 fβββ

)
≡ E ∑

q=1,2

∞

∑
p=1

[
ΨΨΨH ,q,p (krrr) fq,p +ΨΨΨJ ,q,p (krrr)eq,p

]
. (6.33)

6.3.3.3 Propagating modes

The response of a grating or chain of particles will often be dominated by the excitation of
nearly guided modes in the structure (commonly referred to as leaky modes). Unlike, lossless
3D lattices which have true propagating modes described by real values of βββ , the leaky modes
in a grating or chain of particles are so-named because they generally radiate energy to the far
field even in the absence of intrinsic losses. Consequently, leaky modes can be described by
a complex valued βββ -vector (or complex frequency). The determination of a leaky mode thus
involves searching for a complex pole in the determinant of the multiple-scattering T-matrix,∣∣Tβββ

∣∣.
Since matrix inversions are numerically expensive, one may prefer to look for zero eigen-

vectors, να , of the matrix
[
t−1−Ωβββ α

]
, i.e.[

t−1−Ωβββ α

]
να = 0 . (6.34)

However, the search for zero eigenvalues can limit the implantation of complex analysis meth-
ods that have proven useful in determining the position of poles in the complex plane.

The Floquet mode associated with the eigenvector, να , can be constructed from eq.(6.34)
coupled with the plane-wave development the terms in eigenvector, να :

EEE(F.m.)
α (rrr) = E ∑

q=1,2

∞

∑
p=1

[
∑

rrr jjj∈Λ

ΨΨΨH ,q,p
(
krrr jjj
)

eiβββ α ·rrr jjj

]
[να ]q,p . (6.35)

Before finishing this section, it should be pointed out that matrix inversion solutions to
the multiple scattering problem (like that given in eq.(6.29)) were disregarded for a long time
in favor of iterative solutions to the T-matrix or underlying linear system of equations. The
reason for this is that the matrix

[
t−1−Ωβββ α

]
is generally ill-conditioned. This difficulty can be

generally overcome by analytical matrix balancing as described in the next section 6.3.4.
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6.3.4 Matrix balancing

Although not necessary from a formal standpoint, analytical matrix balancing improves the con-
ditioning of the matrices occurring in multiple-scattering calculations for both matrix inversion
and eigenvalue resolution.[30] Analytical matrix balancing can be achieved by multiplying a
matrix from both the right and left by diagonal matrices, [ξ ] and [ψ]−1, whose matrix elements
are given by:

[ψ]q,q′,p,p′ = δq,q′δp,p′ψn(kR) , [ξ ]q,q′,p,p′ = δq,q′δp,p′ξn(kR) , (6.36)

where ψn(kR) and ξn(kR) are respectively the regular and irregular spherical Ricatti-Bessel
functions (cf. 6.168) and R the radius of the minimal circumscribing sphere surrounding the
scatterers.

Matrix balancing can be readily formulated by defining normalized incident and scattering
coefficients, a and f respectively such that:

a≡ [ψ]a , f βββ ≡ [ξ ] fβββ . (6.37)

The associated normalized or ‘balanced’ matrices are defined[30]:

t ≡ [ξ ] t [ψ]−1 , T βββ ≡ [ξ ]Tβββ [ψ]−1 , Ωβββ ≡ [ψ]Ωβββ [ξ ]
−1 . (6.38)

The above definitions were chosen such that eqs.(6.22) and (6.24) respectively take the
form:

f ( j) ≡ T βββ a( j) , (6.39)

and
T βββ a = ta+ tΩβββ T βββ a . (6.40)

The normalized T-matrix, T , is then obtained via the generally well-conditioned matrix inver-
sion:

T βββ =
[
t−1−Ωβββ

]−1
. (6.41)

Since we generally want the non-normalized T-matrix for applications, we reconstruct, Tβββ via a
final multiplication by our diagonal matrices:

Tβββ = [ξ ]−1 T βββ [ψ] . (6.42)

6.4 Mathematical relations for lattice sums

This section is dedicated to reviewing the mathematical relations that allow one to treat lattice
sums for lattices of dimensions dΛ = 1,2,3 (i.e. particulate chains, gratings, and crystals). They
will notably allow us to evaluate the lattice sum in eq.(6.27) which is used to calculate far-field
response from gratings. These relations were derived (and often rederived) in many places, and
we refer the reader to refs.[15, 16, 19, 20, 8] for additional details and perspectives.

The most difficult mathematical problem to address will be the evaluation of Hankel func-
tion lattice sum, SH

n,m that was introduced in eq.(6.28) for the calculation of the Ωβββ matrix of
eq.(6.27).

SH
n,m ≡ ∑

rrr j∈Λ

rrr j 6=000

eiβββ ·rrr jjjHn,m
(
krrr jjj
)

(6.43)

215



6.12 Gratings: Theory and Numeric Applications, 2012

When not otherwise specified, partial waves lattice sums will always be assumed to be of the
Hankel functions type. The underlying reason for this appears in the translation-addition where
Hankel functions allow one to re-express waves scattered by a given lattice site as waves inci-
dent on a different lattice site.

We will occasionally consider Bessel and Neumann types of scalar partial waves:

SY
n,m ≡ ∑

rrr j∈Λ

rrr j 6=000

eiβββ ·rrr jjjYn,m
(
krrr jjj
)

SJ
n,m ≡ ∑

rrr j∈Λ

rrr j 6=000

eiβββ ·rrr jjjJn,m
(
krrr jjj
)
, (6.44)

The interest of these sums in part is due to the fact that SH
n,m = SJ

n,m+ iSY
n,m but also because SJ

n,m
can potentially prove useful in certain applications. We will see that the relations developed in
this chapter permit the SJ

n,m sum to be evaluated in closed form, but unfortunately the Neumann
partial wave sum, SY

n,m, appears to be as difficult to evaluate as the Hankel partial wave sum,
and a closed form expression does not appear to be possible.

6.4.1 Lattice reduction

Although Ewald sums are a time honored technique in solid state physics, a considerable
amount of effort has recently been devoted to what has come to be called Lattice reduction
techniques. The basic idea turns around the fact that lattice sums tend to be more practical for
dΛ = 1 and dΛ = 3 than for the grating dimension of dΛ = 2.

First one chooses a coordinate system such that a preferred axis (like the z axis) will
along a given lattice vector. For example aaa = (0,0,a), and bbb = (0,b2,b1). With this basis the
2D Mono-Layer lattice sum, SML

n,m can then be written expressed as a superposition of a Chain
sum, SC

n,m, containing the origin (z-axis), and a superposition of all the chain sums ‘above’ the
central chain (z>0), denoted SML+

n,m or ‘below’ the central chain, SML−
n,m (z<0). The central chain

can be readily be evaluated using one of the techniques described in this chapter, while the
integral expression for Hankel functions described in section 6.4.4 allows one to derive efficient
expressions for SML+

n,m and SML−
n,m .

Lattice reduction can also be applied in the reverse direction, with one expressing the
3D crystalline lattice sum, SL

n,m, as the superposition of a monolayer sum in the z = 0 plane,
with sums of all monolayers with z > 0, SL+

n,m and all monolayers with z < 0, SL−
n,m. There exists

efficient techniques for calculating the crystalline lattice sum, SL
n,m while one can determine

efficient expressions for SL,+
n,m and SL,−

n,m using again the integral expressions of section 6.4.4. In
this reverse lattice sum method, the monolayer lattice sum is expressed:

SML
n,m = SL

n,m−SML,+
n,m −SL,−

n,m . (6.45)

One should that the choice of orientation of the coordinate axis will not be the same in general
for different lattice sum techniques, but these differences can be be compensated for by using
the rotation matrices of section 6.8.4

Lattice reduction is based on the idea that it can prove numerically efficient to carry out
lattice sums for a lattice dimensions other than that desired. To construct a 3D periodic media,
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we rotate the 2D lattice of the preceding section back to an orientation in the xOy plane with
aaa = (a,0,0), and bbb = (b1,b2,0), and now ccc = (0,c2,c3). The quasi-periodic vector is given by
βββ = (β1,β2,β3). The 3D lattice sum can then be written:

SL
n,m = SML

n,m +SL+
n,m +SL−

n,m . (6.46)

The SL+
n,m denotes all the z > 0 planes, while SL−

n,m sums all the z < 0 planes.
The lattice reduction technique breaks the sum down into elements which tend to have

a decreasing difficulties for divergence. An interest of the lattice reduction technique is that it
can be adapted to partial lattices. For instance, large but finite chains, a finite number of infinite
chains or finally a finite number of infinite planes.

6.4.2 Plane wave expansion

The expansion of a plane wave in terms of partial waves allows one to transform between partial
wave and Fourier transforms. It reads:

eikkk·rrr = 4π

∞

∑
ν=0

µ=ν

∑
µ=−ν

iν jν (kr)Y ∗ν ,µ
(

k̂kk
)

Yν ,µ (r̂rr)

=
∞

∑
ν=0

µ=ν

∑
µ=−ν

pν ,µ Ψν ,µ (rrr) , (6.47)

where Ψν ,µ (rrr) are the scalar partial wave functions discussed in section 6.2, and pν ,µ the
coefficients in the development of a scalar plane wave on a partial wave basis i.e. :

Ψν ,µ (rrr)≡ jν (kr)Yν ,µ (r̂rr) , pn,m = 4πinY ∗n,m
(

k̂kk
)
. (6.48)

One can produce an integral expression of jn (kr)Yn,m (r̂rr) by multiplying both sides of

eq.(6.47) by Yn,m

(
k̂kk
)

and integrating over all directions of k̂kk.

∫
dΩkkkeikkk·rrrYn,m

(
k̂kk
)
= 4π

∫
dΩkkk

∞

∑
ν=0

µ=ν

∑
µ=−ν

iν jν (kr)Yν ,µ (r̂rr)Y ∗ν ,µ
(

k̂kk
)

Yn,m

(
k̂kk
)

= 4πin jn (kr)Yn,m (r̂rr) . (6.49)

We have thus found that regular partial waves are an angular Fourier transform of the spherical
harmonics:

ΨJ ,n,m ≡ jn (kr)Yn,m (r̂rr) =
1

4πin

∫
dΩkkkeikkk·rrrYn,m

(
k̂kk
)
. (6.50)

Likewise, the transverse regular partial waves, ΨΨΨJ can be expressed as an angular Fourier
transform of the vector spherical harmonics:

ΨΨΨJ ,q=1,n,m(krrr) =
i−n

4π

∫
dΩkkk eikkk···rrrXXXn,m(k̂kk)

ΨΨΨJ ,q=2,n,m(krrr) =
i1−n

4π

∫
dΩkkkeikkk···rrrZZZn,m(̂kkk) . (6.51)
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6.4.3 Poisson summation formula

The Poisson summation formula is a crucial mathematical tool for evaluating lattice sums. It
allows one to pass from a sum over the real lattice vectors to a sum over the reciprocal lattice
vectors. Formally, it can be written:

∞

∑
rrr jjj∈Λ

eikkk·rrr jjj =
(2π)dΛ

AdΛ

∑
pppggg∈Λ∗

δ
(
kkk− pppggg

)
, (6.52)

where AdΛ
is the “volume” of the reciprocal lattice cell. Since long and short range interactions

can both be strong for lattice problems the Poisson summation formula often does not directly
accelerate the lattice sum, but it nevertheless proves invaluable for a number of useful that we
will derive in the rest of this chapter.

For the 1-D sum in eq.(6.90), this can be written:
∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

a

∞

∑
g=−∞

δ

(
kz +βz−

2π

a
g
)

. (6.53)

We then write this relation in a dimensionless form:
∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

kain
∞

∑
g=−∞

δ

(
kz

k
+

βz

k
−g

2π

ka

)
. (6.54)

6.4.4 Integral expressions for outgoing partial waves

The Weyl identity expressed the Hankel function of order 0 as an integral of plane waves:

h0 (kr) =
1

2πk

∞∫∫
−∞

dkxdky
exp(±ikkk ··· rrr)

kz

=
1

2πk

∞∫∫
−∞

dkxdky
exp [±i(kxx+ ikyy+ ikzz)]

kz
z ≷ 0 , (6.55)

where the plus sign is taken for z > 0 and the minus sign is used when z < 0. The kz component
is fixed by the constraint that k2

x + k2
y + k2

z = k2, namely kz =
√

k2− k2
x − k2

y . It is interesting to
remark that the spherical Bessel function is a superposition of plane waves that are constrained
to satisfy ‖kkk‖ = k. Since the reciprocal space integration in eq.(6.55) is carried out in the
xOy plane, it is convenient to define a specific symbol for the wavevector in the xOy plane,
KKK = kxx̂xx+ kyŷyy, and the full wavevector is then, kkk = KKK + kzẑzz. It is also convenient to define
dimensionless or normalized quantities:

K ≡ |KKK|/k γz ≡ kz/k =
√

1−K2
. (6.56)

If we take the position vector rrr in eq.(6.55) to lie along the z axis, rrr === rẑzz, then we can
integrate over the azimuthal angle to obtain a single integral expression for Hankel functions
that can be used in lattice sums:

h0 (kr) =
∫

∞

0
dKK

exp [±iγzkr]
γz

z ≷ 0 . (6.57)
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Wittmann pointed out that the above Weyl identity of eq.(6.55) can be generalized to all
partial waves of the Hankel function type[33] :

ΨH ,n,m ≡ hn (kr)Yn,m(r̂rr)

=
i−n

2π

∞∫∫
−∞

dkxdky
(
kx + iky

)m
P̃m

n (γz)
exp(±i(kxx+ kyy+ kzz))

γz
z ≷ 0 .

(6.58)

If we take rrr again to lie along the z axis, we find an integral expression for spherical Hankel
functions:

hn (kr) = i−n
∫

∞

0
dKK Pn (γz)

exp [iγzkr]
γz

. (6.59)

The integral relation of eq.(6.58) can also be extended to the outgoing vector partial
waves:

ΨΨΨH ,q=1,n,m(krrr) = i−n

2π

∞∫∫
−∞

dkxdky
exp(±i(kxx+kyy+kzz))

γz
XXXn,m(k̂kk)

ΨΨΨH ,q=2,n,m(krrr) = i1−n

2π

∞∫∫
−∞

dkxdky
exp(±i(kxx+kyy+kzz))

γz
ZZZn,m(̂kkk)

z ≷ 0 . (6.60)

The Poisson sum rule allows one to express quasi-periodic 2D lattice sum in terms of 2D
reciprocal lattice vectors. For the scalar partial waves, one has:

∑
rrr jjj∈Λ

exp
(
iβββ ··· rrr jjj

)
ΨH ,n,m

(
kr jjj
)
= ∑

pppggg∈Λ∗

2πi−n

kk+ggg,zA2
Yn,m

(
k̂kk
±
ggg

)
exp
(
ikkk±ggg · rrr

)
z ≷ 0 , (6.61)

while for the vector partial waves,

∑
rrr jjj∈Λ

exp
(
iβββ ··· rrr jjj

)
ΨΨΨH ,1,n,m(krrr jjj) = ∑

pppggg∈Λ∗

2πi−n

kk+ggg,zA2
XXXn,m

(
k̂kk
±
ggg

)
exp
(
ikkk±ggg · rrr

)
∑

rrr jjj∈Λ

exp
(
iβββ ··· rrr jjj

)
ΨΨΨH ,2,n,m(krrr jjj) = ∑

pppggg∈Λ∗

2πi1−n

kk+ggg,zA2
ZZZn,m

(
k̂kk
±
ggg

)
exp
(
ikkk±ggg · rrr

)
z ≷ 0 . (6.62)

In the partial wave lattice sums of eqs.(6.61) and (6.62), the wavevector kkk±ggg is given by:

kkk±ggg ≡

(
βββ ‖+ pppggg± ẑzz

√
k2−

(
βββ ‖+ pppggg

)2
)

, (6.63)

and k+gggz
is its z component:

k+ggg,z ≡ kkk±ggg · ẑzz =
√

k2−
(

βββ ‖+ pppggg

)2
. (6.64)

One remarks that for a real Bloch vector βββ ‖, the wavevector kkk±ggg is real i.e. propagative in nature
only for those lattice vectors for which

k >
∣∣∣∣∣∣βββ ‖+ pppggg

∣∣∣∣∣∣ . (6.65)
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6.4.5 Partial wave rotation

Let us consider once again a row matrix, Ψt
J ,Y ,H , composed of one of the types of partial

waves in eq.(6.5). The fact that the choice of the orientation of the coordinate system is arbitrary
imposes transformation relations amongst the partial waves. Let us consider a position M given
by the vector rrr in our chosen coordinate system. We next consider another coordinate system
with the same origin, but rotated by the 3 Euler angles, α , β , and γ in which the same point M
is now designated by a vector rrr′(n.b. |rrr′| = |rrr| = r). The linear relationship between the row
matrix in these 2 coordinate systems is then:

Ψ
t (rrr) = Ψ

t (rrr′)D (α,β ,γ) . (6.66)

If the rotated coordinate systems is taken such that rrr′ lies along the z axis in the rotated coordi-
nate n this relation takes the form:

Ψ
t (rrr) = Ψ

t (rẑzz) D (φ ,θ ,0) . (6.67)

In component form this reads for Hankel function sums:

hn (kr)Yn,m (r̂rr) = hn (kr)Yn0 (0,0)Dn,0;n,m (φr̂rr,θr̂rr,0)

=

√
2n+1

4π
hn (kr)Dn,0;n,m (φr̂rr,θr̂rr,0) , (6.68)

where we used eq.(6.75) for an expression of the Yn0 (0,0).

6.5 Numerical Examples

This section will be expanded considerably in the second edition.

6.5.1 Far and near field response from gratings

As discussed in section 6.3, once the lattice sums have been determined for all the Ωβββ matrix
elements, and the lattice T-matrix of eq.(6.29) obtained, one has ready access to both the far
and near field response of the system. However, the quasi-periodic lattice for all the multipole
orders must be calculated anew whenever one looks for response to a different quasi-periodicity
vector, βββ or wavenumber k (i.e. frequency).

6.5.2 Modes for particulate chains

There is considerable interest in calculating and characterizing the ‘propagating’ modes of pe-
riodic chains, gratings, and finite stacks of particulate gratings. A major difficulty is that these
systems are open, so propagating ‘modes’ are necessarily lossy which entails that they don’t
exist for real values of frequency and quasi-periodicity vector βββ . This situation was in fact
already present in the T-matrices of the individual particles which have do have poles at any
real frequencies, but one can find poles at complex frequencies. For planar surfaces, Greffet
has recently argued[2] that the Leaky-modes can be described by letting either frequency or
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wavevector be described by a complex number. This idea has recently been employed by sev-
eral authors for calculating modes in infinite particulate chains where the component of βββ along
the chain axis is allowed to be a complex number.[23, 4, 6, 11, 12] There are still some technical
issues under discussion considering modes in gratings due to ambiguities in the best manner to
define a complex propagation vector in the grating plane.[9]. This issue will be treated in more
depth in the second edition.

Typically, one has looked for propagating modes in particulate arrays of sub-wavelength
particles metallic particles. There is however an increased in interest in high index dielectrics.
Due to the complexity of the full multipole approach, most works searches for modes in the
complex plane have adopted what amounts to be a electric dipole approximation to eq.(6.29).[23]
We have recently argued that electric dipole is insufficient in the presence of strong interactions
that are provoked by resonances.[23] These results and conclusions are reviewed here.

We adopt the same parameters for a plasmonic chain as Conforti and Guasoni.[6] Namely,
we consider an infinite chain of identical 50nm diameter silver particles separated by d = 75nm
(center-to-center). The system is immersed in a non-magnetic medium with relative permittivity
ε = 2.25 (n = 1.5).

The figures are plotted with normalized frequencies and wave-vectors:

ω ≡ ωd
2πc

=
d
λv

β ≡ βd
2π

(6.69)

where λv is the vacuum wavelength. The light line for these parameters is given by ω = β

nmed
.

The dispersion relations of the principal propagating modes calculated in the electric dipole
approximation are plotted in figure 6.2 (dashed curves). They are then compared with fully
converged nmax = 10 calculations of these dispersion relations (solid line) in this same figure
by solving eq.(6.34). The imaginary part of the dispersion relations for dipolar and converged
multipole calculations are given in figure 6.2a).

Figure 6.2: Real and imaginary parts of the dispersion relations in the dipole approximation (dashed curves),
and fully converged multipole calculations with nmax = 10 (full lines). The Longitudinal mode with posi-
tive imaginary part is in cyan(gray) the “T1” mode with positive imaginary part is in blue(black line). The
“T2” transverse mode with negative imaginary part is in orange(gray). reproduced with permission :
http://dx.doi.org/10.1364/JOSAB.29.001012

Figures 6.2a) and 6.2b) merit some commentary. It is immediately clear that the dipole
approximation provides a moderately accurate prediction of dispersion relations only over a
narrow range of frequencies for which the imaginary part of the propagating wavevector is
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rather small, and the real part is near the light line. One should also recall that symmetry
dictates that if a given value of β corresponds to mode at a given frequency, then by symmetry,
−β is also a solution to these equations. For the sake of clarity, these symmetric modes are not
presented in these figures.

Like Conforti and Guasoni[6], we find a transverse mode, labeled “T2” whose imaginary
part of β is opposite in sign with the real part of β . It may prove physically relevant to think of
this T2 mode as a backscattering mode, or to interpret this in terms of negative effective index.
It is interesting to remark that the T2 mode tends toward the edge of the Brillouin zone at low
frequencies. It has recently been argued that these

Our dipole approximation predictions for the longitudinal mode are quite similar to that of
ref.[6] wherein the dipole prediction is that the mode “folds back” before reaching the edge of
the Brillouin zone. The full multipole calculations on the other hand predict that the longitudinal
mode goes to the edge of the Brillouin zone, and that the “fold back” only occurs after it has
gone “beyond” the edge of the Brillouin zone. In our calculations, the “T1” mode is quite close
to the light line, and henceforth rather poorly confined by the plasmon chain so its importance in
applications seems limited. In our calculations, the dipole approximation for the “T1” mode is
quite similar to the multipole solution except that we only found that the full multipole solution
predicted both extremities of the T1 mode to lie on the light line.

Figure 6.3: Normalized extinction is a solid blue (line) and scattering cross section given by a dashed
green line of a silver monomer in terms of frequency (a = 25nm). reproduced with permission :
http://dx.doi.org/10.1364/JOSAB.29.001012

Due to the system design (sub-wavelength resonance particles) one expected to find sig-
nificant guiding of modes appear only in the frequency domains where the scattering cross
section of the individual particles is non-negligible. To illustrate this point, we plot the extinc-
tion and scattering cross section for an individual particle in the chain in figure 6.3. We remark
in particular that near individual particle resonance maxima, all the guided modes of figure 6.2
lie near the light line, and as seen in figure 6.2b) it is here also that their imaginary parts are
smallest. Furthermore, with the exception of the ‘backscattering’ mode T2, all guided modes
apparently cease to exist when one moves sufficiently far away from the scattering resonance
frequency.

The reader has probably remarked some strange behavior of the modes in the electric
dipole approximation at high frequencies. For instance, at around ω̃ = 0.225 a “kink” appears
in the longitudinal mode, and a spurious T2 solution emerges from the light line. We carried
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out mode calculations with various multipole cutoffs and found that such kinks and spurious
solutions were relatively commonplace (at high or low frequencies) when low numbers of mul-
tipoles are used in the simulations and such behavior disappears when higher multipole orders
are used. It is also worth remarking that for high order simulations, the Re[β ] of the modes
terminate at either the light line, or the edge of the Brillouin zone, but modes can terminate at
undiscriminating positions in β space when calculations are carried out at low order.

Figure 6.4: Positive and imaginary parts of the dispersion relations in the Re[β ] > 0 part of the Brillouin zone.
Transverse modes with: Im[β ]> 0 modes are solid blue(black) lines, while that with Im[β ]< 0 is given by a dashed
blue(black) line. Longitudinal modes with Im[β ] > 0 are solid cyan(gray) lines, while those with Im[β ] < 0 is a
dashed cyan(gray) line. reproduced with permission : http://dx.doi.org/10.1364/JOSAB.29.001012

The mode diagrams of figures 6.2a) and 6.2b) were somewhat unconventional since they
did not display symmetric, −β , modes, and allowed the dispersion relation of the longitudinal
mode to move outside the Brillouin zone. A more conventional representation of the dispersion
relations is given in figure 6.4 which includes the symmetric modes, but only displays modes
when Re[β ] has positive values lying within Brillouin zone (here we display only the converged
multipole calculations). Transverse modes with Im[β ]> 0 modes are given by solid blue(black)
lines, while transverse modes with Im[β ]< 0 are dashed dashed blue(black) lines. Longitudinal
modes with Im[β ]> 0 are given by solid cyan(gray) lines while longitudinal modes with nega-
tive Im[β ] are in dashed cyan(gray). It is interesting to note that the longitudinal modes extend
to the positive edge of the Brillouin zone and that the “fold back” only occurs when Im[β ] of the
longitudinal mode is negative. One can also remark that transverse modes, T2, with both posi-
tive and negative Im[β ] exist above the light line, but that their imaginary parts are quite large.
Longitudinal modes above the light line also exist at frequencies below the particle resonance
maximum, but these modes remain quite close to the light line.

6.6 Chain sums

6.6.1 Hankel function chain sums

A periodic chain of wave scattering is defined by a lattice vector aaa, such that there is an elemen-
tary ‘scatterer’ at all positions rrr j i.e.:

rrr j ≡ jaaa j ∈ Z j =−∞, ...−2,−1,0,1,2, ...,∞ . (6.70)
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A chain sum for a quasi-periodicity vector βββ is defined:

SC
n,m (k,a,β ; âaa)≡ SC,H

n,m (k,a,β ; âaa)≡ ∑
j 6=0
j∈Z

Hn,m ( jaaa)ei jaβββ ·âaa , (6.71)

One can remark that the chain sum, SC
n,m, depends on the amplitude of the lattice vector a = |aaa|,

and its direction, and the scalar product between aaa and another vector βββ which we will call
the ‘incident’ or ‘quasi-periodicity’ vector. The chain sum in fact only depends on the scalar
product between βββ and the periodicity vector:

β ≡ βββ · âaa . (6.72)

One remarks that the direction of aaa depends on the orientation of the coordinate system. We
can take advantage of this fact to define the z axis as the direction of aaa such that:

rrr j = jaẑzz , (6.73)

but one must keep in mind that the expression for SC
n,m is reference frame dependent. In this

coordinate system, the chain sum, SC
n,m (k,a,β ; ẑzz), takes the form :

SC
n,m (k,a,β ; ẑzz)≡ ∑

j 6=0
j∈Z

Hn,m ( jaẑzz)eiβββ ·̂zzz ja

= ∑
j 6=0
j∈Z

hn (k | j|a)Yn,m

(
j
| j|

ẑzz
)

eiβa j

= δm,0λn,0

∞

∑
j=1

hn ( jka)
[
ei jβa +(−1)n e−i jβa

]
, (6.74)

where we used the fact that only the m = 0 scalar spherical harmonics are non null at θ = 0,π:

Yn,m (0,0) = δm,0λn,0 =

√
2n+1

4π
Yn,0 (π,0) = δm,0 (−)nYn,m (0,0) . (6.75)

The analytical expressions for the first few Hankel function are:

h0 (x) =−
i
x

eix

h1 (x) = eix
(
−1
x
− i

x2

)
h2 (x) = eix

(
i
x
− 3

x2 −
3i
x3

)
, (6.76)

which are readily obtained from the general analytic expression for Hankel functions of arbitrary
order:

hn (x) = (−i)n+1
n

∑
s=0

is

2ss!
(n+ s)!
(n− s)!

eix

xs+1 . (6.77)
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6.6.2 Integral technique for Hankel lattice sums

Generalizing the Weyl integral to produce an integral expression for spherical Hankel functions
gives us the integral:

hn (kr) =
1
in

∫
∞

0
dK K Pn (kz/k)

exp(iγzkr)
γz

, (6.78)

where we recall that kz =
√

k2−K2 and K =
√

k2
x − k2

y is the wavevector component in the xOy

plane. In the last line we defined the dimensionless quantities, K ≡ K/k and γz =

√
1−K2 so

that this integral could be calculated using dimensionless variables.
Now if we actually try to evaluate this integral, we will have numerical problems when

we go past the point where kz = 0. Since the singularity coming from the kz denominator lies
just above the real axis, we can analytically continue the integration into the fourth quadrant
of the complex plane. Any angle will do as long as the resulting line integral is sufficiently far
from the positive real axis or the negative imaginary axis. We will generally take an angle of
45◦ as a reasonable compromise. We will find that the integrand will decrease exponentially for
large |K| in the complex plane so that we don’t have much problem with the integral extending
to infinity.

Thanks to the integral expression for Hankel functions of eq.(6.78), we are now ready to
treat an infinite chain sum for a chain oriented along the z axis:

SC
n,m (k,a,β ; ẑzz) = ∑

j∈Z∗
exp(iβa j)hn (k | j|a)Yn,m

(
j
| j|

ẑzz
)

=
∞

∑
j=1

exp(iβa j)hn (ka j)Yn,m (0,0)

+
∞

∑
j=1

exp(−iβa j)hn (ka j)Yn,m (π,0)

= δm,0

√
2n+1

4π

[
∞

∑
j=1

exp(iβa j)hn (ka j)+(−)n
∞

∑
j=1

exp(−iβa j)hn (ka j)

]
(6.79)

where we used:

Yn,m (0,0) = δm,0

√
2n+1

4π
Pn (1) , Yn,m (π,0) = δm,0

√
2n+1

4π
Pn (−1) , (6.80)

and
Pn (1) = 1 , Pn (−1) = (−1)n . (6.81)

Using the integral relation of eq.(6.78), we have:

SC
n,m (k,a,β ; ẑzz) = δm,0

√
2n+1

4π

1
ink

∫
∞

0
dK K

Pn (kz/k)
kz

×

[
∞

∑
j=1

exp [i(kz +β ) jd]+ (−)n
∞

∑
j=1

exp [i(kz−β ) ja]

]
. (6.82)
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We have finally an integral expression for the chain sums:

SC
n,m (k,a,β ; ẑzz) = ∑

j∈Z∗
exp(iβ jd)hn

(
kr j
)

Yn,m
(
r̂rr j
)

= δm,0

√
2n+1

4π

1
in

∫
∞

0
dK K

Pn (γz)

γz

×

 1

exp
[
−i
(

kz +β

)
ka
]
−1

+
(−)n

exp
[
−i
(

kz−β

)
ka
]
−1

 . (6.83)

6.6.3 Polylog approach to Hankel chain sums

Inspection of eqs.(6.79) and (6.77) shows that all terms in the chain sum can be expressed in
terms of polylogarithm functions which are defined by[1]:

Lin (z) =
∞

∑
j=1

z j

jn . (6.84)

The chain sum expressed in terms of polylogarithms is then:

SC
n,m (k,a,β ; ẑzz) = δm,0

√
2n+1

4π

n

∑
s=0

[(
(−i)n+1 is

2ss!
(n+ s)!
(n− s)!

)
×(Lis+1 exp [i(k+β )a]+ (−)n Lis+1 exp [i(k−β )a])

(ka)s+1

]
.

(6.85)

This was the chain sum for outgoing Hankel functions, but we will also sometimes be interested
in incoming Hankel functions, or Bessel functions of the fourth kind. These are expressed:

h(4)n (x)≡ h−n (x) = jn (x)− iyn (x) , (6.86)

and their chain sums are:

SC
n,m (k,a,β ; ẑzz) = δm,0

√
2n+1

4π

n

∑
s=0

[(
(−i)n+1 is

2ss!
(n+ s)!
(n− s)!

)
×(Lis+1 exp [−i(k−β )a]+ (−)n Lis+1 exp [−i(k+β )a])

(ka)s+1

]
.

(6.87)

6.6.4 Bessel function chain sums

Although fully analytic expressions for Hankel function chain and lattice sums do not seem to
exist currently, the Bessel functions lattice and chain sums do have analytic expressions. These
Bessel function sums are useful in their own right for certain applications:
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SC,J
n (k,a,β ; ẑzz) =

∞

∑
j=−∞, j 6=0

Yn,m
(
r̂rr j
)

jn ( jka)ei jβa

=
∞

∑
j=−∞

Yn,m
(
r̂rr j
)

jn ( jka)ei jβa−
∞

∑
j=−∞

Y0,0 (r̂rr0) j0 ( jka)

=
∞

∑
j=−∞

Yn,m
(
r̂rr j
)

jn ( jka)ei jβa− 1√
4π

δn,0 . (6.88)

Using the integral expression for Yn,m
(
r̂rr j
)

jn ( jka) as an integral over the directions a wavenum-
ber k̂kk as derived in eq.(6.50) allows us to write:

jn
(
kR j
)

Yn,m
(
r̂rr j
)

eiβββ ·(̂zzz ja) =
1

4πin

∫
Yn,m

(
k̂kk
)

eiβββ ·̂zzz jaeikkk·̂zzz jadΩkkk . (6.89)

The lattice sum of the Bessel type then can be written:

SC,J
n (k,a,β ; ẑzz) =

1
4πin

∫
Yn,m

(
k̂kk
)[ ∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja)

]
dΩkkk−

1√
4π

δn,0 . (6.90)

At this point, one invokes the Poisson summation formula which can be written formally as:

∞

∑
rrr jjj∈Λ

eikkk·rrr j =
(2π)dΛ

A ∑
pppg∈Λ∗

δ
(
kkk− pppg

)
, (6.91)

where A is the “volume” of the reciprocal cell. For the 1-D sum in eq.(6.90), this can be
written:

∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

a

∞

∑
g=−∞

δ

(
kz +βz−

2π

a
g
)

. (6.92)

We then write this relation in a dimensionless form:
∞

∑
j=−∞

ei(kkk+βββ )·(̂zzz ja) =
2π

kain
∞

∑
g=−∞

δ

(
kz

k
+

βz

k
−g

2π

ka

)
. (6.93)

Putting this relation into the k̂kk integral of eq.(6.90), we then obtain a finite sum expression for
SC,J

n :

SC,J
n (k,a,β ; ẑzz) =− 1√

4π
δn,0 +

πin

ka

gmax

∑
g=gmin

Yn0
(
cosβz,q

)
, (6.94)

where since -1 < kz/k < 1we only sum over those values of g for which

−1 < ℜ

[
βza+2πg

ka

]
< 1 . (6.95)

The values gmin and gmax are:

gmin =

(
−βza− ka

2π

)
+1 gmax =−

βza+ ka
2π

. (6.96)
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The angle cosβz,g in eq.(6.94) is given by:

cosβz,g ≡
βza+2πg

ka
= ℜ [βz/k]+ iℑ [βz/k]+g

2π

ka
, (6.97)

where we used the parity relation:

Yn,m (−r̂rr) = (−1)nYn,m (−r̂rr) . (6.98)

We recall that the sin and cosines for a complex angle, θk = θ ′+θ ′′, are given by:

cosθk =
eiθ ′e−θ ′′+ e−iθ ′eθ ′′

2
= cosθ

′ coshθ
′′− isinθ

′ sinhθ
′′ , (6.99)

and

sinθk =
eiθ ′e−θ ′′− e−iθ ′eθ ′′

2i
= sinθ

′ coshθ
′′+ icosθ

′ sinhθ
′′ . (6.100)

6.6.5 Chain sum rotation

The chain sums expressions given in eqs.(6.83), (6.87), and (6.94) all took advantage of the
facilities presented by orienting the chain of particles along the z axis. When performing lattice
reduction techniques, it is necessary to have chain sums in other orientations. The chain sum is
obtained by applying:

Yn,m (r̂rr) = Yn,0 (̂zzz)D
(n)
0,m (θr̂rr,φr̂rr) =

√
2n+1

4π
D

(n)
0,m (θr̂rr,φr̂rr) , (6.101)

which just translates the relation derived in Edmonds (eq.(4.1.25) page 59) that:

D
(n)
0,m (θ ,φ) =

√
4π

2n+1
Yn,m (θ ,φ) . (6.102)

Thus is trivial to write chain sums of any type (J ,H ,Y ) in an arbitrary orientation, r̂rr, in terms
of the chain sum in the direction ẑzz by the simple relation:

SC
n,m (β ; r̂rr) = SC

n (β ; ẑzz)

√
4π

2n+1
Yn,m (θr̂rr,φr̂rr) . (6.103)

An orientation along the x axis is for example:

SC
n,m (β ; x̂xx) = SC

n (β ; ẑzz)

√
4π

2n+1
Yn,m

(
π

2
,0
)
, (6.104)

is useful when carrying out a monolayer sum in the next section. An orientation along the y axis
is for example:

SC
n,m (β ; ŷyy) = SC

n (β ; ẑzz)

√
4π

2n+1
Yn,m

(
π

2
,
π

2

)
. (6.105)
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6.7 2D Grating lattice sums

A 2D periodic media is characterized by two basic lattice vectors aaa, bbb. Although, we want to
describe a system with lattice vectors aaa = (a,0,0), and bbb = (b1,b2,0), we are going to work in
a rotated coordinate systems in which the lattice will be placed in the xOy plane.

6.7.1 Integral technique

For the integral technique, it is useful to adopt a coordinate system where the aaa lattice vector
lies along the y axis. In this coordinate system, the basis vectors are aaa = (0,a,0), bbb = (0,b2,b1),
then lattice sites are given by:

rrr jjj=( ja, jb) = jaaaa+ jbbbb = (0, jaa+ jbb2, jbb1) . (6.106)

In this case, fixing jb = 0 and summing over ja corresponds to a chain sum along the y axis,
and jb ≶ 0, corresponds to a term in the z ≶ 0 half plane respectively.

The Mono-Layer (ML) lattice sum, SML
n,m, can be written:

SML
n,m = SC

n,m (β1; ŷyy)+SML+
n,m +SML−

n,m , (6.107)

where SC
n,m (β1; ŷyy) is the chain sum along the y axis, and SML

n,m is the sum of all the sites with
z 6= 0 The lattice sum for all jb > 0 (z > 0) sites can be expressed as an integral:

SML+
n,m =−(−)m

inka

∞

∑
g=−∞

∫
∞

0

dkx

γz
P̃(m)

n (γ)
[(

kg− ikx
)m

+
(
kg + ikx

)m
]

× 1

1− exp
{
−i
[
kb2

(
β 2− kg

)
+ kb1

(
β 1 + γ

)]} , (6.108)

while the lattice sum for all jb < 0, can be expressed:

SML−
n,m =− 1

(−i)n ka

∞

∑
g=−∞

∫
∞

0

dkx

γz
P̃(m)

n (γ)
[(

kg− ikx
)m

+
(
kg + ikx

)m
]

× 1

1− exp
{
−i
[
kb2

(
−β 2 + kg

)
+ kb1

(
−β 1 + γ

)]} . (6.109)

In both of these expressions, we defined kg as the reciprocal lattice vector along the y axis:

kg ≡ β2 +2πg/a = kkg , (6.110)

and normalized the components of the quasi-periodic vector β as:

β 1 ≡ β1/k β 2 ≡ β2/k , (6.111)

and γ is reciprocal lattice vector along the z axis:

γ ≡
√

1− k2
g− k2

x . (6.112)

At the end of this calculation, one should keep in mind that lattice sum was carried out in a
system where the lattice was in the yOz plane. One can obtain the expression for the lattice sum
in the xOy plane by rotating the lattice sums by 90◦ around the y axis in a clockwise manner,
and then 90◦ around the new y′ axis, and finally 90◦ around the new z′′ axis.
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6.7.2 Modified Bessel function sums

Although the integral technique is rather efficient, one may prefer to obtain do a little more
analytic work and obtain the lattice sum in a manner which takes the from of a lattice sum in
a 2D host space. As for the integral it proves convenient to place the lattice in the yOz plane,
but this time, one places the aaa lattice vector along the z axis, so that the lattice vectors can be
written:

aaa = (0,0,a) , and bbb = (0,b2,b1) .

The lattice sites in this system can be expressed:

rrr jjj=( ja, jb) = jaaaa+ jbbbb = (0, jbb2, jaa+ jbb1) = jbb2ŷyy+( jaa+ jbb1) ẑzz . (6.113)

The reciprocal lattice is given by:

KKKggg=(ga,gb) = gaãaa+gbb̃bb , (6.114)

where the reciprocal lattice vectors are:

ãaa =
1

ab2
(0,−b1,b2) b̃bb =

(
0,

1
b2

,0
)

. (6.115)

This time, lattice reduction is performed by carrying out the lattice sum on the z axis of
the working coordinate system which is to say that one sets jb = 0, and sums over all ja. The
lattice sum is then achieved by:

SML
n,m = SC

n,m (β1; ẑzz)+SML,+
n,m +SML,−

n,m , (6.116)

where SML,±
n,m is the sum of all sites except those along the z axis:

SML,±
n,m = ∑

jb∈Z∗
ei jb(β1b1+β2b2)

∞

∑
ja=−∞

ei jaβ1aHn,m
(
krrr jjj
)
. (6.117)

Since jb 6= 0 in this sum and all lattice sites are in the yOz plane, the azimuthal angle of rrr jjj is
either π/2 or −π/2 for jb > 0 or jb < 0 respectively. This allows us to conclude in this plane,
Hn,m doesn’t depend on the sign of m:

Hn,−m
(
krrr jjj
)
= Hn,m

(
krrr jjj
)
. (6.118)

We then appeal to an integral representation:

hn (kr)Pm
n (cosθ) =

(−i)n+1

π

∫
∞

−∞

eikztKm (−ikργ (t))Pm
n (t)dt (6.119)

=
(−i)n−m

π

∫
∞

−∞

eikztHm (kργ (t))Pm
n (t)dt , (6.120)

where z = r cosθ , kρ =

√
(kr)2− (kz)2 > 0, and Km (z) is a modified Bessel function defined

by:
Km (z)≡ im+1Hm (iz) , (6.121)

230



B. Stout: Spherical harmonic Lattice Sums for Gratings 6.27

and finally γ (t) is defined such that:

γ (t) =
{

i
√

t2−1 |t| ≥ 1√
1− t2 t < 1

. (6.122)

The modified Bessel functions, Km (z). The ja sum can then be written:
∞

∑
ja=−∞

ei jaβ1aHn,m
(
krrr jjj
)

=
(−i)n

π
(−)m [sgn( jb)]

m
∞

∑
ja=−∞

ei jaβ1a
∫

∞

−∞

eik( jaa+ jbb1)tHm (kργ (t))Pm
n (t)dt (6.123)

=
(−i)n

π
(−)m [sgn( jb)]

m
∫

∞

−∞

∞

∑
ja=−∞

ei ja(β1+kt)aeik jbb1tHm (kργ (t))Pm
n (t)dt . (6.124)

Using the 1D Poisson sum formula, we have:
∞

∑
ja=−∞

ei ja(kt+β1)a =
2π

a

∞

∑
g=−∞

δ

(
kt +β1 +g

2π

a

)
=

2π

ka

∞

∑
g=−∞

δ

(
t +

β1

k
+g

2π

ka

)
. (6.125)

∞

∑
ja=−∞

ei jaβ1aHn,m
(
krrr jjj
)

=
(−i)n

π
(−)m [sgn( jb)]

m
∫

∞

−∞

eik jbb1t
∞

∑
ja=−∞

ei ja(β1+kt)aHm (kργz (t))Pm
n (t)dt

=
2(−i)n

ka
(−)m [sgn( jb)]

m
∞

∑
g=−∞

e−iβ1p jbb1Hm (kb2 | jb|γg)Pm
n

(
−β 1,g

)
=

2in

ka
[sgn( jb)]

m
∞

∑
g=−∞

e−iβ1,g jbb1Hm (kb2 | jb|γg)Pm
n

(
β 1,g

)
, (6.126)

where β1,g and β 1,g are defined:

β1,g ≡ β1 +g
2π

a
β 1,g ≡

β1

k
+g

2π

ka
(6.127)

and
γg ≡ γ

(
β 1,g

)
. (6.128)

We have therefore the monolayer sum:

SML,±
n,m =

2in

ka

∞

∑
g=−∞

Pm
n

(
β 1,g

)
∑

jb∈Z∗
ei jb(β1−β1,g)b1ei jbβ2b2 [sgn( jb)]

m Hm (kb2 | jb|γg)

=
2in

ka

∞

∑
g=−∞

Pm
n

(
β 1,g

) ∞

∑
jb=1

[
ei jbwg +(−)m e−i jbwg

]
Hm (kb2 jbγg)

=
2in

ka

∞

∑
g=−∞

Pm
n

(
β 1,g

)
Sm (wg,kb2γg) , (6.129)
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where we defined:
wg ≡ β2b2−

2pπb1

a
. (6.130)

One can rotate the lattice sum to put it in the desired coordinate system in the xOy plane. This
can be obtained simply by a rotation of 90◦ about the y axis. The expression of eq.(6.129) is
still in the form of the 2 double infinite sums like our initial expression. However, only a finite
number of g values will correspond to propagating modes, i.e.

∣∣∣β 1,g

∣∣∣< 1, and the other values
for g correspond to evanescent modes and are exponentially convergent. therefore infinite series
sums. The jb sum in eq.(6.129) is known as a Schlömilch series, and it can be expressed as a
finite sum of Bernoulli polynomials.

6.7.3 Schlömilch series

The Schlömilch series can be expressed

Sm (λ ,µ)≡
∞

∑
j=1

[
eiλ j +(−)m e−iλ j

]
Hm (µ j) . (6.131)

The zero order sum is

S0 (λ ,µ) =−1− 2i
π

(
C+ log

µ

4π

)
+

2
Θ0

+ ∑
g∈Z∗

(
2

Θg
+

i
π |g|

)
, (6.132)

where C ' 0.5772 is Euler’s constant and

Θg =
(
µ

2−λ
2
g
)1/2

λg = λ +2gπ . (6.133)

6.8 Addition theorem and Rotation matrices

6.8.1 Scalar spherical harmonics

The scalar spherical harmonics, Yn,m(θ ,φ), are expressed in terms of the associated Legendre
functions Pm

n (cosθ) [7] :

Yn,m(θ ,φ) =

[
2n+1

4π

(n−m)!
(n+m)!

] 1
2

Pm
n (cosθ)exp(imφ)

≡ Pm
n (cosθ)exp(imφ) , (6.134)

where in the second line we have introduced the normalized associated Legendre functions,
Pm

n (cosθk)≡ λn,mPm
n (cosθk), where the λn,m normalization factor is defined:

λn,m ≡
[

2n+1
4π

(n−m)!
(n+m)!

] 1
2

. (6.135)

These scalar spherical harmonics are normalized with respect to an integration over the solid
angles :∫ 4π

0
dΩY ∗ν ,µ(θ ,φ)Yn,m(θ ,φ)≡ (−1)µ

∫
π

0
sinθdθ

∫ 2π

0
dφ Yν ,−µ(θ ,φ)Yn,m(θ ,φ)

= δn,νδm,µ . (6.136)
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In principal, the Legendre polynomials, Pn(x) = P0
n (x), can be obtained from Rodrigues’

formula:
Pn(x) =

1
2nn!

dn

dxn

(
x2−1

)n
, (6.137)

but in practice we will calculate them with recurrence relations. Likewise, the associated Leg-
endre functions could be obtained for from the expression:

Pm
n (x) = (−1)m (1− x2)m/2 dm

dxm Pn(x) . (6.138)

Their calculation is simplified by noting that the normalized associated Legendre functions have
the convenient parity property that:

P−m
n (x) = (−1)m Pm

n (x) . (6.139)

There are alternative ways of calculating the scalar spherical harmonics that are better for
formulating lattice sums and reflections from a physical interface. In lattice sums and reflections
from surfaces, the spherical harmonics will be evaluated in terms of the direction of the incident
or reflected wavevectors, k̂kk:

Yn,m (θk,φk) = Yn,m

(
k̂kk
)
= Yn,m (kkk///k) = Yn,m (kx/k,ky/k,kz/k) , (6.140)

where we recall that:

kz

k
= cosθk

kx/k = sinθk cosφk

ky/k = sinθk sinφk , (6.141)

and we keep in mind that Pm
n are functions of cosθk = kz/k.

Since x = cosθ , and the Pn(x) are polynomials in x, the dm

dxm Pn(x) are functions of

cosθ . The factor
(
1− x2)m/2 corresponds to sinm

θk with no ambiguity in sign since Re{θk} is

∈ (0,π). One should remark that the
(
1− x2)m/2 is non-polynomial so that is why one refers

to them as associated Legendre functions. For applications involving reciprocal space and/or
integrations in the complex plane it proves useful to explicitly extract this factor, and define
associated Legendre polynomials, which we shall denote, P̃m

n (not to be confused with the nor-
malized associated Legendre functions).

For positive m we have then:

Yn,m (kx/k,ky/k,kz/k) = Pm
n (cosθk)exp(imφk)

= λn,m(−1)m sinm
θk (cosφk + isinφk)

m dm

dxm Pn(
kz

k
)

= (sinθk cosφk + isinθk sinφk)
m (−1)m

λn,m
dm

dxm Pn(
kz

k
)

= (kx/k+ iky/k)m (−1)m
λn,m

dm

dxm Pn(
kz

k
)

= (kx/k+ iky/k)m P̃m
n (

kz

k
) =

(
K
k

)|m|
exp(imφk) P̃m

n (
kz

k
) . (6.142)
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where we have defined the normalized associated Legendre polynomials, P̃m
n , such that:

P̃m
n (

kz

k
)≡ (−1)m

λn,m
dm

dxm Pn(
kz

k
) . (6.143)

The parameter,
KKK ≡ kxx̂xx+ kyŷyy , (6.144)

corresponds to the momentum space vector in the x-y plane.
The wave vector components kx, ky, and kz are related to the possibly complex angles, θk

and φk, via the relations:

kx = k sinθk cosφk

ky = k sinθk sinφk

k2
z = k2−K2 = k2 cos2

θk , (6.145)

This relation of eq.(6.142) for Yn,m can be extended to negative m by writing :

Yn,m (kx/k,ky/k,kz/k) =
(

K
k

)|m|
exp(imφk) P̃m

n (
kz

k
) m ≷ 0 , (6.146)

as long as we define P̃−m
n such that :

P̃−m
n ≡ (−1)m P̃m

n . (6.147)

The objective of the above procedure was to define P̃m
n (x) that are always polynomials

of x for both positive and negative m. This is in contrast to the associated Legendre functions
Pm

n (x) which are not polynomials in terms of x.

6.8.2 Translation-addition theorem for scalar partial waves

Let us consider a point M in a system using spherical coordinates. We consider a second system
of spherical coordinates centered on the position rrr0. The position of M in this second system
centered on rrr0 is:

rrr′ = rrr−−− rrr0 . (6.148)

We take the usual convention of outgoing scalar partial waves as products of spherical
Hankel function and scalar spherical harmonics:

ΨH ,n,m (krrr)≡Ψ
(3)
n,m (krrr)≡ hn (kr)Yn,m (θ ,φ) , (6.149)

while the regular scalar partial waves replace the spherical Hankel functions with spherical
Bessel functions:

ΨJ ,n,m (krrr)≡Ψ
(1)
n,m (krrr)≡ jn (kr)Yn,m (θ ,φ) . (6.150)

One can construct a row ‘matrices’ composed of the ΨJ ,n,m (krrr) or ΨH ,n,m (krrr) functions
respectively then the translation-addition theorem for scalar partial waves can be compactly
expressed in matrix form:

Ψ
t
H (krrr) = Ψ

t
H

(
krrr′
)
.α(krrr0) r′ > r0

Ψ
t
H (krrr) = Ψ

t
J

(
krrr′
)
.β (krrr0) r′ < r0

Ψ
t
J (rrr) = Ψ

t
J

(
rrr′
)
.β (krrr0) ∀

∣∣rrr j
∣∣ , (6.151)
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where the elements of the irregular translation-addition matrix, α have extremely simple ex-
pressions in terms of the 3Y coefficients :

αν ,µ,nm(krrr0) = 4πiν−n
n+ν

∑
p=|n−ν |

ip3Y (n,m;ν ,µ; p)hp (kr0)Yp,m−µ (θ0,φ0) , (6.152)

while the the elements of the regular translation-addition matrix, βν mu,;n,m, are the same as the
αν ,µ;n,m coefficients but with the jp (kr0) replacing the hp (kr0) function i.e.:

βν ,µ;n,m(krrr0)≡ 4πiν−n
n+ν

∑
p=|n−ν |

ip3Y (n,m;ν ,µ; p) jp (kr0)Yp,m−µ (θ0,φ0) , (6.153)

where 3Y (n,m;ν ,µ; p) are the 3Y coefficients defined by the angular integral of three scalar
spherical harmonics:

3Y (n,m;ν ,µ; p)≡
∫

π

0

∫ 2π

0
Yn,m (θ ,φ)Y ∗ν ,µ (θ ,φ)Y ∗p,m−µ (θ ,φ)sinθdθdφ

= (−)µ (−)m−µ

∫
π

0

∫ 2π

0
Yn,m (θ ,φ)Yν−µ (θ ,φ)Yp,µ−m (θ ,φ)sinθdθdφ

= (−)m
[
(2n+1)(2ν +1)(2p+1)

4π

]1/2( n ν p
0 0 0

)(
n ν p
−m µ µ−m

)
.

(6.154)

The symbol, (
n ν p
m µ M

)
, (6.155)

stands for the Wigner 3J coefficients. It is worth remarking that the ‘3Y’ coefficients of eq.(6.154)
are closely related to the Gaunt coefficients developed in quantum mechanics for treating the
helium atom (mostly differing on account of different normalization conditions).

6.8.3 Vector translation-addition theorem

The vector translation-addition theorem are the vector analogue of the scalar translation theorem
discussed above in section6.8.2. This would be an almost trivial extension of the scalar addition
theorem if we were working with solutions of the vector Helmholtz equation in a Cartesian
basis like those of eqs.(6.7) and (6.8). The additional complication is due to the fact we want
to the vector translation-addition theorem to act on the purely transverse waves like those of
eq.(6.9). Defining column matrices, ΨΨΨ , composed of the transverse vector partial waves, the
vector translation-addition theorem is written:

ΨΨΨ
t
H (krrr) = ΨΨΨ

t
H

(
krrr′
)

J(krrr0) r′ > r0

ΨΨΨ
t
H (krrr) = ΨΨΨ

t
J

(
krrr′
)

H(krrr0) r′ < r0

ΨΨΨ
t
J (rrr) = ΨΨΨ

t
J

(
rrr′
)

J(krrr0) ∀|r0| , (6.156)

where the matrix J(krrr0) matrix can be expressed in terms of spherical scalar β (krrr0) matrices
of eq.(6.153) (expressed in terms of spherical Hankel functions) while the H(krrr0) matrices can
be expressed in terms of the α(krrr0) matrices of eq.(6.152).
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Explicitly, the H(krrr0) matrix can be expressed:

H(krrr0) =

[
Aν ,µ;n,m (kr0,θ0,φ0) Bν ,µ;n,m (kr0,θ0,φ0)
Bν ,µ;n,m (kr0,θ0,φ0) Aν ,µ;n,m (kr0,θ0,φ0)

]
. (6.157)

The vector coefficients Aν ,µ;n,m are then calculated using :

Aν ,µ;n,m =
1
2

√
1

ν (ν +1)n(n+1)
[
2µmαν ,µ;n,m+

+
√

(n−m)(n+m+1)
√
(ν−µ)(ν +µ +1)αν ,µ+1;n,m+1

+
√
(n+m)(n−m+1)

√
(ν +µ)(ν−µ +1)αν ,µ−1;n,m−1

]
. (6.158)

When filling up a matrix, with the Aνµ,nm coefficient, we should fill them up column by column
(calculate all the ν ,µ) elements for a fixed n,m. Then, for each n,m, the Bνµ,nm coefficients can
be calculated from the previous (i.e. ν−1) scalar coefficients :

Bν ,µ,n,m =−i
1
2

√
2ν +1
2ν−1

1
ν (ν +1)n(n+1)

[
2m
√
(ν−µ)(ν +µ)αν−1,µ;n,m

+
√
(n−m)(n+m+1)

√
(ν−µ)(ν−µ−1)αν−1,µ+1;n,m+1

−
√

(n+m)
√

(n−m+1)
√
(ν +µ)(ν +µ−1)αν−1,µ−1;n,m−1

]
. (6.159)

6.8.4 Rotation matrices

Under rotation, each of the four blocks of a vector translation-addition matrix transform follow-
ing the rotation matrix, D (α,β ,γ), which is expressed in terms of the 3 Euler angles, α , β , and
γ . The D (α,β ,γ) matrix elements are described in detail in ref.[7], and are block diagonal in
the orbital (multipole) ‘quantum’ number, n :

[D (α,β ,γ)]
ν ,µ,n,m = δn,ν exp(iµα) d(n)

µ m (β )exp(imγ) . (6.160)

The elements d(n)
µm are standard,[7] and the d(n)

µ,m term in the rotation matrices can be expressed
in terms of the Jacobi polynomials[7] :

d(n)
µm (β ) =

[
(n+µ)!(n−µ)!
(n+m)!(n−m)

]1/2(
cos

β

2

)m+µ

×
(

sin
β

2

)m−µ

P(µ−m,m+µ)
n−µ (cosβ ) . (6.161)

6.9 Recurrence relations for special functions

Partial wave descriptions are composed of products of spherical harmonic and spherical Bessel
types special functions. For a numerical analysis, it is important to calculate these functions
rapidly and accurately. Recurrence relations prove to be a good manner to achieve this goal.
Multipole expansions must be truncated to a given order nmax, which determines the the strength
of spatial field variations. Inspection of the translation-addition theorem formulas show us that
we will need to evaluate spherical harmonic and spherical Hankel functions up to order 2nmax.
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6.9.1 Recurrence relations for associated Legendre polynomials

The recurrence relations for the P̃m
n polynomials are are initialized with:

P̃0
0 (u) =

√
1

4π
. (6.162)

We can then calculate all the P̃n
n up to 2nmax with the recurrence relation:

P̃n
n (u) =−

√
2n+1

2n
P̃n−1

n−1 (u) . (6.163)

The P̃m
n with m = n−1 are calculated via:

P̃n−1
n (u) = u

√
2n+1P̃n−1

n−1 . (6.164)

All the remaining P̃m
n with m = 1, ...,n−2 can be calculated for each n = 3, ...,2nmax using the

relation :

P̃m
n (u) =

√
(2n+1)
(n2−m2)

√(2n−1)x P̃m
n−1−

√
(n−1)2−m2

(2n−3)
P̃m

n−2

 . (6.165)

Although we obtain the P̃0
n in the above scheme, it can sometimes prove useful to obtain the

normalized Legendre Polynomials through the recurrence relation :

P̃0
n (u) =

1
n

(
u
√

4n2−1
)

P̃0
n−1 (u)− (n−1)

√
2n+1
2n−3

P̃0
n−2 (u) . (6.166)

The P̃m
n with negative values of m are calculated using :

P̃−m
n (u) = (−)m P̃m

n (u) . (6.167)

6.9.2 Logarithmic Bessel functions

The spherical Bessel, Neumann and Hankel functions of the Ricatti form, are simply these
functions multiplied by their argument. The advantage of this form is that they have better limit
properties for small arguments. Their definitions are respectively:

ψn (z)≡ z jn (z) , χn (z)≡ zyn (z) , ξn (z)≡ zhn (z) . (6.168)

Multiplying the logarithmic derivatives of these functions by their argument defines the func-
tions, ϕ(1), ϕ(2), ϕ(3):

ϕ
(1)
n (z)≡ ψ ′n (z)

jn (z)
, ϕ

(2)
n (z)≡ χ ′n (z)

yn (z)
, ϕ

(3)
n (z)≡ ξ ′n (z)

hn (z)
. (6.169)

The ϕ
(i)
n can also be generated by particularly efficient numerical recursion relations. They also

provide particularly symmetric expression for the Mie coefficients of spherical scatterers and
formulations of matrix balancing. The Wronskian relation for Ricatti-Bessel functions:

ψn (x)ξ
′
n (x)−ψ

′
n (x)ξn (x) = i , (6.170)
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takes a simple form in terms of the ϕ
(1,2,3)
n functions as:

ϕ
(3)
n (z)−ϕ

(1)
n (z) =

i
x jn (x)hn (x)

. (6.171)

The ϕ(3) can be reliably calculated numerically from the upward recurrence relation:

ϕ
(3)
n (z) =

z2

n−ϕ
(3)
n−1 (z)

−n , (6.172)

starting with an initialization of
ϕ
(3)
0 (z) = iz . (6.173)

The ξn (z) functions in most situations can then be readily calculated numerically from the
recurrence relation:

ξn (z) =
ξn−1 (z)

z

(
n−ϕ

(3)
n−1 (z)

)
, (6.174)

starting from the initial value ξ0 (z) = −ieiz. One should note that analytical expressions exist
for the spherical Ricatti-Hankel functions, ξn (z), and these can be useful at low multipole order:

ξ0 (z) =−ieiz

ξ1 (z) =−eiz
(

1+
i
z

)
ξ2 (z) = eiz

(
i− 3

z
− 3i

z2

)
. (6.175)

When one deals with high multipole orders however, it usually is more practical to exploit the
recurrence relations of eq.(6.172) and (6.174).

The regular Ricatti Bessel functions, ϕ
(1)
n (z), obey the same recurrence relations as the

ϕ
(3)
n (z) functions. If one calculates them by via upward recurrence, things may work fine for the

first few recurrence calculations, but at some point, the recurrence relations can go completely
off course. The solution to this problem has been known for quite some time is that the ϕn (z)
functions should be calculated starting from high values of n in a reverse recurrence relation. I
start usually with n equal to at least nmax +20 where nmax is the largest value that I want to use
in calculations, and start simply with ϕnmax+20 (z) = 0. The ϕn (z) functions so obtained have
always been the correct ones up to machine precision. The reverse recurrence relation is:

ϕn (z) = n+1− z2

n+1+ϕn+1 (z)
. (6.176)

One can check calculations by verifying that the ϕ0 (z) obtained by backward recurrence is
equal to the analytical result:

ϕ0 (z) = z
cosz
sinz

. (6.177)

Once the ϕn (z) functions have been calculated, one can readily generate the ψn (z) func-
tions with the upward recurrence relation which is the direct analogue of eq.(6.174)

ψn (z) =
ψn−1 (z)

z
(n−ϕn−1 (z)) , (6.178)
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starting with the initial value ψ0 (z) = sinz. Analytical expressions for the lowest ψn (z) are:

ψ0 (z) = sinz

ψ1 (z) =
sinz

z
− cosz (6.179)

ψ2 (z) =
(

3
z2 −1

)
sinz− 3

z
cosz . (6.180)

It is perhaps worth remarking that, there is one potential numerical problem with using
eq.(6.174) to calculate spherical Hankel functions. For some values of z the real and imaginary
parts of the spherical Hankel functions can have extremely different absolute values. For con-
creteness, let us assume that |Im(hn (z))| � |Re(hn (z))|, then using eq.(6.174), the calculated
value of Im(hn (z)) will usually be quite inaccurate if its absolute value is less than last signifi-
cant figure in the calculation of Re(hn (z)). This problem can be circumvented (for real values
of z at least) by calculating the spherical Neumann functions (denoted here by yn (z) but some
authors denote it nn (z)). We recall that the Neumann functions are real-valued provided that z
is real valued.

The Ricatti Neumann functions are defined :

χn (z)≡ zyn (z) . (6.181)

The first few Ricatti Neumann functions, χn (z), are

χ0 (z) =−cosz

χ1 (z) =−
cosz

z
− sinz

χ2 (z) =−
(

3
z2 −1

)
cosz− 3

z
sinz . (6.182)

We define a ϕ(2) ‘logarithmic derivative’ Neumann function as :

ϕ
(2)
n (z)≡ χ ′n (z)

yn (z)
. (6.183)

We can calculate the ϕ
(2)
n from the upward recurrence relation:

ϕ
(2)
n (z) =

z2

n−ϕ
(2)
n−1 (z)

−n , (6.184)

with an initialization of
ϕ
(2)
0 (z) =−z

sinz
cosz

. (6.185)

Once the ϕ
(2)
n functions have been calculated, one can readily generate the χn (z) functions with

the upward recurrence relation which is the direct analogue of eq.(6.174)

χn (z) =
χn−1 (z)

z

(
n−ϕ

(2)
n−1 (z)

)
, (6.186)
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starting with the initial value χ0 (z) =−cosz.
Having calculated ψn (z) via eq.(6.178) and χn (z) via eq.(6.186), one can finally construct

hn (z) by
hn (z)≡ jn (z)+ iyn (z) , (6.187)

with the real and imaginary parts of ξn (z) now both being calculated up to machine accuracy.
The ratio of spherical Bessel functions to spherical Hankel functions also occurs fre-

quently in Mie theory, and I found it convenient and more accurate to calculate these ratios
directly using upward recurrence relations, notably:

jn (z)
hn (z)

=
jn−1 (z)
hn−1 (z)

n−ϕn−1 (z)

n−ϕ
(3)
n−1 (z)

, (6.188)

with the initialization
j1 (z)
h1 (z)

=
1
2

(
1− i− z

i+ z
exp[−2iz]

)
, (6.189)

which has good properties for numerical calculations. If one needs j0 (z)/h0 (z), one can usually
calculate it as

j0 (z)
h0 (z)

=−sinz
ieiz =

1− e−2iz

2
. (6.190)

and j1 (z)/h1 (z) satisfies the recurrence relation if we start with j0 (z)/h0 (z) since

j1 (z)
h1 (z)

=
j0 (z)
h0 (z)

1−ϕ0 (z)

1−ϕ
(3)
0 (z)

=
1− e−2iz

2
1− z cosz

sinz

1− iz
=− 1

2i
1− iz− e−2iz− ize−2iz

i+ z

=
1
2

(
1− i− z

i+ z
e−2iz

)
. (6.191)

For coated spheres, it is can also useful to use the analogous recurrence relation:

jn (z)
yn (z)

=
ψn−1 (z)
yn−1 (z)

n−ϕn−1 (z)

n−ϕ
(2)
n−1 (z)

, (6.192)

with the initialization of
j0 (z)
y0 (z)

=− sinz
cosz

, (6.193)

with the first recurrence giving

j1 (z)
y1 (z)

=
zcosz− sinz
zsinz+ cosz

. (6.194)

Other useful relations are obtained from the classic spherical Bessel function recurrence
relations:

fn (z) =
z fn−1 (z)+ z fn+1 (z)

2n+1

f ′n (z) =
n fn−1 (z)− (n+1) fn+1 (z)

2n+1
, (6.195)
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with fn (z) = jn (z) , hn (z) to obtain :

z j′n (z)+(n+1) jn (z) = n
ψn−1 (z)
2n+1

+(n+1)
ψn−1 (z)
2n+1

= ψn−1 (z) , (6.196)

with
ψ
′
n (z)≡ z j′n (z)+ jn (z) (6.197)

we obtain a convenient expression for the derivative of Ricatti-Bessel functions:

ψ
′
n (z) = ψn−1 (z)−n jn (z) . (6.198)

or the expression:
ψ
′
n (z) = (n+1) jn (z)−ψn+1 (z) . (6.199)

6.9.3 Vector Spherical Harmonics

There is no universally accepted notation for the Vector Spherical Harmonics (VSHs). Our
notation for their normalized forms is XXXn,m, YYY n,m, and ZZZn,m where they are respectively defined
by

XXXn,m(θ ,φ)≡ ZZZn,m(θ ,φ)× r̂rr
YYY n,m(θ ,φ)≡ r̂rrYn,m(θ ,φ)

ZZZn,m(θ ,φ)≡
r∇∇∇Yn,m(θ ,φ)√

n(n+1)
= r̂rr×XXXn,m(θ ,φ) , (6.200)

The scalar spherical harmonics, Yn,m(θ ,φ), do have a nearly universal convention for their
definitions[10] which we recalled in eq.(6.134).

For numerical calculations of the VSHs, it is convenient to introduce the normalized func-
tions um

n and sm
n defined as:

um
n (cosθ)≡ γn,m

m
sinθ

Pm
n (cosθ) (6.201)

sm
n (cosθ)≡ γn,m

d
dθ

Pm
n (cosθ) , (6.202)

where the Pm
n are the Legendre functions defined in eqs.(6.137), (6.138), and (6.139), and γn,m

a normalization factor given by

γn,m ≡
λn,m√

n(n+1)
=

√
(2n+1)(n−m)!

4πn(n+1)(n+m)!
. (6.203)

The transverse VSHs have compact expressions in terms of um
n and sm

n :

XXXn,m(θ ,φ) =
[
ium

n (cosθ) θ̂θθ − sm
n (cosθ)φ̂φφ

]
exp(imφ)

ZZZn,m(θ ,φ) =
[
sm

n (cosθ)θ̂θθ + ium
n (cosθ) φ̂φφ

]
exp(imφ) . (6.204)
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The normalized um
n functions can be readily calculated with recurrence relations:

u0
n(x) = 0 , u1

1(x) =−
1
4

√
3
π

un
n(x) =−

√
n(2n+1)

2(n+1)(n−1)

√
1− x2un−1

n−1(x)

um
n (x) =

√
(n−1)(4n2−1)
(n+1)(n2−m2)

xum
n−1(x)

−

√
(2n+1)(n−1)(n−2)(n−m−1)(n+m−1)

(2n−3)n(n+1)(n2−m2)
um

n−2(x)

un−1
n (x) =

√
(2n+1)(n−1)

(n+1)
xun−1

n−1(x) , (6.205)

while the sm
n can be determined from the um

n functions via the formula:

sm
n (cosθ) =

1
(m+1)

√
(n+m+1)(n−m)sinθum+1

n (cosθ)+ cosθ um
n (cosθ) . (6.206)

The respective parity properties of um
n and sm

n are:

u−m
n (x) = (−1)m+1 um

n (x)

s−m
n (x) = (−1)m sm

n (x) . (6.207)
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The basic idea of the differential methods consisits in projecting the electromagnetic field on 
a set of basic functions in order to reduce Maxwell partial differential equations into a set of 
ordinary differential equations. When working in a Cartesian coordinates, the natural basis 
consists of exponentials, using the periodicity of the optogeometrical parameters. Diffraction 
by a single aperture requires working in the basis of cylindrical Bessel functions [7.1], while 
diffraction by an arbitrary-shaped single object requires vector spherical functions [7.2] as a 
basis. 

The first studies using the differential method [7.3] appeared in the late 1960s, initiated 
by the birth of the computers. These studies concerned the modeling of diffusion of particles 
in nuclear potential by using the separation of variables of the radial Schrödinger equation. 
The method was called “optical method” due to the similarity between the Schrödinger and 
the Helmholtz equations. The first applications to grating diffraction appear in 1969 [7.4], but 
accurate and converging results required combining the differential method with conformal 
mapping techniques [7.5]. The classical differential theory as known nowadays was 
formulated in [7.6, 7.7]. One can find a detailed review on the classical differential method in 
[7.8] 

It appeared that the classical differential theory suffered from severe numerical 
problems in transverse magnetic (TM) polarization, as well as for deep gratings. The first 
breakthrough was made in the first half of the 1990s, by introducing orthonormalization of the 
differential equations during their integration [7.9] and followed later by the so-called R-
matrix or S-matrix propagating algorithms [7.10]. The second breakthrough improved 
considerably the convergence in TM polarization for lamellar gratings, by introducing the 
correct factorization rules (see further on), at first by chance [7.11] and after that using 
theoretical arguments [7.12], closely followed by a generalization to arbitrary profiles [7.13]. 
A detailed review can be found in [7.14]. 

   

7.1. Maxwell equations in the truncated Fourier space 
Let us consider a structure with two-dimensional periodicity along the x- and y-axis (Fig.7.1) 
with periods equal to dx and dy. The modulated (grating) region extends in z from zmin to 
zmax. Inside that region, for a given value of the vertical coordinate z, the permittivity ε and 
permeability µ are periodic functions in x and y that can be projected on exponential Fourier 
basis: 
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m,n x y

m,n

m,n x y
m,n

(x, y, z) (z)exp(imK x inK y)

µ(x, y, z) µ (z)exp(imK x inK y)

+∞

=−∞

+∞

=−∞

ε = ε +

= +

∑

∑
 (7.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.7.1. Schematical representation of a structure having two-dimensional periodicity in x and y-
directions, consisting of truncated pyramids with height h. 

 
where x xK 2 / d= π  and y yK 2 / d= π . We shall deal with a monochromatic (wavelength λ) 
plane wave incident on the structure with a wavevector: 

 
 inc 0 0 0k ( , , )= α β −γ



 (7.2) 
 

with components related to the incident polar angle θ (between the incident direction and the 
grating normal) and azimuthal angle ϕ (between the plane of incidence and the xOz-plane): 

 

 
0 0 0 0

2 2 2 2
0 0 inc 0 0 0

k sin cos , k sin cos ,

k n , k 2 /

α = θ ϕ β = θ ϕ

γ = − α −β = π λ
 (7.3) 

 
where ninc is the refractive index of the cladding. 

The existence and uniqueness of the solution of the diffraction problem is an interesting 
problem that is not discussed here. The reader can refer to several basic works (see for 
example [7.15, 7.16]. What is important to conclude is that the electromagnetic field is 
pseudo-periodic, so that similarly to eq.(7.1), the electric E



 and magnetic H


field vectors can 
be represented in pseudo-Fourier series: 

 

dx 

dz 

x 

z y 

θ 

 

zmax 

h 

zmin 

incidence 
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m,n 0 x 0 y
m,n

m,n 0 x 0 y
m,n

E(x, y, z) E (z)exp i( mK )x i( nK )y

H(x, y, z) H (z)exp i( mK )x i( nK )y

+∞

=−∞

+∞

=−∞

 = α + + β + 

 = α + + β + 

∑

∑

 

 

 (7.4) 

In what follows, we use the notations: 
 
 m 0 x n 0 ymK , nKα = α + β = β + . (7.5) 

From a numerical point of view, it is necessary to truncate the series in eqs.(7.1) and (7.4), 
introducing truncation parameters Nx and Ny, which limit the lower and the upper boundaries 
in the series. 

Maxwell equations written in Fourier space take the form, assuming exp( i t)− ω  time 
dependence with circular frequency ω : 

 

 

m,n z,m,n y,m,n x,m,n

x,m,n m,n z,m,n y,m,n

m,n y,m,n m,n x,m,n z,m,n

m,n z,m,n y,m,n x,m,n

x,m,n m,n z,m,n y,m,n

di E (z) E (z) i B (z)
dz

d E (z) i E (z) i B (z)
dz
i E (z) i E (z) i B (z)

di H (z) H (z) i D (z)
dz

d H (z) i H (z) i D (z)
dz
i

β − = ω

− α = ω

α − β = ω

β − = − ω

− α = − ω

m,n y,m,n m,n x,m,n z,m,nH (z) i H (z) i D (z).α − β = − ω

 (7.6) 

 
As can be observed, the third and the sixth equations are not differential equations, and they 
are used to eliminate the z-components of the fields, as shown further on. It has to be stressed 
out that the equations with different (m,n) numbers are coupled through the Fourier 
components of D E= ε

 

 and B H= µ
 

.  
The next step is to factorize the products D E= ε

 

 and B H= µ
 

. In this chapter we 
assume media with linear dielectric and magnetic properties and without spontaneous 
polarizations. The problem of Fourier transform of the product of two functions  

 

m,n 0 x 0 y
m,n

D(x, y, z) D (z)exp i( mK )x i( nK )y
+∞

=−∞

 = α + + β + ∑
 

 (7.7) 

 
is, in generally, solved theoretically by convolution of the Fourier transformers of the two 
functions, using the so-called Laurent’s rule: 

 

 m,n m m ,n n m ,n
m ,n

D (z) (z) E (z)
+∞

′ ′ ′ ′− −
′ ′=−∞

= ε∑
 

. (7.8) 

 
However, there are several problems in the numerical application of this rule: 
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First, numerical applications are simplified when using matrix notations. However, 
most of the standard routines use single-rank vectors and rectangular (2-ranks) matrices, while 
the vectors D and E in eq.(7.8) have two indexes, and the matrix ε depend on four indexes. In 
the case of classical grating with one-dimensional periodicity, this problem does not exist. 
Fortunately, for structures having 2D periodicity, a reduction to standard arrays is possible by 
introduction of a single index instead of the double for the vectors, by the following 
substitution: 

 x y yp (m N )(2N 1) (n N 1)= + + + + +  (7.9) 
so that when m varies between –Nx and +Nx and n varies between –Ny and +Ny, p varies 
between 1 and Pmax = (2Nx+1)(2Ny+1). Using these notations, we can introduce standard 
arrays in the following manner: 

 

p m,n p m,n

p p m m ,n n

D (z) D (z), E (z) E (z), etc. for H and B,

(z) (z)′ ′ ′− − −

= =

ε = ε

     

 (7.10) 

 
so that eq.(7.8) takes the standard truncated form 

 

 
maxP

p p p p
p 1

D (z) (z) E (z)′ ′−
′=

= ε∑
 

. (7.11) 

 
That can be written in matrix notations in the form 

 
 

 

D(z) (z) E(z)   = ε   
 

, (7.12) 
 

where double square brackets stand for the Toepliz matrix. 
In addition, two diagonal matrices are useful: 
 

 
p,p p,p m

p,p p,p n

′ ′

′ ′

α = δ α

β = δ β
, (7.13) 

 
with p,p′δ  being the Kronecker’s symbol. 

Second, due to the vectorial character of the fields, the matrix form in eq.(7.12) has to 
be interpreted in a block form: 

 

 

[ ]

[ ]
 

[ ]

[ ]

x x

y y

z z

D (z) E (z)

D (z) (z) E (z)

D (z) E (z)

   
   

   = ε      
      
   

, isotropic media (7.14) 

[ ]

[ ]

   

   

[ ]

[ ]

xx xy xzx x

y yx yy yz y

z zzx zy zz

(z) (z) (z)D (z) E (z)

D (z) (z) (z) (z) E (z)

D (z) E (z)(z) (z) (z)

 ε ε ε           = ε ε ε              ε ε ε    

 

 
 

     

     
     

 

 
 

, anisotropic media. (7.15) 
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The third problem linked with the truncation of eq. (7.8) has limited the use of the 
differential methods (including RCW method) for more than 30 years, and has been solved for 
lamellar gratings in the late 90s [7.11, 7.12], and for arbitrary-profile gratings in the start of 
the 2000s [7.13]. The problem is due to the very slow convergence with respect to the number 
of Fourier components in the truncated sum of eq. (7.8), when the two functions in the 
product are discontinuous. As demonstrated by Li [7.12], four different cases can be 
distinguished with respect to eq.(7.12): 

1. Both ε and E are continuous functions of x and y. 
2. ε is discontinuous, but E is continuous. This is the case of the tangential component of 

E. 
3. Both ε and E are discontinuous, but their product D is continuous, as it happens for the 

normal component of D. 
4. All three functions are discontinuous. 

In the first and second case, Laurent’s rule assures relatively rapid convergence. In the 
third case, more rapidly converging scheme can be obtained through the following 
considerations for isotropic media.  

If D = εE is continuous, then it is possible to factorize the product between D 
(continuous) and 1/ε (discontinuous) using the Laurent’s rule (called by Li direct rule):  

 

 1E(z) D(z)
(z)

   =   ε

 
 

 

 

 

 

, (7.16) 

 
wherefrom the so called inverse rule is formulated: 

 

 
1

1D(z) E(z)
(z)

−

   =   ε

 
 

 

 

 

 

, (7.17) 

 

which can be applied if the matrix 1
(z)ε

 

 

 

 

 

 is not singular, a requirement that can create 

numerical problem for highly conducting gratings having small imaginary part of ε. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.2.Convergence of the classical and the FFF version of the differential theory in the case of a 
dielectric sinusoidal grating with high contrast. Squares, old version of the differential theory for 
TM polarization; open triangles, new version, TM polarization; solid triangles, TE polarization 
(after [7.13]). 
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When infinite series are considered, eq.(7.17) is identical with eq.(7.12). However, as 
shown in Fig.7.2, the correct use of the direct or the inverse rules improves drastically the 
convergence of the differential methods with respect to the truncation parameter. Similarly to 
the abbreviation FFT, standing for Fast Fourier transformation, we have introduced the term 
Fast Fourier factorization (FFF) to name the correct use of the direct and the inverse rules, 
when applied numerically in the truncated Fourier space.   

In the fourth case, neither the direct, nor the inverse rule result in acceptable 
convergence, so that this case must be avoided. Fortunately, this can be done by considering 
separately the electromagnetic field components, tangential or normal to the grating profile 
and taking into account that the electric field components tangential to the surface separating 
two different permittivities are continuous, in the same way as the normal components of the 
displacement D.  

 

7.2. Differential theory for crossed gratings made of isotropic materials 

In the isotropic case, the displacement vector D


 can easily be separated into a continuous part 

N ND E= ε
 

, normal to the profile surface, and T TD E= ε
 

 that contains the continuous function 

TE


. Let us define a unit vector N


, normal to the grating profile. Although it is well defined 
on the profile (except edges), it is necessary to generalize its definition all over the grating 
region, which cannot be done in a unique manner. Different choices are shown further on for 
specific gratings having 1D or 2D periodicity. Using this generalized vector, the relations 
between E



 and D


 can be decomposed into two terms, for each of which we can apply the 
direct or the inverse factorization rules, skipping the explicit writing of the z-dependence: 

 
 ( ) ( )N TD E E N N E E N N E = ε + ε = ε ⋅ + ε − ⋅ 

         

. (7.18) 

 
The first term is a product of type 2 and requires the direct rule. The second term is of type 3, 
demanding the inverse rule, so that: 

 

 
 

  ( ) ( )

1

T N

1

1D E E

1E N N.E N N.E .

−

−

     = ε +     ε

   = ε − +   ε

  
 

 

 

 

      
 

 

 

 

 (7.19) 

 
Introducing a square matrix representing a tensor product denoted ( )NN

 

 with elements given 

by NiNj, we obtain: 
 

 
   

11D E NN E Q E
−

ε

 
       = ε + − ε =         ε 

     
 

 

 

 

  

 

, (7.20) 

 
where the matrix Qε has the form: 

 

 
   

11Q NN
−

ε

 
= ε + − ε  ε 

 
 

 

 

 

  

 

. (7.21) 
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In a similar manner for magnetic materials, we can find the link between magnetic field 
and induction in the truncated Fourier space: 

 

 
   

µ

1

µ

B Q H ,

1with Q Q µ µ NN
µ

−

ε

   =   
 
 = = + −
 
 

 

 
 

  

   

 

 

 

 (7.22) 

 
Eq.(7.20) allows eliminating Ez in the system (7.6): 

 

[ ] [ ] [ ]( )
[ ]

[ ]

1
z ,zz z ,zx x ,zy y

y x1
,zz ,zx x ,zy y

E Q D Q E Q E

H H
Q Q E Q E

−
ε ε ε

−
ε ε ε

 = − −  

  α −β   = − + +   ω 

 (7.23) 

 
where the matrices α and β are defined in eq.(7.13). 

Repeating the procedure for Hz: 
 

[ ]
[ ]

[ ]y x1
z µ,zz µ,zx x µ,zy y

E E
H Q Q H Q H−

  α −β   = − −   ω 
, (7.24) 

 
it is also eliminated from eqs. (7.6). 

For non-magnetic media, the last expression is further simplified: 
 

 [ ]
[ ]y x

z
0

E E
H

µ

 α −β =
ω

. (7.25) 

 
Thus the system (7.6) is replaced by a system of ordinary differential equations: 

 

 

[ ]

[ ]

[ ]

[ ]

x x

y y

x x

y y

E E

E Ed iM
dz H H

H H

   
   

         =   
   
            

. (7.26) 

 
This equation can be expressed in a compressed form: 

 

 d F(z) iM(z)F(z)
dz

=  (7.27) 

 
 
Here the matrix M has 4x4 blocks: 
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1 1
11 ,zz ,zx ,yz µ,zzM Q Q Q Q− −

ε ε µ= −α − β  
1 1

12 ,zz ,zy ,yz µ,zzM Q Q Q Q− −
ε ε µ= −α + α  

1 1
13 ,yz ,zz ,zx ,zz ,yxM Q Q Q Q Q− −

µ µ µ ε µ
α

= −ω + β + ω
ω

 

1 1
14 µ,yz µ,zz µ,zy ,zz µ,yyM Q Q Q Q Q− −

ε
α

= −ω − α + ω
ω

 

1 1
21 ,zz ,zx ,xz µ,zzM Q Q Q Q− −

ε ε µ= −β + β  
1 1

22 ,zz ,zy ,xz µ,zzM Q Q Q Q− −
ε ε µ= −β − α  

1 1
23 µ,xz µ,zz µ,zx ,zz µ,xxM Q Q Q Q Q− −

ε
β

= ω + β − ω
ω

 

1 1
24 µ,xz µ,zz µ,zy ,zz µ,xyM Q Q Q Q Q− −

ε
β

= ω − α − ω
ω

 

 (7.28) 
1 1

31 ,yz ,zz ,zx µ,zz ,yxM Q Q Q Q Q− −
ε ε ε ε

α
= ω − β − ω

ω
                         

1 1
32 ,yz ,zz ,zy µ,zz ,yyM Q Q Q Q Q− −

ε ε ε ε
α

= ω + α − ω
ω

 

1 1
33 µ,zz µ,zx ,yz ,zzM Q Q Q Q− −

ε ε= −α − β  
1 1

34 µ,zz µ,zy ,yz ,zzM Q Q Q Q− −
ε ε= −α + α  

1 1
41 ,xz ,zz ,zx µ,zz ,xxM Q Q Q Q Q− −

ε ε ε ε
β

= −ω − β + ω
ω

 

1 1
42 ,xz ,zz ,zy µ,zz ,xyM Q Q Q Q Q− −

ε ε ε ε
β

= −ω + α + ω
ω

 

1 1
43 µ,zz µ,zx ,xz ,zzM Q Q Q Q− −

ε ε= −β + β  
1 1

44 µ,zz µ,zy ,xz ,zzM Q Q Q Q− −
ε ε= −β − α . 

 
This form looks like the form of the M-matrix obtained by Lifeng Li for crossed anisotropic 
(electrically and magnetically) gratings with profiles invariant with respect to z [7.17]. 

Whatever the form of the matrix M, eq.(7.26) represents a linear set of first-order 
ordinary differential equations. It can be solved numerically (with several problems, discussed 
further on), using well developed numerical schemes. In the case of vertical invariance of the 
optogeometrical parameters of the system inside the modulated region, the elements of the M-
matrix becomes constant in z, so that the solution of eq. (7.26) can be found through the 
eigenvectors and eigenvalues of M, a technique known under the name of Fourier modal 
method, or Rigorous coupled wave (RCW) method. 

The solution of (7.26) gives a linear link between the field in the substrate and in the 
cladding 

 max minF(z ) T F(z )= , (7.29) 
 

where T is called transmission matrix. 
The advantage of this presentation comes from the fact that the field components 

participating in the calculations are tangential to the interfaces between the substrate and the 
modulated region, and between the cladding and the modulated region, so that they are 
continuous across these interfaces (in the absence of surface charges). 
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7.3. Electromagnetic field in the homogeneous regions – plane wave expansion 
In most case, the substrate and cladding are homogeneous isotropic media. The 
electromagnetic field there can be expressed as a sum of plane waves. In particular, if the x 
and y-dependencies are given as in eq.(7.7), the z-dependence is explicitly known, for 
example for the electric field it takes the form: 

 
 p p p p pE (z) A exp(i z) A exp( i z)+ −= γ + − γ

 

 (7.30) 
 

of two waves propagating upwards (sign +) and downwards (sign –) along the z-axis, with p 
given in eq.(7.9). Each diffraction order with a given p propagates independently of the 
others, the coupling is effective inside the grating region. 

The z-propagation constant γ depends on the medium properties: 
 

 2 2 2
p p pγ = ω εµ − α −β . (7.31) 

 
Equations (7.6) enable us to express the magnetic field components through the electric ones: 

 

 

2 2
p p p p

x,p x,p y,p
p

2 2
p p p p

y,p x,p y,p
p

1H E E

1H E E

 α β β + γ
 = − +
 ±γ ωµ ωµ 

 α + γ α β
 = +
 ±γ ωµ ωµ 

 (7.32) 

 
where the sign of γ determines the direction of propagation in along z-axis. 

With this link in mind, the column vector F in eq.(7.27) takes the form: 
 

 

[ ]

[ ]

x

y

x

y

E

E
F A A

H

H

+ + − −

 
 

   ≡ = Ψ + Ψ 
 
    

, (7.33) 

 
where the column vectors 

 
x

y

A
A

A

±
±

±

  
  =      

 (7.34) 

 
contains the amplitudes of Ex and Ey propagating in positive or negative direction of the z-
axis, matrices ±Ψ  are block-diagonal:  
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xx xy

yx yy

,±
± ±

± ±

 
 
 

Ψ =  Ψ Ψ
 
 Ψ Ψ 




 (7.35) 

with diagonal blocks 
 

 

pp

2 2
p p p p

xx,pp xy,pp
p p

2 2
p p p p

yx,pp yy,pp
p p

1,

,

,

± ±

± ±

=

α β β + γ
Ψ = Ψ =

γ ωµ γ ωµ

α + γ α β
Ψ = ± Ψ = ±

γ ωµ γ ωµ

 



 (7.36) 

 
found from eq.(7.32) 

Let us consider the case of a single incident wave from the cladding. The grating 
generates different diffraction order that propagate upwards in the cladding and downwards in 
the substrate. We attribute number 1 to the substrate and number 3 to the cladding. The total 
number of unknown diffracted field amplitudes will be equal to 4Pmax, two sets of 1

x,pA −  and 
1
y,pA −  transmitted in the substrate, and two sets of 3

x,pA +  and 3
y,pA + . These unknown amplitudes 

are subjected to 4Pmax number of linear algebraic equation in (7.29).  
In order to obtain the T-matrix, the numerical integration of eq.(7.26) is made by using 

the so-called shooting method, which consists of choosing 2Pmax linearly independent 
representatives of the transmitted field. These representatives must correctly reflect the link 
between the electric and magnetic field components, as given by eqs.(7.32). A typical 
example for the shooting vectors starting from the substrate is that matrix 1+Ψ , which has 
2Pmax linearly  independent columns. Here again, the number 1 indicates the substrate. 

Thus the F column vector at z = zmin can be formally written as a linear combination of 
the unknown amplitudes A1-: 

 
 1 1

minF(z ) A− −= Ψ , (7.37) 
 

Assuming that there is no incidence from the substrate side. Here the tilde indicates that the 
vector F is not yet the true solution of the diffraction problem. 

The result of the numerical integration from zmin to zmax will provide the values of F  at 
z = zmax , which are also a linear combination 1

maxF(z )A −
  of A1-, due to the linearity of the 

problem. On the other side, the column vector F at the upper interface is equal to 
3 3 3 3A A+ + − −ψ + ψ , according eq.(7.33), thus a linear set of algebraic equations for the 

unknown amplitudes 1A −  and 3A +  is obtained, with the free part determined by the wave 
incident from the cladding side: 

 
 3 3 3 3 1

maxA A F(z )A+ + − − +ψ + ψ =  . (7.38) 
 

Once this system is solved, all field components can be calculated. 
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Unfortunately, this simple procedure creates enormous numerical problems that can be 
explained by using two different arguments: 

First, it is known (but no quite well) in the theory of systems of ordinary differential 
equations, that numerical integration could become instable after a specific integration length, 
due to the fact that the set of shooting vectors can lose its linear independence during the 
integration. In other words, if the initial choice covers a vector space of 2Pmax dimensions, 
this space could shrink during the numerical integration to reduce its dimensions, so that the 
final algebraic system (7.38) could become singular. A solution of the problem based on this 
understanding was proposed in 1990 by G. Tayeb by using intermediate orthonormalization 
procedures during the numerical integration. 

 The second argument is based on the fact that inside the modulated region, as well as in 
the homogeneous regions, electromagnetic field contains components that propagate both in 
the positive and in the negative z-direction. During the integration, they both are treated in the 
same manner. As far as the solution requires taking into account the evanescent orders in 
addition to the propagating ones, a part of the former grows exponentially in z-direction, 
while the other part decreases exponentially. Due to the limited length of computer words, the 
ones that decrease substantially will be lost with respect to the ones that grow rapidly, even if 
the former could bring physical information. During the 90s, several different algorithms were 
proposed for solving the problem, based on a different treatment of the diffraction orders 
propagating upwards and downwards [7.9, 7.10]. Among them, to so called S-matrix 
propagation algorithm [7.10c] is probably the easiest to implement. Moreover, it can be used 
with methods other than the differential one in, for example, treating a stack of layers by the 
integral method, or by methods based on a transformation of the coordinate system. Interested 
reader can find in Appendix 7.1 a brief description of the S-matrix algorithm. 
 

7.4. Several simpler isotropic cases 
In practice most applications use non-magnetic materials, for which the form of M-matrix is 
considerably simplified, taking into account that then Qµ  is diagonal and equal to 0µ . 
Furthermore, several specific cases are of great interest for application, and they lead to a 
further simplification of the M-matrix. 

 

7.4.1. Classical grating with one-dimensional periodicity, example of a sinusoidal profile 
Let us consider a classical grating with grooves parallel to the y-axis and surface profile given 
by the equation z = g(x). The vector normal to the surface is given by 

 
( )

2

1N g (x), 0,1 , if g (x) exists,
1 g (x)

N (1,0,0), if not

′ ′= −
′+

=





. (7.39) 

 
where the prime stands for a derivative with respect to x. In case of vertical walls 
N (1, 0, 0).=


 Thus the easiest way to generalize the normal vector to the entire modulated 
region is just to make it equal to eq.(7.39) not only on the profile z = g(x), but everywhere 
inside the grating region for min[g(x)] z max[g(x)]≤ ≤ . The advantage of this choice is that 
N


 does not depend on z, and the Fourier transformation of the tensor NN
 

 is done only once.  
If the derivative of the profile function does not exist, or if the function is a multivalued 

one (e.g., circular or elliptical rods), but the interface can be expressed as a two-variable 
function: 
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 g(x, y) 0= , (7.40) 
the normal vector is easily defined as the gradient of the profile function 

[ ] [ ]N grad g(x, z) grad g(x, z)=


. 

The Qε matrix takes the form: 
  

     

 

     

1 1
2 2
z x x z

1 1
2 2

x z x z

1 1N N 0 N N

Q 0 0

1 1N N 0 N N

− −

ε

− −

  
 ε + − ε  ε ε  
 

= ε 
   − ε ε +   ε ε  

   

   

   

   

   
   

   

   

   

   

   

   
   

   

 (7.41) 

 
where it is taken into account that 2 2

x zN N 1+ = . The fact that the normal vector components 
participate in the form of products in couples is important, because it leads to the conclusion 
is that the choice of the sign of N



 plays no role. 
Further simplification of the M-matrix comes if limited to non-conical diffraction with 

β0 = 0: 
 

 

1 1
,zz ,zx ,zz 0

0

0
1 1

,xz ,zz ,zx ,xx ,xz ,zz

Q Q 0 0 Q µ

0 0 µ 0
M

0 0 0
µ

Q Q Q Q 0 0 Q Q

− −
ε ε ε

− −
ε ε ε ε ε ε

α −α − α + ω ω 
−ω 

=  αα
− ω ε 

ω 
  −ω + ω − α 




 (7.42) 

 
This shows that the system to integrate decouples into two subsystems, corresponding to the 
two fundamental polarizations, transversal with respect to the plane of incidence, transverse 
electric (TE): 

 
[ ]

[ ]
 

y 0 x

2

x y
0

d E i µ H
dz
d H i E
dz µ

  = − ω 

 α  = − ω ε    ω 

 (7.43) 

 
and transverse magnetic (TM): 

 

[ ] [ ]

( )[ ]

1 1
x ,zz ,zx x ,zz 0 y

1 1
y ,xx ,xz ,zz ,zx x ,xz ,zz y

d E i Q Q E i Q µ H
dz
d H i Q Q Q Q E iQ Q H
dz

− −
ε ε ε

− −
ε ε ε ε ε ε

α   = − α − α − ω   ω 

   = ω − − α   

 (7.44) 
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7.4.1.1. Fourier transformation of the permittivity  

The set of ordinary differential equations to be integrated contains the Fourier transforms of ε, 
1/ε, µ, 1/µ, 2

xN , and 2
zN . In general, Fast Fourier transform (FFT) techniques can be easily 

applied. As already discussed with respect to eq.(7.39), the normal vector components must 
be transformed only once, if chosen to be independent on z. On the other hand, the 
permittivity and permeability depend on z and their Fourier components have to be calculated 
for each value of z during the numerical integration. Fortunately, in the 1D case, it is possible 
and recommended to use analytical formulae for the Fourier transforms of ε, 1/ε, µ, 1/µ, 
which give faster more accurate results. This can be done because for a given value of z, they 
are piecewise constant functions of y. Fig.7.3 presents schematically a grating with a period d 
that separates two homogeneous media with permittivities ε1 and ε3. For a given value z0 of 
z, the Fourier transform of, for example, the permittivity intside the modulated region 
0 z h≤ ≤  is given by 

 

2 1
x x

1 2

1 2
x

x d x
imK x imK x31

m
x x

2 1 x xx imk
2

1 3 3 m,0

e dx e dx
d d

x xsin mK
2( ) e

m

+
− −

+
−

εε
ε = +

− 
 
 = ε − ε + ε δ

π

∫ ∫
 (7.45) 

 
so that the two integrals can be solved analytically, once 1x  and 2x  are determined from the 
inverse of g(x): 

 1
1,2 0x g (z )−= . (7.46) 

 
If the inverse of g(x) has more than two solutions, the sum of integrals (7.45) will contain 
several more terms. The same equations can be used to obtain the Fourier transforms of the 
inverse of the permittivity. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.3.Piecewise constant representation of the permittivity for a one-dimensional grating 
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In the case of a sinusoidal profile: 
 

 [ ] 0
x 1,2

2zhz 1 sin(K x) x arcsin( 1)
2 h

= + ⇒ = − . (7.47) 

 
 

7.4.1.2. Fourier transformation of the normal vector  
As already explained, the Fourier transformation of the normal vector requires its continuation 
all over the space. If the grating profile can be represented as a single-value function, we can 
use eq.(7.39) for N



 and calculate the Fourier components of the tensor  TNN
 

 by use of the 
Fast Fourier transform (FFT) technique once for all z-values. For a sinusoidal grating having 
a profile defined in eq.(7.47), the normal vector takes the form: 
 

 ( )
x

2 2
2

x

h cos(K x),0,1
1 dN g (x), 0,1

1 g (x) h1 cos (K x)
d

π − 
 ′= − =

′+ π +  
 



 (7.48) 

. 

7.4.2. Classical isotropic trapezoidal or triangular grating 
A trapezoidal grating is shown schematically in Fig.7.4 with two flat regions L at the top and 
the bottom of the groove and two different, in general, groove angles ψ. The Fourier 
transform of the permittivity and its inverse are calculated using eq.(7.45) with: 
 

 1 0 1

2 C 0 2

x z cotg
x x z cotg

= ψ

= − ψ
 (7.49) 

 
with C 2x d L= − . For the normal vector, the period can be divided in four regions A to D, as 
shown in the figure: 
 

 

y

x 1 x 2

z 1 z 2

x

z

N 0

N sin N sin
in A, in C,

N cos N cos

N 1
in B and D,

N 0

=

= ψ = ψ 
 = − ψ = ψ 

= 
= 

 (7.50) 

 
Their Fourier components do not depend on z and can be represented as a sum of several 
analytical terms, similar to eq.(7.45): 
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Fig.7.4. Trapezoidal profile with parameters. The normal vector direction is given in red arrows. 

 

( )
1 1 1

x x

1

2
x x

1 1 2

h cotg h cotg L2
imK x imK x2 1

x m
0 h cotg

d L d2
imK x imK x2

h cotg L d L

sin 1N e dx e dx
d d

sin 1e dx e dx
d d

ψ ψ +
− −

ψ

−
− −

ψ + −

ψ
= +

ψ
+ +

∫ ∫

∫ ∫
 (7.51) 

( )
1 2

x x

1 1

h cotg d L2 2
imK x imK x2 1 2

y m
0 h cotg L

cos cosN e dx e dx
d d

ψ −
− −

ψ +

ψ ψ
= +∫ ∫  (7.52) 

( )
1 2

x x

1 1

h cotg d L
imK x imK x1 2

x y m
0 h cotg L

sin 2 sin 2N N e dx e dx.
2d 2d

ψ −
− −

ψ +

ψ ψ
= − +∫ ∫  (7.53) 

 
A triangular-groove grating can be considered as a particular case of a trapezoidal 

profile with no flat regions, 1 2L L 0= = , Cx d= . Moreover, the profile given in Fig.7.4 also 
includes the case with vertical facets, and some more exotic profiles with hanging back walls, 
Fig.7.5. 

  
 

 
 

Fig.7.5. Two different profiles with slanted grooves 
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7.4.3. Classical lamellar grating 
Lamellar profile with vertical walls is most easy to treat, because the normal to the profile 
vector has only one non-zero component, Nx = 1. The Qε matrix takes the form: 

 

 
 

 

11 0 0
Q

0 0
0 0

−

ε

 
 

ε =  ε
  ε 

 

 

 

   (7.54) 

 

 

   

   

 

1 1
0 0

2
1 10 0

0

2

0
0 0

1 2
0 0

0 0

0 0 µ

0 0 µ

M
0 0

µ µ

1 0 0
µ µ

− −

− −

−

α α ε β − ε α + ω ω ω 
β β 

ε − ω − ε α ω ω =  α α
− β − ω ε ω ω 

 β β ω − α ε ω ω 

 

 

 

 







 (7.55) 

 
In non-conical diffraction, when β0 = 0, the two fundamental polarizations are decoupled and 
can be solved independently of each other. The M-matrix is simplified to obtain an 
antidiagonal block form: 

 

 

 

1
0

0
2

0
1

0 0 0 µ

0 0 µ 0

M 0 0 0
µ

1 0 0 0

−

−

α − ε α + ω ω 
−ω 

 α=  − ω ε
 ω
 
 

ω ε 

 

 

 

 





 (7.56) 

 
thus the two sets of differential equations for each polarization become: 

 

 
[ ]

 

[ ]

1
x 0 y

1

y x

d E i µ H
dz

d 1H i E
dz

−

−

α   = ω − ε α   ω 

  = ω  ε

 

 

 

 


 (7.57) 

and 

 
[ ]

[ ]
 

y 0 x

2

x y
0

d E i µ H
dz
d H i E
dz µ

  = − ω 

 α  = − ω ε    ω 

 (7.58) 
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Even in the case of conical diffraction, it is possible to define two other polarizations, 

for which the differential system decouples. These are the electric and magnetic polarizations 
that are transverse with respect to the x-axis. Let us denote the two polarization with 
superscripts (e), when Ex = 0, and (h), when Hx = 0. For (e) case, it is possible to express Hy 
as a function of Hx from eq.(7.26) and the first line of the M-matrix in eq.(7.55): 

 
   

1
1 1(e) (e)

y 0 0 xH µ H
−

− −α α    = − ω − ε α ε β    ω ω 
  (7.59) 

 
which can be simplified into: 

 

 
 ( ) 1(e) 2 2 (e)

y 0 0 xH µ H
−

   = −α ω ε − α β     (7.60) 

 
The second line of the matrix M then results in: 

  

     ( )
2 2 11 1(e) 2 2 2 (e)0 0

y 0 0 x
d E i µ µ H
dz

−− − β β   = ε − ω + ε α ω ε − α    ω ω 
  (7.61) 

 
This expression can be further simplified, and together with the third line of eq.(7.55) (when 
Ex = 0) gives a set of equation for (e) polarization: 

 

 
 ( )

 ( )

1(e) 2 2 2 (e)
y 0 0 0 x

(e) 2 2 (e)
x 0 y

0

d E i µ µ H
dz
d iH µ E
dz µ

−    = ω β ω ε − α −     

   = α − ω ε   ω


 (7.62) 

 
Similar procedure for (h) case when (h)

xH 0= , result in another system of differential 
equations, decoupled from the (e) case: 

 

 ( )
 ( )

1 11(h) 2 2 (h)
y 0 0 x

1(h) 2 (h)
x 0 y

d 1H i µ E
dz

d iE µ H
dz

− −−

−

 
   = ω + β α ε α − ω    ε  

   = ω − α ε α   ω

 

 

 

 





 (7.63) 

 
In non-conical mount, β0 = 0 and eqs.(7.62) and (7.63) become equivalent to eqs.(7.58) and 
(7.57). 

Both conical and nonconical cases of diffraction by lamellar gratings are solved by 
eigenvector technique, due to the fact that the coefficients of the differential equations are z-
independent. Moreover, due to the separation of the two fundamental polarizations, it is 
possible to further reduce by half the size of the matrices, by dealing with second-order 
differential equations. For example, eq. (7.57) can be written in the form: 
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[ ]

[ ]

x 14 y

y 41 x

d E iM H
dz
d H iM E
dz

 =  

  = 

 (7.64) 

Thus 

 
[ ] [ ]

2

x 14 41 x2

2

y 41 14 y2

d E M M E
dz
d H M M H
dz

= −

   = −   

 (7.65) 

Les us denote with 2
pρ  the eigenvalues of the product 14 41M M  and with V the matrix 

with its eigenvectors arranged in columns. The solution of the first eq.(7.65) can be written as: 
 
 [ ] [ ]1

x xE (z) V (z)V E (0)−= Φ  (7.66) 
with 

 pp pp p(z) exp( i z)′ ′Φ = δ ± ρ  (7.67) 
which shows that the elementary solutions along z (called modes, wherefrom the names 
Fourier modal method or Rigorous coupled waves method) exist in pairs that can propagate 
upwards or downwards with the same propagation constants. 

By integrating the second eq.(7.65), we obtain that: 
 
 1

y yH (z) W (z)W H (0)−   = Φ     (7.68) 
 

with W  that can be written in different forms, because the eigenvectors are defined within an 
arbitrary factor. For example, if we take into account the second eq.(7.64), 1

41W i M V−= ρ , 
where the diagonal matrix ρ has elements equal to ρp. Another possibility, that is quite 
convenient in TM polarization described by eq.(7.57), is at first to calculate the eigenvectors 
of 41 14M M , instead of 14 41M M   (their eigenvalues are the same). Then the link between V 

and W contains the inverse of 41M , which is just equal to 1 1
ω ε

 

 

 

 

, so that i 1W V= ± ρ
ω ε

 

 

 

 

. 

7.4.4. Crossed grating having vertical walls made of isotropic material 
Most of the recent applications of the Fourier modal method are devoted to studies of light 
diffraction by structures with 2D periodicity and piecewise invariant in the third direction. 
This popularity has several reasons. First, extraordinary light transmission was found in the 
late 90s by Ebbesen [7.18] for such structures, namely metallic sheets with periodical hole 
arrays, and it attracted a lot of attention (see Chapter 1). Second, the technology of such 
structures has significantly advanced in the last 20 years. Third, the Fourier modal method is 
relatively simple to implement, and much faster than most of the other methods, because of 
the eigenvalue/vector technique of integration.  

Detailed study of these structures will be described in a separate chapter. However, due 
to its importance, we are discussing different aspects of this theory, as it presents a particular 
case of the more general geometry, that is characterized by a constant value of the z-
component of the normal vector on each cross-section having z = const. The prolongation of 
the normal vector within the entire grating cell is discussed in sections 7.6.2.2. 
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7.5. Differential theory for anisotropic media 
If we consider anisotropic media that do not extend inside the grating structure, there is not 
necessary to reformulate the diffraction theory, only that in the general case it is not possible 
to separate the problem into two independent polarizations, and it is necessary to work with 
the complete 4Pmax vectors and matrices. 

In the case of anisotropic medium that lies inside the grating, the equations linking the 
M-matrix with the Qε and Qµ matrices remain the same, eq.(7.28) for isotropic and 
anisotropic media. The difference comes from the fact that the Q-matrices take more complex 
form, because the link between the normal and tangential components of the couples E and D 
and H and B is made through the tensors of permittivity and permeability, which are not 
scalars. Let us establish this link in detail for E and D. As far as the continuous and 
discontinuous field components must be factorized differently, we construct a column vector 
Fε, which contains the continuous field components ET and DN. There are two tangential 
components to the grating surface, and only a single normal: 

 

 

( )
1

2

N x

T 1 y

2 zT

N ED E
F E T E U E

T E EE
ε ε

   ⋅ ε       = = ⋅ =       ⋅        

 

 

 

 (7.69) 

 
where the double bar indicates a second-rank tensor with 3 dimensions, and the matrix Uε has 
the form:  

 

( ) ( ) ( )x y z

1x 1y 1z

2x 2y 2z

N N N

U T T T

T T T
ε

 ε ε ε
 
 =
 
 
 

  

 (7.70) 

with N ε


 representing a tensor product with contraction of indices, for example, 

( ) x xx y yx z zxx
N N N Nε = ε + ε + ε


, etc. 

The vectors 1 2N,T ,and T
  

 are defined on the grating surface, but for their further Fourier 
transform, it is necessary to choose a suitable continuation. The necessary conditions are that 
(i) they are continuous on the surfaces where ε and µ are discontinuous, and (ii) they form an 
orthonormal triad. 

Since ε  never vanishes, the determinant of Uε represents a quadric non-null form, 
equal to: 

 ( ) ( )1 2 i ij j
i, j x,y,z

det U N T T N Nε ε
=

ξ ≡ = ε ⋅ × = ε∑
  

 (7.71) 

since 1 2N T T= ×
  

. 

Thus Uε has an inverse invUε  in the form: 
 

267



7.20               Gratings: Theory and Numeric Applications, 2012 

 

( ) ( )
( ) ( )
( ) ( )

x 2 1x x
inv

y 2 1y y

z 2 1z z

N N T N T
1U N N T N T

N N T N T

ε
ε

    − ε × ε ×    
 

   = − ε × ε ×    ξ  
    − ε × ε ×     

   

   

   

 (7.72) 

 
It is not evident to derive this form, but it can easily be verified by using the equivalence 

invU Uε ε =   and the fact that 1 2N T T= ×
  

. For example, the product of the second line of Uε 

with the second column of invUε  can be written in vectorial form: 
 

( ) ( ) ( ) ( ) ( ) ( )inv
1 2 2 1 2 1yy

U U T N T N T T N T T N Nε ε ε ε
   ξ = − ⋅ ε × = − ε × ⋅ = − ε ⋅ × = ε ⋅ = ξ   

          

(7.73) 

 
Going back to the vector Fε, it is continuous across the grating surface, whereas the 

Cartesian components of the electric vector are, in general discontinuous, as well as the 
components of Uε. Thus for their Fourier transform, it is necessary to apply the inverse 
factorization rule: 

 

 [ ]
1invF U E

−
ε ε  =  



 

 

 

 (7.74) 

At the other hand, 
 
 inv invE U F D U Fε ε ε ε= ⇒ = ε

 

 (7.75) 
 

with Fε  being continuous, so that the Fourier transform of  D


 requires the direct factorization 
rule: 

 
1inv invD U U E

−
ε ε   = ε   

 

  

  

  

 (7.76) 

i.e.,  
 

 
1inv invQ U U

−
ε ε ε= ε  

  

  

 (7.77) 

 
For gratings having anisotropic magnetic properties, the corresponding Qµ matrix is 

obtained from eqs. (7.71), (7.72), and (7.77) by replacing invUε  by inv
µU  and ε  by µ . 

 

7.5.1. Lamellar gratings made of anisotropic material 
Such gratings are analyzed in the chapter devoted to the Fourir modal method by using more 
direct approaches, but here we want show how the corresponding equations can be obtained 
from the general eqs.(7.72). To this aim it is sufficient to realize that 

 

 1

2

N (1,0,0)

T (0,1,0)

T (0,0,1)

=

=

=







 (7.78) 
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so that  
 

 

( )
( )
( )

2 xy xx

1 xz xx

xx

N T ( , ,0)

N T ( ,0, )

N N

ε × = ε −ε

ε × = −ε ε

ε ⋅ = ε

 

 

 

 (7.79) 

 
and eq.(7.72) takes the form: 

 

 

xy xz

xx xx xx

inv

1

U 0 1 0

0 0 1

ε

ε ε
− − ε ε ε 

 
 =
 
 
 
 
 

 (7.80) 

 

with a determinant equal to 
xx

1
ε

 

 

 

 

 

. Thus 

 
 

1 1 1
xy xz

xx xx xx xx xx

1inv

1 1 1

U 0 0

0 0

− − −

−
ε

 ε ε 
ε ε ε ε ε 

 
 

=  
 
 
 
 
 

        

        

        

        

        

 

 

 





 (7.81) 

 
 

The second matrix that is required takes the form: 
 

 yx yx xy yx xzinv
yy yz

xx xx xx

zx xyzx zx xz
zy zz

xx xx xx

1 0 0

Uε

 
 
 
 ε ε ε ε ε
 ε = ε − ε −

ε ε ε 
 ε εε ε ε ε − ε − ε ε ε 

 (7.82) 

 
This form is valid even when the permittivity tensor is not symmetric, as happens in the 
modeling of magnetooptical effects. 

The Qε matrix takes the form obtained in [7.19], using a completely different approach: 
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1inv invQ U U

−
ε ε ε= ε  

  

  

 (7.83) 
1 1 1

xy xz

xx xx xx xx xx
1 1

yx yx xy yx xy yx xz
yy yz

xx xx xx xx xx xx xx

1 1 1

1 1

− − −

− −

ε ε
ε ε ε ε ε

ε ε ε ε ε ε ε
= ε − + ε −

ε ε ε ε ε ε ε

        

        

        

        

        

           

          

          

          

           

1
yx xz

xx xx xx
1 1

zx xy xyzx zx zx xz zx
zy zz

xx xx xx xx xx xx xx xx

1

1 1

−

− −

ε ε
+

ε ε ε

ε ε εε ε ε ε ε
ε − + ε − +

ε ε ε ε ε ε ε ε

     

      

      

      

     

            

            

            

           

            

1
xz

xx xx

1
−

 
 
 
 
 
 
 
 

ε 
 ε ε 

   

   

   

   

   

 

7.6. Normal vector prolongation for 2D periodicity; Fourier transform 
As observed, the proper use of the direct and the inverse factorization rules requires that the 
vector normal to the interfaces between different media is defined not only on these 
interfaces, but throughout the entire grating cell. In the case of classical gratings with one-
dimensional periodicity, the prolongation of the normal vector can be done quite easily, as 
shown in sec.7.4.1. For two-dimensional periodicity, the choice depends on the geometry, but 
also on its mathematical representation. Several different solutions have to be considered, 
without pretending to be exhaustive.  

In general, the cross-section profile changes with z, so that the matrices Qε, Qµ, and M 
have to be recalculated for each value of z. If the geometry is z-invariant, this must be done 
only once. Concerning the Fourier components of the normal vector, there are two different 
classes of grating profiles that has to be treated separately. The first class consists of surfaces 
that can be expressed all over the unit cell (containing a single period in x and z) as an 
analytical (at lease piecewisely) function Sz g(x, y)= , where S indicates that the point lies on 

the interface. In this case, it is possible to have a unique extension of N


 whatever the values 
of z. In addition, it is not necessary to calculate the cross-section of the surface(s) with a plane 
perpendicular to the z-axis for each value of z. This case also includes multilayered 
homomorphous structure with constant layer(s) thickness in the z-direction. We consider this 
class of cases in sec.7.6.1. 

The second class of surfaces includes surfaces that cannot be expressed through single-
valued functions, as the example given on the right-hand side of Fig.7.12. In that case, it is 
necessary for each fixed value of z to know the cross-section function of the grating surface 
with the plane z = const. Subsection 7.6.2 presents general analysis, some important specific 
cases are considered further in the following subsections. 

 

7.6.1. General analytical surfaces 
If the interface representing the structure can be expressed as a single-valued function, 
analytical over the entire unit cell (this is also valid if different analytical functions can be 
defined over different regions of the cell): 

 
 Sz g(x, y),=  (7.84) 
 

then the components of the vector normal to the surface defined on the surface have the form: 
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2

g g, ,1
x y

N(x, y) .
1 grad g(x, y)

 ∂ ∂
− − ∂ ∂ =
+



 (7.85) 

 
It can immediately be extended to whatever the values of z inside the modulated region. 
Moreover, its values do not depend on z, as it was a case of the classical one-dimensional 
grating already discussed in sec.7.4.1. 

The permittivity and its inverse can easily be obtained on a mesh (x,y) covering the 
grating cell for each z: 

 

 3

1

g(x, y) z (x, y)
g(x, y) z (x, y)

< ⇒ ε = ε

≥ ⇒ ε = ε
 (7.86) 

 
where 1 and 3 are the indexes representing respectively the inferior and the superior regions 
separated by the grating surface (as it was done in Fig.7.3). If the cross-section of the grating 
surface with the planes z = const are ellipses (or circles), and if zN  does not depend on (x,y) 
at each z, it is possible to replace the numerical Fourier transform by an analytical formulae. 
One important particular case is the z-invariant grating with elliptical cross section; another 
case includes the gratings having a rotational symmetry, as shown in Fig.7.12. 

The same extension (7.85) for the normal vector is valid for a stack of layers having 
homogeneous thicknesses in the z-direction: 

 
 S, j jz g(x, y) t= +  (7.87) 

 
The permittivity and its inverse inside the intermediate layers are simply given as: 
 

 S, j 1 S, j jz (x, y) z z (x, y) (x, y) .− < ≤ ⇒ ε = ε  (7.88) 
 

7.6.2. Irregular general surfaces 
If the case does not fit into the preceding section, the interface is expressed through the more 
general function Su(x, y, z ) 0= , and the vector N



 has to be determined for each inclusion: 

 S
S

S

u u u,
x y z

N(x, y, z )
grad u(x, y, z )

 ∂ ∂ ∂
 ∂ ∂ ∂ =



 (7.89) 

 
However, these values are well defined on the grating surface (except on its edges), and 

have to be extended over the entire cell. When considerintg a cross-section of the profile with 
a plane at z = const., several different cases exist: 

 

7.6.2.1. Single-valued radial cross-section 

At first, we shall consider that the cross section function S Sf (x , y ) 0=  defines a single 
curve, and that curve can be expressed in cylindrical coordinates as 
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 S S( )ρ = ρ ϕ  (7.90) 
where 

 
[ ]

2 2
S S C S C

S C S C

(x x ) (y y )

arctan (y y ) / (x x )

ρ = − + −

ϕ = − −
 (7.91) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.6. Single-curve cross-section of the grating surface at z = const.  

 
and xC and yC represent a “central” point of the curve, Fig.7.6. Here we assume that the 
values of Sρ  are unique for each ϕ. The other case is analyzed further on. 

It is possible to extend to the entire cell the values of the normal vector, defined only on 
the curve, by assuming that it is constant for each fixed angle ϕ. This prolongation requires 
the following procedure: 

1. Fixing the pair (x,y). 
2. Calculating the angle [ ]C Carctan (y y ) / (x x )ϕ = − − . 
3. Calculating S S( )ρ = ρ ϕ  from eq.(7.91). 
4. Calculation of S Sx cos= ρ ϕ , and S Sy sin .= ρ ϕ  
5. Determining zN , together with Nx and Ny from eq.(7.89). 

6. Attributing these values of the components of S SN(x , y )


 to the pair (x,y). 
7. Fast Fourier transform after the normal vector components are determined for all the 

pairs (x,y) on a mesh inside the grating cell. 
The procedure can be simplified for most of the typical diffracting objects, as shown further 
for objects with elliptical or circular cross-section. 

If the grating profile varies with z, the calculations of the Fourier components of the 
permittivity and its inverse has to be made at each value of z, both for the analytical profiles, 
for which the normal vector prolongation can be chosen z-invariant, or for the irregular 
surfaces. For each (x,y) pair of the mesh used in the FFT method, it is possible to determine 
whether the point lies within or outside the cross-section part of Fig.7.6: 

 

 S inside

S outside

( ) ( ), (x, y)
( ) ( ), (x, y)

ρ ϕ < ρ ϕ ε = ε

ρ ϕ ≥ ρ ϕ ε = ε
 (7.92) 

 

with 2 2
C C(x x ) (y y )ρ = − + − . 

 

y 

x 

 

 
  

 
ϕ 
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7.6.2.2. Objects with polygonal cross section 
A typical example of such objects is presented in Fig.7.1. Its surface consists of different 
plates, and for their treatment the condition Nz = const. for fixed z is fulfilled, because N



 is 
constant at each plate. Another possible surface consists of plane ribbons with curvature in z-
direction, Fig.7.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.7. Surface made of plane ribbons 

 
As shown in Fig.7.8, the cross-section represents a polygon. On each of its sides the 

modulus of the in-plane component of the normal vector is known:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.8. Object with a polygonal cross-section. 

 
 

 2
//, z,N 1 N= −i i  (7.93) 

 
and its direction is perpendicular to the segment. If the i-th segment is located between the 
angles ϕi  and 1+ϕi , we can extend the definition of the normal vector all over the unit cell 
situated within the range ( ϕi , 1+ϕi ), delimited by the bold dot-dashed lines in Fig.7.8, by 

 

y 

x 

 

 
  

 
ϕ 

segment i 
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assuming that N N=
 

i . The normal vector extension will be continuous everywhere, except on 
the sector border lines (bold dot-dashed lines) and thus the only points where both 
permittivity (and/or permeability) and N



 are simultaneously discontinuous are at the 
polygonal corners, where anyway N



 is never continuous. 
The procedure to follow requires that for each value of z the polygon corners (x i, yi) 

and the z-components of N


 for each segment are determined, as well as fixing some “central” 
point C C(x , y ) . Then the angular ranges of each segment with respect to that central point are 
calculated: 

 C

C

y yarctan
x x

−
ϕ =

−
i

i
i

 (7.94) 

For each pair (x,y), the azimuthal angle is given as [ ]C Carctan (y y ) / (x x )ϕ = − − , which 
value determines the number of the segment, say j, within the point lies. The unknown in-
plane part of the normal vector is perpendicular to the j-th segment: 

 

 

( )
( ) ( )

( )
( ) ( )

2
z, j

x, j j 1 j 2 2
j 1 j j 1 j

2
z, j

y, j j 1 j 2 2
j 1 j j 1 j

1 N
N y y

y y x x

1 N
N x x

y y x x

+

+ +

+

+ +

−
= −

− + −

−
= − −

− + −

 (7.95) 

 
The expression in the square root comes from the normalization of N



. 
The value of the permittivity depends on whether the point (x,y) lies inside or outside 

the polygon. The calculations of (x, y)ε  and 1 ε  are made simultaneously with the normal 
vector calculus. After the angular segment in which the point (x,y) of the mesh in grating cell 
is determined (say the j-th one, as in eq.(7.95)), we can find the length of Sρ  between the 
central point and the polygon segment, shown in Fig.7.8. For this sake we show in Fig.7.9 the 
enlarged segment: 

 
Fig.7.9. The j-segment of Fig.7.8 together with notations 

 
The sine theorem gives the possibility to determine the angle ζ : 
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( ) ( ) ( ) ( )2 2 2 2
j 1 j j 1 j j 1 C j 1 C

j 1 j

x x y y x x y y

sin( ) sin( )
+ + + +

+

− + − − + −
=

ϕ − ϕ ζ
 (7.96) 

 
wherefrom the radius Sρ  is given as: 
 

 
( ) ( )2 2

C j C j
S

j

x x y y
sin( )

sin( )

− + −
ρ = ζ

π − ζ − ϕ + ϕ
 (7.97) 

 
Eq.(7.92) enables us to obtain the values of the permittivity (and its inverse): 
 

 S inside

S outside

( ) ( ), (x, y)
( ) ( ), (x, y)

ρ ϕ < ρ ϕ ε = ε

ρ ϕ ≥ ρ ϕ ε = ε
 (7.98) 

 

with 2 2
C C(x x ) (y y )ρ = − + − . 

 
 
 
 
 
 
 
 
 
 

Fig.7.10. Schematic presentation of corner rounding 

 
Concerning the edges, in reality the surfaces never have such, as etching always ends by 

rounding the corners, as shown in Fig.7.10. Let us consider that the rounding between the 
segments numbered i-1 and i is made preserving the values of Nz, and that in the cross-plane z 
= const., the rounding can be considered as circular, having a center in C C(x , y )

i i
 and radius 

ri .The in-plane component of the normal vector follows the curvature radius and thus is given 
by equations, similar to eq.(7.95):  
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 (7.99) 
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The prolongation is more complicated, if the consecutive values of Nz at the two sides of the 
rounded corner differ significantly. In that case a linear interpolation of Nz between ϕi  and 
ϕ + ∆i i  can be applied. 

 
7.6.2.3. Mutlivalued cross-sections 
If the cross-section cannot be represented as a radial function, nother possibility arises if it is a 
piecewise analytical function in x (or y), as shown in Fig.7.11, where we can use two different 
functions of x.  We assume again that zN  is known, as it happens for z-independent profiles, 
for which it is simply null. In the upper part of the figure, for each value of x it is possible to 
calculate the normal vector on the profile: 
 

 
( )1 z

1 2 2
1 z

f (x),1, N
N

1 f (x) N

′−
=

′+ +



 (7.100) 

 
We can take this value to be the same for each y in the upper region 1A , so that the numerical 
Fourier transform is made only once in 1A  and once in 2A .  

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.11. Piecewise analytical c ross-section of the grating surface at z = const.  

 
The permittivity has to be calculated at each (x,y) mesh point:  

 S inside

S outside

y y , (x, y)
y y , (x, y) .

< ε = ε

≥ ε = ε
 (7.101) 

 

7.6.4. Objects with cylindrical symmetry 
Many periodic systems consist of inclusion having rotational cylindrical symmetry, like 
spheres, vertical cylinders, or ellipsoids with axe of rotation parallel to the z-axis, but also 
smooth surfaces, as presented in Fig.7.12. 

These structures are characterized by a circular cross-section of the surface with the 
horizontal planes at z = const., but also with an independence on x and y of the values of Nz 
on each horizontal plane. In addition, due to the circular cross-sections, the angular 
component Nϕ = 0 everywhere. Once z is fixed, the variation of the interface in the vertical 

y 

x 
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direction fixes the value of Nz, for example through eq.(7.89), wherefrom the radial normal 

vector component 2
zN 1 Nρ = − . For each pair of (x,y) then: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.12. Several profiles with cylindrical symmetry. 

 

 

C
x 2 2

C C

C
y 2 2

C C

(x x )N
N (x, y)

(x x ) (y y )
(y y )N

N (x, y)
(x x ) (y y )

ρ

ρ

−
=

− + −

−
=

− + −

 (7.102) 

In addition, for profiles invariant in z-direction, Nz = 0 and N 1ρ = .  
The permittivity is given as a piecewise constant function: 
 

 
2 2 2

inside C C
2 2 2

outside C C

(x, y) , if (x x ) (y y ) R (z),

(x, y) , if (x x ) (y y ) R (z)

ε = ε − + − <

ε = ε − + − ≥
 (7.103) 

 
where R(z) is the radius of the profile surface for a given z.  

Having obtained the values of the normal vector components and permittivity for each 
x,y enables us to calculate their Fourier transforms, either by Fast Fourier transform (FFT), or 
analytically. 

 

7.6.5. Objects with elliptical cross-section 
Similar simplification is possible for systems with elliptical cross-sections that have Nz = 
const. for z fixed. Such are the inclusions of vertical cylinders with elliptical cross-section, 
ellipsoids with one of the axes orientated in z-direction, but also all types of the structures 
shown schematically in Fig.7.12 that have elliptical or circular cross-sections. 

Let us assume that the ellipse axes are parallel to the x and y-axes.. The cross-section 
curve for z = const. is given by the equation: 
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2 2
2S C S Cx x y y R

a b
− −   + =   

     (7.104) 

In order to obtain results similar to eq.(7.102), we introduce an elliptical coordinates, defined 
as: 

 

C

C

x xx
a

y yy
b

−
=

−
=





 (7.105) 

 
Using these notations, the ellipse becomes a circle, for which the considerations of the 
previous subsection apply. Thus  
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   
−

=
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   

 (7.106) 

 

with 2
zN 1 Nρ = − , which remains constant for each fixed z. 

Concerning the permittivity, it is determined in the same way as in eq.(7.103) for 
circular profile: 

2 2
2C C

inside

2 2
2C C

outside

x x y y(x, y) , if R (z),
a b

x x y y(x, y) , if R (z)
a b

− −   ε = ε + <   
   

− −   ε = ε + ≥   
   

 (7.107) 

 
 with R(z) given by eq.(7.104). 
 

Remark on the prolongation of the normal vector 
Special attention has recently been paid to the numerical implementation of the differential 
method for gratings having 2D periodicity formed by vertical holes or bumps that are 
invariant in z, and that have arbitrary cross-section in the xOy plane. A detailed study in the 
case of z-invariant geometry that applies for an eigenvalue/eigenvector technique of 
integration (FM or RCW method) is given in ref.[7.20], followed by several other works 
[7.21, 7.22]. It is necessary to note that the technique of prolongation of the normal vector as 
discussed in [7.20] can be applied also for z-dependent profiles with similar cross section; the 

difference is the renormalization factor 2
z1 N−  for each z. 
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The authors compare several different formulations of the Fourier Modal method 
applied to structures with rectangular, circular, or elliptical cross-sections. These formulations 
include the classical formulation of Moharam and Gaylor that uses only the direct 
factorization rule, the formulation given by Lifeng Li [7.23] that introduces two different 
Fourier transforms of the permittivity ε, namely  ε      and  ε     , which are calculated by 
applying at first the inverse rule along one of the coordinates, and then the direct rule along 
the other one. This second formulation was made for rectangular and parallelogram cross-
sections. For circular or elliptical (or other smooth) forms, it introduces a stepwise treatment 
of the profile, which appears more slowly convergent than the special techniques developed 
after. 

              
(a)       (b) 

Fig.7.13. Two different prolongations of the normal vector for a circular inclusion. (a) Radial 
prolongation. (b) Electrostatic continuation of the normal vector for a circular cross-section 
inclusion inside a square grating cell (after [7.20]). 

The third approach to the problem requires a prolongation of the normal vector (NV) to 
the profile within the entire grating cell. As already stressed, there are several possibilities to 
make this. A typical example is the radial prolongation, Fig.7.13a, which has been discussed 
in Sec.7.6.2.1 and 7.6.4 and it includes discontinuities of the normal vector on the cell 
boundaries, where the permittivity is continuous. Another approach proposed in [7.20] is the 
electrostatic one, which insures the continuity all over the cell and on its boundaries, except 
for on single points inside, Fig.7.13b. 

Fig.7.14 shows the convergence rates for the transmitted zeroth order of a grating 
consisting of dielectric cylindrical inclusions with a circular cross-section with refractive 
index n = 1.5, in normal incidence from the substrate. The grating period is 2λ, the width of 
the grooves is λ, and the grating depth is λ/(2n−1). The graph presents the diffraction 
efficiency in transmission as a function of the truncation order N using the three considered 
formulations: Moharam’s original formulation, Li’s formulation, and the formulation using 
the normal vector (NV) field. As usual the Fourier series run from – N to N, which yields 
2N+1 Fourier coefficients for each of the two directions of periodic continuation, or 2(2N 1)+  
coefficients in total. As can be expected, both the original approach and the formulation by Li 
have worse convergence than when correctly taking into account the factorization rules for the 
tangential electric field and normal displacement components to the profile, where the 
permittivity is discontinuous [7.20]. It is necessary to stress that the difference in the 
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convergence rates is even more pronounced for metallic inclusions, having much larger 
optical contrast. 

 
Fig.7.14. Convergence rates with respect to the truncation of the Fourier series for four different 
approaches used to model the diffraction by a cylindrical inclusion with circular cross-section. 

 
Recently, Weiss et al. [7.24] proposed another alternative approach to treating smooth 

inclusions, by changing the coordinate system, so that its planes are parallel to the profile and 
to the grating sell walls (see Fig.7.15). If the transformed system is orthonormal, its 
coordinate lines are automatically tangential or perpendicular to the physical walls. If not, the 
Maxwell equations have to be rewritten in covariant vector form using the covariant and 
contravariant vector components. 

 
 

(a)       (b) 

Fig.7.15. Coordinate lines and surfaces according to (a) [7.20] and (b) [7.24] 

 
This approach is somehow equivalent to the normal vector prolongation, due to two 

main reasons: 
(i) The NV approach defines in an unambiguous manner the normal vectors on the 

profile, giving a liberty to continue them all over the cell. The coordinate 
transformation is also defined on the profile and the outside boundaries, but can be 
chosen in different ways around the grating cell. 
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(ii) The change of the coordinate system introduces in the Maxwell equations the 
metric tensor   that multiplies the electric displacement and magnetic induction 
in the right-hand side of eq.(7.6), so that for the electric field we obtain the 
substitution: 
 D E E.= ε → ε

  

  (7.108) 
 
The normal vector approach acts in a similar manner by introducing the matrix 
Q ,ε  given in eq.7.21, which makes the following substitution in the Fourier space, 
eq.(7.20): 
 D E Q E .ε     = ε →     

  

 (7.109) 
 

7.6.6. Multiprofile surfaces 
A grating with multiple bumps (or inclusions) inside the single cell could be treated by 
separation the cell into sub-cells, not necessarily rectangular, containing a single inclusion, as 
shown in  Fig.7.16, where a specific cross-section at z = const. is separated into three regions 
A, B, and C. As far as the Fourier components of the normal vector, of the permeability and 
the permittivity have to be calculated for each value of z (if they depend on z), the separation 
into subcells can vary with z. 

 
 
 
 
 
 
 
 
 
 
 
 
 Fig.7.16. Cross-section at z = const. of a grating having different inclusions. The three different 
regions to be treated independently are separated by dashed lines. 

 
The case schematized in Fig.7.17a can result from a surface covered by a thin layer of 

another substance, a layer that cannot be treated using eq.(7.87). The simplest possibility is to 
have different continuation of the normal vector inside each region. At first, the angle 

[ ]C Carctan (y y ) / (x x )ϕ = − −  for the point with coordinates (x, y) is calculated, and it is 
necessary to determine to which region the point belong. If it lies inside the innermost region 
C, the values of 1N(x, y) N ( )= ϕ

 

, where 1N ( )ϕ


 is determined using one of the procedures 
discussed above for a single interface that is defined by the inner profile function. 

If the point (x, y) lies in the outermost region, we take 2N(x, y) N ( )= ϕ
 

, where 2N ( )ϕ


 
corresponds to the second interface. In-between, we have two possibilities. The first choice is 
to divide the region into two subregions as indicated in Fig.7.17a with the dashed line. In each 
of them, N(x, y)



 is taken to be equal to its values on the adjacent profile, so that it is 
continuous everywhere where the permittivity and/or permeability are discontinuous. 
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   (a)         (b) 

Fig.7.17. Structures with interpenetrating cross-section profiles 

 
The second possibility is to introduce a linear interpolation inside region B, but it is 

necessary to know the distances 1ρ  and 2ρ  between the central point and the profiles along 
the ray with [ ]C Carctan (y y ) / (x x )ϕ = − −  fixed. Then: 

 

 
2 2

1
B 1 2 1
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C C

1
2

N (x, y) N ( ) N ( ) N (

(x x ) (

) ,

with y y )

ρ − ρ = ϕ + ϕ − ϕ  ρ

− + −

− ρ

ρ =

   

 (7.110) 

 
Another specific case that appears in the studies of magnetic resonators is presented in 

Fig.7.17b. In can be treated in the same way is for the case in Fig.7.17a, but it is necessary to 
introduce a separate region D indicated in the figure and containing the opening, for which 
N (0,1, 0)=


, for example.  
 

7.7. Integrating schemes 
Numerical solution of a system of ordinary differential equations is a mature domain due to 
the enormous amount of physical and technical applications. Unfortunately, the grating 
problem represents one of the worst tasks for the theory of ordinary differential equations, 
because the system to be integrated is a stiff one. To better understand the problem, let us 
consider the case of a homogeneous layer that introduces no coupling between the diffraction 
orders. The solution of the diffraction problem contains waves propagating up- and 
downwards (in z-direction). These are plane waves, propagating or evanescent inside the 
layer. In lossless medium, their constant of propagation in z can be real, or imaginary, 
depending on the number of diffraction order under consideration: 
 

 2 2
m 0 m(k n)γ = ± − α , (7.111) 

with 
 m 0 mKα = α + . (7.112) 

The real values of γ are bounded by 0k n , but the imaginary parts are not bounded, as their 
asymptotic values for large |m| are given by: 

 
 mIm( ) | m | Kγ = ± . (7.113) 
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From the point of view of the theory of ordinary differential equations this means that 
the eigenvalues of the system differ significantly in magnitude, i.e., the differential system is 
stiff. The greater the difference, the more unstable the solution. On the other hand, the solution 
of the diffraction problem requires sufficient number of Fourier components of the profile 
function and electromagnetic field to be correctly represented by the truncated Fourier series, 
thus the necessity to work with large number of Fourier components, and thus the 
increasingly greater the stiffness of the differential system, i.e., more instable the solution 
with respect to the length and number of integration steps. The theory concludes that the so 
called explicit integration schemes are most instable for such problem, whatever their order, 
and implicit methods have to be used. The problem with the implicit methods is that they need 
one matrix inversion and several more matrix operations on each integration step, when 
compared with the explicit methods, so that the choice is not evident to ensure the most 
efficient integration scheme. 

Let us recall the basic principle of the first-order explicit and implicit schemes. In a 
first-order approximation, the solution of the differential system:  

 d F(z) M(z)F(z)
dz

= . (7.114) 

between two consecutive points jz z=  and j 1z z +=  can be searched in developing in series: 

 j 1 j j 1 jF(z ) F(z ) (z z )M(z)F(z)+ += + − . (7.115) 
If M(z)  and F(z) are evaluated in jz z= , this leads to the first-order explicit integration 

(Euler’s) scheme: 
 j 1 j jF(z ) hM(z ) F(z )+  = +  . (7.116) 

where   is the unit matrix, and j 1 jh (z z )+= − . 
If M(z)  and F(z) are evaluated in j 1z z += , we obtain the first-order implicit (inverted 

or backward Euler’s) scheme: 

 
1

j 1 j 1 jF(z ) hM(z ) F(z )
−

+ + = −  . (7.117) 
The theory says that this scheme is more stable, but it needs one matrix inversion on 

each step. A combination of the two must provide even better results, because it uses a half of 
the previous step: 

 
1

j 1 j 1 j j
1 1F(z ) hM(z ) hM(z ) F(z )
2 2

−

+ +
   = − +      
  . (7.118) 

However, we need one additional matrix multiplication. In what follows we use these 
two single-point first-order methods under the names Expl 1 (single point explicit Euler 
integration) and Impl 1, eq.(7.118) and compare the convergence with respect to the total 
number of integration points with several other more sophisticated integration schemes for 
two different metallic gratings in TM polarization, the most difficult combination when using 
the differential method. 

The advantage of these formulations is that they all are single-step ones, and do not 
need a storage of the intermediate results on several integration steps. They can be easily 
programmed and don’t need additional memory storage at each step. However, if we refer to 
one of the most relevant sources [7.25], we see that “this is the generic disease of stiff 
equations: We are required to follow the variation in the solution on the shortest length scale 
to maintain the stability of the integration, even though accuracy requirements allow a much 
larger stepsize.” This means that a priori choice of the integration step without adaptive 
control and change in the step length cannot produce stable and relevant results. 
Unfortunately, it is quite difficult to use adaptive-step methods, because they require much 
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longer computation times, as it is necessary to repeat the integration process several times 
when changing the integration step length. This is why we concentrate our attention to fixed-
step algorithms. 

Fixed-step multistep explicit methods have been used from decades in the differential 
method programming. The best results have been obtained when combined with an implicit 
correction by using a predictor-corrector scheme, as described further on. However, referring 
again to [7.25], “high order does not always mean high accuracy.” It will be more useful, if 
larger integration step is obtained with high order or multistep methods, which is not obvious, 
as we observe on several numerical examples. 

We have used three simple integration schemes, the single-point implicit or explicit 
scheme, as well as a 4-point predictor-corrector method (PCM 4). It contains two steps, the 
first one representing an Adams-Bashforth explicit 4-point scheme [7.26], described by the 
equation 

j 5 j 4

j 4 j 3 j 2 j 1 j

F(z ) F(z )

1901 1387 108 637 251h F (z ) F (z ) F (z ) F (z ) F (z )
720 360 30 360 720

+ +

+ + + +

=

 ′ ′ ′ ′ ′+ − + − +  

. (7.119) 

with 
 j j jF (z ) M(z )F(z )′ = . (7.120) 
The corrector step is a 4-point Adams-Moulton integration: 

j 4 j 3

j 4 j 3 j 2 j 1 j

F(z ) F(z )

251 646 264 106 19h F (z ) F (z ) F (z ) F (z ) F (z ) ,
720 720 720 360 720

+ +

+ + + +

=

 ′ ′ ′ ′ ′+ + − + −  

 (7.121) 

which is an implicit scheme [7.27]. However, contrary to the other explicit schemes (BDF), it 
does not require inverting a matrix, it just makes one step back as a corrector. 
 An extension of eq.(7.117) to a multistep algorithm results in multistep implicit method, 
called also backward differentiation formulae (BDF) [7.28]. Typical 3-point and 5-point 
formulae take the form: 

1
j 3 j 3 j 2 j 1 j

18 9 2BDF3: F(z ) hM(z ) F(z ) F(z ) F(z )
11 11 11

−
+ + + +

  = − − +    
 . (7.122) 

j 5

1
j 5 j 4 j 3 j 2 j 1 j

BDF5 : F(z )

300 300 200 75 12hM(z ) F(z ) F(z ) F(z ) F(z ) F(z )
137 137 137 137 137

+

−
+ + + + +

  = − − + − +    


. (7.123) 

It is evident that BDF3 (called further on Impl 3) requires a starting method for the first two 
points, and BDF5 (Impl 5), for the first 4 points. The same is valid for PCM in eqs.(7.119) –  
(7.121). 

The second-order Runge-Kutta method is given in the form: 
 

 

1 j j

2 j 1 2 j 1

j 1 j 2

k hM(z )F(z )

1k hM(z ) F(z ) k
2

F(z ) F(z ) k

+

+

=

 = +  
= +

 (7.124) 

which has an error proportional to 3h . It is also called a midpoint point, because it requires 
the evaluation of the functions at the middle of the step, i.e., twice the number of the steps of 
the other tree methods discussed above. 

The classical fourth-order Runge-Kutta method also uses midpoint values: 
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 = + 

= + + + +

 (7.125) 

with an error of the order of 5h . These two methods are higher-order explicit methods that do 
not need matrix inversions during the integration. However, as already stressed, higher order 
does not mean larger steps. 

The highest possible order in h can be obtained theoretically, by using the 
eigentechnique: 

 ( )h 1
j 1 jF(z ) V e V F(z )γ −
+ =  (7.126) 

where V is a matrix containing the eigenvectors of M and the exponential term in the round 
brackets represents a diagonal matrix constructed using the eigenvalues γ of M. In practice, 
this method does not increase the stability, because it remains a single-point explicit method. 
Moreover, it requires much longer computation time because of the requirement to solve an 
eigenvalue/eigenvector problem at each integration step. 

The first example concerns a typical commercial sinusoidal aluminum grating that has 
very high efficiency in TM polarization. It supports a single diffracted order in -1st order 
Littrow mount and has a modulation depth-to-period ratio of 40%. Fig.7.20 presents a 
numeric test of the efficiency calculated for a different number of integration points using 
several integrations schemes. Due to the polarization and the grating material, it is necessary 
to separate the integration into several slices (5 in this case) in order to avoid numerical loss 
of precision, the results of the integration in two consecutive slices connected to each other by 
the use of the S-matrix algorithm. In Fig.7.20b we have presented a part of the results, 
obtained with 20 slices, instead of 5. The comparison between the two cases show that 5 
slices are sufficient, the weaker oscillation for 20 slices are due mainly to the fact that the 
horizontal scale is less dense, because the step in the total number of integration points is an 
integer times the number of slices. The truncation parameter N = 20, i.e., totally 41 Fourier 
harmonics of the field are used in the calculations. 

As can be concluded, an absolute precision within 1% is rapidly obtained whatever the 
method used, with the total number of points of the order of 200. However, the predictor 
corrector method is less stable when the number of points is smaller than 300. Implicit 
methods are more stable, as expected, and result in an error smaller than 0.1% even for the 
number of points less than 200. It is interesting to observe than the first-order implicit method 
is more stable than the higher implicit methods, probably because it contains a middle-point 
evaluation of the field derivative, as seen in eq.(7.118). It requires a little bit longer 
computation time than the other two implicit methods, because of the additional matrix 
multiplication. The explicit method, which is the fastest one, shows slower convergence, as 
expected, whereas the performance of the higher-order RK methods competes with the 
implicit methods. 
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Fig.7.18. Aluminum grating with period 0.5 µm and depth 0.2 µm used in -1st order Littrow mount 
at 0.6328 µm wavelength in TM polarization. Convergence with respect to the total number of 
integration points, truncation to 41 Fourier harmonics and using 5 (a) and 20 (b) slices in the S-
matrix algorithm. The acronyms for the methods are defined in the text. 

 
Table 7.1 compares the computation times of the different methods for the two 

investigated cases (Fig.7.18 and the following Fig.7.19). For comparison, (null) indicates the 
time without any operation due to the integration, and that is necessary for the construction of 
the M-matrix and the use of the S-matrix propagation algorithm, as described in Appendix 
7.A. The fastest method is the single-point explicit method, but as expected it is less precise 
given the same number of integration points, Fig.7.18. The implicit single-step middle-point 
method shows stability similar to the 4-th order Runge-Kutta method, but is slightly more 
rapid. The predictor-corrector method is less stable and requires longer computation times.  
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Table 7.1. Computation times of the different methods described in the text for the two cases with 
groove depth to groove period equal to 40% and 200% 

 
Method N = 20, slices 5 

int. points 400, 
modulation 40% 

N = 50, slices 35 
int.points 1500, 

modulation 200% 
Expl. 1 1.41 s 72.3 s 
Impl.1 3.55 s 187.6 s 
Impl.3 2.67 s 157.8 s 
Impl.5 2.81 s 168.9 s 
PCM 4 2.14 s 120.0 s 
RK 2 2.70 s 144.9 s 
RK 4 4.70 s 252.5 s 

eigentechnique 7.54 s 360.0 s 
(null) 0.68 s 38.5 s 

 
It is necessary to stress out that in reality, the computation times are shorter than listed 

in the Table, because when the truncation N is smaller (usually 20 is sufficient), the number 
of slices for the S-matrix algorithm is smaller (due to the smaller number of evanescent orders 
taken into account); in addition, the total number of integration points used for constructing 
the Table are chosen to obtain 0.1% relative error, whereas in most of the cases just 1% is 
sufficient. The computation time grows linearly with the total number of integration points, as 
well as with the number of slices used in the S-matrix algorithm. The time dependence 
concerning the truncation N in the Fourier series grows as 3N  – 3.5N , because this parameter 
determines the size of the matrices. 

When the total integration length is multiplied by 5, the number of integration points 
required is also multiplied by the same factor, as observed in Fig.7.19. A grating twice as 
deep as the period, acts almost like a flat mirror in TM polarization, with the efficiency in 
order -1 hardly exceeding 1%. Due to the large depth, the absorption is increased, so that the 
reflectivity in order 0 is equal to 56.78%. We compare the convergence in the weak -1st order, 
so that even a small absolute error appears as a large relative error that can be easily observed 
in the figures. The number of Fourier harmonics (truncation parameter 2N+1) also has to be 
increased by a factor of 2.5 to 101 (N = 50). The number of slices in the S-matrix algorithm is 
increased seventh-fold to 35.  

The first Fig.7.19 compares several explicit integration schemes with the single-point 
implicit method. The main conclusion to be drawn is that the best scheme remains the implicit 
method, only the explicit Runge-Kutta fourth-order scheme seems to compete in convergence 
rate with respect to the total number of integration points, but somehow slower. 

The comparison of several implicit methods confirms the general idea that multistep 
choice does not necessarily improve the stability (Fig.7.20). When compared with Fig.7.19, 
the implicit methods are characterized by smaller oscillations when the number of steps is 
increased, but the most rapid convergence is obtained with the simplest procedure, single-step 
method (let us remark again that we use the middle-point calculations, as in eq.(7.118)). Like 
all the other implicit methods, it requires a single matrix inversion on each integration step, 
but needs less memory storage, and avoids several matrix sums and multiplication by 
different constants, necessary for the multipoint methods.  
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Fig.7.19. Aluminum grating with period 0.5 µm and depth 1 µm used in -1st order Littrow mount at 
0.6328 µm wavelength in TM polarization. Convergence with respect to the total number of 
integration points, truncation to 101 Fourier harmonics and using 35 slices in the S-matrix 
algorithm.A.M.4 – forth-order Adams-Moulton scheme, Implicit 1 – single-point implicit scheme, 
Explicit 1 – single-point explicit scheme, Expl2.R.K.2 and 4 – explicit Runge-Kutta method of 
order 2 and4, respectively. 
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Fig.7.20. Same as in Fig.7.19 but for three implicit methods of different order. 

 

7.8. Staircase approximation 
As already discussed, if the surface interface is z-invariant (entirely or piecewisely), the 
integration of the system of ordinary differential equations along z can be done via 
eigenvalue/eigenvector technique, eq.(7.126), because the M-matrix containing the 
coefficients of the differential equations does not depend on z. The enormous interest in this 
approach can be explained by the simple technique of integration, much easier to understand 
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and apply than the theory of numerical methods of integration of ordinary differential 
equations.  

The idea is sketched in Fig.7.21, where a sinusoidal surface-relief grating is 
approximated by a 5-stairs profile. While this approximation (with sufficient number of steps 
M, depending on the groove depth) works quite well in TE polarization, the TM case presents 
a convergence rate with respect the truncation number of Fourier components of the field 
much slower than the ordinary differential method (no staircase approximation), see Fig.7.22. 
Moreover, the greater the number of vertical slices M, the greater the truncation number 
required. 

 
Fig.7.21. Schematical approximation of a sinusoidal grating profile, approximated by a 5-step 
staircase profile.(after [7.29]). 

 
Fig.7.22. Convergence of the minus-first-order efficiency in TM polarization of the FMM (RCW) 
and the exact modal method (indicated on the figure) for a sinusoidal grating in a staircase 
presentation with M  = 20, as compared to the convergence of the differential method for a 
smooth sinusoidal profile (curve “diff.”). Period d = 0.5 µm, groove depth a = 0.2 µm, aluminum 
refractive index nAl = 1.3 + i7.6, illuminated at 40° incidence with wavelength  λ = 0.6328 µm, 
(after [7.29)]. 

 
A detailed analysis of this problem can be found in [7.14, 7.29], but the basic idea is 

quite simple. The staircase approximation substitutes the otherwise smooth sinusoidal profile 
by a profile that has sharp edges. The greater the number of stairs, the greater is the number of 
edges. It is well-known from general electromagnetism that edges introduce electric field 
singularities. While in TE polarization the only electric field components are tangential to the 
profile (in y-direction), thus have no discontinuities and singularities, this is not the case in 
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TM polarization. This can be observed in Fig.7.23. At the edges of each step, a sharp 
maximum of the electric field is observed. These maxima are not a numerical artifact, they 
represent the physical effect of introducing edges to replace a smooth profile. These sharp 
variations of the field require larger number of Fourier components to be correctly 
represented. Moreover, the greater the number of slices (stairs), the greater the number of the 
maxima, thus the greater the truncation number required. Numerical experiment has shown 
that this phenomenon has nothing to do with the integration (eigenvalue/vector) technique, 
because the results of the convergence rate and field maps are the same for the staircase 
approximation when using the RCW technique or the differential method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Fig.7.23. Spatial field distribution of |Ex|2 in the vicinity of several steps inside a groove of a 10-
step staircase profile, used to approximate the sinusoidal grating under study in TM polarization. 
The grating parameters are the same as in Fig.7.22, after [7.29].  

 
On the contrary, if the true smooth profile is treated by the differential method by using 

a numerical integration of the ordinary differential system with the elements of the M-matrix 
depending on z, there is no such singularities of the electric field (Fig.7.24), so that the 
convergence with respect to the number of Fourier harmonics is much faster, provide the 
correct factorization rules are used (Fig.7.22).  

Recently, some authors [7.30] have proposed to maintain the eigenvalue/vector 
technique, but to use the correctly determined Fourier presentation of the profile, i.e., the 
correct factorization rules, as presented in eqs. (7.39) – (7.44), instead of lamellar-profile 
factorization, eqs.(7.56) – (7.65), at each step. This is equivalent to using the formulation 
proposed by the differential method for a smooth profile, i.e. avoiding the field singularities at 
the edges, but to use the eigenvalue/vector technique of integration by assuming that the 
modified M-matrix, as given by eqs. (7.39) –– (7.44), is z-invariant across each step height. 
We have already tried this in [7.29] and the conclusion was that using this approach, the 
number of steps (stairs) has to be relatively larger that by using some better adapted 
integration technique. And indeed, the eigenvalue/approach to a z-dependent system is 
equivalent to the rectangular rule with equidistant points of integration, one of the worst 
choices, as known from the theory of ordinary differential equations. In addition, due to 
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eigenvalue/vector evaluation on each integration step, its computation times are several times 
longer than for the other methods (see Table 7.1 in the previous section), known from the 
theory of ordinary differential equations. This is why the authors of [7.30] need more than 
2000 equidistant points of integration for a trapezoidal profile, for which the better adapted 
numerical integration scheme can suffice with 300 points. Unfortunately, the authors of [7.30] 
do not consider the differential method as a “reference method” in their work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.24. The same as in Fig.7.23 but calculated using the differential method, after [7.29]. 
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Appendix 7.A: S-matrix propagation algorithm 
Almost all electromagnetic theories work by providing the link between the electromagnetic 
field amplitude values established on two different interfaces. These values could be 
calculated in the real or the inverted space, or the projections of the field on some functional 
basis, etc. Whatever the theory, if the media are linear, the link can be expressed in a matrix 
form: 

 
 p p p 1A T A −= . (7.127) 
  

Here, A stands for a column vector containing the field amplitudes in the given basis, the first 
interface has a number p–1, and the second on, p. pT  is called transmission matrix between 
the interface (p–1) and p. 

Numerical problem arises due to the fact, that the “propagation” between different 
interfaces contains, in general, both growing and decreasing terms, due to both absorption 
losses or/and evanescent character of some field components. If a real field term propagates 
from p–1 to p (the green arrow in Fig.7.A.1), it never grows (unless media with optical gains). 
Same is valid for the true propagation from interface p to p–1. However, eq. (7.127) is 
asymmetrical, i.e., it contains propagation only from interface p–1 to p, thus a naturally 
decreasing field that propagates in the opposite direction (from p to p–1), will be expressed in 
the T-matrix in the form of growing terms (the red arrow in Fig. 7.A.1). If the propagation 
length is sufficiently large, these artificial growing terms can overweight the other terms, 
mainly due to the finite numerical length of the computer word. 

 

 
Fig.7.A.1. Schematical representation of the action of the T-matrix between interfaces p-1 and p 

 
One approach that overcomes this problem and that has become quite popular during 

the last 15 years is the so-called S-matrix propagation algorithm, S staying for ‘scattering’. 
The basic idea is quite simple: As far as the problem of growing terms has been identified, let 
us try to do as Nature, by determining another link between the field amplitudes, by 
separating them into terms propagating (or decreasing) in direction (p–1  p) or in direction 
(p  p–1). Let us denote the first set with superscript +, and the second set by a superscript –. 
The S-matrix between the two interfaces provides the following link: 

 

 
p p 1

p,p 1
p 1 p

A A
S

A A

+ +
−

−− −
−

   
   =
   
   

. (7.128) 

p – 1 p 
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Fig.7.A.2. Action of the S-matrix between interface p-1 and interface p. 

 
The physical meaning is that amplitude p 1A+

− , which propagates from p–1 to p is 
defined on p–1 and is not growing in-between p-1 and p. In the same manner, the amplitude 

pA−  that represents propagation from p to p–1 is defined on the interface p and is not growing 

in direction of interface p–1. To say in other words, the amplitude p 1A+
−  is incident on the 

interface p–1 from the previous interface p–2, the second amplitude pA−  is incident on p from 
p+1, while the amplitudes on the left-hand side of eq.(7.128) are the amplitudes that are 
scattered in direction to the outside interfaces (p–2 and p+1), thus the name of the scattering 
matrix S. As observed in Fig.7.A.2., the blocks pS− −  and pS++  describe the physically correct 
transmission between p and p–1 or between p–1 and p, respectively, while the other two 
blocks, pS−+  and pS−+  describe the reflection on the interface p or p–1, respectively. This 
interpretation explains why there are no numerical problems due to the growing non-physical 
interactions when using the S-matrix. 

The advantage of this formalism is the absence of artificially growing terms in S. The 
inconvenience is that electromagnetic theories cannot give a direct expression of the matrix S. 
However, it is possible to express it by using the T-matrix elements, if it is possible to 
calculate them correctly. If the ‘distance’ between interface p–1 and p is quite large (with 
respect to the growing speed of the growing terms), there is loss of precision in determining 
the T-matrix. The problem can be solved by introducing additional artificial interfaces 
between p–1 and p in a such manner that to be able to correctly calculate the T-matrix in each 
subslice. Once the T-matrix calculated, the S-matrix can be obtained in a closed form. 
However, the total electromagnetic problem of diffraction (or scattering) requires the 
knowledge of the entire S-matrix of the system, because the physical problem to be solved 
needs to express the scattered fields as a function of the fields incident on the system (or 
generated inside, as is the case for electromagnetic antennas). There exists an iterative 
algorithm that enables us to establish the total S-matrix without calculating the elementary S-
matrix between each consecutive pairs of interfaces, as stated in eq. (7.128). For that sake, we 

p – 1 
 

p 
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define another intermediate S-matrix that corresponds to the scattering between some initial 
interface (numbered as 0) and the interface with number p, p p,0S S≡ : 

 

 p 0
p

p0

A A
S

AA

+ +

−−

   
   =

     
. (7.129) 

  
The initializing values of 0S for p = 0 are just the elements of the unity matrix. 

As already said, it is necessary to be able to calculate the T-matrices for each 
intermediate medium between the interfaces. When advancing from the interface p to p+1, we 
obtain the T-matrix with subscript p+1: 

 

 
p 1 p

p 1
p 1 p

A A
T

A A

+ +
+

+− −
+

   
   =
   
   

. (7.130) 

That will be expanded in the form: 
 

 
p 1 p 1p 1 p

p 1p 1 pp 1

T TA A

T TA A

++ +−+ +
+ ++

−−−+− −
++ +

    
    =
    

    

. (7.131) 

It is obvious from the previous considerations that the growing terms are potentially present in 
the block p 1T−−

+  (‘antipropagation’ from p to p+1), while the blocks p 1T++
+  and p 1T−+

+  can contain 

decreasing terms (‘propagation from p to p+1), i.e., it could be numerically instable to invert 
them. 

On the other hand, the ‘next’ S-matrix will link the amplitudes with index 0 to the 
amplitudes (p+1): 

 p 1 0
p 1

p 10

A A
S

AA

+ +
+

+ −−
+

   
   =

     
. (7.132) 

 
Eqs. (7.129)-(7.132) enable us to express the matrix S      as a function of pS  and T     . 

At first, we express p 1A−
+  from eq.(7.131) and substitute pA+  from eq.(7.129): 

( )p 1 p 1 p p p 1 p 0 p 1 p pp 1 p 1A T A T A T S A T S T A−− −−− −+ + − −+ ++ + −+ +− −
+ + + ++ += + = + + . (7.133) 

 

Let us denote as ( ) 1
p 1 p 1 p p 1T S T

−−−−+ +−
+ + += +  in order to eliminate pA− : 

 p p 1 p 1 p 1 p 1 p 0A A T S A− − −+ ++ +
+ + + += −  . (7.134) 

 
The next step is to expand the first line of eq.(7.148): 
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( )
( )( )

( ) ( )

p 1 p 1 p p 1 p p 1 p 0 p 1 p 1 p p

p 1 p 0 p 1 p 1 p p 1 p 1 p 1 p 1 p 0

p 1 p p 1 p 1 p p 1 p 1 p 0 p 1 p 1 p p 1 p 1

A T A T A T S A T T S A

T S A T T S A T S A

T S T T S T S A T T S A

+ ++ + +− − ++ ++ + +− ++ +− −
+ + + + + +

++ ++ + +− ++ +− − −+ ++ +
+ + + + + + +

++ ++ +− ++ +− −+ ++ + +− ++ +− −
+ + + + + + + + +

= + = + +

= + + −

 = − + + +  

 

 

. (7.135) 

The comparison with eq.(7.132) gives the first two block-elements of  S   : 

 ( )p 1 p 1 p 1 p p 1S T T S+− +− ++ +−
+ + + += +  . (7.136) 

 
( )

( )
p 1 p 1 p p 1 p 1 p p 1 p 1 p

p 1 p 1 p 1 p

S T S T T S T S

T S T S

++ ++ ++ +− ++ +− −+ ++
+ + + + + +

++ +− −+ ++
+ + +

= − +

= −


. (7.137) 

 
 

From eq.(7.129) 

( )
( )

0 p 0 p p p 0 p p 1 p 1 p 1 p 1 p 0

p p p 1 p 1 p 0 p p 1 p 1

A S A S A S A S A T S A

S S T S A S A

− −+ + −− − −+ + −− − −+ ++ +
+ + + +

−+ −− −+ ++ + −− −
+ + + +

= + = + −

= − +

 

 
. (7.138) 

so that  
 p 1 p p 1S S−− −−

+ +=  . (7.139) 

 
p 1 p p p 1 p 1 p

p p 1 p 1 p

S S S T S

S S T S

−+ −+ −− −+ ++
+ + +

−+ −− −+ ++
+ +

= −

= −


. (7.140) 

These relations exist in several possible forms, but this one is quite well adapted to the case 
without incident waves on interface 0, because in the iterative algorithm we need to calculate 
only the half of the blocks, namely the two given by eqs. (7.136) and (7.139).  

The only matrix inversion in the iterative algorithm concerns the procedure to obtain the 
matrix  . The initial matrix 1−  contains the potentially large terms from p 1T−−

+ , so that its 

inversion creates neither numerical problems to be inverted, nor growing terms to create 
numerical instabilities. 
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Appendix 7.B: Inverted S-matrix propagation algorithm 
In Appendix A we have seen how to avoid numerical instabilities due to the artificially 
growing terms that appear when the propagation of the field amplitudes from one interface to 
another is made in the wrong direction, a typical property of a half of the field amplitudes 
used in the transmission matrix approach. 

In some cases (for example, the Integral method applied to multilayer grating, but also 
coordinate transformation method used for a stack containing different profiles), the 
numerical solution that has been obtained provides a link, having a form inverse to eq.(7.130) 

 
p 1 p

p 1
p 1 p

A A
T

A A

+ +
+

+ − −
+

   
   =
   
   

 . (7.141) 

Of course, it is easy to obtain the form of eq. (7.130) by simply inverting T , but 
better to avoid this, because some blocks of the matrix contain large terms compared to the 
others. In particular, the block p 1T++

+
  is responsible for a physical ‘antipropagation’ from p+1 

to p, so that potentially it contains growing terms (as it was that case with p 1T− −
+ ) in Appendix 

A. 
We can avoid the direct inversion of p 1T +

  by applying a similar procedure as in 
Appendix 7.A in order to obtain the S-matrix of the stack. Equation (7.141) is expanded in the 
form: 

 p p 1 p 1 p 1 p 1A T A T A+ ++ + +− −
+ + + += +  . (7.142) 

 p p 1 p 1 p 1p 1A T A T A−−− −+ + −
+ + ++= +  . (7.143) 

On the other hand, from eq.(7.129) we have: 
 
 p p 0 p pA S A S A+ ++ + +− −= + . (7.144) 

so that 
 p 0 p p p 1 p 1 p 1 p 1S A S A T A T A++ + +− − ++ + +− −

+ + + ++ = +  . (7.145) 

( )p 0 p p 1 p 1 p 1 p 1 p 1 p 1 p 1p 1S A S T A T A T A T A−−++ + +− −+ + − ++ + +− −
+ + + + + + +++ + = +    . (7.146) 

and  

( ) ( )p 0 p 1 p p 1 p 1 p 1 p p 1p 1S A T S T A T S T A−−++ + ++ +− −+ + +− +− −
+ + + + ++= − + −    . (7.147) 

Now we can identify half of the blocks of p 1S +  from eq.(7.132): 

 p 1 p 1 pS S++ ++
+ +=  . (7.148) 

 ( )p 1 p 1 p 1 p p 1S T S T−−+− +− +−
+ + + += − −   . (7.149) 

 

with ( ) 1
p 1 p 1 p p 1T S T

−++ +− −+
+ + += −    that contains the numerically dangerous growing terms in 

p 1T++
+

 , in the same manner that the matrix p 1+  in Appendix 7.A ‘envelopes’ the growing 

terms in p 1T− −
+ . 

The other two block can be obtained by staring with the identity: 
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 0 p 0 p pA S A S A− −+ + −− −= + , (7.150) 
and using eq.(7.143) : 

 ( )0 p 0 p p 1 p 1 p 1p 1A S A S T A T A−−− −+ + −− −+ + −
+ + ++= + +  . (7.151) 

When taking into account that two blocks of p 1S +  are already known and given in eqs. 

(7.148) and (7.149) , we can eliminate p 1 0 p 1p 1 p 1A S A S A++ +−+ + −
+ ++ += + : 

( ) ( )0 p p p 1 0 p p 1 p 1p 1 p 1 p 1A S S T S A S T T S A++ −− + −− −+ −− −+ + −− −+ −
+ + ++ + += + + +   . (7.152) 

Thus 
 p 1 p p p 1 p 1S S S T S++−+ −+ −− −+

+ + += +  . (7.153) 

 ( )p p 1p 1 p 1 p 1S S T T S−− −− +−−− −+
++ + += +  . (7.154) 

The expression are quite similar in form to those obtained in Appendix A. Moreover, they 
allow avoiding the inversion of p 1T +

 . 
Finally, there exist a combination of expressions including partial T-matrices, treated 

separately in Appendix 7.A and 7.B. In some cases the link between the amplitudes on two 
consecutive interfaces or across a single interface that separates two different media can be 
expressed in the form: 

 
p 1 p

p 1 p 1
p 1 p

A A

A A

+ +
+

+ +− −
+

   
   =
   
   

T T . (7.155) 

 
Such is the case of the Fourier-modal (RCW) method across each interface, with the partial 
transmission matrices p 1+

T
 
containing the eigenvectors of the proper modes inside each 

media. The same expression is obtained in the coordinate transformation method when using 
eigenvalue technique of integration. Usually, in both approaches, one obtains the full 
transmission matrix by inverting p 1+

T  and multiplying the result by p 1+T . If this creates 
numerical problems (for thick layers), such direct approach is not applicable. In that case it is 
better advised to apply twice the S-matrix algorithm, at first in each direct form (Appendix 
7.A), and then in the currently discussed inverted form. It is quite easy to understand the 
logic, by introducing a virtual set of amplitudes in eq.(7.155): 

 
p 1 p

p 1
p 1 p

A A

A A

+ +
+

+− −
+

   
   =
   
   





T , (7.156) 

 

 
p 1 p

p 1
p 1 p

A A

A A

+ +
+

+ − −
+

   
   =
   
   







T . (7.157) 
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8.1 Introduction

The C-method was born in the eighties in Clermont-Ferrand , France, from the need to solve
rigorously diffraction problems at corrugated periodic surfaces in the resonance regime [1], [2],
[3]. The main difficulty of such problems is the matching of boundaries conditions. It is ob-
vious that any method aimed at solving Maxwell’s equation is all the more efficient since it is
able to fit the geometry of the problem. For that purpose, Chandezon et al introduced the so
called translation coordinate system deduced from the Cartesian coordinate systemx,y,z) by
the relationsx= x1, y= x2, z= x3+a(x1) wherea(x1) is a continuously differentiable function
describing the surface profile. Hence since the boundary of the physical problem coincides with
coordinate surfaces, writing boundary conditions is as simple as it is for classical problems in
Cartesian, cylindrical, or spherical coordinates . This is the first ingredient of C-method. The
second one is to write Maxwell’s equation under the covariant form. This formulation comes
from relativity where the use of curvilinear non orthogonal coordinate system is essential and
natural. The main feature of this formalism is that Maxwell’s equations remain invariant in any
coordinate system, the geometry being shifted into the constitutive relations. Chandezon et al
derived their 3D formulation from the general 4D relativistic Post’s formalism [4] and evidently
used tensorial calculus. Although it is with no doubt the most elegant and efficient way to deal
with electromagnetic in general curvilinear coordinates it is also probably the reason why the
theory appeared difficult to understand to many scientists. The third ingredient of C–method is
that it is a modal method. This nice property is linked with the translation coordinate system in
which a diffraction problem may be expressed as an eigenvalue eigenvector problem with pe-
riodic boundary conditions. The last feature of C-method is the numerical method of solution.
The matrix operator is obtained by expanding field components into Floquet-Fourier harmonics
and by projecting Maxwell’s equations onto periodic exponential functions. The above four
features may be resumed by saying that C-method is a curvilinear coordinate modal method by
Fourier expansion [5]. Since the original papers, The C-method has gone through many stages
of extension and improvement. The original theory was formulated for uncoated perfectly con-
ducting gratings in classical mount. Various authors extended the method to conical diffraction
mountings [6],[7]. Granet et al [11], Li et al [12] and Preist et al [13] allowed the various profiles
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of a stack of gratings to be different from each other, although keeping the periodicity. Solving
the vertical faces case in a simple manner, Plumey et al [14] have shown that the method can
be applied to overhanging gratings Preist et al obtained the same results by applying the usual
coordinate transformation to oblique coordinates [15]. In the numerical context, Li [16] and
Cotter et al [17] improved the numerical stability of the C-method by using the S-matrix prop-
agation algorithm for multilayer gratings. It is seen that C-method has been applied to a large
class of surface relief gratings and multilayer coated gratings. The key point of C-method is the
joint use of curvilinear coordinates and covariant formulation of Maxwell’s equations. All the
new developments in the modelling of gratings like Adaptive Spatial Resolution [18],[19],[20],
and Matched coordinate [21]derive from this fundamental observation.
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8.2 C-Method

In Euclidean space with origin O and basis vectorex,ey, ,ez, , let us consider an infinite cylin-
drical surface(Σ) whose elements are parallel to they axis. This surface separates two linear
homogeneous and isotropic media denoted(1) and(2). In Cartesian coordinates such a surface
can be described by equationz= a(x). Any electromagnetic field interacting with this partic-
ular geometry satisfies some boundary conditions. For instance, the tangential components of
the electric field vector and the normal component of the displacement field vector are con-
tinuous at the surface. The point is that boundary conditions involve quantities that obviously
depend on the position at which they are considered on the surface. We are thus led to look
for a coordinate system which fits the problem and makes it more readily solvable than it is
in a Cartesian framework. The so-called translation coordinate system(x1,x2,x3) introduced
by Chandezon and defined from the Cartesian coordinate system by the direct transformation
(curvilinear coordinates to Cartesian coordinates) :

x= x1, y= x2, z= x3+a(x1) (8.1)

or the inverse transformation (Cartesian coordinates to curvilinear coordinates):

x1 = x, x2 = y, x3 = z−a(x) (8.2)

is one such system. It makes the surface(Σ) coincide with the coordinate surfacex3 = 0. A
point M(x,y,z= a(x) at the surface(Σ) is now referenced by the triplet(x1,x2,0). The coor-
dinate surfacex3 = x3

0 is obtained by translating each point at surface(Σ) with vectorx3
0ez ,

hence the name given by Chandezon to this particular coordinate system: translation coordinate
system. The change of coordinates may also be considered as a change of variable. This view

Figure 8.1: Geometry of the problem: Two media are separated by acylindrical periodic surface, with period d1
described by the equation z=a(x)

.

point allows a better understanding of the numerical behaviour of C-method and its connection
with Rayleigh expansions. There is actually no difference in the way of deriving the elementary
solutions of the scalar Helmholtz equation in Cartesian coordinates or in translation coordinate
systems. Both are eigenvectors of an eigenvalue problem with pseudo-periodic boundary con-
ditions. In both cases, the operator eigenvalue problem is transformed into a matrix eigenvalue
problem thanks to the Galerkin method with pseudo periodic functions as expansion and test
functions. Hence solving the scalar Helmholtz equation in any coordinate system is the very
first step when implementing C-method. In the next paragraphs we shall focus on this issue
before solving a grating problem.
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8.2.1 Modal equation in the Cartesian coordinate system

Consider an homogeneous region with relative, possibly complex, permittivity,ε. In the har-
monic regime with a time dependence of exp(−iωt), it is possible to construct general solutions
to the field equations once we have general solutions to the scalar Helmholtz equation. So as
a first task, we are going to investigate elementary solutions to the Helmholtz equation written
in the translation coordinate system. Let us start from Cartesian coordinates in which 2D scalar
Helmholtz equation is

(

∂ 2
x +∂ 2

z +k2)
F = 0 (8.3)

wherek = ω√µ0ε is the wave-number. The coefficients of the Helmholtz equation are inde-
pendent ofz so we seek solutions of the formF (x,z) = exp(iγz)F(x) The Helmholtz equation
becomes:

(∂ 2
x +k2)F(x) = γ2F(x) (8.4)

FunctionF(x) is thus an eigenmode of equation (8.4). The requirement that the eigenmodes
satisfy the pseudo-periodicity conditionF(x+d1) = exp(iαOd1)F(x) is automatically fulfilled
by their expansion into Floquet-Fourier series:

F(x) =
+∞

∑
−∞

Fmexp(iαmx) (8.5)

αm= α0+mK1, K1 =
2π
d1 , m∈N andα0 is some real parameter. By introducing (8.5) into (8.3)

and by projecting onto pseudo-periodic functions exp(iαnx), one obtains the matrix equation:

γ2F =
[

k2I−α
]

F (8.6)

whereF is a column vector whose elements are theFm andα is a diagonal matrix w hose
elements are theαm andI is the identity matrix. The solution to the above matrix eigenvalue
equation is of course trivial since the matrix is diagonal. Let us introduce subscriptq to number
the eigenvalues and the eigenfunctions. The eigenvaluesγq are deduced from their squared
number:

γ2
q = k2−α2

q (8.7)

and the eigenvectors are determined byFmq = δmq whereδmq is the Kronecker symbol. The
square root ofγ2

q is defined as follows:

γq =















√

γ2
q if γ2

q ∈ R
+

√

−γ2
q if γ2

q ∈ R−
(

γ2
q

)1/2
with positive imaginary part if γ2

q ∈ C

(8.8)

Finally , F (x,z) can be represented by superposition of eigenmodes

F (x,z) = F
+(x,z)+F

−(x,z) (8.9)

with

306



G. Granet: Coordinate Transformation Methods 8.5

F
+(x,z) =

q=+∞

∑
q=−∞

A+
q exp(iγqz)

m=+∞

∑
m=−∞

δmqexp(iαmx) (8.10)

F
−(x,z) =

q=+∞

∑
q=−∞

A−q exp(−iγqz)
m=+∞

∑
m=−∞

δmqexp(iαmx) (8.11)

There are two sets of modes, the number of which are equal: those propagating or decay-
ing in the positive direction ofz and those propagating or decaying in the opposite direction.
We denote these modes by superscript+ and−respectively. Thez dependence of an eigen-
mode is determined by function exp(iγpz) By increasingz to z+∆z ,exp(iγqz) is multiplied by
exp(iγq∆z) = exp(iℜ(γq)∆z)×exp(−ℑ(γq)∆z) The real eigenvalues haveℑ(γq) = 0 and corre-
spond therefore to forward modes ifℜ(γq)> 0 or backward modes ifℜ(γq)< 0. The complex
eigenvalues modes have a non-zero imaginary part and possibly also a non-zero real part. The
associated eigenmodes decay forward ifℑ(γq)> 0 or backward ifℑ(γq)> 0. These expansions
are known as Rayleigh expansions; they are linear combination of eigenvectors that we call
hereafter Rayleigh eigenvectorsRq:

Rq(x) =
m=+∞

∑
m=−∞

δmqexp(iαmx) (8.12)

In Cartesian coordinates, the solutions to the Helmholtz equations may be regarded as the
eigenvectors of a matrix equation. The eigenvaluesγm are determined by the periodic lateral
boundary conditions of the problem and are obtained analytically since the matrix is diagonal.
The translation coordinate system preserves thez translation symmetry and also periodic lateral
boundary conditions. We may then expect a great formal similitude between solutions obtained
in each coordinate system.

8.2.2 Modal equation in terms of the new variables

In this section, we derive the master equation of C-method by considering the change of coor-
dinates as a change of variables. For the change of variablesx1 = x, x2 = y, x3 = z−a(x) the
chain rule for derivatives has the form:







∂x = ∂1− ȧ∂3

∂y = ∂2

∂z = ∂3

(8.13)

Substituting the derivatives (8.13) into (8.3) gives:

(

(1+ ȧȧ)∂ 2
3 − ȧ∂1∂3−∂1ȧ∂3+∂ 2

1 +k2)
F (x1,x3) = 0 (8.14)

the solution of which are the same as the solutions of (8.13) expressed in terms of the new
variables.

F
+
a (x1,x3) = F

+(x= x1,x3 = z−a(x))

=
q=+∞

∑
q=−∞

A+
q exp(iγqx3)

m=+∞

∑
m=−∞

δmqexp(iγqa(x1))exp(iαmx1)
(8.15)

307



8.6 Gratings: Theory and Numeric Applications, 2012

F
−
a (x1,x3) = F

−(x= x2,x3 = z−a(x))

=
q=+∞

∑
q=−∞

A−q exp(−iγqx3)
m=+∞

∑
m=−∞

δmqexp(−iγqa(x1))exp(iαmx1)
(8.16)

The subscripta indicates the profile dependence of functionF .
We call function exp

(

±iγqa(x1)
)

exp
(

iαqx1
)

the generalized Rayleigh eigenvector of or-
derq. It is nothing more than plane wave exp(±iγqz)exp(iαqx1) expressed in terms of the new
variablesx1 andx3 and is closely linked with functiona(x1). Let us denote itR±a,q:

R±a,q = exp
(

±iγqa(x1)
)

exp(iαqx1) =
m=+∞

∑
m=−∞

Ramqexp(iαmx1) (8.17)

It is assumed so far thata(x1) is periodic with periodd1 hence:

exp(±iγqa(x1)) =
p+∞

∑
p=−∞

L±p exp

(

i2π px1

d1

)

(8.18)

with:

L±p =
1
d1

∫ d1

0
exp
(

±iγqa(x1)
)

exp

(−i2π px1

d1

)

dx1 (8.19)

In physical space, the generalized Rayleigh eigenvectors result from the product of a periodic
function with a pseudo-periodic one. Thus, in Fourier space, the spectrum of theqthgeneralized
Rayleigh eigenvector is obtained by translating the spectrum of function exp(±iγqz) with vector
2πq/d1, that is:

R±amq= L±am−q (8.20)

Finally:

F
+
a (x1,x3) =

q=+∞

∑
q=−∞

A+
q exp(iγqx3)

m=+∞

∑
m=−∞

L+
am−q exp(iαmx1) (8.21)

F
−
a (x1,x3) =

q=+∞

∑
q=−∞

A−q exp(−iγqx3)
m=+∞

∑
m=−∞

L−am−q exp(iαmx1) (8.22)

Functions (8.21) and (8.22) give the general solution to (8.14). Indeed each element of
this solution is a generalized Rayleigh eigenvector associated to indexq such thatγ2

q +α2
q = k2

and thus satisfies(8.14). The reason for that is obvious. It is obtain from (8.12) in which we
have introduced the same change of variable as the one that has allowed us to get (8.14) from
(8.3). From a practical view point, one can only manipulate finite size expansions and it does
not make sense to speak ofR±a,q(x

1). That is why one may wonder if a generalized Rayleigh
eigenvector is still a valid a solution of (8.14) when only a finite number of spatial Fourier
harmonics is retained to represent it. Let us assume for a while the answer is yes and examine the
involvements of such a claim. Introducing an integerM, hereafter denoted truncation number,
and lettingm run from−M to M the truncated generalized Rayleigh eigenvector writes:

R±(M)
a,q (x1) =

m=+M

∑
m=−M

R±a,mqexp(iαmx1) (8.23)
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Substituting∂3 with iγq, we have:

−(1+ ȧȧ)γqṘ±(M)
a − i(ȧ∂1+∂1ȧ)γqR±,(M)

a +(∂ 2
1 +k2)R±,(M)

a = 0 (8.24)

whereṘ±(M)
a denotesγqR±,(M)

a . Replacing ˙a by the coefficients of its Fourier series ˙ap and
denotingȧ the toeplitz matrix whose elements ˙amp are the ˙am−p, it is easy to see that the matrix
form of relation 8.24 is:

[

k2I−α2
0

0 I

][

R±aq

Ṙ±aq

]

= γq

[

−ȧα−αȧ I+ ȧȧ
I 0

][

R±aq

Ṙ±aq

]

(8.25)

whereR±aq and Ṙ±aq are column vectors formed by the 2M + 1 Fourier coefficients ofR±(M)
aq

Ṙ±(M)
aq respectively. (8.25) shows thatγq and

[

R±aq

Ṙ±aq

]

are an eigenvalue and an eigenvector of

the generalized matrix eigenequationAψ = ρBψ. SinceR±a,q is an exact eigenvector of (8.14)
its truncated part can only approximate the solution of (8.14) and consequently, mathematically
speakingγq cannot be an eigenvalue of (8.25). It follows that our claim was false. Nevertheless,
elementary pseudo-periodic solutions to (8.14) do exist and we will derive them in the next
paragraph.

8.2.3 Fourier expansion of elementary waves in the translation coordinate system

In this paragraph, we derive the generalized eigenvalue eigenvector matrix equation starting
from (8.14) the only assumption being the pseudo periodicity of the field and we discuss the
obtained solutions. First, the propagation equation is rewritten as a pair of first-order equations:

[

k2+∂ 2
1 0

0 1

][

F

∂3F

]

=−∂3

[

ȧ∂1+∂1ȧ 1+ ȧȧ
−1 0

][

F

∂3F

]

(8.26)

The coefficients of this equation do not depend onx3 which allows to write thex3 depen-
dence as exp(iρx3). The parameterρ depends on the boundary conditions thatF(x1,x3) has
to satisfy alongx1 direction. For gratings, periodic with periodd1 alongx1, F (x1+d1,x3) =
exp(iα0d1)F (x1,x3) whereα0 is some real parameter.∂3F verifies of course the same prop-
erty. The above requirements on the solution are all fulfilled by expanding functionF and∂3F

under the form:

F (x1,x3) = exp(iρx3)Fa(x
1) = exp(iρx3)

m=M

∑
m=−M

Fa,mexp(iαmx1) (8.27)

∂3F (x1,x3) = exp(iρx3)Ḟa(x
1) = exp(iρx3)

m=M

∑
m=−M

Ḟa,mexp(iαmx1) (8.28)

Introducing the above expansions into (8.26) and projecting the latter onto exp

(

i2πnx1

d1

)

basis, we get the sought algebraic matrix eigenvalue equation from which eigenvaluesρq and
eigenvectorsFa,q are readily obtained thanks to standard computer libraries:

[

k2I−α2
0

0 I

][

Fa,q

Ḟa,q

]

= ρa,q

[

−ȧα−αȧ I+ ȧȧ
I 0

][

Fa,q

Ḟa,q

]

(8.29)
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As in the Cartesian coordinate system, it is observed numerically that there are two sets of
modes, the number of which are equal: those propagating or decaying in the positivex3 direction
and those propagating or decaying in the opposite direction. Furthermore, it has been shown
numerically and analytically [8], that, as the truncation number increases, the computed real
eigenvalues converge to the real Rayleigh eigenvalues±γq.

lim
M→∞

±ρM
a,q =±γR

q (8.30)

In the above relation, we have added an extra subscriptM to indicate the truncation dependence.
Indeed, the truncation orderM has to be chosen large enough so that the computed real eigen-
vectors coincide with a great accuracy with their Rayleigh counterpart. In that case, provided
that the eigenvalues are not degenerated, up to a multiplicative constant coefficient, the asso-
ciated computed eigenvectors tend to the corresponding plane waves expressed in terms of the
new variables(x1,x2,x3).

lim
M→∞

F±(M)
a,q = R±a,q (8.31)

Thus in the translation coordinate system defined byx1 = x, x2 = y, x3 = z−a(x) as in the
Cartesian coordinate systemOxyz, linear combinations of elementary solutions to the Helmholtz
equation allow us to express electromagnetic field while giving it a physical meaning in terms
of forward and backward waves.We write numerically the solution to the Helmholtz equation
as:

F
+
a (x1,x3) = ∑

q∈U+

A+
q exp(iρ+

a,qx3)R+(M)
a,q (x1)+ ∑

q∈V+

A+
q exp(iρ+

a,q(x
3)F+

a,q(x
1) (8.32)

F
−
a (x1,x3) = ∑

q∈U+

A−q exp(iρ−a,q(x
3)R−(M)

a,q (x1)+ ∑
q∈V+

A−q exp(iρ−a,q(x
3)F−a,q(x

1) (8.33)

with:

F±a,q(x
1) =

m=+M

∑
m=−M

F±a,mqexp(iαmx1) (8.34)

U±, V± denote the sets of indices for the propagating and decaying orders in the positive and
negative direction respectively.

U+ =
{

q/ℜ(ρa,q)> 0 andℑ(ρa,q) = 0
}

U−=
{

q/ℜ(ρa,q)< 0 andℑ(ρa,q) = 0
}

(8.35)

V+ =
{

q/ℑ(ρa,q)> 0
}

V− =
{

q/ℑ(ρa,q)< 0
}

(8.36)

8.3 Application to a grating problem

Let’s come back to the one-dimensional grating problem. Consider the electromagnetic problem
in which two homogeneous non magnetic media are separated by a cylindrical periodic surface
with periodd1 which is invariant along they axis in the Cartesian coordinate systemOxyz. Such
a surface, described by equationz= a(x) is illuminated from above by a unit amplitude linear
polarized monochromatic plane wave with vacuum wavelengthλ0, angular frequencyω and
vacuum wave numberk0 = 2π/λ0. The wave vector is inclined atθ to theOzaxis. Medium(1)
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Figure 8.2: Geometry of the diffraction problem. Sketch of the coefficients for scattering matrix

and medium(2) have relative permittivityε1 andε2 respectively. Time dependence is expressed
by the factor exp(−iωt) Such a problem is reduced to the study of the two fundamental cases of
polarisation and the unknown functionF (x,z) is they component of the electric or the magnetic
field for TE and TM polarization respectively. We solved half the problem since we already
determined the general solution to the scalar Helmholtz equation as a linear combination of
elementary waves the coefficients of which remain to calculate. The situation is very common
in electromagnetic theory: the fields on both side of the grating are expanded in terms of the
modes in the respective regions with unknown coefficients. A method of solution known as
mode-matching method was developed in the context of guided waves in the micro-wave range.
The grating may be considered as a generalized multi-port whose inputs are excited by waves
that propagate or decay towards it giving rise to a response at the outputs that consists of the
waves that propagate or decay away from it [25],[24]. The mode coupling is caused by the
modulation of the interface and by the different constitutive parameters in either side of it. The
so-called scattering matrixSa defined as

[

A(1)+

A(2)−

]

= Sa

[

A(1)−

A(2)+

]

(8.37)

provides a linear relation between the output and input coefficients. In a grating problem, the
vector formed by the amplitudes of the incoming waves has only one non null component:
that corresponding to the incident wave which was assumed enforced to one. The subscripta
indicates that theSmatrix depends on the profile functiona(x). We callSa matrix an interface
scattering matrix. TheSa matrix is derived from boundary conditions at the surfacex3 = x3

0.
The change of variable makes it easy to write them. We have solved the scalar Helmholtz
equation, the scalar field being a field component tangent to the surface;indeedF coincides with
Hy andEy in TM polarisation and TE polarisation respectively. For simplicity, let us consider
TE polarisation where the non null components of the electromagnetic field areEy, Hx, Hz.
Boundary conditions require matching the tangential components of the magnetic and electric
field. We have already derived one of them,Ey, we have to derive the tangential componentHt

of the electric field given by :
Ht =H.t (8.38)

wheret is the unit vector at pointP which is tangential to the grating profile function. It is
defined in terms of theex andez Cartesian unit vectors by:

t=
1√

1+ ȧ2
(ex+ ȧez) (8.39)

The square root in the denominator represents a normalization factor that can be omitted since
at a given point, it is identical on both sides of the boundary surface. let us introduceG such
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that:

G = iZH.t (8.40)

WhereZ=
√

µ0/ε is the wave impedance. From Maxwells equation we haveiωµ0Hx =−∂zEy

andiωµ0Hz= ∂xEy thus :

G (x,z) =−1
k
(∂zF (x,z)− ȧ∂xF (x,z)) (8.41)

substituting∂3 for ∂z and∂1− ȧ∂3 for ∂x we get:

G (x1,x3) =−1
k
((1+ ȧȧ)∂3− ȧ∂1)F (x1,x3) (8.42)

Similarly toF , G depends onx3 as exp(iρx3) and we may write:

G (x1,x3) = exp(iρx3)G(x1) (8.43)

We are now familiar with the operational rules that allow to associate in Fourier space a matrix
with an operator. We have:

1+ ȧȧ→ I+ ȧȧ, ȧ∂1→ iȧα (8.44)

From which we deduce:

ikG±a = (I + ȧȧ)F±a ρa− ȧαF±a (8.45)

whereρ is a diagonal matrix whose elements are the eigenvaluesρa,q. Writing the continuity
of F (1) andF (2) andG (1)/Z(1) andG (2)/Z(2) at x3 = x3

0 is straightforward and leads to the
following expression of theSa matrix:

Sa =

[

F
(1)+
a −F (2)−

a

G
(1)+
a −G(2)−

a

]−1[

−F (1)−
a F

(2)+
a

−G(1)−
a G

(2)+
a

]

(8.46)

The knowledge ofSa matrix allows to calculate the constant coefficients of outgoing waves.
Since the spectrum of the solutions of the transformed Helmholtz equation include the gener-
alized Rayleigh eigenvectors associated to real Rayleigh eigenvalues the efficiencies may be
calculated in the very same way as in the Cartesian coordinate system.

Rq = |A(1)+
q |2γ(1)q

γ(1)0

Tp = |A(2)−
p |2γ(2)p

γ(1)0

(8.47)

with:

γ(1)q =

√

k2
0ε1−

(

k0
√

ε1sinθ +q
2π
d1

)2

γ(2)p =

√

k2
0ε2−

(

k0
√

ε1sinθ + p
2π
d1

)2
(8.48)

The values of integersp andq are such thatγ(1)q andγ(2)p are real.
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8.3.1 Implementation of C-Method

The main interest to consider C-Method through a simple change of variable is to make us
understand its numerical link with Rayleigh expansions and to calculate efficiencies as in the
Cartesian Coordinate system. Within the framework of translation coordinate systems, starting
from Maxwell’s equations written under the covariant form, we have shown that all tangential
components of the field at surfaceS could be generated from the longitudinal covariant com-
ponents along the axis of invariance. Moreover,these components are solutions of the scalar
Helmholtz equation. Therefore, one clearly understands that finding the elementary solutions
of the scalar Helmholtz equation is the kernel of C-method. To summarize we may enunciate
the different steps for solving a grating problem with C-method:

• Define a translation coordinate system.

• Find the elementary waves of the Helmholtz equation. For that purpose use the Galerkin
method with exp(iαnx1) as expansion and test functions. Substitute the generalized
Rayleigh eigenvectors for the computed eigenvectors associated to real eigenvalues. Sort
the elementary waves into forward and backward waves.

• Write boundary conditions at surfaceΣ and calculate efficiencies as in the Cartesian
coordinate system.

8.4 Various formulations of C-method

So far, the Helmholtz equation in the translation coordinate system was derived by using the
chain rule for derivatives in the Helmholtz equation written in the translation coordinate sys-
tem. In this section,we start from the covariant Maxwell’s equations and we show that they lead
to several operators one of them being the propagation equation. In a homogeneous isotropic
medium with permittivityε and permeabilityµ, with a time dependence exp(−iωt),the sym-
metrized Maxwell equations write:

ξ αβγ ∂β Fγ = k
√

ggαβ Gα
ξ αβγ ∂βGγ = k

√
ggαβ Fα

(8.49)

wherek = ω√µε , theFγ and theGβ are the complex amplitudes of the electric field and of
a renormalized magnetic field respectively. We restrict our analysis to 1D problems in which
both the geometry and the solution are independent ofy. Practically this means that∂2 is null
as well asg12, g21, g32 andg23. It follows that (8.49) decouple into two fully identical systems
where the non null components areF2, G1, G3, andG2, F1, F3 respectively.The first set of
three components corresponds toTE polarisation, the second one toTM polarisation. Both
polarisations obey the same first order differential equations system written hereafter forTE
polarisation:

−∂3F2 = k
(√

gg11
G1+

√
gg13

G3
)

(8.50a)

∂1F2 = k
(√

gg31
G1+

√
gg33

G3
)

(8.50b)

∂3G1−∂1G3 = k
√

gg22F2 (8.50c)
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For TM polarisation, it is enough to permuteF andG . Among the three components of each
system, two play a particular role. Let us assume thatx3 = x3

0 separates two isotropic homo-

geneous media. Then, inTE polarisationF2 andG1/

√

µ
ε

have to be continuous at surface

x3 = x3
0. The same conclusions holds forG2/

√

µ
ε

andF1 for TM polarisation. So, we have

to solve (8.50) for the components labelled by two and by one. C-method is a Fourier based
method which means that constitutive relations have to be written in Fourier space. In other
words a matrix is to be associated to each element

√
ggαβ of the constitutive tensors. The way

for doing so should follow the so-called "Fourier factorization" rules derived by Li [22],[23].
let us denote by(

√
ggαβ ) the matrix associated to coefficient

√
ggαβ . According to Li’s rules,

the(
√

ggαβ ) write:

(
√

gg11) =

[

1√
gg11

]−1

(
√

gg13) =

[

1√
gg11

]−1[g13

g11

]

(
√

gg31) =

[

g31

g11

][

1√
gg11

]−1

(
√

gg33) =

[

1√
gg11

]

+

[

g31

g11

][

1√
gg11

]−1[g13

g11

]

(
√

gg22) =
[√

gg22
]

(8.51)

The notation[ f ] designates the toeplitz matrix whose elementsfmp are thefm−p elements of
the Fourier series of functionf (x1). For the translation coordinate(x1,x2,x2) such thatx= x1,
y= x2, z= x3+a(x1), we have:

(√
gg11

)

→ I
(√

gg13
)

→−ȧ
(√

gg31
)

→−ȧ
(√

gg33
)

→ [I+ ȧȧ]
(√

gg22
)

→ I

(8.52)

In Fourier space, the derivative operator∂1 is associated to the diagonal matrixiα the elements
of which are theiαm such that:

αm = α0+m
2π
d1 (8.53)

Setting

F2(x
1,x3) =

m=+M

∑
m=−M

F2m(x
3)exp(iαmx1) (8.54a)

G1(x
1,x3) =

m=+M

∑
m=−M

G1m(x
3)exp(iαmx1) (8.54b)

G3(x
1,x3) =

m=+M

∑
m=−M

G3m(x
3)exp(iαmx1) (8.54c)

(8.54d)
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We are now able to write (8.50) in Fourier space:

−∂3F2 = k
((√

gg11)G1+
(√

gg13)G3
)

(8.55a)

iαF2 = k
((√

gg31)G1+
(√

gg33)G3
)

(8.55b)

∂3G1− iαG3 = k
(√

gg22)F2 (8.55c)

whereF2, G1 G3 are column vectors of size 2M + 1 whose components are theF2m(x3),
G1m(x3), G3m(x3) respectively:

F2(x
3) = [F2,−M(x3), F2,−M+1(x

3), · · · ,F2,0(x
3), · · · , F2,M−1(x

3), F2,M(x3)]T (8.56a)

G1(x
3) = [G1,−M(x3), G1,−M+1(x

3), · · · , G1,0(x
3), · · · , G1,M−1(x

3), G1,M(x3)]T (8.56b)

G3(x
3) = [G3,−M(x3), G3,−M+1(x

3), · · ·G3,0(x
3), · · · , G3,M−1(x

3), G3,M(x3)]T (8.56c)

where the exponentT is for the transposition.

8.4.1 Propagation equation in curvilinear coordinates

From Eqs (8.50a) and (8.50b),G1 andG3 may be expressed in terms ofF2

kG1 =−
(√

gg33)∂3F2+
(√

gg13) iαF2 (8.57)

kG3(x
3) =

(√
gg31)∂3F2(x

3)+
(√

gg11) iαF2(x
3) (8.58)

(8.50c), in which we substituteG1 andG3 with expressions (8.57) and (8.58), gives the propa-
gation equation:
(

−α
(√

gg11)α+∂3
(√

gg33)∂3+ iα
(√

gg13)∂3+∂3
(√

gg31) iα+k2(√gg22))F2(x
3) = 0
(8.59)

which is rewritten as a pair of first-order differential equation as:

−i∂3A

[

F2(x3)
−i∂3F2(x3)

]

=B

[

F2(x3)
−i∂3F2(x3)

]

(8.60)

with:

A=

[

α
(√

gg13
)

+
(√

gg13
)

α
(√

gg33
)

I 0

]

(8.61)

B =

[

−α
(√

gg11
)

α+k2
(√

gg22
)

0

0 I

]

(8.62)

Since the coefficients of matricesA andB are independent of variablex3, we may seek
vectorsF2(x3),G1(x3),G3(x3) under the form:

F2(x
3) = F2exp(iρx3) (8.63a)

−i∂3F2(x
3) = Ḟ2exp(iρx3) (8.63b)

G1(x
3) =G1exp(iρx3) (8.63c)

G3(x
3) =G3exp(iρx3) (8.63d)
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This last step transforms (8.60) into a generalized eigenvalue eigenvector matrix equation:

Aρ
[

F2

Ḟ2

]

=B

[

F2

Ḟ2

]

(8.64)

It is then easy to check that (8.64) is the same as (8.29). AfterF2 is determined, it remains
to deduceG1 from (8.57).

8.4.2 "Classical" C-method operator

We call "classical" operator the operator derived by Chandezon in his early work. From (8.50b)
and taking into account (8.63) we find an expression forG3 as follows:

G3 =
1
k

(√
gg33)−1

iαF2−
(√

gg33)−1(√
gg31)G1 (8.65)

SubstitutingG3 in (8.50a) and (8.50c) with the above expression yields:







−
(√

gg13
)(√

gg33
)−1

α ik
(

(√
gg11

)

−
(√

gg13
)(√

gg33
)−1(√

gg31
)

)

−ik

(

(√
gg22

)

− 1
k2α

(√
gg33

)−1
α

)

−α
(√

gg33
)−1(√

gg31
)







[

F2

G1

]

= ρ
[

F2

G1

]

(8.66)

8.5 Multilayer grating

The extension of C-method to multilayer gratings is straightforward provided the interfaces
which separate the layers share the same periodicity. It is just a generalization of the the-
ory of planar stratified media. As a canonical case, let us consider a layer made of isotropic
homogeneous media limited on the top by surfacez= a j(x1) and on the bottom by surface
z= a j+1(x1) = a j(x1)− t j(x1). Whent j(x1) is constant the two surfaces are parallel to each
other. In homogeneous media the field is a superposition of forward and backward waves. The
only places where coupling occurs are the interfaces. Thus, we have to describe two different
phenomena: on the one hand scattering at the interfaces and on the other hand propagation or
attenuation in the layer. To summarize we assimilate an interface to a 4N-port local network
(N = 4M+1, M being the truncation number) and a layer to a multi-channel pipe connecting
the 2N-ports of its input network and output network [24]. We have already defined interface
scattering matrices which are local matrices in the sense they depend on the profile. In other
words,in the context of C-method they depend on the coordinate system. Thus, for a layer
bounded by two non parallel surfaces, we have to solve two eigenvalue problems for each sur-
face which allows to calculate interface matricesSa j andSa j+1. It remains to define and to cal-
culate layer scattering matrices. Although two cases have to be considered according to whether
the layer separates two identical surfaces or not, the line of reasoning is the same. As already
mentioned, we have two coordinate systems such thatz= x3

j +a j(x1) andz= x3
j+1+a j+1(x1).

They are linked by the following relation:

x3
j = x3

j+1+a j+1(x
1)−a j(x

1) = x3
j+1− t j(x

1) (8.67)
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Figure 8.3: Schematic representation of diffraction at two surfaces separated by a layer

.

In medium j, located in between surfacesz= a j(x1) andz= a j+1(x1), we may express the
linear combination of forward and backard waves with coordinatex3

j = 0 as local origin (that is

z= a j(x1) and write:

F
( j)
a j (x

3
j ,x

1) = ∑
q

A( j)+
j ,q exp(iρ( j)+

a j ,q x3
j )F

( j)+
a j ,q (x1)+∑

q
A( j)−

j ,q exp(iρ( j)−
a j ,q x3

j ))F
( j)−
a j ,q (x1) (8.68)

In the same mediumj we may also choosex3
j+1 = 0 as local origin (that isz= a j+1(x1)) which

gives:

F
( j)
a j+1(x

3
j+1,x

1))=∑
q

A( j)+
j+1,qexp(iρ( j)+

a j+1,qx3
j+1)F

( j)+
a j+1,q(x

1)+∑
q

A( j)−
j+1,qexp(iρ( j)−

a j+1,q(x
3
j+1)F

( j)−
a j+1,q(x

1)

(8.69)
The layer is considered as a 4N− portswhich connects input wavesF ( j)−

a j andF
( j)+
a j+1 to output

wavesF ( j)+
a j andF

( j)−
a j+1 , hence the definition of the layerSmatrix:





A( j)+
j ,q

A( j)−
j+1,q



= S j , j+1





A( j)−
j ,q

A( j)+
j+1,q



 (8.70)

At the input of the layer, that is atx3
j = 0, the outgoing waves correspond to the incoming

wave of the output plane:

F
( j)+
a j (x3

j = 0) = F
( j)+
a j+1 (x

3
j+1 = t j(x

1)) (8.71)
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Similarly, at the output of the layer, that isx3
j+1 = 0, the outgoing waves correspond to the

incoming waves of the input plane:

F
( j)−
a j+1 (x

3
j+1 = 0) = F

( j)−
a j (x3

j =−t j(x
1) (8.72)

At this stage, we infer that layer S matrix looks like:

S j , j+1 =

[

0 P ( j)+

P ( j)− 0

]

(8.73)

The sought sub-matricesP ( j)+, P ( j)− depend on whether the layer faces are parallel or not.

8.5.1 Layer with non parallel faces

Consider equation (8.75) and write it in terms of the eigenvectors of both coordinate systems:

∑
m

∑
q

A( j)+
j ,q F ( j)+

a j ,mqexp(iαmx1) = ∑
m

∑
q

A( j)+
j+1,qexp(iρ+

a j+1,qt j(x
1))F( j)+

a j+1,q exp(iαmx1) (8.74)

The left hand side purely consists of a linear combination of eigenvectors expanded onto the
exp(iαmx1) basis whereas the right hand side consists of a linear combination of eigenvectors
each of which being multiplied by a periodic functions of thex1 variable. In order to get a

matrix relation between theA( j)+
j ,q and theA( j)+

j+1,q, we project (8.74) onto exp(iαmx1). We get:

∑
m

∑
q

A( j)+
j ,q F ( j)+

a j ,mq= ∑
m

∑
q

A( j)+
j+1,qF̃( j)+

a j+1,q exp(iαmx1) (8.75)

with:

F̃ ( j)+
a j+1 mq=

1
d1

∫ d1

0

(

∑
l

F( j)+
a j+1,l q

exp(iαlx
1)

)

exp(iρ( j)+
a j+1,qt j(x

1))exp(−iαmx1)dx1 (8.76)

Then, theP ( j)+ matrix is readily obtained as

P ( j)+ =
(

F( j)+
a j

)−1
F̃

( j)+
a j+1 (8.77)

whereF ( j)+
a j (respectivelyF̃ ( j)+

a j+1 ) is the matrix formed by juxtaposition of vectorsF( j)+
a j ,q (re-

spectivelyF̃ ( j)+
a j+1 q. Similarly we have:

∑
m

∑
q

A( j)−
j+1,qF( j)−

a j+1,mqexp(iαmx1) = ∑
m

∑
q

A( j)−
j ,q exp(iρ( j)−

a j ,q t j(x
1))F( j)−

a j,q exp(iαmx1) (8.78)

and

∑
m

∑
q

A−( j)
j+1,qF( j)−

a j+1,mq= ∑
m

∑
q

A( j)−
j ,q F̃ ( j)−

a j,q (8.79)

with:

F̃( j)−
a jmq =

1
d1

∫ d1

0

(

∑
l

F( j)−
a j ,l q

exp(iαlx
1)

)

exp(−iρ( j)−
a j+1,qt j(x

1))exp(−iαmx1)dx1 (8.80)

from which we derive:

P ( j)− =
(

F( j)−
a j+1

)−1
F̃

( j)−
a j (8.81)
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8.5.2 Layer with parallel faces

In that case, the two coordinate systems are identical andt j(x1) is a constant. Equations (8.72)
and (8.75) reduce to:

∑
m

∑
q

A( j)+
j ,q F( j)+

a j ,mqexp(iαmx1) = ∑
m

∑
q

A+( j)
j+1,qexp(iρ( j)+

a j ,q t j)F
( j)+
a j ,mqexp(iαmx1) (8.82)

∑
m

∑
q

A( j)−
j+1,qF ( j)+

a j ,q = ∑
m

∑
q

A( j)−
j ,q exp(−iρ( j)−

a j ,q t j)F
( j)−
a j ,mqexp(iαmx1) (8.83)

from which we easily deduce:

A( j)+
j ,q = A( j)+

j+1,qexp(iρ( j)+
a j ,q t j) orP ( j)+ = diag

(

exp(iρ( j)+
a j ,q t j)

)

(8.84)

A( j)−
j+1,q = A( j)−

j ,q exp(−iρ( j)−
a j ,q t j) orP ( j)− = diag

(

exp(−iρ( j)−
a j ,q t j)

)

(8.85)

It should be noted that whenρ( j)+
a j ,q (respectivelyρ( j)−

a j ,q ) is complex valued, its imaginary part

is negative (respectively positive) . Sincet j is positive, exponential functions exp(±iρ( j)±
a j ,q t j)

associated to complex eigenvalues always decay when the layer thickness increases.

8.5.3 Combination of S matrices

The final step for analysing reflection and transmission by a layer is to combine the two in-
terfaces S matrix and the layer S matrix. The tool for doing this is the Redheffer star product
which gives the composition rules of two cascaded S matrices [26]. Consider two S matrices
and partition them into four blocks:

S1 =

[

S11
1 S12

1
S21

1 S22
1

]

S2 =

[

S11
2 S12

2
S21

2 S22
2

]

(8.86)

The star product∗ is defined by:

S = S1 ∗S2 (8.87)

S11 = S11
1 +S12

1

(

I−S11
2 S

22
1

)−1
S11

2 ×S21
1 (8.88)

S12 = S12
1 ×

(

I−S11
2 S

22
1

)−1×S12
2 (8.89)

S21 = S21
2 ×

(

I−S22
1 S

11
2

)−1×S21
1 (8.90)

S22 = S22
2 +S21

2 ×
(

I−S22
1 S

11
2

)−1×S22
1 ×S12

2 (8.91)

whereI is the identity matrix. The combinedS matrix of the top and bottom interfaces and of
the layer is given by:

S = Sa j ∗S j , j+1∗Sa j+1 =
(

Sa j ∗S j , j+1
)

∗Sa j+1 = Sa j ∗
(

S j , j+1∗Sa j+1

)

(8.92)

and finally, it turns out that

S11 = S11
a j
+S12

a j
P ( j)+U2P

( j)−S11
a j+1

(8.93)

S12 = S12
a j
P ( j)+U2S

12
a j+1

(8.94)

S21 = S21
a j+1
U1P

( j)−S21
a j

(8.95)

S22 = S22
a j+1

+S21
a j+1
P ( j)−U1P

( j)+S22
a j

(8.96)
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where

U1 =
(

I−S22
a j
P ( j)+S11

a j+1
P ( j)−

)−1
U2 =

(

I−S11
a j+1
P ( j)−S22

a j
P ( j)+

)−1
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8.6 Extensions of C Method

The key idea of C-method as applied to diffraction by surface-relief gratings is to map the
surface of the grating to a plane. Until now, we have only described profiles under the form
z= a(x). However, in Cartesian coordinates(x,y,z), a cylindrical surface whose generating line
is parallel to theOyaxis may be described by the parametric equations:

x= f (x1) z= g(x1) (8.97)

where f andg are two continuous functions. Now consider the following relations:

x= f (x1)+c1x3 y= x2 z= g(x1)+x3 (8.98)

wherec1 is a real constant. They define an additive change of coordinates whose metric tensor
is given by:

gi j =





∂ 2
1 f +∂ 2

1 g 0 c1∂1 f +∂1g
0 1 0

c1∂1 f +∂1g 0 1+∂ 2
1 g



 (8.99)

Actually, the above matrix corresponds to a change of coordinates provided the Jacobian deter-
minantJ of the transformation does not go to zero.

J =

∣

∣

∣

∣

∂1x ∂3x
∂1z ∂3z

∣

∣

∣

∣

=

∣

∣

∣

∣

∂1 f c1
∂1g 1

∣

∣

∣

∣

= ∂1 f −c1∂1g (8.100)

More over, the metric tensor is independent of coordinatex3 which means there exists a trans-
lation symmetry alongx3 axis. Hence Equations(8.98) define in a general way translation coor-
dinate systems which allow to solve new classes of problems.

8.6.1 Oblique transformations

In Cartesian coordinates, usual coordinates lines of a plane are two straight lines orthogonal
to each other. One can also imagine having straight lines which make an angle different from
π/2. Consider the straight line∆ given byz= tan(φ)x and let us callφ the obliquity angle. The
following sets of relations define a coordinate system(x1,x3) in which lines parallel to∆ are
coordinate linesx1 = constantand linesx3 = constant remain parallel toOx

x= x1+
1

tanφ
x3

z= x3
(8.101)

Such oblique transformation allow to model an extended class of surface shapes which would
otherwise be numerically inefficient (very blazed gratings) or even impossible like overhanging
gratings. As an illustrative example, consider in the coordinate system(x1,x3) the symmetric
triangular function.

t(x1) =











2x1 0< x1 < .5

2(1−x1) .5< x1 < 1

0 elsewhere

(8.102)
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Figure 8.4: Coordinate system in which coordinate lines are parallel to ∆ and to Ox axis

Using an oblique transformation one gets:

x= x1+
1

tanφ
(x3+ t(x1))

z= x3+ t(x1)
(8.103)

0 0.5 1 1.5 2
0

0.5

1

φ=90

0 0.5 1 1.5 2
0

0.5

1
φ=63.4349

0 0.5 1 1.5 2
0

0.5

1
φ=40

Figure 8.5: Echelette grating in three different oblique coordinate systems

Figure(8.5) shows three typical grating surfaces obtained with (8.103) and withφ = 90,
63.4349 and 40 respectively, the latter demonstrating the extreme overhanging forms possible
for smallφ without the double value problem implicit with Cartesian coordinates.

8.6.2 Stretched coordinates

The essence of C-method is to choose a coordinate system that facilitate the solution of a given
problem. Oblique transformations are a typical example of the usefulness of this technique.
Indeed they provide an easy and elegant way to handle gratings with one vertical facet and also
overhanging gratings. Similarly, we have believed for a long time that sharp edges were an
intrinsic limitation of the C method. Actually, it turns out that transformations which stretch co-
ordinates around the edges overcome the problem. With C-Method, the solution of Maxwell’s
equations is reduced to the solution of an algebraic eigenvalue problem in discrete Fourier
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space. The derivation of the matrix operator involves two steps: (1) The electromagnetic field
is expanded into Floquet–Fourier series, and (2) the derivative of the grating profile function is
expanded into Fourier series. When the latter function is discontinuous, the Fourier method is
known to converge slowly.This weakness remains even when the correct Fourier factorization
of products of discontinuous periodic functions, as given by Li, is applied. The reason for slow
convergence is that the spatial resolution of the Fourier expansion remains uniform within a
grating period whatever the grating profile function may be. On the contrary, stretched coor-
dinates allow a mapping of space that increases spatial resolution around the discontinuities of
the derivative of the profile function. For this reason the technique is known as adaptive spatial
resolution.

8.6.3 Parametric C-method

Whether for mandatory reasons as is the case for overhanging gratings or simply to improve
convergence speed, the most general representation of a one dimensional profile happens to be
a parametric one. Adding an additional degree of freedom with an obliquity angle, a class of
translation coordinate systems has the form given by (8.98). Due to the translational symmetry
along vectore3 = c1ex+ez, a numerical solution in terms of eigenvectors and eigenvalues is
possible. Equations (8.98) describe a coordinate system where coordinates linesx3 = constant
coincide with functions which are periodic with periodd1 along directionOx. Compared to the
non-oblique coordinate system, the periodd1 and the direction of periodicity remain unaffected
by the introduction of parameterc1. Thus, assuming an incident plane wave vectork such that

k.ex = α0 thex1 dependence is of the form exp(iαmx1) with αm = α0+m
2π
d1 . Sowe have all

the ingredients to determine the matrix from which eigenvectors and eigenvalues will be sought.
In Fourier space, the matrices associated to the elements of the metric tensor are:

(√
gg11

)

= (c2
1+1)

[

ḟ −c1ġ
]−1

(√
gg13

)

=
[

ḟ −c1ġ
]−1[

c1ḟ + ġ
]

(√
gg31

)

=
[

c1ḟ + ġ
][

ḟ −c1ġ
]−1

(√
gg33

)

=
[

ḟ −c1ġ
]

+(c2
1+1)

[

c1ḟ + ġ
][

ḟ −c1ġ
]−1[

c1ḟ + ġ
]

(√
gg22

)

= ḟ −c1ġ

(8.104)

where ḟ andġ designates the toeplitz matrices formed by the elements of the Fourier series of
∂1 f and∂1g respectively.

8.6.4 Plane waves and parametric C-method

More over since the physics remains the same compared to non-oblique translation coordinate
systems, eigenvectors separate into forward and backward waves as was already the case:

F (x1,x3) = ∑
q

A±q F±q (x1)exp(iρ±q x3) (8.105)

As in the classical translation coordinate system, we substitute the computed propagative for-
ward and backward eigenvectors with the corresponding transformed plane waves . Consider
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plane waves
exp(iαnx)exp(±iγnz)

such that±γn ∈ R. Taking into account (8.98),their expression in oblique coordinates is:

exp
(

i(αnc1± γn)x
3)exp

(

i(αn f (x1)± γng(x1)
)

(8.106)

hence the following correspondences between propagative waves in Cartesian coordinates and
their computed counterparts in oblique coordinates:

ρ±,(M)
(p),n ←→ (±γn+αnc1) ; F±(p),n(x

1)←→ exp
(

iαn f (x1)±iγn(g(x
1)
)

(8.107)

We have added an extra subscript(p) and a superscript(M) to indicate that we only care about
the above correspondence for propagative waves and thatρ depends on the truncation number.

8.6.5 Illustrative example

Consider a right angled triangular profile whose base is aligned onOx. Other parameters are
period d1 and heighth. It is illuminated by a plane wave inclined atθ to the Oz axis. In
the context of C-method we ask ourselves which coordinate system choosing for modelling
diffraction by such a grating. Here the main difficulty comes from the vertical facet located at
x= d1. The operator associated with C-method involves the derivative of the profile function.
With a description of the profile by a function of the kindz= a(x), the derivative is constant
and everything happens as if the vertical did not exist. Should the vertical be replaced by a very
sloping facet, then a highly located and large discontinuity in the derivative would appear. None
of the situation is satisfactory. An easy way to overcome the problem consists in introducing
an oblique coordinate system in which the vertical is transformed into a straight line with a
"reasonable" slope. Actually, doing so amounts to parametrizing the profile in the Cartesian
coordinate system.

8.6.5.1 Obliquity angle and parametrization of the profile

Since one of the facets of the grating is vertical, an inclined coordinate system is needed. On the
one hand, the parameterc1 is linked to the obliquity angleφ by c1 = 1/ tanφ and on the other
hand, according to (8.100) it should satisfy the constraint 1−c1∂xa> 0 . Hence, in principleφ
may be any angle such that tanφ < h/d Let t1 be tan(φ). On the first facet we have:

x= x1+
1
t1

y, y=
h
d

x (8.108)

and on the second one

x= d, d = x1+
1
t1

y (8.109)

Thus the parametrization of the profile is:

f (x1) =
d

d− t1h
x1 g(x1) =

h
d− t1h

x1 if x1 6 x1
0

f (x1) = d g(x1) =
1
t1
(x1−d) if x1 > x1

0

(8.110)
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with :

x1
0 = d

(

1− 1
t1

h
d

)

(8.111)

Now that we have parametrized the profile, it remains to define a translation direction. The
direction which served to parametrize the profile is a natural choice although not mandatory.
Once more, the only constraint is that the tangent of the chosen obliquity angle is smaller than
h/d.

8.6.5.2 Stretched coordinates and parametrization of the profile

At x1 = 0 andx1 = x1
0, the parametric functionsf (x1) and g(x1) have jumps which can be

reduced if one introduces an additional change of coordinates aimed at increasing spatial reso-
lution around these points. Letx1 be a function of a new variableu: x1 = s(u). The chain rule
for derivative gives :

∂ux= ∂1 f (x1(s(u))∂us, ∂uy= ∂1g(x1(s(u))∂us (8.112)

Compared to the initial parametrization, spatial resolution is modulated by the multiplicative
factor∂us. The smaller the latter, the higher the spatial resolution. A possible stretching function
is as follows :

s(u) =



















u− ηx0

2π
sin

(

2πu
x0

)

if 0 6 u< x1
0

(u−x0)−
η(d1−x1

0)

2π
sin

(

2π(u−x0)

d1−x1
0

)

if x1
0 6 u< d1

(8.113)

The parameterη between zero and one controls the density of coordinate lines around the transi-
tion points. It allows to stretch space thinner where discontinuities of coefficients in Maxwell’s
equations occur. The largerη, the smaller∂us and thus the higher the spatial resolution. In
principle the parameterη does not have to reach one because, in that case, the Jacobian would
be zero. Figure (8.6) shows four possible parametrization of the considered right angle triangle.
Case (a) corresponds to the usual representationz= a(x).
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Figure 8.6: Various parametric representations of a right angle triangular profile

Finally, figure (8.7) shows the speed of convergence of the specular reflected order for a
perfectly conducting right angle triangular profile for two different parametrizations. It has to
be emphasized that modelling this kind of profile is out of reach for the "classical" C-method
since it has a vertical facet.
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Figure 8.7: Comparison of speed of convergence for two parametric representation of a right angle triangular
profile. Full line: x1

0 = .5, η = 0, dashed line: x10 = .4, η = .9. Other parameters are:θ = 25◦, λ = 1,h= d1 = 1
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Appendix 8.A: Curvilinear Coordinates

In Cartesian coordinates we deal with three mutually perpendicular families of planes: x=constant,
y=constant, z=constant. Imagine that we superimpose on this system three other families
of surfaces. We may reference any variable pointM by the intersection of three planes in
Cartesian coordinates , ie by the triplet(x,y,z) or as the intersection of the three surfaces
that form our new, curvilinear coordinates. Describing the curvilinear coordinates surfaces
by x1 = constant,x2 = constant,x3 = constantwe may identify our point by the tripletx,y,z as
well as byx1,x2,x3. This means that in principle we may define a curvilinear coordinate system
from the Cartesian system(x,y,z) by:

x= x1′ = x1′(x1,x2,x3),y= x2′ = x2′(x1,x2,x3),z= x̄3 = x3′(x1,x2,x3) (8.114)

or by the inverse relations

x1 = x1(x1′ ,x2′ ,x3′),x2 = x2(x1′,x2′ ,x3′),x3 = x3(x1′ ,x2′ ,x3′) (8.115)

x1′ ,x2′ ,x3′ respectivelyx1,x2,x3 are regarded as independent and continuously differentiable
functions ofx1, x2 andx3 respectivelyx1′ ,x2′ ,x3′ . let M denote a variable point referenced by the
rectangular coordinates(x,y,z).At M the so-called natural referential(M,e1,e2,e3)is defined by
the the following basis vectors:

eα =
β ′=3

∑
β ′=1

∂xβ ′

∂xα eβ ′ (8.116)

with e1′ = ex, e2′ = ey, e3′ = ez, ex, ey andez being the unit vectors of an orthogonal Cartesian
referential. In a similar way we may write

eα ′ =
β=3

∑
β=1

∂xβ

∂xα ′ eβ (8.117)

Moreover introducingΛβ ′
α =

∂xβ ′

∂xα and Einsteins’ summation convention Eq(8.116) and Eq(8.117)

write:
eα = Λβ ′

α eβ ′ eα = Λβ
αeβ ′ (8.118)

vectorseα are tangent vectors along coordinate curvexα . The matrix formed by the coefficientΛβ ′
α

is the Jacobian matrixJ of the change of coordinates. Since functionsx1′ , x2′ ,x3′ are indepen-
dentJ is inverible and its inverse is formed by the coefficientsΛβ

α ′

J =





Λ1′
1 Λ2′

1 Λ3′
1

Λ1′
2 Λ2′

2 Λ3′
2

Λ1′
3 Λ2′

3 Λ3′
3



 J−1 =





Λ1
1′ Λ2

1′ Λ3
1′

Λ1
2′ Λ2

2′ Λ3
2′

Λ1
3′ Λ2

3′ Λ3
3′



 (8.119)

One can also define basis vectorseα that are normal to coordinate surfacesxα = constant by

eα =
∂xα

∂xα ′ e
α ′ , with eα ′ = eα ′ (8.120)

The vectorseα andeβ form a set of reciprocal basis witheα .e
β = δ β

α , whereδ β
α is the Kro-

necker delta. The representation of any vectorA in one of these bases is:

A= Aαeα = Aαe
α (8.121)
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Figure 8.8: Curvilinear Coordinates:covariant and contravariant components of a vector in a plane

TheAα and theAα are the contravariant components and the covariant components of vector
A respectively. The nullity of a component of vectorA may be geometrically interpreted as
follows:
Aα = 0:A is orthogonal to the tangent at pointM to the coordinate linexα

Aα = 0:A belongs to the tangential plane at pointM to coordinate surfacexα

In normalized orthogonal Cartesian coordinates differentiate contravariant and covariant com-
ponents of a vector is generally not necessary. The Jacobian matrix allows to express the
Cartesian componentsAα ′ = Aα ′ of vectorA in terms of its local contravariant components
Aα =A.eα or covariants componentsAα =A.eα :

Aα ′ = Aα ′ = Λα ′
α Aα or Aα = Λα

α ′A
α ′ (8.122)

Aα ′ = Λα
α ′Aα or Aα = Λα ′

α Aα ′ (8.123)

The quantities

gαβ = eα .eβ = Λα ′
α Λβ ′

β gα ′β ′ (8.124)

define the metric of the coordinate system. In matrix form we have:

[

gαβ
]

= J tJ (8.125)

and
g= det(

[

gαβ
]

) = det(J)2 = det
(

Λα ′
β

)

(8.126)

Thegαβ establish a connexion between theAα and theAβ

Aα = eα .
(

Aβ .eβ

)

= gαβ Aβ or Aβ = gβαAα (8.127)

Appendix 8.B: Transformation of Maxwell’s equations

We have seen that the natural referentiel gives the tools to easily maipulate tangential and normal
components of a vector field.Therefore, writting boundary conditions at a surface should be
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straightforward. We need now to express Maxwell’s equation in the new coordinate system.
For that purpose, we may follow a tensorial approach or stay at an elementary level and make
a simple change of coordinates and components in the usual Maxwell’s equations. We present
briefly both points of view. A time dependence of the form exp(−iωt) is assumed.

Vectorial approch

Let us start from one of the Maxwell’s curl equation written in the Cartesian coordinate system
and in an homogeneous medium with permittivityε and permeabilityµ

ξ α ′β ′γ ′∂β ′Hγ ′ =−iωεEα ′ (8.128)

whereξ α ′β ′γ ′ stands for the Levi-Civita indicator :

ξ α ′β ′γ ′ =







1 for α ′β ′γ ′ = 123,231,312
−1 for α ′β ′γ ′ = 321,213,132
0 otherwise

(8.129)

Then let us change the coordinates:∂β ′ = Λα
β ′∂α and the componentsHγ ′ = Λβ

γ ′Hβ

ξ α ′β ′γ ′Λα
β ′∂α

(

Λβ
γ ′Hβ

)

= − iωεEα ′ (8.130)

The left hand side of the above equation is equal to:

ξ α ′β ′γ ′Λα
β ′
(

Λβ
γ ′∂αHβ

)

+ξ α ′β ′γ ′Λα
β ′
(

∂αΛβ
γ ′

)

Hβ (8.131)

on the one hand we have
Λα

β ′∂αΛβ
γ ′ = ∂β ′Λ

β
γ ′ (8.132)

and the other hand this term is symmetrical with respect toβ ′ andγ ′. Thus by applying the
operatorξ α ′β ′γ ′ which is antisymmetric with respect toβ ′ and γ ′ we obtain 0. Thus, the
Maxwell curl equation reduces to:

ξ α ′β ′γ ′Λα
β ′Λ

β
γ ′∂αHβ =−iωεEα ′ (8.133)

let us multiply both sides byΛγ
α ′ and make summation on dummy indexα ′. We obtain:

ξ γαβ det
(

Λα
β ′
)

∂αHβ =−iωεΛγ
α ′E

α ′ =−iωεEγ =−iωεgγβ Eβ (8.134)

Finally we get:
ξ γαβ ∂αHβ =−iωε

√
ggγβ Eβ (8.135)

and
ξ γαβ ∂αEβ = iωµ

√
ggγβ Hβ (8.136)

setting

Fα = Eα Gα = iZHα with Z =

√

µ
ε

(8.137)

we then obtain a set of equations relating the complex amplitudes of the field components where
theFα and theGα play a fully symmetric role:

ξ αβγ ∂β Fγ = k
√

ggαβ Gα
ξ αβγ ∂βGγ = k

√
ggαβ Fα

(8.138)

wherek= ω√µε
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Appendix 8.C: Summary of tensorial approach

In curvilinear coodinates systems, the Maxwell’s equations are based on the tensorial formalism
deduced from relativity. If we consider only materials which are stationary with respect to the
coordinate system, then the four-dimensional formalism developed by Post can be simplified.
Maxwell equations are written :

ξ αβγ∂β Eγ =−∂tBα

ξ αβγ∂β Hγ = ∂tDα +Jα

∂αDα = ρ
∂αBα = 0

(8.139)

Post’s formalism preserves the affine nature of Maxwell’ equations: their expression is indepen-
dent of the coordinate system. The geometry only appears in the constitutive equations along
with the material’s properties

Dα = εαβ Eβ Bα = µαβ Hβ (8.140)

In a perfectly linear, isotropic media with permittivityε andµ, these relation ships become:

εαβ = ε
√

ggαβ εαβ = ε
√

ggαβ (8.141)

wheregαβ are the contravariant components of the metric tensor.
(

gαβ
)

=
(

gαβ
)−1

g= (det)(gαβ ) (8.142)

In an arbitrary curvilinear coordinates systemexα , if the surface separating two materials, de-
noted (1) and (2), coincides with a surface of coordinatesx3 = constant, for example, then the
conditions of continuity are expressed quite simply

tangential component continuity:

{

a1(1) = a1(2)
a2(1) = a2(2)

(8.143)

normal component continuity:a3(1) = a3(2) (8.144)

Assuming a time dependence of the form exp(−iωt), in a source free region if we substitute
the constitutive equations for the material8.141 into Maxwell equations in the covariant form
8.139, setting

Fα = Eα Gα =−iZHα with Z =

√

µ
ε

(8.145)

we then obtain a set of equations relating the complex amplitudes of the field components where
theFα and theGα play a fully symmetric role:

ξ αβγ ∂β Fγ = k
√

ggαβ Gα
ξ αβγ ∂βGγ = k

√
ggαβ Fα

(8.146)

wherek= ω√µε
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The Finite Difference Time Domain method (FDTD), based on the Yee’s scheme, is one of the
most commonly used time methods for the modeling of electromagnetic waves propagation and
diffraction. It was first introduced by Yee in 1966 [1] in the context of differential equations
resolution and the first articles recommending its futur applications are published from 1975
[2, 3, 4]. Due to the simplicity of its implementation and the rapid growth of computing capacity,
the FDTD is gaining users in all areas of electromagnetism applications. It allows a real-time
monitoring of the electromagnetic wave evolution in any kind of environment (dielectric, metal,
plasma. . . ). Its theoretical formulation is very easy since it requires no matrix inversion and
could take into account the more complex geometric shapes of objects in the studied system. In
addition, using this time domain method, a wide spectral range characterization can be obtained
from one temporal calculation via a simple Fourrier transform.

In this chapter, we present a brief review on the fundamentals of the FDTD method. We
show how to adapt it to the calculation of the photonic band gap structures in the case of 2D
periodic (invariant in the third direction) structures. The both in-plane, for the TE and TM
polarizations, and off-plane propagations are considered. The last part of this chapter is devoted
to FDTD general formulation, based on the Split Field Method technique, for the modeling of
bi-periodic gratings that are finished according to the third direction.

9.1 Fundamentals of the FDTD method

9.1.1 The Yee’s algorithm

The FDTD method is based on the numerical resolution of the Maxwell’s equations using a
centered finite difference schema to approximate the partial derivatives both in time and space.
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Let us start from these equations expressed in their differential formulation:

∇×−→
E = −∂−→B

∂ t
(9.1)

∇×−→
H =

∂−→D
∂ t

(9.2)

The electromagnetic properties of the medium are described through the so-called constitutive
relationships:

−→
D = ε−→E (9.3)
−→
B = µ−→H (9.4)

ε andµ are respectively the dielectric permittivity and magnetic permeability of the medium.

In a Cartesian coordinate system(O, x, y, z), the Maxwell’s equations in the time domain
are written as:

∂Hx

∂ t
=

1
µ

[

∂Ey

∂z
− ∂Ez

∂y

]

(9.5.a)

∂Hy

∂ t
=

1
µ

[

∂Ez

∂x
− ∂Ex

∂z

]

(9.5.b)

∂Hz

∂ t
=

1
µ

[

∂Ex

∂y
− ∂Ey

∂x

]

(9.5.c)

∂Ex

∂ t
=

1
ε

[

∂Hz

∂y
− ∂Hy

∂z

]

(9.5.d)

∂Ey

∂ t
=

1
ε

[

∂Hx

∂z
− ∂Hz

∂x

]

(9.5.e)

∂Ez

∂ t
=

1
ε

[

∂Hy

∂x
− ∂Hx

∂y

]

(9.5.f)

The numerical treatment of the partial differential equations 9.5 requires a space and time dis-
cretization. The calculation volume, shown in figure 9.1 is a rectangular parallelepiped divided
into (Nx×Ny×Nz) cells, each one with elementary volume(∆x×∆y×∆z) where∆x, ∆y and
∆zare the spatial discretization steps according to theOx, OyandOzdirections respectively.

Each well defined node of the grid is associated with a triplet of integers(i, j, k) so that
the coordinates

(

xi , y j , zk
)

of the node satisfy:

xi = i ·∆x

y j = j ·∆y

zk = k ·∆z

The computational time is also discretized with a∆t time step. Each computing timet is asso-
ciated with the integern defining the number of temporal sampling:

t = n ·∆t
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Unit Cell

Dz

Dx

Dy

z, k

y, j

x, i

Figure 9.1: An exemple of the FDTD calculation volume.

Temporal and spatial derivatives of the field components (Ex, Ey, Ez, Hx, Hy, Hz) are approxi-
mated from their Taylor development to the first order. Thus, ifU is one of these components,
we will adopt the following notation:

U
(

xi , y j , zk, t
)

=Un
i, j ,k (9.6)

The temporal derivative of theU component att time and
(

xi , y j , zk
)

node is approximated with
finite centred difference as follows:

[

∂U
∂ t

]

i, j ,k
=

U
n+ 1

2
i, j ,k −U

n− 1
2

i, j ,k

∆t
+0

(

[∆t]2
)

(9.7)

The spatial derivatives of theU component are approximated in the same manner:

[

∂U
∂x

]

j ,k,n
=

Un
i+ 1

2 , j ,k
−Un

i− 1
2 , j ,k

∆x
+0

(

[∆x]2
)

(9.8.a)

[

∂U
∂y

]

i,k,n
=

Un
i, j+ 1

2 ,k
−Un

i, j− 1
2 ,k

∆y
+0

(

[∆y]2
)

(9.8.b)

[

∂U
∂z

]

i, j ,n
=

Un
i, j ,k+ 1

2
−Un

i, j ,k− 1
2

∆z
+0

(

[∆z]2
)

(9.8.c)

As explicitly mentioned in equations 9.8, the use of centered difference scheme allows a
precision of the second order even if a first order Taylor development is considered. This greatly
enhances the numerical convergence of the FDTD algorithm.
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(i, j, k)

Hy (i+1/2, j, k+1/2) H x (i, j+1/2, k+1/2)

H z (i+1/2, j+1/2, k)

Ez (i, j, k+1/2)

Ex (i+1/2, j, k)

z

y

x
cell number (i,j,k)

Figure 9.2: Spatial discretization : Yee’s cell.

En En+1 En+2Hn+1/2

2n t/2D (2n+1) t/2D (2n+2) t/2D (2n+3) t/2D (2n+4) t/2D

Hn+3/2

Figure 9.3: Temporal discretization into the Yee’s scheme.

Yee’s algorithm

The algorithm proposed by Kane Yee in 1966 [1] uses in a clever way this discretization for
solving the system of equations (9.5). In the Yee’s scheme, the electromagnetic field compo-
nents are located at different points in a unit cell (Figure9.2). The electric field components are
calculated along the edges of the cell while the perpendicular magnetic field components are
calculated at the centers of the cell faces. Thus, each electric field component is surrounded by
four magnetic field components and similarly for each magnetic field component.

The temporal increment into the Yee’s scheme is done through a "leapfrog" discretization
schema. The field components

−→
H (or

−→
E ) are calculated at times odd multiples of the half time

step∆t
2 , while the field components

−→
E (respectively

−→
H ) are updated at the times even multiples

of ∆t
2 as shown in figure 9.3. Such a discretization allows evaluating the time derivatives by

keeping a centered difference schema as for spatial derivatives.
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Consequently, replacing the partial derivatives in equations (9.5) by central difference
(9.7-9.8), according to the Yee’s scheme leads to the updated equations of electromagnetic
components in the FDTD algorithm:

H
n+ 1

2
x(i, j+ 1

2 ,k+
1
2)

= H
n− 1

2
x(i, j+ 1

2 ,k+
1
2)

− ∆t
µ0∆

{[

En
z(i, j+1,k+ 1

2)
−En

z(i, j,k+ 1
2)

]

+

[

En
y(i, j+ 1

2 ,k)
−En

y(i, j+ 1
2 ,k+1)

]}

(9.9.a)

H
n+ 1

2
y(i+ 1

2 , j,k+ 1
2)

= H
n− 1

2
y(i+ 1

2 , j,k+ 1
2)

− ∆t
µ0∆

{[

En
x(i+ 1

2 , j,k+1)
−En

x(i+ 1
2 , j,k)

]

+

[

En
z(i, j,k+ 1

2)
−En

z(i+1, j,k+ 1
2)

]}

(9.9.b)

H
n+ 1

2
z(i+ 1

2 , j+ 1
2 ,k)

= H
n− 1

2
z(i+ 1

2 , j+ 1
2 ,k)

− ∆t
µ0∆

{[

En
y(i+1, j+ 1

2 ,k)
−En

y(i, j+ 1
2 ,k)

]

+

[

En
x(i+ 1

2 , j,k)
−En

x(i+ 1
2 , j+1,k)

]}

(9.9.c)

En+1
x(i+ 1

2 , j,k)
= En

x(i+ 1
2 , j,k)

+
∆t
ε∆

{[

Hn
z(i+ 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j− 1
2 ,k)

]

+

[

Hn
y(i+ 1

2 , j,k− 1
2)

−Hn
y(i+ 1

2 , j,k+ 1
2)

]}

(9.9.d)

En+1
y(i, j+ 1

2 ,k)
= En

y(i, j+ 1
2 ,k)

+
∆t
ε∆

{[

Hn
x(i, j+ 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k−
1
2)

]

+

[

Hn
z(i− 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j+ 1
2 ,k)

]}

(9.9.e)

En+1
z(i, j,k+ 1

2)
= En

z(i, j,k+ 1
2)

+
∆t
ε∆

{[

Hn
y(i+ 1

2 , j,k+ 1
2)
−Hn

y(i− 1
2 , j,k+ 1

2)

]

+

[

Hn
x(i, j− 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k+
1
2)

]}

(9.9.f)

Let us note that this last equation system can be simplified significantly in case of 2D structures
(see section 2 of this chapter).

For the modeling of structures with a symmetry of revolution, a basis change from Carte-
sian to cylindrical coordinates is strongly recommended to accurately describe the fine details
of the samples and to make more flexible the FDTD calculation codes. In these so-called BOR-
FDTD (Body of Revolution FDTD) codes, the symmetry of revolution is exploited to express
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the azimuthal dependence (φ ) of the electromagnetic fields as Fourrier series. BOR-FDTD al-
gorithm can, in this case, compute solutions for all Fourier modes through one simulation per
mode. This code is commonly called 2.5D since the azimuthal field variation is analytically
accounted for. Thus, there is no griding in theφ -direction. This implies that the BOR-FDTD
algorithm is two-dimensional in terms of computer ressource usage even 3D structures are mod-
eled.

9.1.2 Spatiotemporal criteria of convergence

As all explicit schemes, Yee’s algorithm is subjected to a stability condition setting the time
step from the space discretization. Arbitrary values of spatiotemporal discretization can lead to
infinite solutions of the electromagnetic field. Stability problems in explicit numerical methods
have been analyzed in detail by Courant, Friedrichs and Levy [5] and Von Neumann, from
a mathematically rigorous approach. This analysis shows that the explicit schemes are stable
under a condition called CFL (for Current, Friedrich and Levy) and applied to the FDTD method
in the case of a regular mesh [6]:

∆t ≤
[

vmax·
√

1
∆x2 +

1
∆y2 +

1
∆z2

]−1

(9.10)

wherevmax is the maximum velocity of light propagation in the studied system, generally the
velocity of light in vacuum.

In case of uniforme mesh(△x=△y=△z=△), the CFL criterion becomes:

∆t ≤ 1
vmax

· ∆√
3

in3D (9.11)

∆t ≤ 1
vmax

· ∆√
2

in2D (9.12)

However, it is possible to overcome the restrictive assumption of regular mesh that achieves
the above result with the following generalized criterion:

∆t ≤
[

vmax·
√

1

∆x2
min

+
1

∆y2
min

+
1

∆z2
min

]−1

(9.13)

where∆xmin, ∆ymin et ∆zmin are the smallest step in the three directionsx, y andz respectively.

In addition to the numerical instability problem, the transition from continuous forms of
Maxwell’s equations to the discrete numerical approximations can cause a parasitic effect called
"numerical dispersion". This is due to the fact that numerical signals are propagated over time
in the FDTD grid, with a phase velocity less than the actual velocity. This dispersion varies
with frequency, propagation direction in the grid and the spatial discretization [6]. Numerical
dispersion errors increase with the signal frequency and size of the computational domain, thus
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making the simulation results less reliable. They may appear in various forms: phase error,
signal distortion, loss of amplitude, pulse broadening ...

The solution to this problem requires a very fine mesh in the FDTD grid, so that the
maximum discretization is of the orderλmin/20 [6], λminbeing the minimum wavelength of
propagating waves in the FDTD grid.

9.1.3 Absorbing boundary conditions - Perfectly Matched Layers

Such conditions allow us to describe open systems where emitted or reflected waves propa-
gate to infinity. Indeed, the limited memory space of computers requires users to truncate their
FDTD computational domain. At the limits of this truncated domain, components of the elec-
tromagnetic field can not be calculated by the discretized equations (9.9). Therefore special
treatment at the borders is needed to avoid the incident electromagnetic wave on these "edges"
does reflect back and contaminate the actual physical signal. One of the most widely used tech-
nique is that proposed by Berenger [7] called Perfectly Matched Layer (PML). This technique
consists of adding around the studied domain not necessarily physical layer causing no reflec-
tion and almost totally absorbing all the propagating electromagnetic field. Its use is based on
the condition of impedance matching of two waves at the interface between two media with the
same index but which one is absorbing (with nonzero electrical conductivityσ and magnetic
equivalent conductivityσ⋆ as shown in figure 9.4).

Incident medium

Absorbing medium

( )s , s

e, m 0 e, m 0

e m

( 0 0 )s  = , s  =e m

Figure 9.4: Impedance matching principle.

This condition is expressed as:
σ
ε
=

σ⋆

µ0
(9.14)

Thus, a magnetic conductivity is needed to fulfill this impedance matching condition. In addi-
tion, absorption is needed only for components of the fields that propagates perpendicularly to
the interface (the FDTD window border) and not in the parallel direction. Bérenger solved this
problem by proposing an artificially biaxial absorbing medium. The absorption is not zero in
the direction normal to the interface between the two media and is zero along the axis parallel
to the interface. In the PML medium, the incident plane wave is split into two fictitious waves
(see figure 9.5):

1) A wave propagating at normal incidence and satisfying the equation 9.14. This wave
is attenuated and absorbed by the PML medium and undergoes only very low reflectivity to the
incident medium.
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e, m 0
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incident medium
(main grid)

PML medium
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propagating
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Grazing wave

e

e, m 0

x

y

Figure 9.5: Schematic of the PML principle.

2) A second grazing incidence wave that shows no absorption in the PML medium. This
wave, propagating parallel to the interface between two media undergoes no reflection and sees
a medium identical to that of the main grid window.

Abrupt changes in conductivities at this interface degrade the performances of absorption.
This effect is, however, reduced by imposing a progressive variation of the absorption according
to a polynomial law given by [7]:

σ = σmax

(xpml

e

)m
(9.15)

whereσmax is the maximum value of the conductivity,xpml represents the depth in the PML
region measured from the interface,e denotes the thickness of the PML layer andm is the
polynomial order generally fixed to 2.

Let us note that in the case of gratings such conditions are not necessary according to the
periodicity directions. The absorbing boundaries conditions are hereby replaced by Floquet-
Bloch periodic conditions in order to describe periodic structures (see section 2 of this chapter).
Nevertheless, for a 2D periodic structure, PML are needed in the third direction where the
structure is usually finite.

9.1.4 Dispersive media

The dispersive media, such as metals in the optical range, are characterized by a complex per-
mittivity frequency dependentε(ω) = ε ′(ω)+ iε ′′(ω). As the FDTD method is temporal, in
such environments the direct implementation of the above equations, in which appear explicitly
permittivity and hence the frequency, is impossible. The solution for this problem is to calculate
the displacement vector

−→
D components in the classical Yee’s scheme and then back to electri-

cal field components using the constitutive equation of the medium established in the frequency
domain

−→
D (ω) = ε(ω)

−→
E (ω). The temporal nature of the FDTD needs a temporal constitutive

equation written as a convolution product
−→
D (t) = ε(t)⊗−→

E (t). It is a non local relationship
whose resolution requires the knowledge of the electric field at all previous times. Numerically,
this leads to a storage of a very large amount of data and therefore requires to have a very large
memory space. This issue can be bypassed using analytical models describing the dielectric
functionε(ω) of these metals. The choice of adapted analytical model depends on the type of
metal as well as the spectral range of study.
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9.1.4.1 Drude Model

The Drude model of free electrons [8, 9] for the dielectric function which, although based on
a purely classical approach, can well account for intraband transitions. In this model, firstly
proposed in 1908 by P. Drude, a gas of free electrons moving in a immobile metal ions lattice.
Thus, the electron-electron interactions and electron-ions are not taken into account and the
movement of all the electron cloud is thus the average of the movements of individual electrons.
The relative permittivity given by this model is:

εD = ε∞ − ω2
D

ω2+ iωγD
(9.16)

whereωD is the "plasma frequency" of the metal andε∞ its relative permittivity at infinite
frequencies.γD represents a damping term that is inversely proportional to the relaxation time.

FDTD implementation of the Drude model

The principle consists in replacing the electric field vector
−→
E by

−→
D/ε in Maxwell’s equations

in order to eliminateε term. In dispersive media, equations (9.9.d, 9.9.e et 9.9.f) are replaced
by:

Dn+1
x(i+ 1

2 , j,k)
= Dn

x(i+ 1
2 , j,k)

+
∆t
∆

{[

Hn
z(i+ 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j− 1
2 ,k)

]

+

[

Hn
y(i+ 1

2 , j,k− 1
2)

−Hn
y(i+ 1

2 , j,k+ 1
2)

]}

(9.17)

Dn+1
y(i, j+ 1

2 ,k)
= En

y(i, j+ 1
2 ,k)

+
∆t
∆

{[

Hn
x(i, j+ 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k−
1
2)

]

+

[

Hn
z(i− 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j+ 1
2 ,k)

]}

(9.18)

Dn+1
z(i, j,k+ 1

2)
= Dn

z(i, j,k+ 1
2)
+

∆t
∆

{[

Hn
y(i+ 1

2 , j,k+ 1
2)
−Hn

y(i− 1
2 , j,k+ 1

2)

]

+

[

Hn
x(i, j− 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k+
1
2)

]}

(9.19)

Once the components of the displacement vector
−→
D are updated from the previous equations, we

proceed to the determination of the
−→
E components using the relation

−→
D = ε(ω)

−→
E . Replacing

ε(ω) by its expression given by the Drude model, we get to:

(ω2+ iωγD)
−→
D = ε0ε∞(ω2+ iωγD)

−→
E − ε0ω2

D
−→
E (9.20)
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Assuming time dependance of electromagnetic field ine−iωt , a simple Fourier transform (ω →
t) of this last equation leads to:

d2−→D
dt2

+ γD
d
−→
D

dt
= ε0(ε∞

d2−→E
dt2

+ ε∞γD
d
−→
E

dt
+ω2

D
−→
E )

The partial derivatives of this equations are then replaced by their expressions through the cen-
tered finite difference schema. The electric field updated equation in the dispersive media is
then obtained:

ξ−→E n+1 =−χ−→E n−1+4ε∞ε0
−→
E n+

−→
D n+1[γD∆t+2]−4

−→
D n+[−γD∆t +2]

−→
D n−1 (9.21)

with ξ = ε0[ω2
D∆t2+ε∞γD∆t+2ε∞] andχ = ε0[ω2

D∆t2−γDε∞∆t+2ε∞]. Due to the dispersion,
an additional step of calculation is necessary. It consists of determining the displacement field
components for all nodes representing the dispersive media. In addition and as can be seen in
equation (9.21), we need to store the

−→
E and

−→
D components on two time steps, which has the

effect of increasing the memory space to be allocated and the computation time.

9.1.4.2 Drude-Lorentz Model

In addition to the conduction electrons, the Drude-Lorentz model takes into account the bound
electrons. The interband transition of electrons from filled bands to the conduction band can
significantly influence the optical response. In alkali metals, these transitions occur at high
frequencies and provide only small corrections to the dielectric function in the optical domain.
These metals are well described by the Drude model. On the other side, in noble metals a
correction must be made to the dielectric function. It is due to transitions between the bands d
and the conduction band s-p. The contribution of bound electrons to the dielectric function can
be described by the Lorentz model. To the above Drude dielectric function, a Lorentzian term
is added:

εDL(ω) = εD(ω)+ εL(ω)

EstimatingεL(ω), the bound electrons are described by forced and damped harmonic oscilla-
tors. Vialet al. [10] suggested a single oscillator leading to a single Lorentzian additional term
to well describe the permittivity of gold in the optical range compared with the classical Drude
model. In this case, the relative dielectric function is:

εDL (ω) = ε∞ −
ω2

p

ω2+ iωγ
− ∆ε ·Ω2

L
(

ω2−Ω2
L

)

+ iΓLω
(9.22)

whereΓL et ΩL stand for the spectral width and the strength of the Lorentz oscillator respec-
tively. ∆ε is a weighting factor.

The FDTD implementation of this model can be done with the Auxilliary Differential
Equations (ADE) method previously described above in the case of the Drude model or the
so-called Recursive Convolution (RC) method [10]. Because of the additional Lorentzian term,
its use requires the introduction of additional intermediate electromagnetic components in the
algorithm. Thus, a larger memory space is required compared to the case of the Drude model.
In general, many involving multiple oscillators Lorentz terms are needed to accurately model
the permittivity of noble metals in the optical range.
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9.1.4.3 Drude critical points model

The optical properties of some metals, particularly gold, aremore difficult to be analytically
described in the visible/near-UV region. This comes from much more important role, in the
case of gold, played by interband transitions in this region. Some attempts to add Lorentz
oscillators to the classical Drude term to account for these transitions rapidly face limitations
[11]. In fact, besides the huge simulation time, increasing the number of parameters (mainly
non-physical and not well defined) would not provide more insight than quality fit (itself non-
physical) with a polynomial high degree or a simple numerical interpolation of the experimental
data.

In order to achieve a reasonable representation of the dielectric function, Etchegoinet al.
[12] took inspiration from the parametric critical points model developed for semiconductors
[13]. This model is very suitable for the description of optical properties of metals (such as gold)
for which the band structure is quite complex. In this approach, the frequency dependence of
the optical properties of gold in the visible/near-UV may be well described by an analytical
formula with three main contributions that can be expressed as follows:

εD2CP(ω) = ε∞ − ω2
D

ω2+ iωγD
+

p=2

∑
p=1

Gp(ω) (9.23)

with

Gp(ω) = ApΩp

(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp

)

(9.24)

The two first terms of equation (9.23) represents the standard contribution of the classical Drude
Model. The sum in equation (9.23) is the contribution of the inter-band transitions with the
amplitudeAp, gap energyΩp, phaseφp and broadeningΓp.

In a comparative study of this Drude critical points (CP) model with the so-called L4
model which consists of four Lorentzian terms [14], Vialet al. [15] show the possibility to
increase the accuracy of gold and silver permittivity description by using the CP model with
fewer parameters to determine and less memory use within the FDTD method.

Implementation of the CP model in FDTD using ADE technique

As in the previous case of the Drude model, the technique is to calculate the displacement vector
components by the FDTD equations (9.17,9.18 and 9.19) and determine electrical components
using the following relationship:

−→
D = ε0εDCP

−→
E (9.25)

In the case of the CP model,
−→
D can be written as the sum of the electric displacement

vectors corresponding to each of the contributions in the dielectric function expression:

−→
D =

−→
D D +

2

∑
p=1

−→
DCp (9.26)
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with

−→
D D = ε0[ε∞ − ω2

P

ω2+ iγω
]
−→
E (9.27.a)

−→
DCp = ε0[ApΩp(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp
)]
−→
E (9.27.b)

As before the temporal evolution of the fields ine−iωt is considered. By inverse Fourier trans-
form, we obtain:

(
∂ 2

∂ t2 + γ
∂
∂ t

)
−→
DD = ε0ε∞(

∂ 2

∂ t2 + γ
∂
∂ t

+
ω2

P

ε∞
)
−→
E (9.28.a)

(Ω2
p+Γ2

p+
∂ 2

∂ t2 +2Γp
∂
∂ t

)
−−→
DCp = 2ε0ApΩp(

√

Γ2
p+Ω2

psin(θp−φp)−sinφp
∂
∂ t

)
−→
E (9.28.b)

where:θp = arctan(Ωp
Γp
)

By centered difference discretization of the equation system (9.28) and taking into account
the split equation of the displacement vector (9.26), we reach the updated equations system for
the electric field vector at each point(i, j, k) of the calculation window:

−→
E n+1 =

1

χD
αD

+
p=2

∑
p=1

(
χp

αp
)

[

−→
D n+1+

βD

αD

−→
D n−1

D +
4

αD

−→
D n

D − δD

αD

−→
E n−1− 4ε0ε∞

αD

−→
E n

+
p=2

∑
p=1

(
βp

αp

−→
D n−1

Cp − 4
αp

−→
D n

Cp)+
p=2

∑
p=1

(
δp

αp
)
−→
E n−1

]

(9.29.a)

−→
D n+1

D =
1

αD

[

−βD
−→
D n−1

D −4
−→
D n

D+χD
−→
E n+1+δD

−→
E n−1+4ε0ε∞

−→
E n

]

(9.29.b)

−→
D n+1

Cp =
1

αp
[−βp

−→
D n−1

Cp +4
−→
D n

Cp+χp
−→
E n+1+δp

−→
E n−1] (9.29.c)

with:

αD = −2− γ∆t (9.30a)

βD = −2+ γ∆t (9.30b)

χD = ε0ε∞[−2− γ∆t − (ωp∆t)2/ε∞] (9.30c)

δD = ε0ε∞[−2+ γ∆t − (ωp∆t)2/ε∞] (9.30d)

αp = [Ω2
p+Γ2

p]∆t2+2Γp∆t+2 (9.30e)

βp = [Ω2
p+Γ2

p]∆t2−2Γp∆t+2 (9.30f)

χp = 2ApΩpε0[∆t2
√

Ω2
p+Γ2

psin(θp−φp)−∆t sinφp] (9.30g)

δp = 2ApΩpε0[∆t2
√

Ω2
p+Γ2

psin(θp−φp)+∆t sinφp] (9.30h)

Let us mention that the displacement vector split into three contributions avoids doing appear
derivatives of order higher than 2 in the equations system (9.28). As seen on the equations
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system (9.29), taking into consideration the two critical points in the FDTD algorithm does not
need to store

−→
E and

−→
D components over more than two time steps. However, against the Drude

model implementation, additional calculation stages appear in order to determine the two parts
of the displacement vector corresponding to the two critical contributions.

9.2 Band gap calculation for 2D periodic structures

In this section, we describe how to adapt the FDTD calculation for photonic bandgap structures
(PBG) of periodic arrays. The biperiodic structures case is there considered. These 2D struc-
tures are photonic crystals (PhC) whose permittivity is periodic in two dimensions (x andy for
example) and remains invariant according to the third one (z). They mainly include three main
families that are square, triangular and hexagonal lattices. For this type of structures, we can
distinguish two kinds of propagation, in the plane (in-plane,kz= 0) and out of plane (off-plane,
nonzerokz). The system of equations (9.5) becomes easier depending on the type of propaga-
tion. To illustrate this, let us assume in what follows that the PhC is periodic along thex andy
directions and infinite alongzdirection.

9.2.1 In-plane propagation: TE and TM polarizations

In that case the propagation is done in the plane and the field variation vanishes along the
third direction. The system of equations (9.5) is simplified and divided into two independent
subsystems giving rise to two polarizations: transverse electric (TE) and transverse magnetic
(TM):

TE Polarization
∂Hz

∂ t
=

1
µ
(
∂Ex

∂y
− ∂Ey

∂x
) (9.31a)

∂Ex

∂ t
=

1
ε

∂Hz

∂y
(9.31b)

∂Ey

∂ t
= −1

ε
∂Hz

∂x
(9.31c)

TM Polarization
∂Hx

∂ t
= − 1

µ
∂Ez

∂y
(9.32a)

∂Hy

∂ t
=

1
µ

∂Ez

∂x
(9.32b)

∂Ez

∂ t
=

1
ε
(
∂Hy

∂x
− ∂Hx

∂y
) (9.32c)

In case ofTE polarization, the electrical components are transverse. They are in the plane
of periodicity of the PhC. On the other hand, for theTM polarization, the electric field is
perpendicular to the directions of periodicity and the magnetic components are transverse.

Let us note that the two polarizations can be studied by the same system of equations
(9.5) without separating it into two sub-systems. But to simplify the calculation codes and gain
memory space, it is recommended to study these two polarizations separately.
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9.2.2 Off-plane propagation

Off-plane propagation is characterized by a nonzero propagation constantkz according toz
direction. Diagram dispersion is generally determined for a fixed value ofkz. Thus, the z-
derivatives in Maxwell equations become analytical while the electric and magnetic field vectors
can be written as follows:

−→
E (x,y,z, t) =

−→
E0(x,y, t)exp(ikzz) (9.33a)

−→
H (x,y,z, t) =

−→
H0(x,y, t)exp(ikzz) (9.33b)

The Maxwell’s system of equations (9.5) becomes:

∂Hx

∂ t
=

1
µ
(ikzEy−

∂Ez

∂y
) (9.34a)

∂Hy

∂ t
=

1
µ
(
∂Ez

∂x
− ikzEx) (9.34b)

∂Hz

∂ t
=

1
µ
(
∂Ex

∂y
− ∂Ey

∂x
) (9.34c)

∂Ex

∂ t
=

1
ε
(
∂Hz

∂y
− ikzHy) (9.34d)

∂Ey

∂ t
=

1
ε
(ikzHx−

∂Hz

∂x
) (9.34e)

∂Ez

∂ t
=

1
ε
(
∂Hy

∂x
− ∂Hx

∂y
) (9.34f)

In this case, it is no longer possible to separate the system into two subsystems as before. The
TE andTM cases are therefore mixed together and can not be treated separately. However, we
can note that the calculation code is simplified since thez derivatives are analytically evaluated
so there is no discretization along thezdirection. A 2D algorithm is still needed.

9.2.3 Periodic boundary conditions

As the CPU time and space memory is limited, the FDTD calculation window must also be
finite. Because of symmetry, only one unit cell is considered. To reproduce the crystal at the
truncated domain boundaries, the Floquet-Bloch periodicity conditions [9] are applied to the
electric and magnetic components. Despite the fact that these periodicity conditions are general
and can be applied to any periodic structure, their expressions depend on the Bravais lattice.
Consequently, we will consider the two most used Bravais lattices i.e. the rectangular and the
triangular ones.

Rectangular cell

Let us consider a PhC made of cylinders (refractive indexn1) immersed in a medium of refrac-
tive indexn2. a andb are the lattice constants in thex andy directions respectively (see figure
9.6). The FDTD window calculation is shown in figure 9.6-b.
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b

b) FDTD calculation window

a

Unit cell
Periodic conditions

a) 2D photonic crystal : rectangular lattice

n1

n2

x

y

Figure 9.6: Rectangular structure and FDTD window calculation

The Floquet-Bloch conditions are applied to the electric and magnetic components as
follows:

−→
E (x= 0,y, t) =

−→
E (x= a,y, t)exp(−ikx ·a) (9.35a)

−→
E (x,y= 0, t) =

−→
E (x,y= b, t)exp(−iky ·b) (9.35b)

−→
H (x= a,y, t) =

−→
H (x= 0,y, t)exp(ikx ·a) (9.35c)

−→
H (x,y= b, t) =

−→
H (x,y= 0, t)exp(iky ·b) (9.35d)

Triangular cell

Similarly to the rectangular cell, the calculation FDTD window is limited to a single unit cell. To
model the triangular photonic structure (see figure 9.7-a), three choices of the FDTD window
are possible. The first one is to take a non-orthogonal unit cell (cell 1 in figure 9.7-a) and
implement the periodic boundary conditions in a Non orthogonal-FDTD algorithm [16, 17]
for which the classical FDTD developed in an orthogonal coordinate system is not suitable. To
bypass this constraint and remaining in the conventional FDTD with orthogonal coordinates, the
second rectangular cell (celle 2 in figure 9.7-a) can be used to derive the periodic conditions.
Nevertheless, this cell contains two patterns. This means that the rectangular periodic conditions
lead to a less-description of all the possible solutions. Consequently, an aliasing effect will
appear in the dispersion diagram.

In order to get gain in computational time and space and prevent this band folding while
remaining with the orthogonal FDTD algorithm, a rectangular cell can be defined with only
one pattern (cell 3 in figure 9.7-a). Within this FDTD calculation cell (9.7-b), the periodic
conditions above are therefore replaced by:

-along thex direction :

−→
E (x= 0,y,z, t) =

−→
E (x= a,y,z, t)exp(−ikx ·a) (9.36a)

−→
H (x= a,y,z, t) =

−→
H (x= 0,y,z, t)exp(ikx ·a) (9.36b)
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- along they direction withx≥ 0 andx≤ a/2

−→
E (x,y= 0,z, t) =

−→
E (x+

a
2
,y= b,z, t)exp(i(−ky ·b−kx ·a/2)) (9.37a)

−→
H (x,y= b,z, t) =

−→
H (x+

a
2
,y= 0,z, t)exp(i(ky ·b−kx ·a/2)) (9.37b)

- along they direction withx> a/2 andx≤ a

−→
E (x,y= 0,z, t) =

−→
E (x− a

2
,y= b,z, t)exp(i(−ky ·b+kx ·a/2)) (9.38a)

−→
H (x,y= b,z, t) =

−→
H (x− a

2
,y= 0,z, t)exp(i(ky ·b+kx ·a/2)) (9.38b)

By the way, the dispersion diagram of a triangular or honeycomb Bravais lattices can be calcu-
lated without modifying the orthogonal Cartesian Yee schema.

9.2.4 Some examples of band gap calculation

To obtain a photonic band diagram, several FDTD calculations are necessary done by varying
the

−→
k wavevector that must scan the irreducible Brillouin zone (figure 9.8).ΓX, XM andMΓ

highest symmetry directions are then discretized.

For this band gap calculation, the N-Order FDTD algorithm is used [18, 19]. This basis
of this algorithm is quite simple: a signal is injected to excite all possible frequencies of the
structure. This signal is introduced in accordance to the Maxwell-Gauss law (div(

−→
E ) = 0) and

given as follows: −→
E = ∑

G

(−→v ∧ (
−→
k +

−→
G)exp(i(

−→
k +

−→
G) ·−→r ) (9.39)
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Figure 9.9: Normalized electromagnetic energy density atΓ point for triangular structure of air holes (of radius
r = 0.25a) into lithium niobate. TM Polarization.

−→v is a random vector,
−→
k and

−→
G denote the wavevector and the reciprocal lattice vector respec-

tively.

After injecting this last initial signal, and for a given
−→
k , the FDTD simulation is run and

electromagnetic energy density time-evolution is calculated as a function of the frequency. This
later is calculated through:

W =
1
4
(ε0ε|E|2+µ|H|2) (9.40)

Only eigenmodes of the structure persist and evanescent ones gradually disappear. After a large
number of time iterations (typically 105) a permanent regime is then reached and the electro-
magnetic energy density spectrum exhibits several peaks corresponding to the eigenfrequencies
of the studied structure. An example of eigenfrequencies calculation for a triangular structure
in theΓ point is shown in figure 9.9. The structure is made of air holes (n1 = 1) into a dielectric
medium which is lithium niobate (LiNbO3) with refractive indexn2 = 2.1421. The radius of
the holes isr = 0.25a which corresponds to a filling factor of 0.2267%. The FDTD grid, one
PhC period, contains 60×52 spatial grids. To satisfy the stability criterion and avoid numerical
dispersion, the time step is taken as△t = a/(120·c).

To get the complete photonic band structure, it is necessary to scan thek values over
all the contour of the irreducible Brillouin zone (ΓXM). Figure 9.10 shows the photonic band
diagram calculated for bothTE andTM polarizations for a structure parameters similar to those
used above in the case of figure 9.9.

We can note the emergence of a photonic bandgap forω a/2π c between 0.32 and 0.35 in
the case of the TE polarization (figure 9.10-a). This band does not exist in the case of the TM
polarization (figure 9.10-b) so it is called "partial".

Note here that, for a dispersive material, the calculation of the electromagnetic energy
density is no more given by equation 9.40 that is only valid for dielectrics (no dispersion).
In the case of metallic dispersive material, the electromagnetic energy density is given by (no
magnetic dispersion):

W =
1
4
(
∂ (ωε0ε)

∂ω
|E|2+µ|H|2) (9.41)
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Figure 9.10: Photonic band diagram for triangular structure of air holes (of radius r= 0.25a) into lithium niobate.
w

a
/2

c
p

0

0.1

0.2

0.3

0.4

G M X G

/2
c

p

0

0.1

0.2

0.3

0.4
x

y

z

ri

a

a

AAA structure

re

Figure 9.11: In-plane photonic band diagram for annular aperture arrays engraved into silver (TE polarization).

The calculation of the energy density depends then on the dispersion model introduced
in the FDTD. Accordingly, an analytic expression ofW is obtained through the calculation
of the frequency derivative in equation 9.41. Its numerical value is then performed by the
determination of the spectral responses of both the two electric and magnetic fields that are
determined by the FDTD code.

Another example of band diagram, corresponding to a metallic structure made of annular
aperture arrays (AAA) engraved into silver layer and arranged in a square lattice, is shown in
figure 9.11. The AAA structure has been proposed by F. Baida and D. Van Labeke [20] for
Enhanced Optical Transmission (EOT) applications. It was showed that transmission through
AAA sub-wavelength structure could reach 90% in the visible range [21]. This EOT is due to the
excitation and the propagation of a guided mode inside each aperture. The main transmission
peak corresponds to the excitation of the TE11 mode at its cutoff wavelength [19]. This later
only depends on the value of the inner and the outer radii. Forr i = 50nm andre= 75nm and a
lattice constant ofa= 160nm one gets the band diagram of figure 9.11.

In case of the figure 9.11, corresponding to theTE polarization, we note the presence
of two photonic bandgaps. the first is ranging from zero frequency (infinite wavelength) to
the frequency value of 0.1835(c/a) (λ = 872nm). The second gap is in the visible range be-
tween 492nm and 630nm. Note that these bandgaps are "total" since the corresponding eigen
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Figure 9.13: Dispersion curves atΓ point for the coaxial structure made in silver (lattice constante a= 160nm,
inner radius ri = 50nmand outer radius re = 75nm; silver dispersion is modeled by a Drude model).

frequencies ofTM polarization are located above 0.45×c/a.

The figure 9.12 illustrates photonic band diagrams for the same considered AAA structure
but in the case of off-plane propagation with two different values ofkz. There is occurrence of an
additional photonic band relative to the in-plane case. This is due to the transverse electromag-
netic (TEM) mode excited now at a nonzero frequency (far from the cutoff). Forkz = π/(3a),
the bandgaps are located in the ranges]1873nm,∞[, ]723nm, 1668nm[ and ]458nm, 575nm[.
These bandgaps become]653nm,∞[, ]512nm, 574nm[ and ]378nm, 431nm[ whenkz = π/a.
According to the theory, this band gap shift is due to the fact that the eigenfrequencies of guided
modes increase withkz.

Figure 9.13, showing the dispersion curves (atΓ point) of the guided modes depending
on kz, clearly confirms theTEM nature of the additional mode excited in the off-plan case.
This mode band starts from zero frequency, and therefore has no cutoff frequency. An EOT
based on the excitation of this peculiar mode can be obtained under two conditions: an oblique
incidence with TM polarization [22]. The last section of this chapter is devoted to the study of
EOT obtained through the excitation of this peculiar mode.

An example of time evolution of the electromagnetic energy density is given on figure
9.14. The considered structure is an array of coaxial waveguides made in perfectly electric
conductor (PEC). All the geometrical parameters are given in the caption in addition to the
FDTD simulation ones. One notes that the main peak corresponds to the TE21 guided mode
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Figure 9.14: Time evolution of the electromagnetic energy density spectrum. The modeled structure is an array
of coaxial waveguides made in perfectly electric conductor (PEC) and arranged in square lattice. The inner and
outer radii is ri = 100nm and re = 140nm respectively. The period of the grating is a= 300nm but the obtained
results are independent on this value because there is non coupling between tow adjacent waveguides. The FDTD
simulations are done with a uniform spatial mesh of∆x = ∆y = a

400 and the temporal step was fixed to∆t = ∆x
4c

where c is the light velocity in vacuum.

that has a cutoff wavelength ofλ c
TE21

= π(r i+re)
2 .

9.3 Scattering calculation for 3D biperiodic nanostructures

In this section, we will focus on the FDTD modeling of dielectric and metallic bi-periodic
structures. For normal incidence, the FDTD method, based on the classical Yee’s scheme, is a
powerful tool that can simply model such periodic structures [24, 25, 26]. In fact, in this sim-
ple case, the Floquet-Bloch periodic boundary conditions (PBC) can be easily applied without
any change because these conditions are independent of the frequency. However, at oblique
incidence, applying PBC implicitly involves a frequency term that must be integrated into the
FDTD algorithm that operates in the temporel domain. Thus, in order to adapt FDTD to oblique
incidence case, Veysoglu [27] introduced the field transformation method applied to

−→
E and

−→
H

toward new
−→
P and

−→
Q fields. By the way, the PBC conditions become similar to the ones of nor-

mal incidence case nevertheless the immediate consequence of this transformation is the need
to modify the Yee’s scheme. Several techniques of implementation are then proposed including
that of Split-Field Method (SFM) [28].

In the following, we present the reformulation of the FDTD method, based on this SFM
technique to adapt it to the case of any incidence. Maxwell’s equations are modified and ex-
pressed with

−→
P and

−→
Q variables. They are then discretized using SFM technique. To avoid

reflections at the edges of the computational window, the equations in the Berenger’s PML
medium are also modified and expressed in the new domain within the SFM technique. In ad-
dition, the dispersion models mentioned above (Drude, Drude-Lorentz and Drude Critical point
models) are also described by modifying and adapting them to the SFM technique.

354



F. Baida and A. Belkhir: Finite Difference Time Domain Method For Grating Structures 9.21
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Figure 9.15: Sketch of the biperiodic structure illuminated by plane wave propagating along the
−→
k vector defined

by its Euler anglesθ andφ .

9.3.1 Position of the problem: New
−→
P −−→

Q variables

Let us consider a bi-periodic structure, finished along the third direction and illuminated by a
plane wave propagating at oblique incidence (see figure 9.15).

According to the notations of figure 9.15, the electric and magnetic fields of the incident
plane wave can be written as:

−→
E i =

−→
E 0i e

i[kx·x+ky·y+kz·z+ω·t] (9.42.a)
−→
H i =

−→
H 0i e

i[kx·x+ky·y+kz·z+ω·t] (9.42.b)

where:

kx =
ω
v

sinθ cosϕ (9.43)

ky =
ω
v

sinθ sinϕ (9.44)

kz =
ω
v

cosθ (9.45)

For the periodic object, a single pattern (one period) is then considered for the FDTD calculation
(see figure 9.6). The periodic conditions are then written so that the fields on one side of the
calculation window are expressed versus the fields on the opposite side through the Floquet-
Bloch conditions. Forx (lattice constanta) andy (lattice constantb) periodic structures, these
conditions are expressed as follows:

−→
E (x, y, z, t) =

−→
E (x+a, y, z, t) ·e−ikx·a (9.46.a)

−→
E (x, y, z, t) =

−→
E (x, y+b, z, t) ·e−iky·b (9.46.b)

−→
H (x+a, y, z, t) =

−→
H (x, y, z, t) ·eikx·a (9.46.c)

−→
H (x, y+b, z, t) =

−→
H (x, y, z, t) ·eiky·b (9.46.d)
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As the FDTD method operates in the temporal domain andkx andky components explic-
itly depend ofω, the direct application of these periodic conditions is prohibited. Consequently,
a change of variables is performed so that

−→
E and

−→
H components are replaced by two new com-

ponents
−→
P and

−→
Q respectively in order to eliminate thekx andky dependence in the PBC. These

new fields are defined as follows:

−→
P =

−→
E ·e−ikxx ·e−ikyy (9.47.a)

−→
Q =

−→
H ·e−ikxx ·e−ikyy (9.47.b)

Therefore, the new periodic conditions can be applied similarly to the case of normal
incidence through the relations:

−→
P (x, y, z, t) =

−→
P (x+a, y, z, t) (9.48.a)

−→
Q (x+a, y, z, t) =

−→
Q (x, y, z, t) (9.48.b)

−→
P (x, y, z, t) =

−→
P (x, y+b, z, t) (9.48.c)

−→
Q (x, y+b, z, t) =

−→
Q (x, y, z, t) (9.48.d)

Replacing
−→
E and

−→
H by their expressions in terms of

−→
P and

−→
Q through equations 9.47 in

Maxwell’s equations system 9.5 leads to:

∂Qx

∂ t
=

1
µ0

[

∂Py

∂z
− ∂Pz

∂y
− ikyPz

]

(9.49.a)

∂Qy

∂ t
=

1
µ0

[

∂Pz

∂x
+ ikxPz−

∂Px

∂z

]

(9.49.b)

∂Qz

∂ t
=

1
µ0

[

∂Px

∂y
+ ikyPx−

∂Py

∂x
− ikxPy

]

(9.49.c)

∂Px

∂ t
=

1
ε

[

∂Qz

∂y
+ ikyQz−

∂Qy

∂z

]

(9.49.d)

∂Py

∂ t
=

1
ε

[

∂Qx

∂z
− ∂Qz

∂x
− ikxQz

]

(9.49.e)

∂Pz

∂ t
=

1
ε

[

∂Qy

∂x
+ ikxQy−

∂Qx

∂y
− ikyQx

]

(9.49.f)

We can notice that for a wave propagating at normal incidence, the system (9.49) above
is equivalent to the conventional Maxwell’ equations expressed in

−→
E −−→

H . Nonetheless, in the
oblique case, additional terms appear in the second right members of equations (9.49) and they
explicitly depend onkx andky i.e. on the frequencyω. Even if these terms are equivalent to
time derivatives, the direct implementation of the FDTD in this case is impossible. Many im-
plementation techniques have been proposed [29, 30, 31, 28, 32, 33] to overcome this problem.
One of them is the Split Field Method [32, 28] which will be described below.
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9.3.2 Split Field Method

SFM technique is based on the split of
−→
P and

−→
Q field components. To illustrate the method, let

us take for example the split of theQx component occurring in equation (9.49.a). By reducing
the frequency additional term on the left hand, this equation can be written as:

∂Qx

∂ t
+ iω

ky

µω
Pz =

1
µ

[

∂Py

∂z
− ∂Pz

∂y

]

(9.50a)

According to (9.42.a) and (9.47.a), equation (9.50a) becomes:

∂
∂ t

[

Qx+
ky

µω
Pz

]

=
1
µ

[

∂Py

∂z
− ∂Pz

∂y

]

(9.51a)

This leads to a new componentQxa = Qx +
ky

µω Pz which satisfies Maxwell’s equation as for

normal incidence. Similarly, the split of all the others components in the
−→
P −−→

Q domain gives:

Qxa = Qx+
ky

µω
Pz (9.52.a)

Qya = Qy−
kx

µω
Pz (9.52.b)

Qza = Qz−
ky

µω
Px+

kx

µω
Py (9.52.c)

Pxa = Px−
ky

εω
Qz (9.52.d)

Pya = Py+
kx

εω
Qz (9.52.e)

Pza = Pz−
kx

εω
Qy+

ky

εω
Qx (9.52.f)
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The six components thereby obtained satisfy the following equations that can be discretized
according to the classical Yee’s scheme:

∂Qxa

∂ t
=

1
µ

[

∂Py

∂z
− ∂Pz

∂y

]

(9.53.a)

∂Qya

∂ t
=

1
µ

[

∂Pz

∂x
− ∂Px

∂z

]

(9.53.b)

∂Qza

∂ t
=

1
µ

[

∂Px

∂y
− ∂Py

∂x

]

(9.53.c)

∂Pxa

∂ t
=

1
ε

[

∂Qz

∂y
− ∂Qy

∂z

]

(9.53.d)

∂Pya

∂ t
=

1
ε

[

∂Qx

∂z
− ∂Qz

∂x

]

(9.53.e)

∂Pza

∂ t
=

1
ε

[

∂Qy

∂x
− ∂Qx

∂y

]

(9.53.f)

Once the updated components of
−→
P a and

−→
Qa completed, the second step of the algorithm is to

calculate
−→
P and

−→
Q components through the system of equations (9.52) that gives after simple

algebra the system below:

Qz =
1

1− k2
x+k2

y

εµω2

[

Qza+
ky

µω
Pxa−

kx

µω
Pya

]

(9.54.a)

Pz =
1

1− k2
x+k2

y

εµω2

[

Pza+
kx

εω
Qya−

ky

εω
Qxa

]

(9.54.b)

Qx = Qxa−
ky

µω
Pz (9.54.c)

Qy = Qya+
kx

µω
Pz (9.54.d)

Px = Pxa+
ky

εω
Qz (9.54.e)

Py = Pya−
kx

εω
Qz (9.54.f)

This system (9.54) needs to calculate
−→
P and

−→
Q components at the same time iteration as

−→
P a

and
−→
Qa components. This is in contradiction with the traditional Yee’s scheme. Consequently,

the new (
−→
P ,

−→
Q) and (

−→
P a,

−→
Qa) fields will be calculated at timen∆t and time(n+ 1

2)∆t in order
to reach a stable numerical schema. To this end, each component is calculated twice in one
time iteration by introducing other intermediate components in the calculation program (see
reference [34]).
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Stability criterion

As the transition to the new
−→
P −−→

Q domain, the stability criterion is also modified. Based on
the calculation of Kao [29, 30] and in the case of 3D uniform meshing, this later is expressed
as:

∆
∆t

≥ vi

v2
i µε −sin2(θ)

{|sin(θ) ·cos(ϕ)|+ |sin(θ) ·sin(ϕ)|+
√

3v2
i µε −2 ·sin2(θ)(1−|sin(ϕ) ·cos(ϕ)|)

}

(9.55)

wherevi is the phase velocity of the incident wave andε andµ are chosen to be the character-
istics of the less dense medium in the computational domain.

Let us note here that the time step decreases with the incidence angleθ and hence the
computational time becomes very long for large incidence angles. Nonetheless, the computa-
tional time is relatively acceptable up to an incidence angle of 80o.

9.3.3 Absorbing boundary conditions : PML

The implementation of absorbing boundary conditions in the oblique case requires to make a
change of variables on the fields components in the PML medium similarly to the changes made
in the main computational grid [34]. Forx andy periodic structure, only PML is needed in the
third direction (Oz). In this case, the new fields components are defined as follows:

Pνµ = Eνµ ·e−ikxx ·e−ikyy (9.56.a)

Qνµ = Hνµ ·e−ikxx ·e−ikyy (9.56.b)

Pz = Ez ·e−ikxx ·e−ikyy (9.56.c)

whereν representsx or y andµ denotesx, y or z. Eνµ andQνµ are the field components in
the classical PML shell corresponding to the components of the two fictitious waves resulting
from the split of the plane wave inside the PML (see section 1 of this chapter). For details of
implementing these PML at oblique incidence, the reader can refer to [34].

9.3.4 SFM-FDTD in dispersive media

For oblique incidence, and according to the two systems of equations (9.53) and (9.54), the
components that require particular treatment in the dispersive medium are:Pxa, Pya, Pza, Qz, Pz,
Px andPy. Direct calculation of these components by equations (9.53) and (9.54) involves the
permittivity term which is frequency-dependent. In this section, we only show how to take into
account the media dispersion in FDTD oblique incidence in the case of the Drude critical points
model [35]. The implementation details of the other of dispersion models by SFM-FDTD are
given in [36] for Debye model, and in [37] for both Drude and Drude-Lorentz models.
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Let us quote that equations (9.53) for the calculation ofPxa, Pya andPza are similar to
traditional Maxwell’s equations. Accordingly, the calculation of these components in the dis-
persive medium will not require any further treatment compared to the normal incidence case.
Contrarily, equations (9.54) for theQz, Pz, Px andPy need a different way to be processed.

Pxa, Pya and Pza implementation: These three components are calculated in a similar way.
So let us take as an example only thePxa calculation. By analogy with the normal incidence
case (equation 9.25), we introduced a new componentLxa (equivalent to theDx component in
the classical case) defined as:

Lxa = ε0 · εDCP ·Pxa (9.57)

Equation (9.53.d) is therefore wrote as:

∂Lxa

∂ t
=

[

∂Qz

∂y
− ∂Qy

∂z

]

(9.58)

The discretization of this last equation allows us to calculate theLxa variable as follows:

Ln+1
xa(i+ 1

2 , j,k)
=Ln

xa(i+ 1
2 , j,k)

+
∆t
∆y

[

Qn
z(i+ 1

2 , j+ 1
2 ,k)

−Qn
z(i+ 1

2 , j− 1
2 ,k)

]

+
∆t
∆z

[

Qn
y(i+ 1

2 , j,k− 1
2)

−Qn
y(i+ 1

2 , j,k+ 1
2)

]

(9.59)
Analogically to equations (9.26), (9.27.a) and (9.27.b),Lxa can be expressed as follows:

Lxa = LxaD +
p=2

∑
p=1

LxaCp (9.60)

with:

LxaD = ε0[ε∞ − ω2
P

ω2+ iγω
]Pxa (9.61.a)

LxaCp
= ε0[ApΩp(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp
)]Pxa (9.61.b)

As before, after the inverse Fourier transforms and finite centred differences discretization of
different partial derivatives, we reach the updated equations for the componentPxa :

Pn+1
xa =

1

χD
αD

+
p=2

∑
p=1

(
χp

αp
)

[

Ln+1
xa +

βD

αD
Ln−1

xaD
+

4
αD

Ln
xaD

− δD

αD
Pn−1

xa − 4ε0ε∞
αD

Pn
xa

+
p=2

∑
p=1

(
βp

αp
Ln−1

xaCp
− 4

αp
Ln

xaCp
)+

p=2

∑
p=1

(
δp

αp
)Pn−1

xa

]

(9.62.a)

Ln+1
xaD

=
1

αD

[

−βDLn−1
xaD

−4Ln
xaD

+χDPn+1
xa +δDPn−1

xa +4ε0ε∞Pn
xa

]

(9.62.b)

Ln+1
xaCp

=
1

αp
[−βpLn−1

xaCp
+4Ln

xaCp
+χpPn+1

xa +δpPn−1
xa ] (9.62.c)

Qz, Pz, Px and Py implementation: The calculation of the remaining componentsQz, Pz,
Px andPy needs the introduction of other variables involving other equations. We consider as an
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example thePz component for which implementation equations are detailed. Equation (9.54.b)
involves the following one:

ε ·Mz=
kx

ω
Qya−

ky

ω
Qxa+

k2
x +k2

y

µω2 Pz (9.63)

with:
Mz= Pz−Pza (9.64)

By setting:

Tz=
kx

ω
Qya−

ky

ω
Qxa+

k2
x +k2

y

µω2 Pz (9.65)

equation (9.63) becomes:
Tz = ε ·Mz= ε0εDCPMz (9.66)

As considered above, theTz component can be expressed as:

Tz= TzD +
p=2

∑
p=1

TzCp (9.67)

with:

TzD = ε0[ε∞− ω2
P

ω2+ iγω
]Mz (9.68.a)

TzCp
= ε0[ApΩp(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp
)]Mz (9.68.b)

Based on the inverse Fourier transforms of the equations (9.68) above, centered difference
approximations for the derivatives and taking into account the equations (9.65), (9.67) and
(9.66), we get:

Mn+1
z =

1

χD
αD

+
p=2

∑
p=1

(
χp

αp
)− k2

x+k2
y

µω2

[

k2
x +k2

y

µω2 Pn+1
z +

kx

ω
Qn+1

ya − ky

ω
Qn+1

xa +
βD

αD
Tn−1

zD
+

4
αD

Tn
zD

− δD

αD
Mn−1

z − 4ε0ε∞
αD

Mn
z+

p=2

∑
p=1

(
βp

αp
Tn−1

zCp
− 4

αp
Tn

zCp
)+

p=2

∑
p=1

(
δp

αp
)Mn−1

z

]

(9.69.a)

Tn+1
zD

=
1

αD

[

−βDTn−1
zD

−4Tn
zD
+χDMn+1

z +δDMn−1
z +4ε0ε∞Mn

z

]

(9.69.b)

Tn+1
zCp

=
1

αp
[−βpTn−1

zCp
+4Tn

zCp
+χpMn+1

z +δpMn−1
z ] (9.69.c)

Pn+1
z = Mn+1

z +Pn+1
za (9.69.d)

The equations to update theQz, Px andPy components are obtained by the same process.
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Figure 9.16: Up: Transmission spectra at normal incidence of an AAA structure made in silver film with different
thicknesses values (H). The geometrical parameters of the annular apertures are re = 75 nm,ri = 50 nm and
the period is fixed to a= 300nm. Down: Electric field intensity distributions around the apertures showing the
interference patterns that take place inside them along the metal thickness direction. For FP0 peak, the TE11
guided mode is excited at its cutoff wavelength so that the phase velocity tends to infinity and the effective index
falls to zero. In this case, EOT occurs whatever is the value of the thickness because the phase matching condition
is automatically fulfilled.

9.3.5 3D-SFM-FDTD application: EOT at oblique incidence through AAA structures

Let us recall the origin of the EOT through the AAA structure: as mentioned before, at normal
incidence it is only due to the excitation of the TE11 guided mode inside each annular aperture.
In this case, the obtained EOT is angle and polarization-independent and its spectral position
corresponds to the cutoff wavelength of this guided mode. Consequently, it does not depends
either on the metal thickness even if some additional peaks appear in the transmission spectrum
when the thickness increases (see figure 9.16).

These peaks (named FPm, m∈ ℜ on figure 9.16) are Fabry-Perot harmonics of the TE11

mode that occur at fixed values of the wavelength fulfilling a phase matching condition:

λTE11(mπ −φr) = 2πnTE11
e f f H (9.70)

wherenTE11
e f f is the real part of the effective index of the guided mode,φr is the phase
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Figure 9.17: Schematic of a classical annular aperture array (AAA). re is the outer radius, ri is the inner one, a is
the period andθ is the angle of incidence.

change induced by the reflection on the two ends of the annular aperture andH is the metallic
film thickness. At the cutoff, the effective index of the guided mode becomes very small leading
to a phase matching that does not depend on the metal thickness. Nevertheless, a small spectral
shift can appear between the cutoff value and the position of the transmission peak due to
φr 6= 0. This shift is clearly shown on all the spectra of figure 9.16 but it seems to be more
important in the case of thicker plates (hereH = 300 nm). In fact, the phaseφr can be seen
as the result of the conversion between the incident plane wave and the guide mode through
diffraction phenomenon that must depends on the metal thickness.

Let us now consider the case of oblique incidence (see figure 9.17): as mentioned before,
EOT can appear through the excitation of both the TE11 and the TEM modes. In fact only
few papers have discussed on this mode [38, 39] while its excitation conditions were recently
analytically derived reference [22].

Indeed, this later is only excited with the TM polarization component of the incident
beam. FDTD simulations in the case of both PEC (see figure 9.18) and real dispersive metal
(figure 9 of reference [37, 40]) are done and demonstrate the occurrence of additional transmis-
sion peaks due to the excitation of the TEM guided mode. Nevertheless, others configurations
such as the Slanted AAA (SAAA), that was proposed first by S. Nosal and J.J. Greffet [41], also
demonstrate a possible excitation of the TEM mode for any incidence angle including normal
incidence.

Moreover, as for the TE11 mode, the spectral position of the TEM-transmission peaks
is driven by a similar phase matching condition given by equation 9.70. Nonetheless, the zero
harmonic (FP0 for m=0) is now expelled to infinity and only higher orders correspond to a finite
value of the wavelength. In this case, the metal thickness becomes a very important parameter
that permits to adapt the transmission peak at a desired value of wavelength. Unluckily, only
relatively thick metal plates allow the excitation and the propagation of the TEM mode.

Nevertheless, even if the TEM mode is excited in oblique incidence with conventional
AAA (see figure 9.20a) or at normal incidence through SAAA (figure 9.20b), the transmission
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efficiency remains very weak with regard to the TE11 mode. This is essentially due to metal
losses. In fact, and as it can be shown in figure 9.19, the imaginary part of the effective index of
the TEM-like guided mode is fairly consistent and can not be negligible.

Fortunately, another solution that is currently used in the radio-frequency domain to in-
crease the impedance adaptation between a coaxial antenna and the vacuum can be envisaged to
enhance the transmission coefficient: it consists in stretching out the central metallic part of the
coaxial waveguide with respect to the outside electrode. This configuration was implicitly pro-
posed in reference [42] to achieve 90% light transmission thanks to the excitation of the TEM
mode. This kind of structure design and fabrication is readily achievable at radio frequencies.
Unfortunately, this becomes more difficult in the visible range but remains possible through
manufacturing process having nanometric resolution such as new generation of Focused Ion
Beam.
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9.4 Conclusion

The FDTD is a powerful tool to model periodic and aperiodic structures. The time evolution
of the electromagnetic field is directly evaluated and allows to follow the light propagation
inside and around the studied structure. The SFM technique extends the FDTD capabilities
to treat the diffraction problem for any incidence angle or any polarization. The integration of
dispersion models such as Drude critical point allows accurate simulations that take into account
the effective dispersion of noble metals in the considered spectral range especially in the visible
domain. Nevertheless, the number of electromagnetic field components grows rapidly and can
be larger than 100 in some particular cases (in the PML region with Drude-Lorentz dispersion
model for instance). In spite of all these criticisms, the FDTD is actually one of the most used
method to model experiments in Nano-Optics as attested by the number of publications in this
area.
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10.1 Introduction

Exact modal method (EMM) has been proposed to take advantage of geometry of lamellar grat-
ings. These gratings are made of rectangular rods periodically spaced which can be considered
locally as periodic multilayered stacks (see figure 10.1). This simple geometry makes it possible
to expand the electromagnetic field on the basis of “exact modes”, and to obtain an exact rep-
resentation of the permittivity. In this particular case, EMM can be more efficient than similar
methods based on Fourier expansion (coupled-wave method [1] or Fourier modal method [2, 3])
which may lead to poor convergence due to the discontinuous nature of both electromagnetic
field and permittivity. This advantage of EMM becomes more important when the permittivity
contrast is high, e.g. for metallic lamellar gratings.

x3

0

h

substrate

vacuum (air)

. . . . . .

Figure 10.1: A lamellar grating made of a single lamellar layer on a substrate. The region cor-
responding to the lamellar layer, between the planes x3 = 0 and x3 = h, can be considered as the
multilayered stack on the left.

Exact modal method has been introduced in 1981 in order to solve Maxwell’s equations in
presence of lamellar gratings made of dielectrics [4] and metals [5, 6, 7]. Since these pioneering
works, a major contribution to this method is certainly its rigorous extension to conical mount-
ings [8], on which is based an EMM for three-dimensional woodpile structures [9]. Another
major development is the introduction of perfectly matched layers in order to model aperiodic
systems met in integrated optics [10] (information can be found on the website of CAMFR).

In this chapter, a rigorous formulation of the exact modal method for lamellar structures is
presented. In section 10.3, a special attention is paid to the continuation of the electromagnetic
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field inside a lamellar layer. In combination with the boundary conditions, this continuation
provides a large class of solutions of Maxwell’s equations in presence of lamellar gratings. In
section 10.4, it is shown that, in each lamellar layer, there is a decoupling of the vector field
equations into two independent scalar equations, which correspond to the ones of a multilayered
stack (see figure 10.1). Numerical stacking algorithms are presented in section 10.5 and a
numerical illustration of the EMM efficiency is proposed in section 10.6. Finally, the techniques
used for the calculation of the exact modes and the associated exact eigenvalues are reported in
the appendix (section 10.7).

Note that the important extensions to woodpile structures [9] and to lamellar gratings
including infinitely conducting metal [11] are not considered in this book chapter. These cases
will be however included in the next version.

10.2 Notations

Throughout this chapter an orthonormal basis (eee1,eee2,eee3) is used: every vector xxx in R3 is de-
scribed by its three components x1, x2 and x3. It is shown how to obtain in the presence of a
stack of lamellar layers, a large class of solutions EEE of the Helmholtz equation[

ω
2− ε

−1
∇∇∇×µ

−1
∇∇∇×

]
EEE = 000 , (10.1)

where ε is the permittivity, µ is the permeability, ω is the frequency and ∇∇∇× is the curl operator.
All the media considered in this chapter are isotropic, and thus the permittivity and permeability
reduce to scalar functions. The considered structure is independent of the variable x2, and x1-
periodic with spatial period ddd = deee1:

ε(xxx+ddd) = ε(xxx) = ε(x1,x3) , µ(xxx+ddd) = µ(xxx) = µ(x1,x3) , xxx ∈ R3 . (10.2)

The unit cell associated with this grating is [0,d] and the one-dimensional lattice is
{

nd
∣∣n∈ Z

}
.

Then, a lamellar grating is a stack in the direction x3 of lamellar layers where ε and µ are both
functions of the single variable x1 (figure 10.2). In practice, each lamellar layer is made of
infinite parallel rods with rectangular cross section (figure 10.2): the functions ε and µ are
piecewise constant of the solely variable x1.

x3

x1

x2d

Figure 10.2: A lamellar grating made of a single lamellar layer on a substrate.

In order to obtain a set of first order differential equations from (10.1) a second field is
defined:

HHH = (ωµ)−1
∇∇∇×EEE . (10.3)

Note that this quantity differs from the usual “harmonic HHH field” by the complex number i.
Solutions EEE, HHH are investigated in the space of fields whose restrictions in every horizontal
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B. Gralak: Exact Modal Methods 10.3

plane (normal to eee3) are square integrable:∫
R2

∣∣FFF(x1,x2,x3)
∣∣2dx1dx2 < ∞ , x3 ∈ R , (10.4)

where FFF = EEE,HHH.
The first consequence of (10.4) is the possibility to perform a decomposition of the prob-

lem to take advantage of the spatial invariances of the system: a Fourier decomposition with
respect to the variable x2,

FFF −→ F̂FF(x1,k2,x3) =
1

2π

∫
R

exp[−ik2x2]FFF(x1,x2,x3)dx2 , (10.5)

and a Floquet-Bloch decomposition with respect to the variable x1,

F̂FF −→ F̃FF(k1,x1,k2,x3)
1

2π
∑

n∈Z
exp[−ik1nd]F̂FF(x1 + pd,k2,x3) , (10.6)

where k1 is the Bloch wave vector in the first Brillouin zone [−π/d,π/d]. Thus solutions ẼEE, H̃HH
satisfy ∫

[−π/d,π/d]

∣∣F̃FF(k1,x1,k2,x3)
∣∣2dx1 < ∞ , x1,k2,x3 ∈ R , (10.7)

with the partial Bloch boundary condition

F̃FF(k1,x1 +d,k2,x3) = exp[ik1d]F̃FF(k1,x1,k2,x3) , (10.8)

where k1 is fixed in [−π/d,π/d].
The second consequence of (10.4) [or (10.7)] is that the restrictions to every horizontal

plane of ∇∇∇×EEE and ∇∇∇×HHH are also locally square integrable [from (10.1,10.3)]. Then, for all
i, j = 1,2,3 and i 6= j, Ei and Hi are continuous functions of the variable x j. In particular, the
tangential components E1, E2, H1 and H2 of EEE and HHH are continuous functions of the variable
x3. It follows that it is possible to solve Maxwell’s equations in a stack of layers by the following
two steps: the first step consists in solving Maxwell’s equations in each layer independently and
then the second step consists in connecting each independent solution using the continuity of
E1, E2, H1 and H2.

With the definition (10.3), equation (10.1) is equivalent to the set of first order equations

EEE = (ωε)−1
∇∇∇×HHH , HHH = (ωµ)−1

∇∇∇×EEE . (10.9)

Let the 2×2 matrix σ and the two-components vector Fj defined by

σ = ω

[
0 µ

ε 0

]
, Fj =

[
Ẽ j
H̃ j

]
, j = 1,2,3 . (10.10)

Then, the first order equations (10.9) can be developed as

F1 = σ−1[∂2F3−∂3F2
]
,

F2 = σ−1[∂3F1−∂1F3
]
,

F3 = σ−1[∂1F2−∂2F1
]
,

(10.11)

where ∂ j is the partial derivative with respect to the variable x j ( j = 1,2,3). This last set of
equations is exactly the same as (10.9) and, with some abuse of notations, it can written in the
compact way FFF = σ−1∇∇∇×FFF , with FFF = (F1,F2,F3).
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10.4 Gratings: Theory and Numeric Applications, 2012

10.3 Continuation of the electromagnetic field

In this section two different formulations are presented to solve the equation FFF = σ−1∇∇∇×FFF
in a lamellar layer located between the planes x3 = 0 and x3 = h. In practice, this solution is
expressed as a relationship between FFF(0) and FFF(h). Note that the formulations presented in this
section remain valid in the general case of cross gratings with two-dimensional periodicity [2].

10.3.1 Direct formulation: the transfer matrix

The starting point is the set of equations (10.11). Eliminating the components F3, one obtains

∂3F = iM F , F =
[

F1
F2

]
, M =−i

[
−∂1σ−1∂2 σ +∂1σ−1∂1
−σ −∂2σ−1∂2 ∂2σ−1∂1

]
. (10.12)

For a lamellar layer located between the planes x3 = 0 and x3 = h (see figure 10.1), the functions
ε and µ are x3-independent for x3 in [0,h]: then the matrix σ and the operator-valued matrix
M are also x3-independant for x3 in [0,h]. Let L be the x3-independant operator valued matrix
which coincides with M in this single layer:

L = M(x3) , x3 ∈ [0,h] . (10.13)

In a first step, it is assumed that (see the end of section 10.4 for a justification) the matrix L has
a diagonal form and can be written as

L = V λ V−1 , (10.14)

where the matrix V contains the eigenvectors V±,n of L, and λ is the diagonal matrix made of
the associated eigenvalues λ±,n:

LV±,n = λ±,nV±,n . (10.15)

The sets of eigenvectors and eigenvalues are split into two parts according to the sign of the
imaginary part of λ±,n: Imλ+,n > 0 and Imλ−,n < 0. Let λ+ (respectively λ−) be the diagonal
matrices containing the eigenvalues λ+,n > 0 of L (respectively λ−,n > 0): then

λ =
[

λ+ 0
0 λ−

]
, Imλ+ > 0 , Imλ− < 0 . (10.16)

This last condition on the imaginary part of eigenvalues is always realized if there is some
absorption, i.e. Imσ > 0, or if a small positive imaginary part is added to the frequency ω (in
the later case the limit ω = limη↓0(ω + iη) is considered [12, 13]). The combination of (10.12)
and (10.13) leads to the equation

∂3F(x3) = iLF(x3) , x3 ∈ [0,h] , (10.17)

where the dependence on other variables has been omitted. Since L is x3-independent, the
“formal” solution of this equation is just

F(x3) = exp[iLx3]F(0) , x3 ∈ [0,h] . (10.18)
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This solution is denominated by “formal” since, at this stage, it is still necessary to check if it
exists. Using the diagonal form (10.14) of the operator L, the expression (10.18) becomes

F(x3) = V exp[iλx3]V−1F(0) . (10.19)

Actually, the diagonal matrix exp[iλx3] is made of the two parts exp[iλ±x3] which have different
behaviour. From (10.16), the part exp[iλ+x3] is bounded by exp[−Imλ+x3] < 1. On the contrary,
the part exp[iλ−x3] is not bounded and, in general, the corresponding coefficients are growing
towards infinity like exponential functions. Consequently, the transfer matrix T (x3) defined by

F(x3) = T (x3)F(0) , T (x3) = V exp[iλx3]V−1 , (10.20)

has “infinite” coefficients and thus expressions like (10.18), (10.19) and (10.20) have to be
considered as purely “formal” and have to be handled cautiously. Numerically, the transfer
matrix is truncated and, because its coefficients tend to infinity like exponential functions, it
presents numerical instabilities which makes it difficult to use it. A numerical solution has been
found to solve this problem with the definition of the S- and R-algorithms [14] (see section 10.5
for the numerical solution in the present case).

Finally, notice that the transfer matrix is occasionally derived from the matrix L2 instead
of L. Indeed, the assumption (10.14) on the diagonal form of L might be too strong and not
rigorously true. According to notations (10.14), we denote by V and λ 2 the matrices containing
the eigenvectors and eigenvalues of L2:

L2 = V λ
2V−1 . (10.21)

In that case, it used that equations (10.12) and (10.13) imply

∂
2
3 F =−L2F , x3 ∈ [0,h] . (10.22)

The combination of the two last equations leads to

F(x3) = V cos[λx3]V−1F(0)+V λ
−1 sin[λx3

]
V−1(∂3F)(0) . (10.23)

Replacing (∂3F)(0) by iLF(0), one obtains for the transfer matrix the following “formal” ex-
pression

T (x3) = V cos[λx3]V−1 + iV λ
−1 sin[λx3]V−1L . (10.24)

This equation is not “formally” equivalent to the first expression (10.20) derived from L. This
equivalence requires the assumption (10.14) to become true, so that L can be replaced by V λV−1

above (and next the formal identity cos[λx3]+ isin[λx3] = exp[iλx3] has to be used).

10.3.2 Rigorous derivation of the continuation procedure

A rigorous formulation is based on the use of the Fourier transform with respect to the variable
x3 defined by

F [F ](k3) =
1

2π

∫
R

exp[−ik3x3]F(x3)dx3 . (10.25)

The function F is then deduced from its Fourier transform F [F ] by

F(x3) =
∫

R
exp[ik3x3]F [F ](k3)dk3 . (10.26)
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It is not suitable to perform directly the Fourier transform of the equation (10.12) since the
matrix σ (and then M) is not independent of x3 in R. However, if equation (10.12) is multiplied
by the characteristic function Ψ of the lamellar layer [so Ψ(x3) = 1 for x3 in [0,h] and vanishes
otherwise], then

Ψ(x3)∂3F(x3) = Ψ(x3)iM F(x3) = Ψ(x3)iLF(x3) = iLΨ(x3)F(x3) . (10.27)

After this multiplication, a partial differential equation with the x3-independent matrix L is
obtained. The Fourier transform (10.25) of Ψ∂3F is

F [Ψ∂3F ](k3) =
1

2π

∫
R

exp[−ik3x3]Ψ(x3)∂3F(x3)dx3

=
1

2π

∫ h

0
exp[−ik3x3]∂3F(x3)dx3

=
1

2π

{
exp[−ik3h]F(h)−F(0)

}
+ ik3F [ΨF ](k3) ,

(10.28)

where the last line comes from an integration by parts. After this Fourier transform, equation
(10.27) becomes

1
2π

{
exp[−ik3h]F(h)−F(0)

}
+ ik3F [ΨF ](k3) = iLF [ΨF ](k3) (10.29)

or [
k3−L

]
F [ΨF ](k3) =

1
2iπ

{
F(0)− exp[−ik3h]F(h)

}
. (10.30)

The operator
[
k3−L

]
is always invertible if there is some absorption, i.e. Imσ > 0, or if the

limit ω = limη↓0(ω + iη) is considered (see [12, 13], this is equivalent to the property (10.16)
on the eigenvalues λ since k3 is purely real). Hence it is possible to write

F [ΨF ](k3) =
1

2iπ
1

k3−L

{
F(0)− exp[−ik3h]F(h)

}
, (10.31)

The final step is to apply the inverse Fourier transform (10.26): for x3 in [0,h],

Ψ(x3)F(x3) =
1

2iπ

[∫
R

exp[ik3x3]
1

k3−L
dk3

]
F(0)

− 1
2iπ

[∫
R

exp[ik3(x3−h)]
1

k3−L
dk3

]
F(h) .

(10.32)

Again, it is assumed that the operator L can be written L = V λV−1 (10.14). Replacing the
matrix L by its diagonal form, the last expression becomes

Ψ(x3)F(x3) =
1

2iπ
V
[∫

R
exp[ik3x3]

1
k3−λ

dk3

]
V−1 F(0)

− 1
2iπ

V
[∫

R
exp[ik3(x3−h)]

1
k3−λ

dk3

]
V−1 F(h) .

(10.33)

The integrations above are performed by adding to the real axis of k3 a semi-circle with infinite
radius (in the complex plane of k3) on which the integrals vanish. For the first term with F(0),
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the complex number k3 must have positive imaginary part (x3 is positive), so that the real axis is
closed by a semi-circle in the upper half plane (see the red path on figure 10.3). In this case, the
solely eigenvalues contained in λ+ generate contributions in the integral. For the second term
with F(h), the complex number k3 must have negative imaginary part (x3− h is negative), so
that the real axis is closed by a semi-circle in the lower half plane (see the blue path on figure
10.3). Here, the integral is given by the eigenvalues contained in λ−. Let P± be the projectors

Re(k3)

Im(k3)

exp[ik3x3]→ 0

exp[ik3(x3−h)]→ 0

λ+

λ−

Figure 10.3: Integration in the complex plane of k3.

upon the spaces corresponding respectively to eigenvalues λ±:

P+λ =
[

λ+ 0
0 0

]
, P−λ =

[
0 0
0 λ−

]
. (10.34)

Then, after the integration over k3, expression (10.33) yields

Ψ(x3)F(x3) = V P+ exp[iλ+x3]V−1F(0)+V P− exp[iλ−(x3−h)
]
V−1F(h) . (10.35)

This expression is always well defined since the integration in the complex plane of k3 imposes
that all the complex exponential functions decrease:∥∥ exp[iλ+x3]

∥∥≤ 1 ,
∥∥ exp[iλ−(x3−h)]

∥∥≤ 1 . (10.36)

Considering the rigorous expression (10.35) at x3 = 0 and x3 = h and using that P−+P+ is the
identity, one obtains

V P−V−1F(0) = V P− exp[−iλ−h]V−1F(h) ,

V P+V−1F(h) = V P+ exp[iλ+h]V−1F(0) .
(10.37)

These two relationships provides a rigorous way to deduce F(0) from F(h) and conversely.
As in the previous section, the continuation procedure is also derived from the diagonal

form (10.21) of L2. Equation (10.22) is multiplied by Ψ(x3) to provide an expression similar to
(10.27)

Ψ(x3)∂3F(x3) =−L2
Ψ(x3)F(x3) . (10.38)
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Then, the Fourier transform (10.25) is applied to this equation. Using that

F [Ψ∂ 2
3 F ](k3) =

1
2π

∫
R

exp[−ik3x3]Ψ(x3)∂ 2
3 F(x3)dx3

=−k2
3F [ΨF ](k3)+ ik3

1
2π

{
exp[−ik3h]F(h)−F(0)

}
+

1
2π

{
exp[−ik3h](∂3F)(h)− (∂3F)(0)

}
,

(10.39)

and replacing (∂3F)(x3) by iLF(x3), equation (10.38) implies

F [ΨF ](k3) =
1

2iπ
1

k2
3−L2 k3

{
F(0)− exp[−ik3h]F(h)

}
=

1
2iπ

1
k2

3−L2

{
LF(0)− exp[−ik3h]LF(h)

}
.

(10.40)

Next, the inverse Fourier transform (10.26) is performed for x3 in [0,h] and the diagonal form
(10.21) is used:

Ψ(x3)F(x3) =
1

2iπ
V
∫

R

k3

k2
3−λ 2

{
exp[ik3x3]V−1F(0)− exp[ik3(x3−h)]V−1F(h)

}
dx3

+
1

2iπ
V
∫

R

1
k2

3−λ 2

{
exp[ik3x3]V−1LF(0)− exp[ik3(x3−h)]V−1LF(h)

}
dx3 .

(10.41)
Again, the integrations above are calculated by adding to the real axis of k3 a semi-circle with
infinite radius (in the complex plane of k3) on which the integrals vanish. Without loss of
generality, it is considered that the square root of the eigenvalues in λ 2 have non-zero imaginary
part: let

√
λ 2 be the square root of λ 2 with positive imaginary part. For the terms with F(0),

the real axis is closed by a semi-circle in the upper half plane, and the eigenvalues with positive
imaginary part

√
λ 2 lead to contributions in the integrals. For the terms with F(h), the real axis

is closed by a semi-circle in the lower half plane, and the integrals are given by the eigenvalues
with negative imaginary part, i.e. −

√
λ 2. Calculations of integrals over k3 lead to

Ψ(x3)F(x3) = V
1
2

exp[i
√

λ 2x3]V−1F(0)+V
1
2

exp[−i
√

λ 2(x3−h)]V−1F(h)

+ V
1

2
√

λ 2
exp[i
√

λ 2x3]V−1LF(0)−V
1

2
√

λ 2
exp[−i

√
λ 2(x3−h)]V−1LF(h) .

(10.42)
This equation is evaluated at x3 = 0 and x3 = h:

F(0) = V exp[i
√

λ 2h]V−1F(h)+V
1√
λ 2

V−1LF(0)−V
1√
λ 2

exp[i
√

λ 2h]V−1LF(h) ,

F(h) = V exp[i
√

λ 2h]V−1F(0)+V
1√
λ 2

exp[i
√

λ 2h]V−1LF(0)−V
1√
λ 2

V−1LF(h) .

(10.43)
Thanks to the technique based on the Fourier transform, all the exponential functions in these
expressions must be well-defined. Indeed, the imaginary part of

√
λ 2 is positive and all the

exponential functions decrease. Equations (10.43) will be used to construct a stable numerical
algorithm to stack several lamellar layers.
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10.4 Exact eigenmodes and eigenvalues method

The different solutions (10.20), (10.24, (10.37) and (10.43), established in the previous section,
are provided from the knowledge of the sets of eigenmodes and eigenvalues of the operator L
(or L2). In this section, it is shown how these eigenmodes V±,n and eigenvalues λ±,n of L can be
exactly determined in a lamellar layer located between the planes x = 0 and x3 = h. The starting
point is equation (10.17):

∂3F = iLF , L = M(x3) , x3 ∈ [0,h]. (10.44)

Let ε1, µ1 and σ1 be the functions which coincide with respectively ε , µ and σ in the considered
lamellar layer for x3 in [0,h]. In the considered lamellar layer, they are functions of the solely
variable x1 (see figure 10.2):

ε1(x1) = ε(x1,x3) , µ1(x1) = µ(x1,x3) , σ1(x1) = σ(x1,x3) , x3 ∈ [0,h]. (10.45)

According to expression (10.12), the operator L is now

L =−i
[
−∂1σ

−1
1 ∂2 σ1 +∂1σ

−1
1 ∂1

−σ1−∂2σ
−1
1 ∂2 ∂2σ

−1
1 ∂1

]
, (10.46)

and its square is

L2 =−
[
−σ2

1 −∂1σ
−1
1 ∂1σ1−σ1∂2σ

−1
1 ∂2 σ1∂2σ

−1
1 ∂1−∂1σ

−1
1 ∂2σ1

σ1∂1σ
−1
1 ∂2−∂2σ

−1
1 ∂1σ1 −σ2

1 −∂2σ
−1
1 ∂2σ1−σ1∂1σ

−1
1 ∂1

]
. (10.47)

Since the matrix σ1 is x2-independent, the equality σ1∂2σ
−1
1 = ∂2 = σ

−1
1 ∂2σ1 holds, and the

expression above becomes

L2 =
[

σ2
1 +∂ 2

2 +∂1σ
−1
1 ∂1σ1 0

∂2σ
−1
1 ∂1σ1−σ1∂1σ

−1
1 ∂2 σ2

1 +∂ 2
2 +σ1∂1σ

−1
1 ∂1

]
. (10.48)

This expression shows that the components F1 can be decoupled from the components F2 in the
lamellar layer. Indeed, it implies

∂
2
3 F1 =−KF1 , K = σ

2
1 +∂

2
2 +∂1σ

−1
1 ∂1σ1 . (10.49)

Moreover, each component of F1, i.e. E1 and H1, can be also decoupled since the operator K is
diagonal:

K =
[

Kε1 0
0 Kµ1

]
, (10.50)

where
Kε1 = ω2ε1µ1 +∂ 2

2 +∂1ε
−1
1 ∂1ε1 ,

Kµ1 = ω2ε1µ1 +∂ 2
2 +∂1µ

−1
1 ∂1µ1 .

(10.51)

Here, it is important to notice that the two operators Kε1 and Kµ1 correspond to the ones of a one-
dimensional multilayered stack for respectively p- and s-polarization. This makes it possible
to calculate the exact eigenmodes and eigenvalues of Kε1 and Kµ1 (see appendix) and thus
the ones of K. Thus the continuation procedure presented in section 10.3.2 can be applied to
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equation (10.49). It provides relationships between the fields F1(0), F1(h) and their derivative
with respect to x3, i.e. [∂3F1](0) and [∂3F1](h) (it is recalled that ∂3F = iLF in section 10.3.2).

To complete the derivation of the method, it is necessary to express the component F2 of
the field from F1 and ∂3F1. A starting relationship is obtained from (10.44) and (10.47):

∂3F1 =−∂1σ
−1
1 ∂2F1 +

[
σ1 +∂1σ

−1
1 ∂1

]
F2 . (10.52)

This equation is equivalent to[
1+∂1σ

−1
1 ∂1σ

−1
1
]
σ1F2 = ∂3F1 +∂1σ

−1
1 ∂2F1 . (10.53)

Here, it is remarked that the operator [1+∂1σ
−1
1 ∂1σ

−1
1 ] is invertible since it equals [K−∂ 2

2 ]σ−2
1

where σ1 is invertible as well as [K − ∂ 2
2 ] (eigenvalues of K have non-zero imaginary part).

Moreover, the operator [1+∂1σ
−1
1 ∂1σ

−1
1 ] commutes with ∂3, ∂2 and ∂1σ

−1
1 : hence

σ1F2 =
1

1+∂1σ
−1
1 ∂1σ

−1
1

∂3F1 +
1

1+∂1σ
−1
1 ∂1σ

−1
1

∂1σ
−1
1 ∂2F1

=
1

1+∂1σ
−1
1 ∂1σ

−1
1

∂3 F1 +∂2∂1σ
−1
1

1
1+∂1σ

−1
1 ∂1σ

−1
1

F1

= σ2
1

1
σ2

1 +∂1σ
−1
1 ∂1σ1

∂3 F1 +∂2∂1σ1
1

σ2
1 +∂1σ

−1
1 ∂1σ1

F1 .

(10.54)

After the Fourier decomposition with respect to the variable x2, the operator ∂2 becomes ik2.
Then, the inverse operator above is expressed using the diagonal form K = V λ 2V−1, and the
component F2 becomes

F2 = σ1V
1

λ 2 + k2
2

V−1
∂3F1 + ik2 σ

−1
1 ∂1σ1V

1
λ 2 + k2

2
V−1F1 . (10.55)

Finally, it is stressed that the coefficients of the operators σ1V and σ
−1
1 ∂1σ1V above can be

calculated exactly from the knowledge of the exact eigenmodes. Indeed, the technique pre-
sented in appendix shows that the determination of the eigenmodes φn lies on the calculations
of functions σ1φn and σ

−1
1 ∂1σ1φn. The final expression of F2 in terms of F1 and ∂3F1 is then

F2 = U
1

λ 2 + k2
2

V−1
∂3F1 + ik2W

1
λ 2 + k2

2
V−1F1 , U = σ1V , W = σ

−1
1 ∂1σ1V .

(10.56)
To conclude this section, it has been shown that the field components F1, ∂3F1 and F2 can

be expressed exactly in a lamellar layer: F1 and ∂3F1 are provided by equations (10.42) and
(10.43) (where F → F1, LF → −i∂3F1, and K = V λ 2V−1); F2 is given by equation (10.56).
These expressions are based on the knowledge of the eigenvectors V of K, the eigenvalues λ 2

of K and the operators U = σ1V and W = σ
−1
1 ∂1σ1V . All these quantities can be calculated

exactly, as shown in appendix.
Finally, it is stressed that the propagation constants inside the lamellar layer are the square

roots of the eigenvalues of the operator K, i.e. ±
√

λ 2. If there is some absorption, i.e. Imσ > 0,
or if a small positive imaginary part is added to the frequency ω (the limit ω = limη↓0(ω + iη)
is considered [12, 13]), the eigenvalues λ 2 of K cannot be purely real. It follows that the
propagation constants ±

√
λ 2 have non zero imaginary parts and, moreover, the half of them

(+
√

λ 2) have strictly positive imaginary part and the second half of them (−
√

λ 2) have strictly
negative imaginary part. In this case, the assumption (10.16) on the eigenvalues of L is well
justified.
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10.5 Numerical algorithm

A general solution for numerical algorithm has been proposed by L. Li in the case of modal
methods of gratings [3]. This solution is based on the definition of S or R matrices which are
well-conditioned.

10.5.1 R matrix for a single lamellar layer

In this section, the expression of a R matrix associated with a lamellar layer is established: it is
defined by the relationship [

F1(0)
F1(h)

]
= R

[
F2(0)
F2(h)

]
. (10.57)

First, equation (10.43) is used to provide an expression of the solution of (10.49):

F1(0)−V exp[i
√

λ 2h]V−1F1(h) = −iV
1√
λ 2

V−1
∂3F1(0)+ iV

1√
λ 2

exp[i
√

λ 2h]V−1
∂3F1(h) ,

F1(h)−V exp[i
√

λ 2h]V−1F1(0) = −iV
1√
λ 2

exp[i
√

λ 2h]V−1
∂3F1(0)+ iV

1√
λ 2

V−1
∂3F1(h) .

(10.58)
This set of equations is written using 2×2 matrices:

A
[

F1(0)
F1(h)

]
= B

[
∂3F1(0)
∂3F1(h)

]
, (10.59)

where

A =

[
1 −V exp[i

√
λ 2h]V−1

−V exp[i
√

λ 2h]V−1 1

]
(10.60)

and

B =

 −iV
1√
λ 2

V−1 iV
1√
λ 2

exp[i
√

λ 2h]V−1

−iV
1√
λ 2

exp[i
√

λ 2h]V−1 iV
1√
λ 2

V−1

 . (10.61)

Next, from (10.56), the field ∂3F1 is related to F1 and F2 from

∂3F1 =−ik2V [λ 2 + k2
2]U
−1W

1
λ 2 + k2

2
V−1 F1 +V [λ 2 + k2

2]U
−1 F2 . (10.62)

Defining the two matrices

C =

 −ik2V [λ 2 + k2
2]U
−1W

1
λ 2 + k2

2
V−1 0

0 −ik2V [λ 2 + k2
2]U
−1W

1
λ 2 + k2

2
V−1

 (10.63)

and

D =

[
V [λ 2 + k2

2]U
−1 0

0 V [λ 2 + k2
2]U

−1

]
, (10.64)
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the relationship (10.59) becomes

A
[

F1(0)
F1(h)

]
= BC

[
F1(0)
F1(h)

]
+BD

[
F2(0)
F2(h)

]
. (10.65)

Finally, according to the definition (10.57), the R matrix is given by

R =
1

A−BC
BD . (10.66)

It is stressed that the R matrix is numerically stable. Indeed, exponential functions always
have arguments such that they decrease and, when inverted, they are always added to well-
conditioned functions. For example, in the matrix [A−BC], one can check that the diagonal
blocs are well-conditioned since they do not contain any exponential function, while the off-
diagonal blocs decrease exponentially. When inverted, this matrix will have the same behaviour
with well-conditioned diagonal blocs and exponentially decreasing off-diagonal blocs.

10.5.2 R matrix for a stack of lamellar layers

Here, a system made of two lamellar layers is considered. The first layer is located between the
planes x3 = −h1 and x3 = 0, and the second layer between the planes x3 = 0 and x3 = h2. Let
R1 and R2 be the R matrices associated with these layers:[

F1(−h1)
F1(0)

]
= R1

[
F2(−h1)

F2(0)

]
,

[
F1(0)
F1(h2)

]
= R2

[
F2(0)
F2(h2)

]
. (10.67)

Then, the R matrix associated with the stack of the two layers is determined by eliminating the
components F1(0) and F2(0) in the equations above. Denoting by R1,i j and R2,i j (i, j = 1,2) the
blocs of R1 and R2,

R1 =
[

R1,11 R1,12
R1,21 R1,22

]
, R2 =

[
R2,11 R2,12
R2,21 R2,22

]
, (10.68)

the expression of R is given by

R =

 R1,11−R1,12
1

R1,22−R2,11
R1,21 R1,12

1
R1,22−R2,11

R2,12

−R2,21
1

R1,22−R2,11
R1,21 R2,22−R2,21

1
R1,22−R2,11

R2,12

 . (10.69)

Again, one can check that the algorithm is stable since the only inverted blocs are the diagonal
ones, which are well-conditioned.

10.6 Numerical application

A simple numerical example is considered to put the exact modal method to the test. The
structure is made of a set of rectangular rods with dielectric constant ε1,1/ε0 = 12.96 (cor-
responding to the index 3.6 of Si at optical wavelengths), width w1,1 = 0.28d and height
h = d/(2

√
2), where d is the spatial period of the grating (see figure 10.4). This lamellar grating
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x3

x1

ε1,1

w1,1w1,2

d
ε0, µ0

ε0, µ0

θ i
θ r

Figure 10.4: The considered structure for the numerical example: a single layer made of rectangular
rods.

is illuminated by a plane wave with an incident angle θ i = 45◦. The oscillating frequency is
ω = 2π/(d

√
ε0µ0), which corresponds to a wavelength equal to the spatial period d. The effi-

ciency diffracted in the order zero, i.e. at the reflected angle θ r = θ i = 45◦ is calculated for both
s and p-polarizations which correspond respectively to the electric and magnetic fields reduced
to a single component along the invariance axis x2. Each component of the electromagnetic field
is described by a finite number (2n + 1) of exact modes. Reflected efficiency in the order zero
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Figure 10.5: Efficiency in the zero order for s-polarization (left panel) and p-polarization (right
panel).

for different values of the number of exact modes (2n+1) is represented on figure 10.5. These
curves show that these efficiencies differ from their converged value with less than one percent
from (2n+1) = 7 in s-polarization and (2n+1) = 5 in p-polarization (the converged values are
respectively 0.7323 and 0.9487 in s and p polarizations). This convergence is found to be faster
than in the case of the modal method with Fourier basis [2] where an error smaller than one
percent is obtained from (2n+1) = 17 and (2n+1) = 27 in s and p polarizations respectively
(the method [2] contains all the techniques to improve the convergence of the truncated Fourier
series [15]). This improvement of the convergence resulting from the use of the exact modes

385



10.14 Gratings: Theory and Numeric Applications, 2012

becomes a significant advantage when three dimensional woodpile structures are considered [9]
(the total number of modes (2n+1)2 can be reduced by a factor of 10).

10.7 Appendix. Calculation of the exact modes and eigenvalues

It is shown here how to determine exactly the eigenvalues and the eigenfunctions of the operator
K associated with a lamellar layer in a very general case. An analogous reasoning provides the
ones of the operator associated with the others lamellar layers.

From the expression (10.50), every eigenvalue Λn of the operator K is either an eigenvalue
of Kε1 or Kµ1 . So, it is sufficient to determine the set of eigenvalues {Λν1,n |n ∈ N} associated
with the set of eigenfunctions {φν1,n |n∈N} of the scalar operator Kν1 , with ν1 = ε1 or ν1 = µ1.

10.7.1 The equation satisfied by the exact eigenvalues

From the expression (10.50), the operator Kν1 is the sum of ω2ε1µ1 + ∂1ν
−1
1 ∂1ν1 and ∂ 2

2 : the
first part is an operator of the single variable x1 and the second part is an operator of the single
variable x2. Thus, we can perform a variable separation: every eigenfunction of Lν1 can be
written

φν1,n(x1,x2) = φ
(1)
n1 (x1)φ

(2)
n2 (x2) n1,n2 ∈ N , (10.70)

where φ
(1)
n1 and φ

(2)
n2 are respectively eigenfunctions of the first and second operators which

constitute Lν1 .
In the case of a lamellar grating which is invariant in the direction x2, this direction of

invariance is considered using the Fourier decomposition (10.5). Thus the eigenfunction of ∂ 2
2

is just
φ

(2)
n2 (x2) = exp[ik2x2] k2 ∈ R , (10.71)

and the integer n2 plays no role (integer n will be simply n1). In the case of woodpile crystals,
it is easy to verify that the plane-wave

φ
(2)
n2 (x2) = exp{i[k2 +2π p(n2)/d2]x2/d2} p(n2) ∈ Z (10.72)

is an eigenfunction of the operator ∂ 2
2 and satisfies the partial Bloch boundary condition (10.8)

adapted for the variable x2. Let Λ
(2)
n2 be the associated eigenvalue. Then, from (10.71,10.72),

Λ
(2)
n2 =−[k2 +2πq(n2)/d2]2 . (10.73)

Note that, for lamellar gratings and eigenfunctions (10.71), the integer q(n2) is set to zero.
The x1-dependency of the eigenfunction (10.70) is determined using the usual transfer

matrix [16, 17, 18]. Let λ
(1)
n1 be the eigenvalue associated with φ

(1)
n1 :[

ω
2
ε1µ1 +∂1ν

−1
1 ∂1ν1

]
φ

(1)
n1 = Λ

(1)
n1 φ

(1)
n1 . (10.74)

In order to obtain a set of first order differential equations, the following column vector is
introduced

Fn1 =

[
ν1φ

(1)
n1

ν
−1
1 ∂1ν1φ

(1)
n1

]
. (10.75)
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Note that, from equation (10.74), the two components of this vector are continuous functions.
Now, suppose that the unit cell of the considered lamellar layer is made of J rods of width w1, j,
permittivity ε1, j and permeability µ1, j, j = 1,2, · · · ,J (figure 10.6): we denote by ν1, j the value

x3

x1

ν1,1 ν1,2 ν1,3 ν1 = ε1, µ1

w1,1 w1,2 w1,3

d

Figure 10.6: A layer made of three rods per unit cell (J = 3): the three rods have width w1, j,
permittivity ε1, j and permeability µ1, j, j = 1,2,3.

of the function ν1 in the rod j, j = 1,2, · · · ,J. Then, from equation (10.74), the vector (10.75)
satisfies [18]

Fn1(d) = T1
(
Λ

(1)
n1

)
Fn1(0) , (10.76)

where
T1(Λ) = T1,J(Λ) T1,J−1(Λ) · · · T1,1(Λ) , (10.77)

T1, j(Λ) = P1, j(Λ,w1, j) , (10.78)

P1, j(Λ,w) =

[
cos(β1, jw) ν1, jβ

−1
1, j sin(β1, jw)

−ν
−1
1, j β1, j sin(β1, jw) cos(β1, jw)

]
, (10.79)

β1, j =
√

ω2ε1, jµ1, j−Λ j = 1,2, · · · ,J . (10.80)

Note that the four elements of each matrix T1, j only depend on β 2
1, j: the expression (10.79)

is independent of the definition of the square root (10.80). In addition to (10.76), the vector
(10.75) has to satisfy the partial Bloch boundary condition (10.8) for the variable x1:

Fn1(d) = exp[ik1d]Fn1(0) . (10.81)

The combination of (10.76) and (10.81) implies that exp[ik1d] is an eigenvalue of the matrix
T1
(
Λ

(1)
n1

)
: the equation

det
{

T1
(
Λ

(1)
n1

)
− exp[ik1d]

}
= 0 (10.82)

determines the eigenvalues Λ
(1)
n1 . This last equation can be simplified using the fact that detT1 =

1 (since, from (10.78), detT1, j = 1, j = 1,2, · · · ,J): if exp[ik1d] is an eigenvalue of T1, then
exp[−ik1d] is also. Thus, the equation (10.82) is equivalent to

trT1
(
Λ

(1)
n1

)
−2cos[k1d] = 0 , (10.83)
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where trT1 is the trace of matrix T1. Once the eigenvalues Λ
(1)
n1 are determined from (10.83),

the associated eigenvectors φ
(1)
n1 are also obtained using the transfer matrix [17]: firstly, the

eigenvector Fn1(0) in C2 (associated with the eigenvalue exp[ik1d]) of the matrix T1
(
Λ

(1)
n1

)
is

determined; secondly, the expression of φ
(1)
n1 in the rod j can be deduced from

Fn1(x1) = P1, j
(
Λ

(1)
n1 ,x1− x1, j

)
Fn1(x1, j−1) , (10.84)

where

x1,0 = 0 , x1, j =
j

∑
q=1

w1,q j = 1,2, · · · ,J . (10.85)

Finally the eigenvalues of the operator Kν1 are

λν1,n = λ
(1)
n1 +λ

(2)
n2 , (10.86)

whose the two parts are respectively given by (10.83) and (10.73), and the expression of associ-
ated eigenvectors is (10.70) whose the two parts are respectively given by (10.84) and (10.72).
Concerning the functions of the operators U = σ1V and W = σ

−1
1 ∂1σ1V used in section 10.4

[see equation (10.56)], they are equal to the functions(
ν1φ

(1)
n1

)
(x1)φ

(2)
n2 (x2) ,

(
ν
−1
1 ∂1ν1φ

(1)
n1

)
(x1)φ

(2)
n2 (x2) , (10.87)

where n1 and n2 are in N, the expression of ν1φ
(1)
n1 and ν

−1
1 ∂1ν1φ

(1)
n1 in the rod j can be deduced

from (10.75,10.84) and the expression of φ
(2)
n2 is given by (10.72).

10.7.2 Real eigenvalues

Here, we suppose that the permittivity and permeability are real positive functions:

ε1(x1) ∈ R , ε+ > ε1(x1) > 0; µ1(x1) ∈ R , µ+ > µ1(x1) > 0 . (10.88)

Under these conditions, the operator Kν1 is selfadjoint and its eigenvalues are real when the
following inner product is used:

(φ ,ψ)−→ 1
d

∫ d

0
ν1(x1)φ(x1)ψ(x1)dx1 . (10.89)

The only difficulty in the numerical determination of the eigenvalues (10.86) is to find the real
numbers λ

(1)
n1 which satisfy the transcendental equation (10.83).

Since the numbers Λ
(1)
n1 are eigenvalues of the operator ω2ε1µ1 +∂1ν

−1
1 ∂1ν1 ≤ ω2ε+µ+,

these numbers are on the semi-axis (−∞,ω2ε+µ+]. This property makes their numerical deter-
mination easier and provides a way to number them:

ω
2
ε+µ+ ≥ Λν1,1 ≥ Λν1,2 · · · ≥ Λν1,n ≥ ·· · (10.90)

However, two difficulties can occur in this numerical determination. We give herein the solu-
tions we have adopted.
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The first difficulty comes from the possibility for two consecutive numbers Λ
(1)
n1 to be

very close to each other. Our solution is to use an algorithm which determines the zeros of
the function trT1(Λ)−2cos[k1d] on the left side of equation (10.83) by taking into account this
function together with its derivative with respect to Λ. If two numbers Λ

(1)
n1 are very close one

to each other, then the derivative is close to zero. Thus such algorithm needs to determine the
function

d
dΛ

{
trT1(Λ)−2cos[k1d]

}
= tr

dT1

dΛ
(λ ) . (10.91)

The expression of the derivative of the matrix T1 can be deduced from (10.77,10.78):

dT1

dΛ
=

dT1,J

dΛ
T1,J−1 · · · T1,1 +T1,J

dT1,J−1

dΛ
· · · T1,1 + · · ·+T1,J T1,J−1 · · ·

dT1,1

dΛ
, (10.92)

where, for j = 1,2, · · · ,J, the derivative of matrices

dT1, j

dΛ
=

1
2

[
a1, j b1, j

c1, j d1, j

]
(10.93)

is given by
a1, j = w1, jβ

−1
1, j sin[β1, jw1, j] ,

b1, j = ν1, jβ
−3
1, j sin[β1, jw1, j]−ν1, jw1, jβ

−2
1, j cos[β1, jw1, j] ,

c1, j = ν
−1
1, j β

−1
1, j sin[β1, jw1, j]+ν

−1
1, j w1, j cos[β1, jw1, j] ,

d1, j = w1, jβ
−1
1, j sin[β1, jw1, j] .

(10.94)

The second difficulty comes from the possibility of numerical instabilities in the expres-
sions (10.79,10.93) since the numbers β1, j (10.80) can have non-vanishing imaginary part. A
solution is to multiply the four coefficients of matrices T1, j and their derivative (10.93) by the
number

N j = exp
[
−| Im(β1, j)|w1, j

]
j = 1,2, · · · ,J , (10.95)

and the term 2cos[k1d] wich appears in (10.83) by the product

N = NJNJ−1 · · ·N1 . (10.96)

10.7.3 Complex eigenvalues

Here, the permittivity and permeability can take any complex value: ν1, j is in C, where ν1 =
ε1,µ1 and j = 1,2, · · · ,J. The operator Kν1 is not selfadjoint and then, its eigenvalues are, in
general, in the complex plane. The determination of these complex eigenvalues λ

(1)
n1 which

satisfy the equation (10.83) has been intensively studied using different methods [6, 7, 19].
We present here a method similar to the one presented in [7]: the complex eigenvalues

are deduced from the real eigenvalues by an analytic continuation. However, our method differs
from the one presented in [7] since we make varying the phase of the numbers ν1, j instead of
their imaginary part. We think that it is better to make varying the phase since, from that we
have observed, it leaves invariant the generalization to the complex case

Re(Λν1,1)≥ Re(Λν1,2) · · · ≥ Re(Λν1,p) · · · (10.97)
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of the numbering used when the eigenvalues are real (10.90).
We define for all t in [0,1] the functions

ν̃1, j(t) = |ν1, j|exp[it arg(ν1, j)] , (10.98)

where arg(ν1, j) is the phase of the complex number ν1, j, ν1 = ε1,µ1 and j = 1,2, · · · ,J. Sub-
stituting the numbers ν1, j (where ν1 = ε1,µ1) for ν̃1, j(t) in equations (10.77,10.78), we obtain
the matrix T̃1(Λ, t). For each value of t, we define the numbers Λ̃

(1)
n1 (t) which satisfy

trT̃1
[

Λ̃
(1)
n1 (t), t

]
−2cos[k1d] = 0 . (10.99)

Then, the numbers Λ̃
(1)
n1 (1) are the desired complex eigenvalues Λ

(1)
p1 and the numbers Λ̃

(1)
n1 (0)

are real eigenvalues which can be determined using the method presented in the previous section
10.7.2. Assuming that Λ̃

(1)
n1 (t) are continuous and differentiable functions of t, the complex

numbers Λ̃
(1)
n1 (1) can be estimated from the numbers Λ̃

(1)
n1 (0) by a numerical integration [7] of

dΛ̃
(1)
n1

dt
(t) =−

tr(∂ T̃1/∂Λ)
[

Λ̃
(1)
n1 (t), t

]
tr(∂ T̃1/∂ t)

[
Λ̃

(1)
n1 (t), t

] , (10.100)

where ∂ T̃1/∂Λ is given by substituting the numbers ν1, j for ν̃1, j(t) in equations (10.94,10.93)
and ∂ T̃1/∂ t is determined similarly. Finally the obtained estimates of numbers Λ̃

(1)
n1 (1) are used

to initiate any of the classical methods for the numerical solution of equations [7]. Then, one
obtains the desired complex eigenvalues.

In order to eliminate the numerical instabilities, one has to multiply each matrix T1, j and
their derivatives by the numbers N j (10.95) as in the previous section 10.7.2.

10.7.4 Eigenfunctions

From (10.84), the expression of each eigenfunction φ
(1)
n1 is given by the coefficients of the

column vectors Fn1(x1, j), j = 0,1, · · · ,J. On the numerical side, the only difficulty comes from
the fact that numerical instabilities in the expression of the transfer matrices (10.78,10.79).
A solution based on the R-matrix algorithm (or S-matrix) should consist in using the algorithm
presented in [20] to obtain the vector Fn1(x1,0) (and the vector Fn1(x1,J) = exp[k1d]Fn1(x1,0)) and
then, the algorithm presented in [21, section V] to obtain the vectors Fn1(x1, j), j = 1,2, · · · ,J−1.
However, we propose to use another solution which benefits of the fact that we deal with 2×2
matrices.

We define the following complex coefficients:[
T j

11 T j
12

T j
21 T j

22

]
= T1,J

(
Λ

(1)
n1

)
T1,J−1

(
Λ

(1)
n1

)
· · · T1, j

(
Λ

(1)
n1

)
, (10.101)

[
τ

j
11 τ

j
12

τ
j

21 τ
j

22

]
= T1, j

(
Λ

(1)
n1

)
T1, j−1

(
Λ

(1)
n1

)
· · · T1,1

(
Λ

(1)
n1

)
, (10.102)

[
F j

1
F j

2

]
= Fn1(x1, j) j = 0,1, · · · , J . (10.103)
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Since Fn1(x1,0) is an eigenvector of the matrix T1
(
Λ

(1)
n1

)
associated with the eigenvalue exp[k1d]),

its coefficients satisfy

F 0
2 =−

T J
11N− exp[k1d]N

T J
12N

F 0
1 , (10.104)

where the numbers T J
11N and T J

12N are obtained by multiplying each coefficient of matrices
T1, j
(
Λ

(1)
n1

)
by the number N j. The coefficients F J

1 and F J
2 are deduced from (10.81,10.104)

and then, one can obtain the other coefficients for j = 1,2, · · · ,J−1:

F j
1 =

T j+1
22 τ

j
11N

T j+1
21 τ

j
11N + τ

j
21T

j+1
22 N

(
F J

2

T j+1
22

−
F 0

2

τ
j

11

)
,

F j
2 =

T j+1
11 τ

j
22N

T j+1
11 τ

j
12N + τ

j
22T

j+1
12 N

(
F J

1

T j+1
11

−
F 0

1

τ
j

22

)
,

(10.105)

where, as in (10.104), the multiplication by the number N consists in multiplying each coeffi-
cient of matrices T1, j

(
Λ

(1)
n1

)
by the number N j.

Finally these functions have to be normalized. From the definition (10.89) of the inner
product, one has to compute

∥∥φ
(1)
n1

∥∥2
ν1

=
1
d

∫ d

0

∣∣φ (1)
n1 (x1)

∣∣2ν1(x1)dx1 (10.106)

when the functions ε1 and µ1 have the property (10.88). In the general case (where ε and µ

are complex valued functions), one has to use the formalism presented in [8, section 2.3]. It is
possible to compute analytically the expression (10.106):

∥∥φ
(1)
n1

∥∥2
ν1

=
1

2d

J

∑
j=1

w1, j

ν1, j

(∣∣F j−1
1

∣∣2 +β
−2
1, j ν

−2
1, j

∣∣F j−1
2

∣∣2)
−β
−2
1, j Re

(
iF j−1

1 F j−1
2 − iF j

1 F j
2

)
.

(10.107)

This expression allows to eliminate the numerical instabilities which can occur from the expo-
nential functions. Note that all the coefficients of matrices defined in sections 10.4 and 10.5
(matrices U , V and W ) can be also computed analytically in order to eliminate the numerical
instabilities.
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11.1 Introduction

In this chapter we describe a selection of mathematical techniques and results that suggest inter-
esting links between the theory of gratings and the theory of homogenization, including a brief
introduction to the latter. By no means do we purport to imply that homogenization theory is
an exclusive method for studying gratings, neither do we hope to be exhaustive in our choice
of topics within the subject of homogenization. Our preferences here are motivated most of
all by our own latest research, and by our outlook to the future interactions between these two
subjects. We have also attempted, in what follows, to contrast the “classical” homogenization
(Section 11.1.2), which is well suited for the description of composites as we have known them
since their advent until about a decade ago, and the “non-standard” approaches, high-frequency
homogenization (Section 11.2) and high-contrast homogenization (Section 11.3), which have
been developing in close relation to the study of photonic crystals and metamaterials, which ex-
hibit properties unseen in conventional composite media, such as negative refraction allowing
for super-lensing through a flat heterogeneous lens, and cloaking, which considerably reduces
the scattering by finite size objects (invisibility) in certain frequency range. These novel electro-
magnetic paradigms have renewed the interest of physicists and applied mathematicians alike
in the theory of gratings [1].

11.1.1 Historical survey on homogenization theory

The development of theoretical physics and continuum mechanics in the second half of the 19th
and first half of the 20th century has motivated the question of justifying the macrosopic view
of physical phenomena (at the scales visible to the human eye) by “upscaling” the implied
microscopic rules for particle interaction at the atomic level through the phenomena at the
intermediate, “mesoscopic”, level (from tenths to hundreds of microns). This ambition has
led to an extensive worldwide programme of research, which is still far from being complete
as of now. Trying to give a very crude, but more or less universally applicable, approximation
of the aim of this extensive activity, one could say that it has to do with developing approaches
to averaging out in some way material properties at one level with the aim of getting a less
detailed, but almost equally precise, description of the material response. Almost every word
in the last sentence needs to be clarified already, and this is essentially the point where one
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could start giving an overview of the activities that took place during the years to follow the
great physics advances of a century ago. Here we focus on the research that has been generally
referred to as the theory of homogenization, starting from the early 1970s. Of course, even at
that point it was not, strictly speaking, the beginning of the subject, but we will use this period
as a kind of reference point in this survey.

The question that a mathematician may pose in relation to the perceived concept of “aver-
aging out” the detailed features of a heterogeneous structure in order to get a more homogeneous
description of its behaviour is the following: suppose that we have the simplest possible linear
elliptic partial differential equation (PDE) with periodic coefficients of period η > 0. What is
the asymptotic behaviour of the solutions to this PDE as η → 0? Can a boundary-value prob-
lem be written that is satisfied by the leading term in the asymptotics, no matter what the data
unrelated to material properties are? Several research groups became engaged in addressing
this question about four decades ago, most notably those led by N. S. Bakhvalov, E. De Giorgi,
J.-L. Lions, V. A. Marchenko, see [2], [3], [4], [5] for some of the key contributions of that
period. The work of these groups has immediately led to a number of different perspectives
on the apparently basic question asked above, which in part was due to the different contexts
that these research groups had had exposure to prior to dealing with the issue of averaging.
Among these are the method of multiscale asymptotic expansions (also discussed later in this
chapter), the ideas of compensated compactness (where the contribution by L. Tartar and F.
Murat [6], [7] has to be mentioned specifically), the variational method (also known as the “Γ-
convergence"). These approaches were subsequently applied to various contexts, both across
a range of mathematical setups (minimisation problems, hyperbolic equations, problems with
singular boundaries) and across a number of physical contexts (elasticity, electromagnetism,
heat conduction). Some new approaches to homogenization appeared later on, too, such as the
method of two-scale convergence by G. Nguetseng [8] and the periodic unfolding technique by
D. Cioranescu, A. Damlamian and G. Griso [9]. Established textbooks that summarise these
developments in different time periods, include, in addition to the already cited book [4], the
monographs [10], [11], [12], and more recently [13]. The area that is perhaps worth a separate
mention is that of stochastic homogenization, where some pioneering contributions were made
by S. M. Kozlov [14], G. C. Papanicolaou and S. R. S. Varadhan [15], and which has in recent
years been approached with renewed interest.

A specific area of interest within the subject of homogenization that has been rapidly de-
veloping during the last decade or so is the study of the behaviour of "non-classical" periodic
structures, which we understand here as those for which compactness of bounded-energy so-
lution sequences fails to hold as η → 0. The related mathematical research has been strongly
linked to, and indeed influenced by, the parallel development of the area of metamaterials and
their application in physics, in particular for electromagnetic phenomena. Metamaterials can
be roughly defined as those whose properties at the macroscale are affected by higher-order be-
haviour as η → 0. For example, in classical homogenization for elliptic second-order PDE one
requires the leading (“homogenised solution”) and the first-order (“corrector”) terms in the η-
power-series expansion of the solution in order to determine the macroscopic properties, which
results in a limit of the same type as the original problem, where the solution flux (“stress”
in elasticity, “induction” in electromagnetics, “current” in electric conductivity, “heat flux” in
heat conduction) depends on the solution gradient only (“strain” in elasticity, "field" in elec-
tromagnetics, “voltage” in electric conductivity, “temperature gradient” in heat condiction). If,
however, one decides for some reason, or is forced by the specific problem setup, to include
higher-order terms as well, they are likely to have to deal with an asymptotic limit of a different
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type for small η , which may, say, include second gradients of the solution in its constitutive law.
One possible reason for the need to include such unusual effects is the non-uniform (in η) ellip-
ticity of the original problems or, using the language of materials science, the high-contrast in
the material properties of the given periodic structure. Perhaps the earliest mathematical exam-
ple of such degeneration is the so-called "double-porosity model", which was first considered
by G. Allaire [16] and T. Arbogast, J. Douglas, U. Hornung [17] in the early 1990s. A detailed
analysis of the properties of double-porosity models, including their striking spectral behaviour
did not appear until the work [18] by V. V. Zhikov. We discuss the double-porosity model and
its properties in more detail in Section 11.3.

Before moving on to the next section, it is important to mention one line of research within
the homogenization area that has had a significant rôle in terms of application of mathematical
analysis to materials, namely the subject of periodic singular structures (or “multi-structures”,
see [19]). While this subject is clearly linked to the general analysis of differential operators on
singular domains (see [20]), there has been a series of works that develop specifically homog-
enization techniques for periodic structures of this kind (also referred to as “thin structures” in
this context), e.g. [21], [22]. It turns out that overall properties of such materials are similar
to those of materials with high contrast. In the same vein, it is not difficult to see that com-
pactness of bounded-energy sequences for problems on periodic thin structures does not hold
(unless the sequence in question is suitably rescaled), which leads to the need for non-classical,
higher-order, techniques in their analysis.

11.1.2 Multiple scale method: Homogenization of microstructured fibers

x1

x2

x1

x2

η η‘

Y D 1

Y*

Y2=x2/η

Ωf Ωf

Y1=x1/η

Figure 11.1: A diagram of the homogenization process: when the parameter η gets smaller (η < η ′), the number
of cells inside the fixed domain Ω f becomes larger. When η ≪ 1, Ω f is filled with a large number of small
cells, and can thus be considered as an effective (or homogenized) medium. Such a medium is usually described
by anisotropic parameters depending upon the resolution of auxiliary (“unit cell”) problems set on the rescaled
microcopic cell Y which typically contains one inclusion D.

Let us consider a doubly periodic grating of pitch η and finite extent such as shown in
Fig.11.1. An interesting problem to look at is that of transverse electric (TE) modes— when the
magnetic field has the form (0,0,H)— propagating within a micro-structured fiber with infinite
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conducting walls. Such an eigenvalue problem is known to have a discrete spectrum: we look
for eigenfrequencies ω and associated eigenfields H such that:

(Pη) :


−

2

∑
i, j=1

∂
∂xi

(
ε−1

i j (
x
η
)
∂H(x)

∂x j

)
= ω2µ0ε0H(x) in Ω f ,

ε−1
i j (

x
η
)
∂H(x)

∂xi
n j = 0 on ∂Ω f ,

where we use the convention x = (x1,x2), ∂Ω f denotes the boundary Ω f , and n = (n1,n2) is
the normal to the boundary. Here, ε0µ0 = c−2 where c is the speed of light in vacuum and we
assume that matrix coefficients of relative permittivity εi j(y), with i, j = 1,2, are real, symmetric
(with the convention y = (y1,y2)), of period 1 (in y1 et y2) and satisfy:

M| ξξξ |2 ≥ εi j(y)ξiξ j ≥ m| ξξξ |2 , ∀ξξξ ∈ IR2 , ∀y ∈ Y = [0,1]2 , (11.1)

where | ξξξ |2 = (ξ 2
1 + ξ 2

2 ), for given strictly positive constants M and m. This condition is met
for all conventional dielectric media1.
We can recast (Pη) as follows:

− ∂
∂xi

σ i(H(x)) =
ω2

c2 H(x)

with

σ i(H(x)) = ε−1
i j

(
x
η

)
∂H(x)

∂x j
.

The multiscale method relies upon the following ansatz:

H = H0(x)+ηH1(x,y)+η2H2(x,y)+ ... (11.2)

where Hi(x,y), i = 1,2, ... is a periodic function of period Y in y.
In order to proceed with the asymptotic algorithm, one needs to rescale the differential operator
as follows

∂H
∂xi

=

(
∂H0

∂ zi
+

∂H1

∂yi

)
+η

(
∂H1

∂ zi
+

∂H2

∂yi

)
+ ... (11.3)

where ∂/∂ zi stands for the partial derivative with respect to the ith component of the macro-
scopic variable x.
It is useful to set

σ i(H) = σ i
0 +ησ i

1 +η2σ i
2 + ...

what makes (11.3) more compact.
Collecting coefficients sitting in front of the same powers of η , we obtain:

σ i
0(H) = ε−1

i j (y)
(

∂H0

∂ zi
+

∂H1

∂yi

)
1When the periodic medium is assumed to be isotropic, εi j(y) = ε(y)δi j, with the Kronecker symbol δi j = 1

if i = j and 0 otherwise. For instance, (11.1) has typically the bounds M = 13 and m = 1 in optics. One class of
problems where this condition (11.1) is violated (the bound below, to be more precise) is considered in Section
11.3 on high-contrast homogenization.
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σ i
1(H) = ε−1

i j (y)
(

∂H1

∂ zi
+

∂H2

∂yi

)
and so forth, all terms being periodic in y of period 1.
Upon inspection of problem (Pη), we gather that

−
(

1
η

∂
∂yi

+
∂

∂ zi

)(
σ i

0 +ησ i
1 + ...

)
=

ω2

c2 H(x)+ ...

so that at order η−1

(A ) : − ∂
∂yi

σ i
0 = 0 ,

and at order η0

(H ) : − ∂
∂ zi

σ i
0 −

∂
∂yi

σ i
1 =

ω2

c2 H0 .

(the equations corresponding to higher orders in η will not be used here).
Let us show that (H ) provides us with an equation (known as the homogenized equation)
associated with the macroscopic behaviour of the microstructured fiber. Its coefficients will be
obtained thanks to (A ) which is an auxiliary problem related to the microscopic scale. We will
therefore be able to compute H0 and H1 thus, in particular, the first terms of H and σ i.
In order to do so, let us introduce the mean on Y , which we denote < . >, which is an operator
acting on the function g of the variable y:

< g >=
1

| Y |

∫ ∫
Y

g(y1,y2)dy1dy2 ,

where | Y | is the area of the cell Y .
Applying the mean to both sides of (H ), we obtain:

< (H )>: − ∂
∂ zi

< σ i
0 >−<

∂
∂yi

σ i
1 >=

ω2

c2 H0 < 1 > ,

where we have used the fact that < . > commutes with ∂/∂ zi.
Moreover, invoking the divergence theorem, we observe that

<
∂

∂yi
σ i

1 >=
1

| Y |

∫ ∫
Y

∂
∂yi

σ i
1(y)dy =

1
| Y |

∫
∂Y

σ i
1(y)nids ,

where n = (n1,n2) is the unit outside normal to ∂Y of Y . This normal takes opposite values on
opposite sides of Y , hence the integral over ∂Y vanishes.
Altogether, we obtain:

< (H )>: − ∂
∂ zi

< σ i
0 >=

ω2

c2 H0 ,

which only involves the macroscopic variable x and partial derivatives ∂/∂ zi with respect to the
macroscopic variable. We now want to find a relation between < σ0 > and the gradient in x of
H0. Indeed, we have seen that

σ i
0(H) = ε−1

i j (y)
(

∂H0

∂ z j
+

∂H1

∂y j

)
,
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which from (A ) leads to

(A 1) : − ∂
∂yi

(
ε−1

i j (y)
∂H1

∂y j

)
=

(
∂H0

∂ z j

)(
∂

∂yi
ε−1

i j (y)
)

.

We can look at (A 1) as an equation for the unknown H1(x,y), periodic of period Y in y and
parametrized by x. Such an equation is solved up to an additive constant. In addition to that,
the parameter x is only involved via the factor ∂H0/∂ z j. Hence, by linearity, we can write the
solution H1(x,y) as follows:

H1(x,y) =
∂H0(x)

∂ z j
w j(y) ,

where the two functions w j(y), j = 1,2 are solutions to (A 1) corresponding to ∂H0/∂ z j(x),
j = 1,2 equal to unity with the other ones being zero, that is solutions to:

(A 2) : − ∂
∂yi

(
ε−1

i j (y)
∂wk

∂y j

)
= δ jk

(
∂

∂yi
ε−1

i j (y)
)

,

with wk(y), k = 1,2 periodic functions in y of period Y 2.
Since the functions wk(y) are known, we note that

σ0
i (x,y) = ε−1

i j (y)
(

∂H0

∂ z j
+

∂H1

∂y j

)
= ε−1

i j (y)
(

∂H0

∂ z j
+

∂H0

∂ zk

∂wk(y)
∂y j

)
,

which can be written as

σ i
0(x,y) =

(
ε−1

ik (y)+ ε−1
i j (y)

∂wk(y)
∂y j

)
∂H0(x)

∂ zk
.

Lets us now apply the mean to both sides of this equation. We obtain:

< σ i
0 > (x) = ε−1

hom,ik
∂H0(x)

∂ zk
,

which can be recast as the following homogenized problem:

(P0) :


−

2

∑
i,k=1

∂
∂xi

(
ε−1

hom,ik
∂H0(x)

∂xk

)
= ω2µ0ε0H0(x) , in Ω f ,

ε−1
hom,ik(

x
η
)
∂H0(x)

∂xi
nk = 0 ,on ∂Ω f ,

where ε−1
hom,ik denote the coefficients of the homogenized matrix of permittivity given by:

ε−1
hom,ik =

1
| Y |

∫ ∫
Y

(
ε−1

ik (y)+ ε−1
i j (y)

∂wk(y)
∂y j

)
dy . (11.4)

As an illustrative example for this homogenized problem, we consider a microstructured waveg-
uide consisting of a medium with relative permittivity ε = 1.25 with elliptic inclusions (of minor

2We note that (A 2) are two equations which merely depend upon ε−1
i j (y), that is on the microscopic properties

of the periodic medium. The two functions wk (defined up to an additive constant) can be computed once for all,
independently of Ω f .

402



S. Guenneau et al.: Homogenization Techniques for Periodic Structures 11.7

Figure 11.2: Potentials Vx (left) and Vy (right): The unit cell contains an elliptic inclusion of relative permittivity
(ε = 4.0+3i) with minor and major axis a = 0.3 and b = 0.4 in silica (ε = 1.25).

and major axes 0.3 cm and 0.4 cm respectively) with center to center spacing d = 0.1cm with
an infinite conducting boundary i.e. Neumann boundary conditions in the TE polarization.

We use the COMSOL MULTIPHYSICS finite element package to solve the annex prob-
lem and we find that [εhom] from (11.4) writes as [26](

1.9296204 −1.053308310−16

−44.41744410−18 2.1127643

)
,

with < ε >Y= 2.2867255. The off diagonal terms can be neglected.
If we assume that the transverse propagating modes in the metallic waveguide have a small

propagation constant γ ≪ 1, the above mathematical model describes accurately the physics.
We show in Fig. 11.3 a comparison between two TE modes of the microstructured waveguide
and its associated anisotropic homogenized counterpart. Both eigenfrequencies and eigenfields
match well (note that we use the waveguide terminology wavenumber k =

√
ω2/c2 − γ2).

11.1.3 The case of one-dimensional gratings: Application to invisibility cloaks

There is a case of particular importance for applications in grating theory: that of a periodic
multilayered structure. Let us assume that the permittivity of this medium is ε = α in white
layers and β in yellow layers, as shown in Fig. 11.4.
Equation (A 2) takes the form:

(A 3) : − d
dy

(
ε−1(y)

dw
∂y

)
=

(
d
dy

ε−1(y)
)

,

with w(y), periodic function in y of period 1.
We deduce that

−dw
dy

= 1+Cε(y) .

Noting that
∫

Y

dw
dy

= w(1)−w(0) = 0, this leads to

∫
Y
(1+Cε(y))dy = 0 .

Since | Y |= 1, we conclude that
C =−< ε >−1 .
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Figure 11.3: Comparison between transverse electric fields T E21 and T E31 of a microstructured metallic waveg-
uide for a propagation constant γ = 0.1cm−1 (wavenumbers k = 0.7707cm−1 and k = 0.5478cm−1 respectively),
see left panel, with the T E21 and T E31 modes of the corresponding homogenized anisotropic metallic waveguide
for γ = 0.1cm−1 (k = 0.7607cm−1 and k = 0.5201cm−1, where k =

√
ω2/c2 − γ2 =

√
ω2ε0µ0 − γ2 were obtained

from the computation of eigenvalues ω of homogenized problem (P0)), see right panel.

The homogenized permittivity takes the form:

ε−1
hom =

1
| Y |

∫
Y

(
ε−1(y)+ ε−1(y)

dw(y)
dy

)
dy

=< ε−1(y)>−< ε−1(y)+C >

=< ε−1(y)>−< ε−1(y)>+<< ε(y)>−1 >=< ε(y)>−1 .

We note that if we now consider the full operator i.e. we include partial derivatives in y1 and y2,
the anisotropic homogenized permittivity takes the form:

ε−1
hom =

(
< ε(y)−1 > 0

0 < ε(y)>−1

)
,

as the only contribution for ε−1
hom,11 is 1/ | Y |

∫
Y ε−1(y)dy.

As an illustrative example of what artificial anisotropy can achieve, we propose the design of an
invisibility cloak. For this, let us assume that we have a multilayered grating with periodicity
along the radial axis. In the coordinate system (r,θ), the homogenized permittivity clearly has
the same form as above. If we want to design an invisibility cloak with an alternation of two
homogeneous isotropic layers of thicknesses dA and dB and permittivities α , β , we then need to
use the formula

1
εr

=
1

1+η

(
1
α
+

η
β

)
, εθ =

α +ηβ
1+η

,
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Figure 11.4: Schematic of homogenization process for a one-dimensional grating with homogeneous dielectric
layers of permittivity α and β in white and yellow regions. When η tends to zero the number of layers tends to
infinity, and their thicknesses vanish, in such a way that the width of the overall stack remains constant.

where η = dB/dA is the ratio of thicknesses for layers A and B and dA +dB = 1.
We now note that the coordinate transformation r′ = R1 + r R2−R1

R2
can compress a disc

r < R2 into a shell R1 < r < R2, provided that the shell is described by the following anisotropic
heterogeneous permittivity [27] εcloak (written in its diagonal basis):

εcloak
r =

(
R2

R2 −R1

)2(r′−R1

r′

)2

, εcloak
θ =

(
R2

R2 −R1

)2

, (11.5)

where R1 and R2 are the interior and the exterior radii of the cloak. Such a metamaterial can be
approximated using the formula (11.5), as first proposed in [28], which leads to the multilayered
cloak shown in Fig. 11.5.

11.2 High-frequency homogenization

Many of the features of interest in photonic crystals [44, 45], or other periodic structures, such as
all-angle negative refraction [46, 47, 48, 49] or ultrarefraction [50, 51] occur at high frequencies
where the wavelength and microstructure dimension are of similar orders. Therefore the con-
ventional low-frequency classical homogenisation clearly fails to capture the essential physics
and a different approach to distill the physics into an effective model is required. Fortunately
a high frequency homogenisation (HFH) theory as developed in [37] is capable of capturing
features such as AANR and ultra-refraction [52] for some model structures. Somewhat tan-
gentially, there is an existing literature in the analysis community on Bloch homogenisation
[53, 54, 55, 56], that is related to what we call high frequency homogenisation. There is also
a flourishing literature on developing homogenised elastic media, with frequency dependent
effective parameters, based upon periodic media [38]. There is therefore considerable inter-
est in creating effective continuum models of microstructured media that break free from the
conventional low frequency homogenisation limitations.
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Figure 11.5: Propagation of a plane wave of wavelength 7 10−7m (red in the visible spec-
trum) from the left on a multilayered cloak of inner radius R1 = 1.5 10−8m and outer ra-
dius R2 = 3 10−8m, consisting of 20 homogeneous layers of equal thickness and of respective
relative permittivities 1680.70,0.25,80.75,0.25,29.39,0.25,16.37,0.25,10.99,0.25,8.18,0.25,6.50,0.25,5.40,
0.25,4.63,0.25,4.06,0.25 in vacuum. Importantly, one layer in two has the same permittivity.

11.2.1 High Frequency Homogenization for Scalar Waves

Waves propagating through photonic crystals and metamaterials have proven to show different
effects depending on their frequency. The homogenization of a periodic material is not unique.
The effective properties of a periodic medium change depending on the vibration modes within
its cells. The dispersion diagram structure can be considered to be the identity of such a mate-
rial and provides the most important information regarding group velocities, band-gaps of dis-
allowed propagation frequency bands, Dirac cones and many other interesting effects. The goal
of a homogenization theory is to provide an effective homogeneous medium that is equivalent,
in the long scale, to the initial non-homogeneous medium composed of a short-scale periodic,
or other microscale, structure. This was achieved initially using the classical theory of homog-
enization [4, 34, 11, 35, 36] and yields an intuitively obvious result that the effective medium’s
properties consist of simple averages of the original medium’s properties. This is valid so long
as the wavelength is very large compared to the size of the cells (here we focus on periodic
media created by repeating cells). For shorter wavelengths of the order of a cell’s length a more
general theory has been developed [37] that also recovers the results of the classical homoge-
nization theory. For clarity we present high frequency homogeniaztion (HFH) by means of an
illustrative example and consider a two-dimensional lattice geometry for TE or TM polarised
electromagnetic waves. With harmonic time dependence, exp(−iΩt) (assumed understood and
henceforth suppressed), the governing equation is the scalar Helmholtz equation,

∇2u+Ω2u = 0, (11.6)

where u represent EZ and HZ , for TM and TE polarised electromagnetic waves respectively, and
Ω2 = n2ω2/c2. In our example the cells are square and each square cell of length 2l contains
a circular hole and the filled part of the cell has constant non-dimensionalized properties. The
boundary conditions on the hole’s surface, namely the boundary ∂S2, depend on the polarisa-
tion and are taken to be either of Dirichlet or Neumann type. This approach assumes infinite
conducting boundaries which is a good approximation for micro-waves. We adopt a multiscale
approach where l is the small length scale and L is a large length scale and we set η = l/L ≪ 1
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(b) Brillouin zone

Figure 11.6: Panel (a) An infinite square array of split ring resonators with the elementary cell shown as the
dashed line inner square. Panel (b) shows the irreducible Brillouin zone, in wavenumber space, used for square
arrays in perfectly periodic media based around the elementary cell shown of length 2l (l = 1 in (b)). Figure
reproduced from Proceedings of the Royal Society [40].

to be the ratio of these scales. The two length scales let us introduce the following two indepen-
dent spatial variables, ξi = xi/l and Xi = xi/L. The cell’s reference coordinate system is then
−1 < ξ < 1. By introducing the new variables in equation (11.6) we obtain,

u(X,ξξξ ),ξiξi +Ω2u(X,ξξξ )+2ηu(X,ξξξ ),ξiXi +η2u(X,ξξξ ),XiXi = 0. (11.7)

We now pose an ansatz for the field and the frequency,

u(X,ξξξ ) = u0(X,ξξξ )+ηu1(X,ξξξ )+η2u2(X,ξξξ )+ . . . ,

Ω2 = Ω2
0 +ηΩ2

1 +η2Ω2
2 + . . . (11.8)

In this expansion we set Ω0 to be the frequency of standing waves that occur in the perfectly pe-
riodic setting. By substituting equations (11.8) into equation (11.7) and grouping equal powers
of ε through to second order, we obtain a hierarchy of three ordered equations:

u0,ξiξi +Ω2
0u0 = 0, (11.9)

u1,ξiξi +Ω2
0u1 =−2u0,ξiXi −Ω2

1u0, (11.10)

u2,ξiξi +Ω2
0u2 =−u0,XiXi −2u1,ξiXi −Ω2

1u1 −Ω2
2u0. (11.11)

These equations are solved as in [40, 37] and hence the description is brief.
The asymptotic expansions are taken about the standing wave frequencies that occur at

the corners of the irreducible Brillouin zone depicted in Fig. 11.6. It should be noted that not
all structured cells will have the usual symmetries of a square, as in Fig. 11.6(a) where there
is no reflexion symmetry from the diagonals. As a consequence the usual triangular region
ΓXM does not always represent the irreducible Brillouin zone and the square region ΓMXN
should be used instead. Also paths that cross the irreducible Brillouin zone have proven to yield
interesting effects namely along the path MX ′ for large circular holes [39].
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The subsequent asymptotic development considers small perturbations about the points
Γ, X and M so that the boundary conditions of u on the outer boundaries of the cell, namely
∂S1, read,

u|ξi=1 =±u|ξi=−1 and u,ξi|ξi=1 =±u,ξi|ξi=−1, (11.12)

where the +,− stand for periodic and anti-periodic conditions respectively: the standing waves
occur when these conditions are met. The conditions on ∂S2 are either of Dirichlet or Neumann
type. The theory that follows is similar for both boundary condition cases, but the latter one
is illustrated herein. Neumann boudary condition on the hole’s surface or equivalently electro-
magnetic waves in TE polarization yield,

∂u
∂n

= u,xini|∂S2 = 0. (11.13)

which in terms of the two-scales and ui(X,ξξξ ) become

U0,ξini = 0, (U0 f0,Xi +u1,ξi)ni = 0, (u1,Xi +u2,ξi)ni = 0. (11.14)

The solution of the leading order equation is by introducing the following separation of variables
u0 = f0(X)U0(ξξξ ;Ω0). It is obvious that f0(X), which represents the behaviour of the solution
in the long scale, is not set by the leading order equation and the resulting eigenvalue problem is
solved on the short-scale for Ω0 and U0 representing the standing wave frequencies and the as-
sociated cell’s vibration modes respectively. To solve the first order equation (11.10) we take the
integral over the cell of the product of equation (11.10) with U0 minus the product of equation
(11.9) with u1/ f0 and this yields Ω1 = 0. It then follows to solve for u1(X,ξξξ ) = f0,Xi(X)U1i(ξξξ )
where the vector U1 is found as in [40]. By invoking a similar solvability condition for the
second order equation we obtain a second order PDE for f0(X),

Ti j f0,XiX j +Ω2
2 f0 = 0 where,

Ti j =
ti j∫ ∫

SU2
0 dS

for i, j = 1,2 (11.15)

entirely on the long scale with the coefficients Ti j containing all the information of the cell’s
dynamical response and the tensor ti j represents dynamical averages of the properties of the
medium. For Neumann boundary conditions on ∂S2 its formulation reads,

tii =
∫ ∫

S
U2

0 dS+
∫ ∫

S
(U1i,ξiU0 −U1iU0,ξi)dS for i = 1 or 2, (11.16)

ti j =
∫ ∫

S
(U1 j,ξiU0 −U1 jU0,ξi)dS for i ̸= j. (11.17)

Note that there is no summation over repeated indexes for tii. The tensor depends on the bound-
ary conditions of the holes and has a different form if Dirichlet type conditions are applied on
∂S2.

The PDE for f0 has several uses, and can be verified by re-creating asymptotically the
dispersion curves for a perfect lattice system. One important result of equation (11.15) is its
use in the expansion of Ω namely in equation (11.8). In order to obtain Ω2 as a function of
the Bloch wavenumbers we use the Bloch boundary conditions on the cell to solve for f0(X) =
exp(iκ jX j/η), where κ j = K j − d j with d j = 0,π/2,−π/2 depending on the location in the
Brillouin zone. The asymptotic dispersion relation now reads,

Ω ∼ Ω0 +
Ti j

2Ω0
κiκ j. (11.18)
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Figure 11.7: The dispersion diagram for a doubly periodic array of square cells with circular inclusions, of radius
0.4, free at their inner boundaries shown for the irreducible Brillouin zone of Fig. 11.6. The dispersion curves
are shown in solid lines and the asymptotic solutions from the high frequency homogenization theory are shown in
dashed lines. Figure reproduced from Proceedings of the Royal Society [40].

Equation (11.18) yields the behaviour of the dispersion curves asymptotically around the stand-
ing wave frequencies that are naturally located at the edge points of the Brillouin zone. Fig.
11.8 illustrates the asymptotic dispersion curves for the first six dispersion bands of a square
cell geometry with circular holes.

An assumption in the development of equation (11.18) is that the standing wave frequen-
cies are isolated. But one can clearly see in Fig. 11.7 that this is not the case for third standing
wave frequency at point Γ as well as for the second standing wave frequency at point X . A small
alteration to the theory [40] enables the computation of the dispersion curves at such points by
setting,

u0 = f (l)0 (X)U (l)
0 (ξξξ ;Ω0) (11.19)

where we sum over the repeated superscripts (l). Proceeding as before, we multiply equation
(11.10) by U (m)

0 , substract u1((U
(m)
0,ξi

)ξi +Ω2
0U (m)

0 ) then integrate over the cell to obtain,(
∂

∂X j
A jml +Ω2

1Bml

)
f̂ (l)0 = 0, for m = 1,2, . . . , p (11.20)

Ω1 is not necessarily zero, and

A jml =
∫ ∫

S
(U (m)

0 U (l)
0,ξ j

−U (m)
0,ξ j

U (l)
0 )dS, Bml =

∫ ∫
U (l)

0 U (m)
0 dS. (11.21)
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There is now a system of coupled partial differential equations for the f (l)0 and, provided
Ω1 ̸= 0, the leading order behaviour of the dispersion curves near the Ω0 is now linear (these
then form Dirac cones).

For the perfect lattice, we set f (l)0 = f̂ (l)0 exp(iκ jX j/η) and obtain the following index
equations,

(i
κ j

η
A jml +Ω2

1Bml) f̂ (l)0 = 0, for m = 1,2, ...,p (11.22)

The system of equation (11.22) can be written simply as,

CF̂0 = 0, (11.23)

with Cll = Ω2
1Bll and Cml = iκ jA jml/η for l ̸= m. One must then solve for Ω2

1 =±√αi jκiκ j/η
when the determinant of C vanishes and insert the result in,

Ω ∼ Ω0 ±
1

2Ω0

√
αi jκiκ j. (11.24)

If the Ω1 are zero one must go to the next order.

11.2.1.1 Repeated eigenvalues: quadratic asymptotics

If Ω1 is zero, u1 = f (l)0,Xk
U (l)

1k
(we again sum over all repeated (l) superscripts) and we advance

to second order using (11.11). Taking the difference between the product of equation (11.11)
with U (m)

0 and u2(U0,ξiξi +Ω2
0U0) and then integrating over the elementary cell gives

f (l)0,XiXi

∫ ∫
SU (m)

0 U (l)
0 dS+ f (l)0,XkX j

∫ ∫
S(U

(m)
0 U (l)

1k,ξ j
−U (m)

0,ξ j
U (l)

1k
)dS

+Ω2
2 f (l)0

∫ ∫
SU (m)

0 U (l)
0 dS = 0, for m = 1,2, ..., p (11.25)

as a system of coupled PDEs. The above equation is presented more neatly as

f (l)0,XiXi
Aml + f (l)0,XkX j

Dk jml +Ω2
2 f0Bml = 0, for m = 1,2, ..., p. (11.26)

For the Bloch wave setting, using f (l)0 (X) = f̂ (l)0 exp(iκ jX j/η) we obtain the following system,(
−κiκi

η2 Aml −
κkκ j

η2 Dk jml +Ω2
2Bml

)
f̂ (l)0 = 0, for m = 1,2, ..., p (11.27)

and this determines the asymptotic dispersion curves.

11.2.1.2 The classical long wave zero frequency limit

The current theory simplifies if one enters the classical long wave, low frequency limit where
Ω2 ∼ O(ε2) as U0 becomes uniform, and without loss of generality is set to be unity, over the
elementary cell. The final equation is again (11.15) where the tensor ti j simplifies to

tii =
∫ ∫

S
dS+

∫ ∫
S
U1i,ξidS, ti j =

∫ ∫
S
U1 j,ξidS for i ̸= j (11.28)

(with no summation over repeated suffices in this equation) and Ti j = ti j/
∫ ∫

S dS.
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Figure 11.8: The dispersion diagrams for a doubly periodic array of square cells with split ring inclusions, free at
their inner boundaries shown for the irreducible Brillouin zone of Fig. 11.6. The dispersion curves are shown in
solid lines and the asymptotic solutions from the high frequency homogenization theory are shown in dashed lines.
Figure reproduced from Proceedings of the Royal Society [40].

11.2.2 Illustrations for Tranverse Electric Polarized Waves

Let us now turn to some illustrative examples. We present in Fig. 11.8 the TE polarization
waves for three types of SRR’s (Split Ring Resonator’s). Equation (11.15) represents the wave
propagation in the effective medium. It is noticable that the Ti j coefficients depend on the stand-
ing wave frequency and that T11 is not necessarily equal to T22 in order to yield an anisotropic
effective medium for each separate frequency. Near some of the standing wave frequencies the
anisotropy effects are very pronounced and well explained by the no longer elliptic equation
(11.15).

In the above equations U1i is a solution of,

U1 j,ξiξi = 0, (11.29)

with boundary conditions ( f0,Xi +u1,ξi)ni = 0 on the hole boundary. If the medium is homoge-
neous as it is in the illustrative examples herein, equation (11.29) is the same as that for U0, but
with different boundary conditions. The specific boundary conditions for U1 j are

U1 j,ξini =−n j for j = 1,2, (11.30)

where ni represent the normal vector components to the hole’s surface. The role of U1 is to
ensure Neumann boundary conditions hold and the tensor contains simple averages of inverse
permittivity and permeability supplemented by the correction term which takes into account the
boundary conditions at ∂S2. Equation (11.28) is the classical expression for the homogenised
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Figure 11.9: Cloaking in square arrays of SRRs with four holes: A source at frequency Ω = 2.8, located in
the center of a square metamaterial consisting of 64 SRRs shaped as in Fig. 11.8(b) produces a wave pattern
reminiscent of (a) concentric spherical field, (b) cloaking of a rectangular inclusion inside a slab of a metamaterial
consisting of 38 SRRs and (c) scattering of a plane wave from the same rectangular hole as the previous panel. (d)
Zoom in dispersion diagram of Fig. 11.8(b). Panels (e), (f) and (g) present isofrequency plots of the respective the
lower, middle and upper modes of the Dirac point. Figure reproduced from Proceedings of the Royal Society [40].

coefficient in a scalar wave equation with constant material properties; (11.29) is the well-
known annex problem of electrostatic type set on a periodic cell, see [4, 11], and also holds
for the homogenised vector Maxwell’s system, where U1 now has three components and i, j =
1,2,3 [41, 42, 43].

11.2.2.1 Cloaking in metamaterials

SRRs with 4 holes are now used and the dispersion diagrams are in Fig. 11.8 (b). The flat band
along the MΓ path is interesting for the fifth mode and we choose to illustrate cloaking effects
that occur here. In Fig. 11.9(a), we set an harmonic source at the corresponding frequency
Ω = 2.8 in an 8× 8 array of SRRs and observe a wave pattern of concentric spherical modes.
As can be seen in Figs. 11.9(b) and 11.9(c) a plane wave propagating at frequency Ω = 2.8
demonstrates perfect transmission through a slab composed of 38 SRRs but also cloaking of a
rectangular inclusion where no scattering is seen before or after the metamaterial slab. Panel (d)
of Fig. 11.9 shows the location in the band structure that is responsible for this effect. Note that
the frequency of excitation is just below the Dirac cone point located at Ω = 2.835 where the
group velocity is negative but also constant near that location of the Brillouin zone illustrated
through an isofrequency plot of lower mode of the Dirac point in Fig. 11.9(e). In constrast with
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the isotropic features of panel (e), those of panels (f) and (g) show ultra-flattened isofrequency
contours that relate to ultra-refraction, a regime more prone to omni-directivity than cloaking.
The asymptotic system of equations (11.20) describing the effective medium at the Dirac point
can be uncoupled to yield one same equation for all f ( j)

0 ’s,

f ( j)
0,XiXi

+0.7191Ω4
1 f (3)0 = 0 (11.31)

After some further analysis, the PDE for f (2)0 is responsible for the effects at the frequency
chosen Ω = 2.8.

11.2.2.2 Lensing via AANR and St Andrew’s cross in metamaterials

We observe all-angle-negative-refraction effect in metamaterials with SRRs with 8 holes. The
dispersion curves in Fig. 11.8(c) are interesting, as the second curve displays the hallmark of
an optical band for a photonic crystal (it has a negative group velocity around the Γ point).
However, this band is the upper edge of a low frequency stop band induced by the resonance
of a SRR, whereas the optical band of a PC results from multiple scattering, which thus arises
at higher frequencies. We are therefore in presence of a periodic structure behaving somewhat
as a composite intermediate between a metamaterial and a photonic crystal. One of the most
topical subjects in photonics is the so-called all-angle-negative- refraction (AANR), which was
first described in [46]. AANR allows one to focus light emitted by a point, onto an image,
even through a flat lens, provided that certain conditions for AANR are met, such as convex
isofrequency contours shrinking with frequency about a point in the Brillouin zone [49]. In Fig.
11.10, we show such an effect for a perfectly conducting photonic crystal (PC) in Fig. 11.10(a).
In order to achieve AANR, we choose a frequency on the first dispersion curve (acoustic band)
in Fig. 11.8(c), and we take its intersection with the light line Ω =| κ | along the XΓ path. This
means that we achieve negative group velocity for waves propagating along the XΓ direction
of the array, hence the rotation by an angle π/4 of every cell within the PC in panel (b) of Fig.
11.10. This is a standard trick in optics that has the effect of moving the origin of the light-line
dispersion to X as, relative to the PC, the Bloch wavenumber is along XΓ. This then creates
optical effects due to the interaction of the light-line with the acoustic branch, this would be
absent if Γ were the light-line origin.

The anisotropy of the effective material is reflected from coefficients T11 = −5.53 and
T22 = 0.2946. The same frequency of the first band is reachable at point N of the Brillouin
zone. By symmetry of the crystal, we would have T11 = 0.2946 and T22 =−5.53. The resultant
propagating waves would come from the superposition of the two effective media described
above. Fig. 11.10(b) illustrates this anisotropy as the source wave only propagates at the pre-
scribed directions.

11.2.3 Kirchoff Love Plates

HFH is by no means limited to the Helmholtz operator. HFH is here applied to flexural waves
in two dimensions [59] for which the governing equation is a fourth order equation

∇4u−Ω2u = 0; (11.32)

assuming constant material parameters. Such a thin plate can be subject to point, or line, con-
straints and these are common place in structural engineering.
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Figure 11.10: Lensing via AANR and St Andrew’s cross in square arrays of SRRs with eight holes: (a) A line
source at frequency Ω = 1.1375 located above a rectangular metamaterial consisting of of 90 SRRs as in Fig.
11.8(c) displays an image underneath (lensing); (b) A line source at frequency Ω = 1.25 located inside a square
metamaterial consisting of 49 SRRs as in Fig. 11.8(c) displays the dynamically induced anisotropy of the effective
medium; (c) Zoom in dispersion diagram of Fig. 11.8(c). Note that each cell in the arrays in (a) and (b) has been
rotated through an angle π/4. Figure reproduced from Proceedings of the Royal Society [40].
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Figure 11.11: For the two dimensional example we show the geometry of the doubly periodic simply supported
plate (the dots represent the simple supports) in panel (a) with the elementary cell shown by the dotted lines and
in (b) the irreducible Brillouin zone with the lettering for wavenumber positions shown. Figure reproduced from
Proceedings of the Royal Society [59].
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Figure 11.12: The dispersion diagram for a doubly periodic array of point simple supports shown for the irre-
ducible Brillouin zone of Fig. 11.11. The figure shows the dispersion curves as solid lines. As dashed lines, the
asymptotic solutions from the high frequency homogenization theory are shown. Figure reproduced from Proceed-
ings of the Royal Society [59]

In two dimensions, only a few examples of constrained plates are available in the liter-
ature: a grillage of line constraints as in [60] that is effectively two coupled one dimensional
problems, a periodic line array of point supports [61] raises the possibility of Rayleigh-Bloch
modes and for doubly periodic point supports there are exact solutions by [62] (simply sup-
ported points) and by [63] (clamped points); the simply supported case is accessible via Fourier
series and we choose this as an illustrative example that is of interest in its own right; it is shown
in figure 11.11(a). In particular the simply supported plate has a zero-frequency stop-band and
a non-trivial dispersion diagram. It is worth noting that classical homogenization is of no use
in this setting with a zero frequency stop band. Naturally waves passing through periodically
constrained plates have many similarities with those of photonics in optics.

We consider a double periodic array of points at x1 = 2n1, x2 = 2n2 where u = 0 (with the
first and second derivatives continuous) and so the elementary cell is one in |x1| < 1, |x2| < 1
with u = 0 at the origin (see Figure 11.11); Floquet-Bloch conditions are applied at the edges
of the cell.

Applying Bloch’s theorem and Fourier series the displacement is readily found [62] as

u(x) = exp(iκκκ ·x) ∑
n1,n2

exp(−iπN ·x)
[(κ1 −πn1)2 +(κ2 −πn2)2]2 −Ω2 , (11.33)

where N = (n1,n2), and enforcing the condition at the origin gives the dispersion relation

D(κ1,κ2,Ω) = ∑
n1,n2

1
[(πn1 −κ1)2 +(πn2 −κ2)2]2 −Ω2 = 0, (11.34)
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In this two dimensional example a Bloch wavenumber vector κκκ = (κ1,κ2) is used and
the dispersion relation can be characterised completely by considering the irreducible Brillouin
zone ΓXM shown in figure 11.11.

The dispersion diagram is shown in figure 11.12; The singularities of the summand in
equation (11.34) correspond to solutions within the cell satisfying the Bloch conditions at the
edges, in some cases these singular solutions also satisfy the conditions at the support and are
therefore true solutions to the problem, a similar situation occurs in the clamped case considered
using multipoles in [63]. Solid lines in figure 11.12 label curves that are branches of the disper-
sion relation, notable features are the zero-frequency stop-band and also crossings of branches
at the edges of the Brillouin zone. Branches of the dispersion relation that touch the edges of
the Brillouin zone singly fall into two categories, those with multiple modes emerging at a same
standing wave frequency (such as the lowest branch touching the left handside of the figure at
M) and those that are completely alone (such as the second lowest branch on the left at M).

The HFH theory can again be employed to find an effective PDE entirely upon the long-
scale that describes the behaviour local to the standing wave frequencies and the details are in
[59], the asymptotics from the effective PDE are shown in Fig. 11.12 as the dashed lines.

11.3 High-contrast homogenization

Periodic media offer a convenient tool in achieving control of electromagnetic waves, due to
their relative simplicity from the point of view of the manufacturing process, and due to the
possibility of using the Floquet-Bloch decomposition for the analysis of the spectrum of the
wave equation in such media. The latter issue has received a considerable amount of inter-
est in the mathematical community, in particular from the perspective of the inverse problem:
how to achieve a given spectrum and/or density of states for the wave operator with periodic
coefficients by designing an appropriate periodic structure? While the Floquet-Bloch decom-
position provides a transparent procedure for answering the direct question, it does not yield a
straightforward way of addressing the inverse question posed above.

One possibility for circumventing the difficulties associated with the inverse problem is
by viewing the given periodic structure as a high-contrast one, if this is possible under the val-
ues of the material parameters used. The idea of considering high-contrast composites within
the context of homogenization appeared first in the work by Allaire [16], which discussed the
application of the two-scale convergence technique (Nguetseng [8]) to classical homogeniza-
tion. A more detailed analysis of high-contrast composites, along with the derivation of an
explicit formula for the related spectrum, was carried out in a major study by Zhikov [18]. One
of the obvious advantages in using high-contrast composites, or viewing a given composite as
a high-contrast one, is in the mere existence of such formula for the spectrum. In the present
section we focus on the results of the analysis of Zhikov, and on some more recent results for
one-dimensional, layered, high-contrast periodic structures.

In order to get an as short as possible approach to the high-contrast theory, we consider
the equation of electromagnetic wave propagation in the transverse electric (TE) polarisation,
when the magnetic field has the form (0,0,H), in the presence of sources with spatial density
f (x) :

−div(εη)−1 (x/η)∇H(x) = ω2H(x)+ f (x), x ∈ Ω ⊂ R2, (11.35)

where we normalise the speed of light c to 1 for simplicity, which amounts to taking ε0µ0 = 1 in
section 11.3, and where the magnetic permeability is assumed to be equal to unity throughout
the medium (i.e. µ = µ0), and the function f (x) is assumed to vanish outside some set that
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has positive distance to the boundary of Ω. The inverse dielectric permittivity tensor (εη)−1(y)
is assumed in this section, for simplicity, to be a scalar, taking values ηγ I and I, respectively,
on [0,1]2-periodic open sets F0 and F1, such that F0 ∪F1 = R2. Here γ is a positive exponent
representing a “contrast” between material properties of the two components of the structure
that occupy the regions F0 and F1. In what follows we also assume that F0 ∩ [0,1]2 has a finite
distance to the boundary of the unit cell [0,1]2, so that the “soft” component F0 consists of
disjoint “inclusions”, spaced [0,1]2-periodically from each other, while the “stiff” component F1
is a connected subset of R2. The matrix εη represents the dielectric permittivity of the medium
at a given point, however the analysis and conclusions of this section are equally applicable to
acoustic wave propagation, which is the context we borrow the terms “soft” and “stiff” from.
The assumed relation between the values of dielectric permittivity εη (in acoustics, between the
“stiffnesses” ) on the two components of the structure is close to the setting of what has been
described as “arrow fibres” in the physics literature on electromagnetics, see e.g [64].

A simple dimensional analysis shows that if ω ∼ 1 then the soft inclusions are in reso-
nance with the overall field if and only if γ = 2, which is the case we focus on henceforth.

The above equation (11.35) describes the wave profile for a TE-wave in the cylindrical
domain Ω×R domain, and it is therefore supplied with the Neumann condition ∂H/∂n = 0 3

on the boundary of the domain and with the Sommerfeld radiation condition ∂H/∂ |x|− iωH =
o(|x|−1) as |x| → ∞.

In line with the previous sections, we apply the method of two-scale asymptotic expan-
sions to the above problem, seeking the solution H = H(x1,x2) = H(x) in the form (see also
(11.2 in Section 11.1.2)

H(x) = H0(x,x/η)+ηH1(x,x/η)+η2H2(x,x/η)+ ..., (11.36)

where the functions involved are [0,1]2-periodic with respect to the “fast” variable y = x/η .
Substituting the expansion (11.36) into the equation (11.35) and rearranging the terms in the
resulting expression in such a way that terms with equal powers of η are grouped together, we
obtain a sequence of recurrence relations for the functions Hk, k = 0,1, ..., from which they are
obtained sequentially. The first three of these equations can be transformed to the following
system of equations for the leading-order term H(0)(x,y) = u(x)+ v(x,y), x ∈ Ω, y ∈ [0,1]2 :

−divε−1
hom∇u(x) = ω2

(
u(x)+

∫
F0∩[0,1]2

v(x,y)dy
)
+ f (x), x ∈ Ω, (11.37)

−∆yv(x,y) = ω2(u(x)+ v(x,y)
)
+ f (x), y ∈ F0 ∩ [0,1]2, v(x,y) = 0, y ∈ F1 ∩ [0,1]2.

(11.38)
These equations are supplemented by the boundary conditions for the function u, of the same
kind as in the problems with finite η . For the sake of simplifying the analysis, we assume
that those inclusions that overlap with the boundary of Ω are substituted by the “main”, “stiff”
material, where (εη)−1 = I.

In the equation (11.37), the matrix εhom is the classical homogenization matrix for the
perforated medium εF1, see Section above. However, the properties of the system (11.37)–
(11.38) are rather different to those for the perforated-medium homogenised limit, described by

3Neumann boundary conditions i.e. infinite conducting walls is a good model for metals in microwaves, but
much less so in the visible range of frequencies wherein absorption by metals need be taken into account. Note
also that in the TM polarization case, when the electric field takes the form (0,0,E), our analysis applies mutatis
mutandis by interchanging the roles of ε and µ , H and E, and Neumann boundary conditions by Dirichlet ones.
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the equation −divε−1
hom∇u(x) = ω2u(x)+ f (x). As we shall see next, the two-scale structure of

(11.37)–(11.38) means that the description of the spectra of the problems (11.35) in the limit as
η → 0 diverges dramatically from the usual moderate-contrast scenario.

The true value of the above limiting procedure is revealed by the statement of the conver-
gence, as η → 0, of the spectra of the original problems to the spectrum of the limit problem
described above, see [18] and by observing that the spectrum of the system (11.37)–(11.37) is
evaluated easily as follows. We write an eigenfunction expansion for v(x,y) as a function of
y ∈ F0 ∩ [0,1]2 :

v(x,y) =
∞

∑
k=0

ck(x)ψk(y), (11.39)

where ψk are the (real-valued) eigenfunctions of the Dirichlet problem −∆ψk = λkψk, y ∈ F1 ∩
[0,1]2, arranged in the order of increasing eigenvalues λk, k = 0,1, ... and orthonormalised ac-
cording to the conditions

∫
F0∩[0,1]2 |ψk(y)|2dy = 1, k = 0,1, ..., and

∫
F0∩[0,1]2 ψk(y)ψl(y)dy = 0,

k ̸= l, k, l = 0,1, ... Substituting (11.39) into (11.38), we find the values for the coefficients ck,
which yield an explicit expression for v(x,y) in terms of the function u(x) :

v(x,y) =
(
ω2u(x)+ f (x)

) ∞

∑
k=0

(∫
F0∩[0,1]2

ψk(y)dy
)
(λk −ω2)−1ψk(y).

Finally, using the last expression in the first equation in (11.37) yields an equation for the
function u only:

−divε−1
hom∇u(x) = β (ω2)

(
u(x)+ω−2 f (x)), x ∈ Ω, (11.40)

where the function β , which first appeared in the work [18], is given by

β (ω2) = ω2
(

1+ω2
∞

∑
k=0

(∫
F0∩[0,1]2

ψk(y)dy
)2

(λk −ω2)−1
)
. (11.41)

Figure 11.13: The plot of the function β describing the spectrum of the problem (11.37)–(11.38) subject to the
boundary conditions. The stop bands for the problem in the whole space R2 are indicated by the red intervals of
the horizontal axis. The spectra of the problems (11.35) considered in the whole space converge, as η → 0, to the
closure of the complement of the union of the red intervals in the positive semiaxis.
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The equation (11.40) is supplemented by appropriate boundary conditions and/or condi-
tions at infinity, which are inherited from the η-dependent family, i.e. the Neumann condition
at the boundary points x ∈ ∂Ω and the radiation condition when |x| → ∞. Clearly, the spec-
trum of this limit problem consists of those values of ω2 for which β (ω2) is in the spectrum of
the operator generated by the differential expression −divε−1

hom∇ subject to the same boundary
conditions. For example, for the problem in the whole space R2 (describing the behaviour of
TE-waves in a 3D periodic structure that is invariant in one specified direction) this procedure
results in a band-gap spectrum shown in Fig. 11.13. The end points of each pass band are
found by a simple analysis of the formula (11.41): the right ends of each pass band are given by
those eigenvalues λk of the Dirichlet Laplacian on the inclusion F0 ∩ [0,1]2 that possess at least
one eigenfunction with non-zero integral over F0 ∩ [0,1]2 (otherwise the corresponding term in
(11.41) vanishes), while the left ends of the pass bands are given by solutions to the polynomial
equation of infinite order β (ω2) = 0. These points have a physical interpretation as eigenvalues
of the so-called electrostatic problem on the inclusion, see [23].

As in the case of classical, moderate-contrast, periodic media, the fact of spectral conver-
gence offers significant computational advantages over tackling the equations (11.35) directly:
as η → 0 the latter becomes increasingly demanding, while the former requires a single numer-
ical procedure that serves all η once the homogenised matrix εhom and several eigenvalues λk
are calculated. A significant new feature, however, as compared to the classical case, is the fact
of an infinite set of stop bands opening in the limit as η →, which are easily controlled by the
explicit description of the band endpoints. This immediately yields a host of applications of
the above results for the design of band-gap devices with prescribed behaviour in the frequency
interval of interest.

The theorem on spectral convergence for problems described by the equation (11.35) is
proved in [18] under the assumption of connectedness of the domain F1 occupied by the “stiff”
component, via a variant of the extension procedure from F1 to the whole of R2 for function
sequences whose energy scales as η−2 (or, equivalently, finite-energy sequences for the oper-
ator prior to the rescaling x/η = y). In the more recent works [24], [25], this assumption is
dropped in a theorem about spectral convergence for a general class of high-contrast operators,
via a version of the two-scale asymptotic analysis akin to (11.36), for the Floquet-Bloch com-
ponents of the resolvent of the original family of operators following the re-scaling x/η = y. In
particular, in [24] a one-dimensional high-contrast model is analysed, which in 3D corresponds
to a stack of dielectric layers aligned perpendicular to the direction of the magnetic field. Here
the procedure described above for the 2D grating fails to yield a satisfactory limit description as
η → 0, i.e. a description where the spectra of problems for finite η converge to the spectrum of
the limit problem described by the system (11.37)–(11.38) as η → 0. A more refined analysis
of the structure of the related η-dependent family results in a statement of convergence to the
set described by the inequalities

−1 ≤ 1
2
(α −β +1)

√
λ sin

(√
λ (α −β )

)
+ cos

(√
λ (α −β )

)
≤ 1. (11.42)

where α and β denote the end-points of the inclusion in the unit cell, i.e. F0∩ [0,1]2 = (α ,β )×
[0,1].

Similarly to the spectrum of the 2D high-contrast problem, described by the function β ,
the limit spectrum of the 1D problem has a band-gap structure, shown in Fig. 11.14, however
the description of the location of the bands is different in that it is no longer obtained from
the inequality β > 0, where β is the 1D analogue of (11.41). Importantly, the asymptotic
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behaviour of the density of states function as η → 0 is also very different in the two cases.
One can show that the family of resolvents for the problems (11.35) converges, up to a suitable
unitary transformation, to the resolvent of a certain operator whose spectrum is given exactly
by (11.42), see [25]. The rate of convergence is rigorously shown to be O(η), as is anticipated
by the expansion (11.36).

Figure 11.14: The square root of the limit spectrum for a 1D high-contrast periodic stack, in TE polarisation.
The oscillating solid line is the graph of the function f (ω) = cos(ω/2)−ω sin(ω/2)/4 in (11.42) with α = 1/4,
β = 3/4. The square root of the spectrum is the union of the intervals indicated by bold lines.

The above 1D result is generalised to the case of an oblique incidence of an electromag-
netic wave on the same 3D layered structure. Suppose that x2 is the coordinate across the stack.
Then, assuming for simplicity that the wave vector (κ,0,0) is parallel to the direction x1, it can
be shown that all three components of the magnetic field are non-vanishing, with the magnetic
component H = H3 satisfying the equation

−
(
(εη)−1(x/η)H ′(x)

)′
=
(

ω2 − (εη)−1(x/η)κ2
)

H(x),

subject to the same boundary conditions as before. The modified limit spectrum for this family
is given by those ω2 for which (cf. (11.42))

−1 ≤ 1
2
(α −β +1)

(
ω − κ2

ω

)
sin

(√
λ (α −β )

)
+ cos

(√
λ (α −β )

)
≤ 1, ω > 0, (11.43)

where, as before, α and β describe the “soft" inclusion layer in the unit cell, see [24]. The
set of ω described by the inequalities (11.43) is similar to that shown in Figure 11.14, the only
significant difference between the two cases being a low-frequency gap opening near ω = 0 for
(11.43).
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Figure 11.15: Superlens application of grating: (a) A time harmonic source at frequency 0.473 displays an image
through a square array of square inclusions; (b) Effective magnetism versus frequency using (11.44) for square
inclusions of relative permittivity 100 with sidelength a = 0.5d in matrix of relative permittivity 1 (grating pitch
d = 0.1); Negative values of the effective magnetism are in the frequency region [0.432,0.534].

11.4 Conclusion and further applications of grating theory

To conclude this chapter, we would like to stress that advances in homogenization theory over
the past forty years have been fuelled by research in composites [36]. The philosophy of the ne-
cessity for rigour expressed by Lord Rayleigh in 1892 concerning the Lorentz-Lorenz equations
(also known as Maxwell-Garnett formulae) can be viewed as the foundation act of homogeniza-
tion: ‘In the application of our results to the electric theory of light we contemplate a medium
interrupted by spherical, or cylindrical, obstacles, whose inductive capacity is different from
that of the undisturbed medium. On the other hand, the magnetic constant is supposed to re-
tain its value unbroken. This being so, the kinetic energy of the electric currents for the same
total flux is the same as if there were no obstacles, at least if we regard the wavelength as in-
finitely great.’ In this paper, John William Strutt, the third Lord Rayleigh [29], was able to
solve Laplace’s equation in two dimensions for rectangular arrays of cylinders, and in three-
dimensions for cubic lattices of spheres. The original proof of Lord Rayleigh suffered from
a conditionally convergent sum in order to compute the dipolar field in the array. Many au-
thors in the theoretical physics and applied mathematics communities proposed extensions of
Rayleigh’s method to avoid this drawback. Another limit of Rayleigh’s algorithm is that it does
not hold when the volume fraction of inclusions increases. So-called multipole methods have
been developed in conjunction with lattice sums in order to overcome such obstacles, see e.g.
[30] for a comprehensive review of these methods. In parallel to these developments, the quasi-
static limit for gratings has been the subject of intensive research, one might cite [31] and [32]
for important contributions in the 1980s, and [33] for a comprehensive review of the modern
theory of gratings, including a close inspection of homogenization limit.

Interestingly, in the pure mathematics community, Zhikov’s work on high-contrast ho-
mogenization [18] has had important applications in metamaterials, with the interpretation of
his homogenized equations in terms of effective magnetism first put forward by O’Brien and
Pendry [65], and then by Bouchitté and Felbacq [66], although these authors did not seem to
be aware at that time of Zhikov’s seminal paper [18]. In order to grasp the physical importance
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of (11.40)-(11.41), we consider the case of square inclusions of sidelength a = d/2, where d
is the pitch of a bi-periodic grating. The eigenfunctions are ψnm(y) = 2sin(nπy1)sin(nπy2) in
(11.41) and the corresponding eigenvalues are k2

nm = π2(n2 +m2). The right-hand side in the
homogenized equation (11.40) can then be interpreted in terms of effective magnetism:

µhom(k) = 1+
64a2

π4 ∑
(n,m)odd

k2

n2m2(k2
nm/a2 − k2)

. (11.44)

This function can be computed numerically for instance with Matlab and demonstrates that
negative values can be achieved for µhom near resonances, see Fig. 11.15(b). This allows for
superlensing via negative refraction, as shown in Fig. 11.15(a).

Finally, we would like to point out that high-order homogenization techniques [67] sug-
gest that most gratings display some artificial magnetism and chirality when the wavelength is
no longer much larger than the periodicity [68]. We hope we have convinced the reader that
there is a whole new range of physical effects in gratings which classical, high-frequency and
high-contrast homogenization theories can capture.
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