
HAL Id: hal-00768129
https://hal.science/hal-00768129

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Replication Mechanisms for a Distributed Time Series
Storage and Retrieval Service

Mugurel Ionut Andreica, Iosif Charles Legrand, Ramiro Voicu

To cite this version:
Mugurel Ionut Andreica, Iosif Charles Legrand, Ramiro Voicu. Replication Mechanisms for a Dis-
tributed Time Series Storage and Retrieval Service. Proceedings of the 8th IEEE/ACM International
Conference on Autonomic Computing (ICAC) (ISBN: 978-1-4503-0607-2), Jun 2011, Karlsruhe, Ger-
many. pp.161-162. �hal-00768129�

https://hal.science/hal-00768129
https://hal.archives-ouvertes.fr


Replication Mechanisms for a Distributed Time Series 
Storage and Retrieval Service 

Mugurel Ionu� Andreica 
Politehnica University of Bucharest 
Splaiul Independen�ei 313, sector 6, 

Bucharest, Romania 

mugurel.andreica@cs.pub.ro 

Iosif Charles Legrand, Ramiro Voicu 
California Institute of Technology 

1200 East California Boulevard, Pasadena, 

California, USA 

{iosif.legrand, ramiro.voicu}@cern.ch 
 

  

ABSTRACT 

In this paper we present the prototype architecture of a distributed 

service which stores and retrieves time series data, together with 

replication mechanisms employed in order to provide both 

reliability and load balancing. The entries of each time series are 

stored locally on the machines running the instances of the 

service. Each entry is eventually fully replicated on every service 

instance. Our replication mechanisms depend on whether there is 

only one service instance receiving each entry of a time series 

from a client or there may be multiple such instances. 

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems – distributed databases. 

General Terms 

Algorithms, Performance, Design, Reliability. 

Keywords 

Replication, Time series, Distributed service. 

1. INTRODUCTION 
Many data sets can be modeled as time series (i.e. in which every 

piece of data has an associated time stamp and their ordering 

according to time stamps is significant in some way), like 

monitoring data, packets sent on a communication channel, etc. 

Providing storage of and efficient access to such data sets is an 

important task. In this paper we present the architecture of a 

distributed service for fully replicated storage and retrieval of time 

series data, together with data replication mechanisms. 

2. SERVICE ARCHITECTURE 
Our time series storage and retrieval service consists of multiple 

service instances, running on multiple machines. Each instance 

runs independently of the other instances and provides the same 

functionality as all the others. Each instance stores the entries of 

each time series on its local hard-drive(s). The entries of each time 

series (data and index) are stored in one or more binary files (with 

random access capabilities). A file stores data related to a single 

time series (data or index entries). Each time series has a unique 

identifier (tsid). General information about each time series 

(identifier, set of file names and numbers, number of data entries, 

number of index entries at each level, current index entries at each 

indexing level, etc.) is stored by each instance in main memory 

(RAM). Periodically, the general information is check-pointed on 

the local hard drive(s), in order to be able to stop the instance and 

restart it later (possibly on a different machine), if necessary. 

Each entry of a time series consists of a pair (timestamp, value). It 

is not required for the values of all the entries of a time series to 

have the same size (thus, the value field may be anything), but, in 

case the size of the value field may be variable, the size of the 

field must be encoded explicitly. On the other hand, all the 

timestamps have the same size. The (data and index) entries of a 

time series are numbered with consecutive numbers, starting from 

0 (this number is the position of an entry). The positions of the 

data entries correspond to the order in which the entries are added 

to the time series (and, as we will see later, they may be different 

on different instances) and not to the order of their timestamps 

(the same holds for index entries). The numbering is relative to a 

time series and continues over multiple data or index files (each 

file stores entries numbered consecutively). 

Each instance provides to the clients the same API, through 

which, at any time, a client may create a new time series, may 

insert one or more consecutive entries at the end of an existing 

time series (not necessarily in increasing order of timestamps) or 

may query a time series. Common time series queries are 

similarity search queries (e.g. [1, 3]). We currently consider only 

two simpler types of queries: 

1) retrieve all the entries of a given time series whose timestamps 

are between t1 and t2 (inclusive), and 

2) retrieve all the entries of a given time series between positions 

p1 and p2 (inclusive) 

Both types of queries may take extra options, like: 

a) return anything only if the number of entries between t1 and t2 

(p1 and p2) is at least equal to vmin 

b) return the entries sorted according to timestamp or position 

Periodically, the instances synchronize their data between them 

(thus obtaining full data replication). The service instances are 

interconnected in a (peer-to-peer) service overlay and each 

instance interacts only with its overlay neighbors. The design of 

such an overlay is outside the scope of this paper. The prototype 

service was implemented in Java and we used Java RMI for 

communication between a client and a service instance and 

between two service instances. 

3. REPLICATION MECHANISMS 
Let’s consider a time series tsid. Entries of this time series are 

generated periodically and added to the time series storage and 

retrieval service by a client. Let’s assume that this client always 

uses the same service instance for adding new entries to the time 
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series. In this case, each service instance may employ a technique 

we call prefix replication. Periodically, each service instance S 

asks from its neighbors for summary information about all the 

time series they store (for now, we are interested only in the time 

series identifier tsid and num_entries(X,tsid)=the number of 

entries of the series tsid stored by the neighbor X). After receiving 

all the answers (ignoring answers which may have timed out), S 

creates locally all the time series whose identifiers were not 

known to S previously. Afterwards, S considers each time series 

tsid. Let max_num_entries(tsid)=max{num_entries(X,tsid) | X is a 

neighbor of S}. While num_entries(S,tsid)< 

max_num_entries(tsid), S selects a neighbor X such that 

num_entries(X)>num_entries(S) and asks from it all the entries 

between the positions p1=num_entries(S,tsid) and 

p2=min{num_entries(S,tsid)+K, max_num_entries(tsid)}. Here, K 

is used as an upper bound for the maximum number of entries 

which are requested at the same time. All the entries received 

from the neighbor X (in ascending order of their position) are 

added by S at the end of its local copy of the time series tsid (also 

updating the appropriate indices). We leave open the fact whether 

this mechanism should consider the time series sequentially or 

may split them across multiple threads (and we also leave open 

the mechanism for splitting over multiple threads, in case this 

option is chosen). Note that because all the entries are inserted 

into the system through only one service instance SI, they will be 

propagated to the other instances in the same order in which they 

were inserted at SI. Because of this, it is correct to assume that, if 

num_entries(S,tsid)<num_entries(X,tsid), then the first 

num_entries(S,tsid) entries of the local copy of tsid stored by X 

are identical to the ones of the local copy of S. 

Let’s assume now that a client may use multiple instances for 

inserting the entries of a time series tsid (and the same entry may 

even be inserted by the client at multiple instances). In this case, 

our previous assumption that any two service instances have 

common prefixes of the same time series fails. After asking each 

neighbor for summary information regarding all the time series, 

including the tmax(*,*) and tmin(*,*) values defined below), a 

service instance S will use a sliding window (which will slide 

circularly) [t1(S,tsid),t2(S,tsid)] for each time series tsid. Let 

tmax(S,tsid)=the maximum timestamp of an entry of the time 

series tsid stored by S (or -� if S currently stores no entry of tsid) 

and let tnmax(S,tsid)= max{tmax(S,tsid), max{tmax(X,tsid) | X is a 

neighbor of S}}. Let tmin(S,tsid) and tnmin(S,tsid) have the same 

meaning, except that we replace maximum by minimum (and 

tmin(S,tsid)=+� if S currently stores no entry of tsid). If 

tnmax(S,tsid)>tmax(S,tsid) then we set the sliding window to 

[t1(S,tsid)=tnmax(S,tsid)-W, t2(S,tsid)=tnmax(S,tsid)], where W is 

a predefined window size (in terms of timestamp intervals), which 

should ensure that not too many entries are located in such a time 

window; otherwise, we set t2(S,tsid)=t1(S,tsid) and then 

t1(S,tsid)=t2(S,tsid)-W (if we get t2(S,tsid)<tnmin(S,tsid) then we 

set t1(S,tsid)=tnmax(S,tsid)-W and t2(S,tsid)=tnmax(S,tsid)). 

First, S queries itself and obtains the set of all of the entries of the 

time series tsid with timestamps between t1(S,tsid) and t2(S,tsid) 

currently stored by S, sorted according to timestamp (denoted by 

CSE(S,tsid,t1(S,tsid),t2(S,tsid))). Let num be the number of such 

entries. Then, for each neighbor X, S asks the same query (for the 

time interval [t1(S,tsid),t2(S,tsid)]), except that it instructs the 

neighbor to return nothing if the neighbor’s result does not have 

more than num’ entries (num’=0 if we care about correct full 

replication; num’=num if we want to save bandwidth). The 

returned entries (if any) are merged with CSE(S,tsid,t1(S,tsid), 

t2(S,tsid)). If new entries not stored by S are discovered, they are 

added at the end of S’s local copy of tsid and inserted into 

CSE(S,tsid,t1(S,tsid),t2(S,tsid)). After updating the entries in the 

interval [t1(S,tsid), t2(S,tsid)], we modify the endpoints, by 

decreasing them both by W (if t2(S,tsid) becomes smaller than 

tnmin(S,tsid) then we set t1(S,tsid)=tnmax(S,tsid)-W and 

t2(S,tsid)=tnmax(S,tsid)). The way these operations are split over 

potentially multiple threads (or even the order in which they are 

performed by the same thread, e.g. one full time series at a time, 

or one interval from each series at a time) or over multiple 

replication periods (e.g. how many times we are allowed to slide 

the time window during one period) is not specified. Note that, 

unlike the prefix replication case, when, except for periodic 

summaries, neighbors were queried only when we were sure that S 

was missing some entries, this process must be performed 

continuously (as a newly added entry may have any timestamp). 

The above process may be optimized by forcing an interval of 

interest, i.e. stating that we only care for the entries whose 

timestamps are between TA and TB (by setting tnmax(S,tsid)= 

min{tnmax(S,tsid),TB} and tnmin(S,tsid)=max{tnmin(S,tsid),TA}). 

Fig. 1 (a-b) illustrates the two multicast-pull-based [2] replication 

mechanisms described in this section. Solid and dashed arrows 

denote 2 different entries. Numbers on the arrows denote the 

replication (synchronization) round at which each service instance 

receives the corresponding entry. Links between instances denote 

overlay connections. We performed a prefix replication test with 3 

service instances (A and C in Geneva, B in Amsterdam). A client 

(running on the same machine as A) continuously inserted entries 

(with real values) of one time series for 4 minutes using instance 

A. Instance B got its data from A, and C obtained its data from A 

and B. A was able to write data at a speed of approx. 600,000 

entries/sec. C replicated data at about 250,000 entries/sec during 

the first 4 minutes and at about 300,000 entries/sec after no more 

entries were written to A. B was able to replicate data at a speed of 

approx. 90,000 entries/sec during the first 4 minutes and 110,000 

entries/sec afterwards. We used K=25,000. The replication speed 

difference between B and C is caused by different RTTs to A. 

a)   b)  

Figure 1. a) Prefix replication. b) General case replication. 
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