
HAL Id: hal-00768129
https://hal.science/hal-00768129

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Replication Mechanisms for a Distributed Time Series
Storage and Retrieval Service

Mugurel Ionut Andreica, Iosif Charles Legrand, Ramiro Voicu

To cite this version:
Mugurel Ionut Andreica, Iosif Charles Legrand, Ramiro Voicu. Replication Mechanisms for a Dis-
tributed Time Series Storage and Retrieval Service. Proceedings of the 8th IEEE/ACM International
Conference on Autonomic Computing (ICAC) (ISBN: 978-1-4503-0607-2), Jun 2011, Karlsruhe, Ger-
many. pp.161-162. �hal-00768129�

https://hal.science/hal-00768129
https://hal.archives-ouvertes.fr

Replication Mechanisms for a Distributed Time Series
Storage and Retrieval Service

Mugurel Ionu� Andreica
Politehnica University of Bucharest
Splaiul Independen�ei 313, sector 6,

Bucharest, Romania

mugurel.andreica@cs.pub.ro

Iosif Charles Legrand, Ramiro Voicu
California Institute of Technology

1200 East California Boulevard, Pasadena,

California, USA

{iosif.legrand, ramiro.voicu}@cern.ch

ABSTRACT

In this paper we present the prototype architecture of a distributed

service which stores and retrieves time series data, together with

replication mechanisms employed in order to provide both

reliability and load balancing. The entries of each time series are

stored locally on the machines running the instances of the

service. Each entry is eventually fully replicated on every service

instance. Our replication mechanisms depend on whether there is

only one service instance receiving each entry of a time series

from a client or there may be multiple such instances.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems – distributed databases.

General Terms

Algorithms, Performance, Design, Reliability.

Keywords

Replication, Time series, Distributed service.

1. INTRODUCTION
Many data sets can be modeled as time series (i.e. in which every

piece of data has an associated time stamp and their ordering

according to time stamps is significant in some way), like

monitoring data, packets sent on a communication channel, etc.

Providing storage of and efficient access to such data sets is an

important task. In this paper we present the architecture of a

distributed service for fully replicated storage and retrieval of time

series data, together with data replication mechanisms.

2. SERVICE ARCHITECTURE
Our time series storage and retrieval service consists of multiple

service instances, running on multiple machines. Each instance

runs independently of the other instances and provides the same

functionality as all the others. Each instance stores the entries of

each time series on its local hard-drive(s). The entries of each time

series (data and index) are stored in one or more binary files (with

random access capabilities). A file stores data related to a single

time series (data or index entries). Each time series has a unique

identifier (tsid). General information about each time series

(identifier, set of file names and numbers, number of data entries,

number of index entries at each level, current index entries at each

indexing level, etc.) is stored by each instance in main memory

(RAM). Periodically, the general information is check-pointed on

the local hard drive(s), in order to be able to stop the instance and

restart it later (possibly on a different machine), if necessary.

Each entry of a time series consists of a pair (timestamp, value). It

is not required for the values of all the entries of a time series to

have the same size (thus, the value field may be anything), but, in

case the size of the value field may be variable, the size of the

field must be encoded explicitly. On the other hand, all the

timestamps have the same size. The (data and index) entries of a

time series are numbered with consecutive numbers, starting from

0 (this number is the position of an entry). The positions of the

data entries correspond to the order in which the entries are added

to the time series (and, as we will see later, they may be different

on different instances) and not to the order of their timestamps

(the same holds for index entries). The numbering is relative to a

time series and continues over multiple data or index files (each

file stores entries numbered consecutively).

Each instance provides to the clients the same API, through

which, at any time, a client may create a new time series, may

insert one or more consecutive entries at the end of an existing

time series (not necessarily in increasing order of timestamps) or

may query a time series. Common time series queries are

similarity search queries (e.g. [1, 3]). We currently consider only

two simpler types of queries:

1) retrieve all the entries of a given time series whose timestamps

are between t1 and t2 (inclusive), and

2) retrieve all the entries of a given time series between positions

p1 and p2 (inclusive)

Both types of queries may take extra options, like:

a) return anything only if the number of entries between t1 and t2

(p1 and p2) is at least equal to vmin

b) return the entries sorted according to timestamp or position

Periodically, the instances synchronize their data between them

(thus obtaining full data replication). The service instances are

interconnected in a (peer-to-peer) service overlay and each

instance interacts only with its overlay neighbors. The design of

such an overlay is outside the scope of this paper. The prototype

service was implemented in Java and we used Java RMI for

communication between a client and a service instance and

between two service instances.

3. REPLICATION MECHANISMS
Let’s consider a time series tsid. Entries of this time series are

generated periodically and added to the time series storage and

retrieval service by a client. Let’s assume that this client always

uses the same service instance for adding new entries to the time

Copyright is held by the author/owner(s).

ICAC’11, June 14-18, 2011, Karlsruhe, Germany.

ACM 978-1-4503-0607-2/11/06.

series. In this case, each service instance may employ a technique

we call prefix replication. Periodically, each service instance S

asks from its neighbors for summary information about all the

time series they store (for now, we are interested only in the time

series identifier tsid and num_entries(X,tsid)=the number of

entries of the series tsid stored by the neighbor X). After receiving

all the answers (ignoring answers which may have timed out), S

creates locally all the time series whose identifiers were not

known to S previously. Afterwards, S considers each time series

tsid. Let max_num_entries(tsid)=max{num_entries(X,tsid) | X is a

neighbor of S}. While num_entries(S,tsid)<

max_num_entries(tsid), S selects a neighbor X such that

num_entries(X)>num_entries(S) and asks from it all the entries

between the positions p1=num_entries(S,tsid) and

p2=min{num_entries(S,tsid)+K, max_num_entries(tsid)}. Here, K

is used as an upper bound for the maximum number of entries

which are requested at the same time. All the entries received

from the neighbor X (in ascending order of their position) are

added by S at the end of its local copy of the time series tsid (also

updating the appropriate indices). We leave open the fact whether

this mechanism should consider the time series sequentially or

may split them across multiple threads (and we also leave open

the mechanism for splitting over multiple threads, in case this

option is chosen). Note that because all the entries are inserted

into the system through only one service instance SI, they will be

propagated to the other instances in the same order in which they

were inserted at SI. Because of this, it is correct to assume that, if

num_entries(S,tsid)<num_entries(X,tsid), then the first

num_entries(S,tsid) entries of the local copy of tsid stored by X

are identical to the ones of the local copy of S.

Let’s assume now that a client may use multiple instances for

inserting the entries of a time series tsid (and the same entry may

even be inserted by the client at multiple instances). In this case,

our previous assumption that any two service instances have

common prefixes of the same time series fails. After asking each

neighbor for summary information regarding all the time series,

including the tmax(*,*) and tmin(*,*) values defined below), a

service instance S will use a sliding window (which will slide

circularly) [t1(S,tsid),t2(S,tsid)] for each time series tsid. Let

tmax(S,tsid)=the maximum timestamp of an entry of the time

series tsid stored by S (or -� if S currently stores no entry of tsid)

and let tnmax(S,tsid)= max{tmax(S,tsid), max{tmax(X,tsid) | X is a

neighbor of S}}. Let tmin(S,tsid) and tnmin(S,tsid) have the same

meaning, except that we replace maximum by minimum (and

tmin(S,tsid)=+� if S currently stores no entry of tsid). If

tnmax(S,tsid)>tmax(S,tsid) then we set the sliding window to

[t1(S,tsid)=tnmax(S,tsid)-W, t2(S,tsid)=tnmax(S,tsid)], where W is

a predefined window size (in terms of timestamp intervals), which

should ensure that not too many entries are located in such a time

window; otherwise, we set t2(S,tsid)=t1(S,tsid) and then

t1(S,tsid)=t2(S,tsid)-W (if we get t2(S,tsid)<tnmin(S,tsid) then we

set t1(S,tsid)=tnmax(S,tsid)-W and t2(S,tsid)=tnmax(S,tsid)).

First, S queries itself and obtains the set of all of the entries of the

time series tsid with timestamps between t1(S,tsid) and t2(S,tsid)

currently stored by S, sorted according to timestamp (denoted by

CSE(S,tsid,t1(S,tsid),t2(S,tsid))). Let num be the number of such

entries. Then, for each neighbor X, S asks the same query (for the

time interval [t1(S,tsid),t2(S,tsid)]), except that it instructs the

neighbor to return nothing if the neighbor’s result does not have

more than num’ entries (num’=0 if we care about correct full

replication; num’=num if we want to save bandwidth). The

returned entries (if any) are merged with CSE(S,tsid,t1(S,tsid),

t2(S,tsid)). If new entries not stored by S are discovered, they are

added at the end of S’s local copy of tsid and inserted into

CSE(S,tsid,t1(S,tsid),t2(S,tsid)). After updating the entries in the

interval [t1(S,tsid), t2(S,tsid)], we modify the endpoints, by

decreasing them both by W (if t2(S,tsid) becomes smaller than

tnmin(S,tsid) then we set t1(S,tsid)=tnmax(S,tsid)-W and

t2(S,tsid)=tnmax(S,tsid)). The way these operations are split over

potentially multiple threads (or even the order in which they are

performed by the same thread, e.g. one full time series at a time,

or one interval from each series at a time) or over multiple

replication periods (e.g. how many times we are allowed to slide

the time window during one period) is not specified. Note that,

unlike the prefix replication case, when, except for periodic

summaries, neighbors were queried only when we were sure that S

was missing some entries, this process must be performed

continuously (as a newly added entry may have any timestamp).

The above process may be optimized by forcing an interval of

interest, i.e. stating that we only care for the entries whose

timestamps are between TA and TB (by setting tnmax(S,tsid)=

min{tnmax(S,tsid),TB} and tnmin(S,tsid)=max{tnmin(S,tsid),TA}).

Fig. 1 (a-b) illustrates the two multicast-pull-based [2] replication

mechanisms described in this section. Solid and dashed arrows

denote 2 different entries. Numbers on the arrows denote the

replication (synchronization) round at which each service instance

receives the corresponding entry. Links between instances denote

overlay connections. We performed a prefix replication test with 3

service instances (A and C in Geneva, B in Amsterdam). A client

(running on the same machine as A) continuously inserted entries

(with real values) of one time series for 4 minutes using instance

A. Instance B got its data from A, and C obtained its data from A

and B. A was able to write data at a speed of approx. 600,000

entries/sec. C replicated data at about 250,000 entries/sec during

the first 4 minutes and at about 300,000 entries/sec after no more

entries were written to A. B was able to replicate data at a speed of

approx. 90,000 entries/sec during the first 4 minutes and 110,000

entries/sec afterwards. We used K=25,000. The replication speed

difference between B and C is caused by different RTTs to A.

a) b)

Figure 1. a) Prefix replication. b) General case replication.

4. ACKNOWLEDGEMENTS
The work presented in this paper has been partially supported by

CNCS-UEFISCDI under research grants ID_1679/2008 (contract

no. 736/2009) and PD_240/2010 (contract no. 33/28.07.2010).

5. REFERENCES
[1] Assent, I., Krieger, R., Afschari, F., and Seidl, T. 2008. The

TS-tree: Efficient Time Series Search and Retrieval. In Proc.

11th Intl. Conf. on Extending Database Tech., 252-263.

[2] Pruhs, K. and Uthaisombut, P. 2005. A Comparison of

Multicast Pull Models. In Algorithmica, vol. 42, 289-307.

[3] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and

Keogh, E. 2003. Indexing Multi-dimensional Time-series

with Support for Multiple Distance Measures. In: Proc. 9th

Intl. Conf. on Know. Discovery and Data Mining, 216-225.

