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Abstract

In the framework of fully cooperative multi-agent systems, independent (non-communicative) agents that

learn by reinforcement must overcome several difficulties to manage to coordinate. This paper identifies

several challenges responsible for the non-coordination of independent agents: Pareto-selection, non-

stationarity, stochasticity, alter-exploration and shadowed equilibria. A selection of multi-agent domains

is classified according to those challenges: matrix games, Boutilier’s coordination game, predators

pursuit domains and a special multi-state game. Moreover the performance of a range of algorithms for

independent reinforcement learners is evaluated empirically. Those algorithms are Q-learning variants:

decentralized Q-learning, distributed Q-learning, hysteretic Q-learning, recursive FMQ and WoLF PHC.

An overview of the learning algorithms’ strengths and weaknesses against each challenge concludes the

paper and can serve as a basis for choosing the appropriate algorithm for a new domain. Furthermore, the

distilled challenges may assist in the design of new learning algorithms that overcome these problems and

achieve higher performance in multi-agent applications.

1 Introduction

Over the last decade, many approaches are concerned with the extension of reinforcement learning (RL)

to multi-agent systems (MAS) (Tuyls & Nowé, 2005; Dowling, Cunningham, Curran, & Cahill, 2006;

Busoniu, Babuska, & De Schutter, 2008). Adopting a decentralized point of view offers several potential

advantages such as speed-up, scalability and robustness (Stone & Veloso, 2000). In addition, RL methods

do not need any a priori knowledge about the dynamics of the environment, which can be stochastic and

non linear. A RL agent learns by trial-and-error with its environment. The agent receives a scalar reward

signal called reinforcement as performance feedback. RL methods rely on dynamic programming and

have been studied extensively in the single-agent framework, where well-understood algorithms with

good convergence properties are available (Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998).

By using RL in MAS, we could get the best of both methods: autonomous and adaptative agents that can

learn to resolve complex problems in a decentralized way.

Unfortunately, there are still many challenging issues in applying RL to MAS (Yang & Gu, 2004).

First, one difficulty is the loss of theoretical guarantees. Indeed convergence hypotheses of the single-

agent framework frequently become invalid in multiagent environments. For instance, the presence of

multiple concurrent learners makes the environment non-stationary from a single agent’s perspective,

which is a commonly cited cause of difficulties in multiagent learning systems (Bowling & Veloso, 2000;

Banerjee, Sen, & Peng, 2004; Abdallah & Lesser, 2008). Another challenge is the difficulty of defining a

good learning goal for the multiple RL agents (Busoniu et al., 2008). The matter of the communication
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between agents is also an important point: even if the use of communication can reduce some undesirable

effects of locality in MAS (Mataric, 1998), exchanged information must be relevant to be efficient (Tan,

1993; Balch & Arkin, 1994). Finally, a fundamental issue faced by agents that work together is how to

efficiently coordinate themselves such that a coherent joint behavior results (Fulda & Ventura, 2007).

Despite these difficulties, several successful applications of decentralized RL have been reported,

like the control of a robotic manipulator (Busoniu, Babuska, & Schutter, 2006), multi-robot cooperative

transportation tasks (Wang & de Silva, 2008) or urban traffic control (Kuyer, Whiteson, Bakker, &

Vlassis, 2008). We have an interest in practical applications in robotics, where multiple cooperative

robots are able to complete tasks more quickly and reliably than one robot alone. We especially focus on

learning algorithms in fully-cooperative MAS. In such environments, the agents share common interests

and the same reward function; the individual satisfaction is also the satisfaction of the group. The learning

goal is thus well defined as maximizing the common discounted return. We focus on non-communicative

agents called independent learners (ILs) that are unable to observe the actions of the other agents (Claus

& Boutilier, 1998). This choice is particularly pertinent given our objective of robotic applications with

numerous agents, where the assumption of joint action observability is hard to satisfy.

Various RL algorithms have been proposed in the literature for ILs and fully-cooperative MAS. Most

of these algorithms were designed for specific tasks. However, in practice, their performances can greatly

vary between successful and unsuccessful coordination of the agents. Moreover, the literature does not

supply cross comparison between these methods. So an explanation of why and when these algorithms

are able to work effectively and how they may prevent coordination issues is lacking.

This paper contributes to analyse the underlying conditions that lead each algorithm to address

some coordination issues. We detail five problems responsible of the non-coordination of ILs in fully-

cooperative MAS. Then we provide a comprehensive review of RL algorithms for ILs in fully-cooperative

games from the viewpoint of these problems. A uniform notation is proposed that stresses common

points between some of these methods. We also provide an empirical comparison through applications to

a variety of non-trivial test environments designed to demonstrate the ability of the different approaches.

Results allow us to analyze the strengths and weaknesses of reviewed algorithms according to properties

of the environment and coordination problems. The analysis presented in this paper may be used as a tool

to choose appropriate methods to specific tasks and to facilitate the development of new algorithms in

fully-cooperative games.

This paper is organized as follows. Necessary background is given in Section 2. Section 3 addresses

the ILs coordination problems, and Section 4 reviews RL algorithms based on Q-learning for ILs in fully-

cooperative games. Section 5 presents experimental results and an analysis versus coordination problems

of the different approaches and Section 6 concludes the paper.

2 Background

In this section, we introduce some background materials that will be used throughout the paper.

2.1 Fully cooperative Markov games

Markov games1 are the foundation for much of the research in multi-agent reinforcement learning. Markov

games are a superset of Markov decision processes and matrix games, including both multiple agents and

multiple states.

Definition 1 A Markov game (Shapley, 1953) is defined as a tuple

<m, S, A1, ..., Am, T, R1, ..., Rm > where :

1Markov games are also called stochastic games, but we use the term Markov games to avoid confusion with stochastic

(non-deterministic) Markov games.
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• m is the number of agents (or players);

• S is the finite set of states;

• Ai is the finite set of actions available to the agent i (and A=A1 × ...×Am the joint action set);

• T : S ×A× S 7→ [0; 1] is the transition function such that ∀s ∈ S, ∀a ∈A,
∑

s′∈S T (s, a, s
′) = 1;

• Ri : S ×A 7→ R the reward function for agent i.

In a Markov game, all agents are supposed to observe the complete state s. The transition and reward

functions depend on the joint action. The transition function T gives the probability that action a in state

s at time step t will lead to state s′ at step t+ 1:

P (st+1 = s′|at = a, st = s) = T (s, a, s′). (1)

Note that joint actions and sets of joint action are typeset in bold throughout the paper e.g., a and A.

If all agents receive the same rewards (R1 = ...=Rm =R) the Markov game is fully-cooperative2: a

best-interest action of one agent is also a best-interest action of every agent.

2.2 Individual and joint policies

Definition 2 An individual policy (or strategy) πi : S ×Ai 7→ [0; 1] for an agent i specifies a probabil-

ity distribution over actions i.e., ∀ai ∈Ai P (ai,t = ai|st = s) = πi(s, ai). The set of possible policies for

the agent i is noted ∆(S, Ai).

Let π be the joint strategy of all the agents and π−i the joint strategy of all the agents except agent i.

We shall use the notation 〈πi, π−i〉 to refer to the joint strategy where agent i follows πi while the other

agents follow their policy from π−i.

2.3 Pareto-optimal Nash equilibrium

First, we define for each state s the long-term expected gain for agent i, that is the expected sum of future

rewards when all the agents follow π from state s at time t:

Ui,π(s) = Eπ

{

∞
∑

k=0

γkri,t+k+1|st = s

}

(2)

where γ ∈ [0; 1[ is a discount factor and ri,t is player i’s payoff at time t.

From a game-theoretic point of view, two common concepts of equilibrium are used to define solutions

in games. The first one is called Nash equilibrium (Nash, 1950; Osborne & Rubinstein, 1994).

Definition 3 A joint policy π
∗ defines a Nash equilibrium in a Markov game iff, for each agent i:

∀πi ∈∆(S, Ai), ∀s ∈ S, U
i,〈π∗

i
,π∗

−i〉
(s)≥ U

i,〈πi,π
∗

−i〉
(s). (3)

Thus, no agent can improve its long-term gain by unilaterally deviating from a Nash equilibrium. A

Markov game can have more than one Nash equilibrium. However, a Nash equilibrium is not always the

best group solution. For this the concept of Pareto-optimality is a useful.

Definition 4 A joint policy π̂ Pareto-dominates another joint policy π, written π̂ > π, iff in all states:

∀i, ∀s ∈ S, Ui,π̂(s)≥ Ui,π(s) and ∃j, ∃s ∈ S, Uj,π̂(s)> Uj,π(s). (4)

Definition 5 If a joint policy π̂
∗

is not Pareto-dominated by any other joint strategy, then π̂
∗

is Pareto-

optimal.

2A fully-cooperative Markov game is also called an identical payoff stochastic game (IPSG) (Peshkin, Kim, Meuleau,

& Kaelbling, 2000) or a multi-agent markov decision process (MMDP) (Boutilier, 1999).
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(a) Climbing game (b) Penalty game

Agent 2

a b c

a 11 -30 0

Agent 1 b -30 7 6

c 0 0 5

Agent 2

a b c

a 10 0 k

Agent 1 b 0 2 0

c k 0 10

Figure 1 The climbing and penalty games (Claus & Boutilier, 1998) are fully-cooperative matrix games. Each agent

chooses between three actions a, b and c. Both agents receive the payoff written in the corresponding cell.

So a Pareto-optimal solution is one in which no agent’s expected gain can be improved upon without

decreasing the expected gain of any other agent. There are many examples of general-sum games where

a Pareto-optimal solution is not a Nash equilibrium and vice-versa (for example, the prisoner’s dilemma).

However, in fully-cooperative games, every Pareto-optimal solution is also a Nash equilibrium as a

corollary of the definition. There is no other joint strategy that delivers a higher payoff to any agent,

hence nothing can be gained from unilateral deviation either.

A good way to understand these concepts is to use simple matrix games. Matrix games can be seen

as single-state Markov games. Matrix games are useful to put cooperation situations in a nutshell. For

example, the matrix game in Figure 1a has two Nash equilibria corresponding to the joint strategies 〈a, a〉

and 〈b, b〉. The joint strategy 〈a, a〉 defines the only Pareto-optimal Nash equilibrium.

2.4 Summary

In this paper, we are interested in fully-cooperative Markov games, where the common objective is

defined as finding a Pareto-optimal Nash equilibrium, also called optimal equilibrium. Indeed, the policies

that define Pareto-optimal Nash equilibria maximize the expected sum of the discounted rewards in the

future for all agents. However, there can be several Pareto-optimal Nash equilibria so some coordination

mechanisms on a single equilibrium are necessary.

3 The independent learner coordination problem

The main difficulty in the cooperative independent learners (ILs) framework is the coordination of ILs :

how to make sure that all agents coherently choose their individual action such that the resulting joint

action is Pareto-optimal? The coordination is a complex problem which arises from the combined action

of several factors. The analysis introduced in this section leads to a decomposition of the ILs coordination

problem into major challenges. This analysis is restricted to games that do not allow threats and time

dependent games. Indeed, we focus on stationary and cooperative Markov games, so the transition and

the reward functions are not time dependent. However, the agents’ strategies are subject to change with

time. As the agents have to cooperate, they do not have any interest in threatening with their team-mates.

But they have to change their own policy to improve their rewards. So the other agents have to adapt to this

change. Actually, from one agent’s perspective, the local process is not stationary. The non-stationarity

problem is one of the five challenges that are detailed in this section.

3.1 Independent learners

Claus and Boutilier (1998) distinguish two fundamental classes of learning agents: independent learners

(IL) and joint-action learners. The former cannot observe the rewards and actions of the other agents. Joint

action learners, on the contrary, are capable of perceiving (a posteriori) their actions and/or their rewards,

for instance in (Littman, 2001; Hu & Wellman, 2003; Banerjee et al., 2004) to name a few. Recently, Bab

and Brafman (2008) proposed a comprehensive empirical study conducted on various joint action learning

algorithms.
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However, in many practical applications it is not reasonable to assume the observability of the actions

of the other agents (Melo & Lopes, 2007). Most agents interact with their surroundings by relying on

sensory information and action recognition that is often far from trivial. In this paper, we focus on ILs,

these being more universally applicable. Without observations of the other agents’ actions and rewards,

the IL approach raises some specific problems. On the other hand, it brings the benefit that the size of the

state-action space is linear with the number of agents.

For instance, in the case of reinforcement learners, each agent i stores a local action-value function

Qi(s, ai) which only depends on state s and on its own action ai.Qi(s, ai) is an estimation of the expected

sum of future rewards when taking action ai from state s at time t and following π from then on:

Qπ

i (s, ai) = Eπ

{

∞
∑

k=0

γkri,t+k+1|st = s, ai,t = ai

}

(5)

This approach results in big storage and computational savings in the action-space. For example, with 7

agents and 6 actions per agent only 42 Q-values have to be stored per state rather than 67 Q-values for

joint-action learners.

In fully-cooperative games, each agent may assume that the other agents will learn to act in the best-

interest of the group. Under this optimistic assumption, Lauer and Riedmiller (2000) showed that ILs

must find the optimal local action-value function to act optimally from the global perspective. But it is

not a sufficient condition. It can happen that every agent selects an action that maximizes its own local

Q-function, but that the combination of all agents’ elementary actions is not Pareto-optimal. This problem

is the first challenge that ILs have to face to. We shall explore this issue more thoroughly in the following.

3.2 The Pareto-selection problem

We define the Pareto-selection problem as whenever there are at least two incompatible Pareto-optimal

equilibria.

Definition 6 Two equilibria π and π̂ are incompatible iff,

∃i, πi 6= π̂i, Ui,〈π̂i,π−i〉(s)< Ui,π(s) (6)

This definition means that if one agent takes an action from a first equilibrium and the other agents from

another one, the long-term expected gain is reduced.

The penalty game (Figure 1b) is usually chosen to illustrate the Pareto-selection problem. In this game:

• if k 6= 10, there are two Pareto-optimal equilibria (〈a, a〉 and 〈c, c〉 if k < 10; 〈a, c〉 and 〈c, a〉 if

k > 10); the set of individually optimal actions for each agent is then {a, c}; simply choosing an

individual optimal action does not guarantee that the resulting joint action will be optimal as there are

four resulting joint actions and only two of them are optimal; the equilibria are incompatible;

• if k = 10, there are four Pareto-optimal equilibria (〈a, a〉, 〈c, c〉, 〈a, c〉, 〈c, a〉); the set of individually

optimal actions for each agent is always {a, c}, but there is no Pareto-selection problem as all the

combinations of individual actions is a Pareto-optimal equilibrium; the equilibria are compatible.

Therefore, a Pareto-selection problem occurs when the mix of two Pareto-optimal equilibria is not

Pareto-optimal anymore. This is somewhat stricter than the standard game-theoretic term, which refers to

the task of selecting an optimal equilibrium from a set of (possibly suboptimal) potential equilibria. Our

definition is closer in spirit to the one of Fulda and Ventura (2007).

We can notice that the Wolpert’s Collective Intelligence (COIN) model (Wolpert & Tumer, 1999) aims

to avoid the Pareto-selection problem by structuring the game, ensuring that actions that are locally good

are always globally good. This method defines two key reward properties that are crucial to produce
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(a) Partially stochastic Climbing game (b) Fully stochastic Climbing game

Agent 2

a b c

a 11 -30 0

Agent 1 b -30 14/0 6

c 0 0 5

Agent 2

a b c

a 10/12 5/-65 8/-8

Agent 1 b 5/-65 14/0 12/0

c 8/-8 12/0 10/0

Figure 2 Stochastic variations of the climbing game proposed by Kapetanakis and Kudenko (2002). The probability

of each reward is 50%.

cooperative multi-agent systems in which agents acting to optimize their own agent rewards will also

optimize the provided global reward (Wolpert & Tumer, 2001; Agogino & Turner, 2005). The first

property concerns making sure the agents do not work at cross-purpose and align their rewards with

the global reward. The second property, the “learnability”, measures the sensitivity of an agent’s utility to

its own actions as opposed to actions of others, which is often low in fully cooperative Markov games.

In the general case, for an IL, finding its optimal individual actions is not sufficient to find the optimal

joint actions. An equilibrium-selection mechanism is required. The Pareto-selection problem is not the

only challenge for ILs. As an agent is not aware of actions of the other agents, if the result of its individual

action changed, it does not know if a team-mate changed its policy or if some of them took an exploratory

action or if the game is merely stochastic. We shall explore these issues in the following section.

3.3 The non-stationarity problem

Independent learners ignore the presence of the other agents in the system. That is, each agent can treat the

other agents as part of its environment. The transition probabilities associated with the action of a single

agent from one state to another are not stationary and change over time as the action choices of the other

agents change. These choices are probably influenced by the past history of play, and so the history of

play influences the future transition probabilities when revisiting a state. Therefore, from a single agent’s

perspective, the environment no longer appears Markovian and stationary (Bowling & Veloso, 2000).

The Markov assumption and the stationarity property are critical to convergence guarantees for most

single-agent learning algorithms (Sutton & Barto, 1998). This violation of basic assumptions requires

specific techniques to learn effective policies in this context.

3.4 The stochasticity problem

In addition to be non-stationary from a single agent’s perspective, the game itself can be non-deterministic.

In practical applications, stochastic rewards or stochastic transitions can be induced by various phenomena

as measurement noises, unobservable factors in the state space, etc.

When the game is stochastic, the problem is to distinguish between different sources which cause the

variation in the observed rewards. The variation can be due to the noise in the environment or to the

behaviors of the other agents. For instance, in the partially stochastic climbing game (Figure 2a), an IL

must distinguish if distinct rewards received for the action b are due to various behaviors of the other agent

or to stochastic rewards. Especially the agent must learn that the average reward of the joint action 〈b, b〉

is 7 and thus that the action b is sub-optimal.

3.5 The alter-exploration problem

The exploration-exploitation trade-off requires RL algorithms to strike a balance between the exploitation

of the agent’s current knowledge and the exploration of new actions to improve that knowledge. The

balance between exploration and exploitation is crucial for the efficiency of single-agent RL algorithms



Independent RLs in cooperative MGs: a survey regarding coordination problems 7

(Sutton & Barto, 1998; Singh, Jaakkola, Littman, & Szepesvari, 2000). It’s also a necessity in MAS but

the exploration of an agent induces noise in received rewards of the group.

So as to quantify the noise due to the exploration in a game, the concept of global exploration must be

pointed out. The global exploration is the probability that at least one agent explores. It can be formulated

using the individual exploration rate of each agent.

Property 1 Let a n-agents system in which each agent explores according to a probability ǫ. Then the

probability that at least one agent explores is ψ = 1− (1− ǫ)n. ψ is named the global exploration.

Complications arise from the fact that the exploration of an agent can destabilize the learned policies

of other ILs. For example, the exploration of an agent can lead to penalties and then it can influence the

learned individual policies of the other agents. Moreover, it can cause the “destruction” of the optimal

policy of an IL (Laurent, Matignon, & Le Fort-Piat, 2010). Indeed, an exploration action does not mean

that an agent has changed its policy, so if the others adapt themselves to this different behavior too quickly,

they may generate instabilities in their turn. This vicious circle, that we called the alter-exploration

problem, is a strong challenge for IL.

A way of overcoming this problem could be that the agents explore or exploit in unison (Brafman &

Tennenholtz, 2003). Another method is that RL algorithm must be robust against alter-explorations i.e.,

it allows the learning of individual policies while another agent is exploring. For this purpose, on the one

hand, specific mechanisms can be defined to update the individual policy. On the other hand, pertinent

choices of algorithm parameters may be advocated according to the global exploration.

The alter-exploration problem becomes more marked when the game presents specific equilibria called

shadowed equilibria.

3.6 The shadowed equilibrium problem

The term of shadowed equilibrium has been introduced by Fulda and Ventura (2007) to describe the

Pareto-selection problem. The formal definition we propose here is closer to the concept described by

Panait, Tuyls, and Luke (2008).

Definition 7 An equilibrium defined by a policy π̄ is shadowed by a policy π̂ in a state s iff :

∃i ∃πi U〈πi,π̄−i〉(s)<min
j,πj

U〈πj ,π̂−j〉(s) (7)

An equilibrium is shadowed by another one if there exists one agent i which receives a very low gain by

unilaterally deviating from this equilibrium and if this gain is lower than the minimal gain when deviating

from the other equilibrium.

For instance, in the climbing game (Figure 1a, page 4), 〈a, a〉 defines a Pareto optimal Nash

equilibrium and 〈b, b〉 a sub-optimal Nash equilibrium. Mis-coordination penalties are linked to these

equilibria but there are no mis-coordination penalties associated with action c. Indeed, the expected gain

if one agent deviates unilaterally from a Nash equilibrium is inferior to the lowest expected gain if one

agent deviates unilaterally from 〈c, c〉. Thus, in the climbing game, the Nash equilibria are shadowed by

the joint action 〈c, c〉.

A non-shadowed joint action as 〈c, c〉 is potentially tempting for ILs. For instance, let agent 2 follow a

policy π2 such that it chooses its actions with equal probability. Then, the expected gain for agent 1 is :

Q1(a) =−6, 33

Q1(b) =−5, 67 (8)

Q1(c) = 1, 67

The theoretical-optimal individual action is a but the action c has the highest current action-value due to

the exploration policy of agent 2.
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The shadowed equilibrium problem is hard to overcome even in small matrix game. Thus, an additional

mechanism is required to avoid sub-optimal policy caused by shadowed equilibria in the learning of ILs.

3.7 Summary

In this paper, we focus our study on cooperative independent learners. In such a framework, the

main issue is that the learners manage to coordinate. We have identified five factors which may be

responsible of the non-coordination of the agents: the Pareto-selection problem, the non-stationarity

problem, the stochasticity problem, the alter-exploration problem and the shadowed equilibrium problem.

This classification may not be exhaustive because the general problem of coordination is complex in large

games. However, we shall show that the presence or the absence of one of these factors decides on the

success of following RL algorithms.

4 Related works in reinforcement learning

Various approaches have been proposed in the literature to overcome coordination problems in multi-

independent-learners systems. Especially, several modifications to the Q-learning algorithm (Watkins &

Dayan, 1992) have been proposed for multi-agent environments. In this section, related works dealing

with Q-learning variants for ILs are reviewed. The choice of the Q-learning algorithm results from its

well-understanding that allows us to focus exclusively on how these algorithms address some coordination

issues. We propose a uniform notation that has never been suggested for these algorithms and that stresses

common points between some of them. Besides, explicit mechanisms used to resolve mis-coordination

problems are detailed for each algorithm.

4.1 Decentralized Q-learning

Q-learning (Watkins & Dayan, 1992) is one of the most used algorithm in the single-agent framework

because of its simplicity and robustness. That’s also why it was one of the first RL algorithm applied to

multi-agent environments (Tan, 1993). The update equation for agent i is:

Qi(s, ai)← (1− α)Qi(s, ai) + α(r + γ max
u∈Ai

Qi(s
′, u)) (9)

where Qi(s, ai) is the current estimation of the action-value function of agent i, s′ is the new state, ai is

the agent’s chosen action, r =R(s, 〈ai, a−i〉) is the received reward, α ∈ [0; 1] is the learning rate and

γ ∈ [0; 1[ the discount factor.

Concerning the exploration-exploitation issue, the most popular undirected exploration methods are

ǫ-greedy and softmax exploration strategies. An agent following the ǫ-greedy method selects a uniformly

random action with probability ǫ and otherwise follows its greedy policy3 based onQi. Softmax computes

the agent’s individual policy πi using a Boltzman distribution:

πi(s, a) =
e

Qi(s,a)

τ

∑

u∈Ai

e
Qi(s,u)

τ

(10)

where τ is the temperature parameter. High temperature values encourage exploration.

In decentralized Q-learning, no coordination problems are explicitly addressed. However, it has been

applied with success in some applications (Sen, Sekaran, & Hale, 1994; Sen & Sekaran, 1998; Busoniu

et al., 2006; Wang & de Silva, 2006; Tumer & Agogino, 2007, 2010). The relative success of this algorithm

can be related to the choice of the exploration strategy. Most works concerning decentralized Q-learning

use a GLIE4 strategy. GLIE strategy (Singh et al., 2000) is a popular single-agent method that decreases

the exploration frequency over time so that each agent should converge to a constant policy. However, few

3The greedy policy based on Qi picks for every state the action with the highest Q-value.
4Greedy in the Limit with Infinite Exploration.
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authors justify this choice in MAS. According to Claus and Boutilier (1998), this method can allow ILs to

overcome some mis-coordination problems by reducing the simultaneous exploration of agents, namely

the concurrent exploration. However, the use of a GLIE strategy does not ensure convergence to an optimal

equilibrium (Claus & Boutilier, 1998) and the key difficulty of this method is that the convergence relies

on the choice of decaying parameters, as illustrated in the Section 5.1.2.

4.2 Distributed Q-learning

Algorithm 1: Distributed Q-learning for agent i

begin
Initialization: πi arbitrarily

forall a ∈Ai and s ∈ S do

Qi,max(s, a)← min
s∈S,a∈Ai

R(s, a)

s← initial state

while s is not an absorbing state do
From s select a according to the ǫ-greedy selection method based on πi
Apply a and observe reward r and next state s′

q← r + γ max
u∈Ai

Qi,max(s
′, u)

if q > Qi,max(s, a) then

Qi,max(s, a)← q ⊲ optimistic update

if Qi,max(s, arg max
u∈Ai

πi(s, u)) 6= max
u∈Ai

Qi,max(s, u) then

Select a random action amax ∈ arg max
u∈Ai

Qi,max(s, u)

∀b ∈Ai πi(s, b)←

{

1 if b= amax

0 else
⊲ equilibria selection

s← s′

end

Lauer and Riedmiller (2000) proposed the distributed Q-learning (algorithm 1) that addresses three

factors that can cause mis-coordination. The algorithm is based on “optimistic independent agents”. Such

agents optimistically assume that all other agents will act to maximize their reward. Thus they neglect the

penalties and update the evaluation of an action only if the new evaluation is greater than the previous

one. This optimistic update avoids sub-optimal policies caused by shadowed equilibria.

In the case of multiple optimal joint actions in a state, an additional procedure for coordination is

used to solve the Pareto-selection problem. This equilibria selection mechanism is a social convention

(Boutilier, 1996) which places constraints on the possible action choices of the agents. The central idea

is to update the current policy πi only if πi is not greedy anymore. Thus the policy of an agent remains

constant if no improvement occurs.

The combination of these both mechanisms has the other interesting property to allow simultaneously

the learning of individual policies and exploration. The individual policies can’t be “destroyed” by

exploration. Thus, distributed Q-learning is robust against the alter-exploration problem.

In addition, it is proved that this algorithm finds optimal policies in deterministic environments for

cooperative Markov games. However this approach may not converge to optimal policies in stochastic

environments.

4.3 Hysteretic and lenient learners

Some works in the literature are interested in varying the “degree of optimism” of the agents. Optimistic

learners, used in distributed Q-learning, always ignore penalties in the update because they are supposed
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to be only caused by actions of exploration of the others. Thus, in stochastic games where penalties are

also due to the noise in the environment, optimistic learners overestimate real Qi values.

To avoid this overestimation in stochastic games, we introduced hysteretic learners (Matignon, Laurent,

& Le Fort-Piat, 2007). The idea is that the agents should not be altogether blind to penalties at the risk

of ignoring the noise due to environment. But they must be chiefly optimistic to reduce oscillations in

the learned policy. Based on Q-learning, the hysteretic Q-learning uses two learning rates α and β for the

increase and the decrease of Qi-values. The update equation for agent i is:

δ← r + γ max
u∈Ai

Qi(s
′, u) (11)

Qi(s, a)←

{

(1− α)Qi(s, a) + αδ if δ ≥Qi(s, a)

(1− β)Qi(s, a) + βδ else.
(12)

where α > β to obtain chiefly optimistic learners. The main objectives of these two learning rates are

to handle stochasticity and to minimize the effect of shadowed equilibria. By applying this algorithm in

various test environments, we observe that the use of a GLIE strategy is required.

Panait, Sullivan, and Luke (2006) are interested in varying the degree of optimism of the agents over

time. Indeed, being optimistic may be useful at early stages of learning to identify promising actions. They

use lenient learners in their algorithm, called lenient multiagent reinforcement learning. In case of lenient

learners, agents are exploring at the beginning so most selected actions are poor choices and ignoring

penalties is therefore justified. Nevertheless, it may lead to an overestimation of actions, especially in

stochastic domains where rewards are noisy. And once agents have explored, it becomes interesting to

achieve accurate estimation of actions. So the agents are initially lenient (or optimistic) and the degree of

leniency decreases as the action is often selected. A temperature is associated with each action so that the

degree of leniency may be proportional to the temperature. At each selection of an action, its associated

temperature decreases and the agent is then less lenient concerning the evaluation of this action. A GLIE

exploration strategy must also be used. So lenient multiagent RL has a set of parameters for decaying the

lenience degree and another one for decaying the exploration probability. These sets of parameters pose

inter-parameter dependencies. The main drawbacks of this method are that parameters tuning is difficult

and that it is only proposed for matrix games.

4.4 Win-or-learn fast policy hill climbing

The Win-or-Learn Fast Policy Hill Climbing (WoLF PHC) algorithm works by applying the Win-or-Learn

Fast (WoLF) principle to the Policy Hill Climbing (PHC) algorithm (Bowling & Veloso, 2002).

The PHC algorithm is a simple extension of Q-learning which performs hill-climbing in the space

of policies. Q-values are maintained just as in normal Q-learning. In addition the algorithm maintains

the current policy. The policy is improved by increasing the probability that it selects the greedy action

according to a learning rate δ.

The WoLF heuristic uses two learning rates to adjust the policy: δw and δl depending on whether

the agent is currently winning or losing. This determination is done by comparing whether the current

expected value of the policy πi is greater than the current expected value of the average policy π̄i. If

the current expected value is lower, then the agent is losing; otherwise it is winning. When the agent is

winning, a low learning rate is chosen because there is no reasons that the agent changes its policy. When

the agent is losing, a high learning rate is used to quickly adapt its policy to other players’ strategies.

Practically, learning parameters are chosen such as δl > δw. The full algorithm is shown in algorithm 2.

This approach and its variants (Banerjee & Peng, 2003; Bowling, 2005) have been designed for

competitive games. However, WoLF PHC could be used in a cooperative task as well. The variable

learning rate has the effect to minimize the influence of poor actions of other agents on the agent’s

own learning. So WoLF PHC is basically robust against the alter-exploration problem. The fact that this

algorithm explicitly represents the policy independently of the value function may be a way to prevent
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Algorithm 2: WoLF PHC algorithm for agent i

begin
Initialization:

forall a ∈Ai and s ∈ S do

Qi(s, a)← 0, Ci(s)← 0, π̄i(s, a)←
1

|Ai|
, πi(s, a)←

1
|Ai|

s← initial state

while s is not an absorbing state do
From s select a according to the policy πi and with some exploration

Apply a and observe reward r and next state s′

Qi(s, a)← (1− α)Qi(s, a) + α

[

r + γ max
b∈Ai

Qi(s
′, b)

]

⊲ decentralized QL

Ci(s)← Ci(s) + 1 ⊲ counter

π̄i(s, b)← π̄i(s, b) +
1

Ci(s)
(πi(s, b)− π̄i(s, b)) ∀b ∈Ai ⊲ average policy

if
∑

b∈Ai

πi(s, b)Qi(s, b)>
∑

b∈Ai

π̄i(s, b)Qi(s, b) then

δ← δw ⊲ winning

else

δ← δl ⊲ loosing

forall b ∈Ai

do

if b 6= arg max
b∈Ai

Qi(s, b) then

πi(s, b)← πi(s, b)− δsb ⊲ policy hill climbing

else

πi(s, b)← πi(s, b) +
∑

u 6=b

δsu

with δsb =min
(

πi(s, b),
δ

|Ai|−1

)

s← s′

end

Pareto-selection problems. The WoLF PHC convergence to optimal policies has been demonstrated

empirically on a number of zero-sum and general-sum stochastic games (Bowling & Veloso, 2002).

4.5 Recursive frequency maximum Q-value

Kapetanakis and Kudenko (2002, 2004) proposed to bias the probability of choosing an action with the

frequency of receiving the maximum reward for that action. Their algorithm, named Frequency Maximum

Q-Value (FMQ), performs well in partially stochastic matrix games with a well chosen GLIE strategy.

However, we showed in a previous paper that the FMQ is not robust against the alter-exploration problem

(Matignon, Laurent, & Le Fort-Piat, 2008). We developed an improved version of FMQ, called recursive

FMQ, that is more robust and requires less parameters to tune (a GLIE strategy is not required anymore).

As the FMQ algorithm, the recursive FMQ algorithm has common points with both decentralized and

distributed Q-Learning algorithms. As we can see in algorithm 3, bothQi andQi,max tables are computed.

The frequency, noted Fi(a), is an estimation of the occurrence of receiving the maximum reward when

the action a is done. The frequency is recursively computed using a learning rate αf so as to obtain a

frequency robust against alter-exploration.

The key idea is to evaluate the actions using a linear interpolation based on the occurrence frequency

and bounded by the Qmax and Q values. Thus, actions evaluations fluctuate between optimistic and mean

evaluations according to the stochasticity of the game, that is estimated with the occurrence frequency.

Especially, if the game is deterministic and the agents manage to coordinate on an optimal joint action,

frequencies of individual optimal actions will be close to 1 and agents will be then optimistic. The
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Algorithm 3: Recursive FMQ for Matrix Game for agent i

begin

Initialization: ∀a ∈Ai, Qi(a)← 0, Qi,max(a)← 0, Fi(a)← 1, Ei(a)← 0, πi arbitrarily

repeat
Select a according to the policy πi and with some exploration

Apply a and observe reward r

Qi(a)← (1− α)Qi(a) + αr

if r > Qi,max(a) then

Qi,max(a)← r ⊲ optimistic update

Fi(a)← 1 ⊲ frequency reset

else if r =Qi,max(a) then

Fi(a)← (1− αf )Fi(a) + αf ⊲ recursive computation of the frequency

else

Fi(a)← (1− αf )Fi(a)

Ei(a)← (1− Fi(a))Qi(a) + Fi(a)Qi,max(a) ⊲ linear interpolation heuristic

if Ei(arg max
u∈Ai

πi(u)) 6= max
u∈Ai

Ei(u) then

Select a random action amax ∈ arg max
u∈Ai

Ei(u)

∀b ∈Ai πi(b)←

{

1 if b= amax

0 else
⊲ equilibria selection

until the end of the repetitions

end

principle is closest in spirit to lenient learners (cf. §4.3) given that the degree of optimism of the agents

can change. But concerning lenient learners, the degree of optimism inevitably decreases, although here,

if the agents manage to coordinate in a deterministic environment, they stay optimistic. So they are bound

to converge to the optimal joint action in deterministic environments. With this aim in view, the recursive

FMQ uses the same equilibria selection mechanism as distributed Q-Learning.

The recursive FMQ algorithm was designed to overcome all coordination problems in partially-

stochastic matrix games. Its main drawback is that it is only suited to solve matrix games.

4.6 Implicit coordination with list index

Lauer and Riedmiller (2004) proposed an implicit mechanism which allows ILs to distinguish between

different joint actions without knowing what exactly the joint actions are. The key idea of implicit

coordination is to maintain Qi values in list-based data structures instead of tables. It allows to use

index to reference a joint action. Thus, with the assumption that every agent independently selects the

same index, joint action values are implicitly computed by ILs. Thanks to the distinction between joint

actions, the algorithm overcomes all mis-coordination challenges. The algorithm and its theoretical proof

of convergence are in (Lauer & Riedmiller, 2004). However, an obvious limitation is its application in

Markov games because of the combinatorial explosion of the number of joint actions and so of the size of

the lists. The authors developed a reduced-lists algorithm that still appears difficult to apply in large multi-

state games. The use of function approximators with implicit coordination is also discussed in (Gabel &

Riedmiller, 2006).

4.7 Synthesis

Table 1 summarizes the characteristics of reviewed RL algorithms for ILs in cooperative games. For each

algorithm, modifications made regarding decentralized Q-learning are specified. The review proposed

in this section explains how these modifications aim at overcoming some mis-coordination factors, yet
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Table 1 Characteristics of reviewed RL algorithms for ILs in cooperative games.
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Decentralized Q-Learning ✓ ✓

(Watkins & Dayan, 1992) GLIE

Hysteretic learners ✓ ✓ two learning rates advised

(Matignon et al., 2007)

Lenient learners ✓ time-dependent GLIE

(Panait et al., 2006) degree of lenience required

Recursive FMQ ✓ linear interpolation heuristic

(Matignon et al., 2008) based on occurrence frequency

WoLF PHC ✓ ✓ adjust current mixed policies fixed

(Bowling & Veloso, 2002) with two learning rates or

Distributed Q-Learning ✓ ✓ social convention decreasing

(Lauer & Riedmiller, 2000) optimistic update exploration

Implicit coordination ✓ implicit evaluation rate

(Lauer & Riedmiller, 2004) of joint actions

only some of them are theoretically justified. Anyway, an analysis of the real abilities of these methods

is required to go into detail concerning this study, especially concerning algorithms which have no

theoretical guarantees. In the next section, various experimental benchmarks are presented to illustrate

how modifications are able to work effectively and to show real strengths and weaknesses of each method.

We also point out the exploration strategy recommended by the authors or that is more effective in

practice. It must already be noticed that a GLIE strategy is difficult to set and requires much domain

knowledge, as it will be shown in the next section.

In the following experimentations, we concentrate on a selection of these methods. Notably, we won’t

study lenient learners because parameters tuning is too difficult and results of this method are empirically

found to be equivalent to FMQ (Panait et al., 2006). We shall also ignore implicit coordination as its

fundamental principle is impractical in multi-state games and because its abilities do not need to be

illustrated given that it has a theoretical proof of convergence.

5 Experimental results and analysis

This section describes experiments with various non-trivial test environments. The benchmarks include

various levels of difficulty according to the number of agents (2 and more), the number of states (single

and multi-state games), the state observability (full or incomplete), and coordination problems (shadowed

equilibria, Pareto-selection, deterministic or stochastic environments). They were designed to cleverly

combine these challenges and for each benchmark, we describe accurately how each challenge is present.

These benchmarks allow us to compare the performance of reviewed algorithms according to the

properties of the environment and the coordination issues. We compare decentralized Q-learning,

distributed Q-learning, WoLF PHC, hysteretic learners and recursive FMQ. Note that recursive FMQ

is only tested in matrix games as it has not been designed for multi-state games. These algorithms are

examined with the aim to get a clear view of their realistic performances with respect to the difficulties of

the benchmarks.

The experiments have been conducted using BOSAR5, a library we developed.

BOSAR was designed to study and develop reinforcement learning algorithms. BOSAR is

5Library of Simulink Tools for Reinforcement Learning.
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implemented in C/C++ programming language and supplies documentation and interfaces

for Matlab-Simulink. BOSAR is free, open source software (GNU GPL licence) available at

http://www.lab.cnrs.fr/openblockslib. All algorithms and benchmarks used in this

article are implemented in BOSAR.

5.1 Matrix games

We first present experiments in matrix games, and then proceed with the sensitivity of the algorithms to

the parameters of the GLIE strategy.

5.1.1 Penalty and climbing games

First, we apply the algorithms to the cooperative matrix games presented in Figures 1 and 2 (page 4;6).

These games have received considerable attention from the community (Claus & Boutilier, 1998; Lauer

& Riedmiller, 2004; Carpenter & Kudenko, 2005; Kapetanakis, Kudenko, & Strens, 2005; McGlohon

& Sen, 2005; Verbeeck, Nowé, Parent, & Tuyls, 2007) as they remain challenging for state-of-the-art

algorithms despite their apparent simplicity. Indeed, even a simple game with two players and few

actions can be challenging if agents are unaware of the game and independent (Abdallah & Lesser,

2008). Moreover, they are interesting because they pose specific problems to learn to coordinate. All

mis-coordination factors can easily be identifiable and combined in these games (cf. §3). So using these

games is a preamble to Markov games study and makes the analysis and understanding of coordination

techniques easier.

Table 2 shows the percentage of trials converging to the optimal joint action according to the algorithm

and the game. Results were obtained with the best chosen and tuned action selection strategy in order to

achieve the best results of convergence (cf. Appendix A). This parameter tuning is based more on intuition

and trial-and-error than on theoretical results. We can notice that:

• all algorithms find the optimal joint action in the penalty game with k = 0, where there is only

a Pareto-selection problem. However, decentralized and hysteretic Q-learning do not have explicit

mechanism to resolve Pareto-selection. Presumably this satisfactory behavior stems from the GLIE

strategy that plays an implicit equilibria selection role by reducing the noise due to the concurrent

exploration,

• with decentralized Q-learning the agents manage to coordinate depending on the structure of the game

and on the chosen exploration strategy. It does not overcome shadowed equilibria in the climbing

game. Penalties induce decentralized Q-learning agents to converge towards unshadowed equilibria,

Table 2 Percentage of trials which converged to the optimal joint action (averaged over 500 trials). A trial consists of

1000, 3000 or 5000 repetitions of the game according to the algorithm and the action selection strategy used (chosen

parameters are specified in Appendix A). At the end of each trial, we determine if the greedy joint action is the optimal

one. Entries marked with ’-’ indicate it has not been tested.

Penalty game Climbing game

k = 0 k =−100 deterministic partially stochastic fully stochastic

Decentralized 100% 97% 16% - -

Q-learning

Distributed 100% 100% 100% 7% -

Q-learning

WoLF PHC 100% 0% 0% - -

Hysteretic 100% 100% 100% 82% 0%

Q-learning

Recursive 100% 100% 100% 100% 58%

FMQ
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Table 3 Percentage of trials which converged to the optimal joint action with decentralized Q-learning (averaged

over 1000 trials). A trial consists of 3000 repetitions of the game. At the end of each trial, we determine if the greedy

joint action is the optimal one. Results were obtained with softmax decision and GLIE strategies (τ = τini × δt where

t is the repetitions number).

GLIE τini = 5000 τini = 500 τini = 100

strategy δ = 0.9 δ = 0.99 δ = 0.995 δ = 0.997 δ = 0.998 δ = 0.995 δ = 0.995

Penalty game 0% 61, 7% 84% 96, 6% 73, 39% 85, 3% 84, 8%

(k =−100)

• as expected, distributed Q-learning manages the convergence with a stationary exploration strategy

in deterministic games only,

• WoLF PHC only converges in the penalty game with k = 0. Indeed, it seems that it does not overcome

shadowed equilibria,

• hysteretic Q-learning and recursive FMQ both converge in deterministic games and partially-

stochastic version of the climbing game, but the coordination is still difficult in fully-stochastic game.

The recursive FMQ algorithm shows the best results and manages the convergence with a stationary

exploration strategy.

Additionally, it is interesting to point out that the learners fail to coordinate with all algorithms in the

fully-stochastic climbing game.

5.1.2 The exploration strategy issue

A GLIE strategy is advised with some algorithms as it can allow ILs to overcome some mis-coordination

factors, especially when there are no explicit coordination mechanisms implemented in the method. In

previous experiments, the agents manage to coordinate with decentralized Q-learning in the penalty game

because the GLIE strategy has been well chosen. But the success of this algorithm is sensitive to the

parameters of the GLIE strategy. Results of decentralized Q-learning with various GLIE strategies are

presented in Table 3. The temperature values used with each GLIE strategie are plotted in Figure 3. These

results illustrate the difficulty to choose these parameters; changing just one setting in GLIE parameters

can turn a successful experiment into an unsuccessful one. The setting of GLIE parameters requires high
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Figure 3 Plots of the temperature functions (τ = τini × δt) used in Table 3.



16 L. MATIGNON, G. J. LAURENT & N. LE FORT-PIAT

understanding of algorithm behavior and is task-specific. For instance, if parameters are chosen such as

the probability to explore falls before interesting parts of the environment are sufficiently visited, the result

is sub-optimal.

This GLIE method is therefore difficult to apply in practice. On the contrary, distributed Q-Learning,

recursive FMQ and WoLF PHC are working with a stationary exploration strategy. They only require a

minimum of exploration in order to discover the optimal joint action. The level of the exploration rate has

a low influence on the convergence. This independence of the exploration strategy is a clear benefit of

these methods.

5.1.3 Penalty game with n≥ 2 agents

So far, we considered only two-player games. However, difficulties increase with the number of agents,

notably:

• the noise due to various behaviors of the others is larger. So it is more difficult to distinguish noise

due to the environment from noise due to the exploration actions of the others,

• a large number of repetitions is required so that all joint actions are played. The number of joint

actions is exponential with the number of agents so the number of repetitions per trial is growing with

the number of agents. With a GLIE strategy, the exploration frequency must be decreased slowly

to avoid convergence towards sub-optimal equilibria. So GLIE strategy is even more difficult to

choose. With a stationary strategy, a sufficient exploration must be realized for agents to find optimal

equilibria. But the global exploration must also be limited to avoid too much noise.

To test how each algorithm copes with these difficulties, we devised a penalty game with n≥ 2 agents

in which mis-coordination factors can easily be combined. Each agent has 3 actions: a, b and c. If half

agents or more play a and the others play c, the received reward is 10. If less than half agents play a and

the others play c, the received reward is -100 since they fail to coordinate. If half agents or more play b

and the others play c, the received reward is 2 in the deterministic mode6. Otherwise the reward is 0.

There are many Pareto-optimal Nash equilibria when half agents or more play a and the others play

c. These optimal equilibria are shadowed by penalties in case of mis-coordination. There are also many

sub-optimal Nash equilibria when half agents or more play b and the others play c. Additionally, rewards

can be noised. So, Pareto-selection, shadowed equilibria and stochasticity are present in our multi-player

penalty game.

612 and 6 are received with equal probabilities in the stochastic mode.

Table 4 Percentage of trials which converged to the optimal joint action in penalty game with n > 2 agents in

deterministic (D) and stochastic (S) modes (averaged over 500 trials). A trial consists of t repetitions of the game.

Chosen parameters are specified in Appendix B. At the end of each trial, we determine if the greedy joint action is

optimal.

Decentralized Distributed WoLF Hysteretic recursive

Q-learning Q-learning PHC learners FMQ

n= 2 t= 10000
D 100% 100% 100% 99% 100%

S 100% 0% 86% 99% 99%

n= 3 t= 30000
D 100% 100% 100% 99% 100%

S 98% 0% 87% 98% 99%

n= 4 t= 50000
D 100% 100% 100% 100% 91%

S 6% 0% 0% 14% 92%

n= 5 t= 80000
D 100% 100% 100% 91% 97%

S 10% 0% 1% 56% 94%



Independent RLs in cooperative MGs: a survey regarding coordination problems 17

Results with 2 to 5 agents are presented in Table 4. Chosen parameters, found by trial-and-error, are

specified in Appendix B. It is first interesting to stress that when the greedy joint action is not the optimal

one, the agents always coordinate on the sub-optimal Nash equilibria. Moreover, we can notice that:

• decentralized Q-learning succeeds in deterministic games with a well-chosen GLIE strategy. In

stochastic games, its performances greatly reduce with the number of agents,

• distributed Q-learning complies with theoretical guarantees: it succeeds in all deterministic games

but fails in stochastic games,

• WoLF PHC algorithm fails as soon as rewards are noisy: in stochastic games, these algorithms

converge toward non-shadowed equilibria,

• hysteretic learners manage to coordinate in deterministic games. Yet in stochastic games, they do not

handle stochastic rewards. Presumably this is because of the lack of robustness of this method against

alter-exploration and the difficulty to tune GLIE parameters and β. Indeed, hysteretic learning poses

inter-parameter dependencies: the more the exploration of the others is large, the more the agents

must be optimistic. So β must be chosen according to the exploration strategy. This issue may be

explored thoroughly to improve the hysteretic Q-learning usefulness,

• best results are achieved with recursive FMQ. It succeeds more than nine times out of ten with all

games. The frequency achieves the distinction between the noise due to the stochastic environment

and the noise due to the actions of the others.

5.2 Markov games

We now experiment multi-state domains with algorithms designed for Markov games i.e., decentralized

Q-learning, distributed Q-learning, WoLF PHC and hysteretic Q-learning. In a concern to be fair, all

algorithms used ǫ-greedy selection method with a stationary strategy and global exploration of ψ = 0.1.

It allows to check the robustness against alter-exploration of each method. Likewise, the same initial

values are chosen for all of the experiments so as to conduct fair comparisons between algorithms. Thus

Qmax-values were initialized to the lowest reward (as specified in Algorithm 1) and Q-values to zero for

all the experiments.

5.2.1 Boutilier’s coordination Markov game

The Boutilier’s coordination game with two agents was introduced in (Boutilier, 1999) and is shown in

Figure 4. This multi-state benchmark is interesting because all mis-coordination problems can easily be

integrated and combined. The transitions on the diagram are marked by the pair of corresponding actions,

denoting player 1’s move and player 2’s move respectively. “ * ” is a wild card representing any action.

States that yield a reward are marked with the respective value, otherwise the reward is 0.

Mis-coordination challenges can easily be combined in this game. First, a coordination issue arises in

state s2 because both agents should agree on the same action. There are two Pareto-optimal equilibria

so the agents have to cope with a Pareto-selection problem. Second, by choosing a high penalty k, this

game combines Pareto-selection and shadowed equilibria; indeed the potential of choosing the action

Figure 4 Boutilier’s coordination game.
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Table 5 Percentage of trials which converged to the state s4 in Boutilier’s coordination game (averaged over 200

trials). A trial consists of 10000 learning steps; at the end of each trial, we determine which absorbing state is reached

when the agents follow their greedy joint policy. The state s4 is reached x% of the trials and the state s6 is reached y%
of the trials. Results are noted x% [y%]. We set α= 0.1, ψ = 0.0975, γ = 0.9, δlose = 0.06, δwin = 0.03, ǫ= 0.05,

Qini = 0, Qmax,ini = k. β = 0.01 in deterministic games and β = 0.05 in stochastic games.

deterministic stochastic

k = 0 k =−100 k = 0 k =−100

Decentralized Q-learning 100% [0%] 6% [94%] 100% [0%] 12% [88%]

Distributed Q-learning 100% [0%] 100% [0%] 0% [100%] 0% [100%]

WoLF PHC 100% [0%] 8% [92%] 100% [0%] 14% [86%]

Hysteretic learners 100% [0%] 100% [0%] 100% [0%] 39% [61%]

a for the first agent in the state s1 is shadowed by the penalty k associated to mis-coordination in s2.

Finally, we also propose a partially-stochastic version of the Boutilier’s game with a random reward (14

or 0) received in state s6 with equal probability instead of 7. Thus the challenge of stochasticity can also

be added.

A step starts with both agents in state s1 and ends when agents reach one of the absorbing states (s4, s5
or s6). A trial consists of 10000 learning steps. At the end of each trial, we determine if the greedy joint

policy is optimal. Results are given in Table 5.

It is first interesting to stress that when the greedy joint action is not the optimal one, the agents always

coordinate on the sub-optimal Nash equilibria.

In the deterministic game with k = 0, the agents manage to coordinate with all algorithms. Similarly,

in the stochastic game with k = 0, all algorithms succeed except distributed Q-learning as it does not

overcome the stochasticity problem. When mis-coordination penalties are introduced in the deterministic

game, decentralized Q-learning and WoLF PHC fail because of shadowed equilibria. Distributed Q-

learning and hysteretic Q-learning succeed in the coordination. But in the stochastic version with

k =−100, all coordination challenges are present and the agents fail to coordinate with all algorithms.

5.2.2 Two predators pursuit domain

The pursuit problem is a popular multi-agent domain in which some agents, called predators, have to

capture one or several preys in a gridworld (Benda, Jagannathan, & Dodhiawala, 1986). In the two-

predator pursuit domain, agents have to explicitly coordinate their actions in order to capture a single

prey in a discrete 10× 10 toroidal grid environment (Figure 5a). At each time step, both predators

simultaneously execute one of the 5 possible actions: move north, south, east, west or stand still. Any

(a) Complete 10× 10 toroidal grid. (b) Possible capture posi-
tion.

Figure 5 Two predators pursuit problem.
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Figure 6 Number of captures for 10000 trials in the two predators pursuit domain (averaged over 5 runs) with

α= 0.1, ψ = 0.1, β = 0.01, δlose = 0.06, δwin = 0.03, γ = 0.9, Qini = 0, Qmax,ini =−50.

action moves a predator in the intended direction with probability 0.8, and otherwise a random action

is applied. The prey moves according to a randomized policy: it remains on its current position with a

probability of 0.2, and otherwise moves to ones of its free adjacent cells with uniform probabilities. The

prey is captured when both predators are located in cells adjacent to the prey, and one of the two predators

moves to the location of the prey while the other predator remains, for support, on its current position

(Figure 5b). After a capture, predators and prey are set up in distinct random positions.

The state space is represented by the relative position of the two predators to the prey: each IL computes

a Qi table with 100× 100× 5 values. A capture results in a reward of 10 for every agent. Furthermore,

both predators receive a penalty of −50 when one of them moves to the prey without support or when

they end up in the same cell. In both cases, the agents are moved to a random, empty cell. In all other

situations, the reward is 0.

The main factors which complicate the coordination are action shadowing induced by penalties in case

of mis-coordination, Pareto-selection as there are several capture solutions and the stochastic environment

due to the random behavior of the prey and the uncertainty in actions results.

A trial consists of 1000 steps. After each learning trial is done a greedy trial in which agents are

following their learned greedy policies. For each greedy trial, we plot the number of captures. Results

obtained on 10000 greedy trials are given in Figure 6. We also specify the number of received penalties

during the last 1000 greedy trials to check if the agents manage to coordinate themselves so as to avoid

collisions and non-support (Table 6). We can notice that:

• greedy policies learned with decentralized Q-learning are not stable and the number of captures

per trial is the lowest of all the methods we tested. Some reasons of these difficulties are provably

the Pareto-selection combined with mis-coordination penalties and the lack of robustness against

exploration that leads to the destruction of individual policies. A suited GLIE strategy may give better

results, but its adjustment would be difficult. However, it has to be stated that this method involves

the least number of received penalties (Table 6),

• despite the stochastic environment, greedy policies learned with distributed Q-learning manage

around 25 captures per trial after 10000 greedy trials. We can notice that as optimistic agents are
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Table 6 Number of received penalties in the two predators pursuit domain during the last 1000 trials (averaged over

5 runs).

Decentralized Q-learning 2325

Distributed Q-learning 6109

Hysteretic Q-learning 3333

WoLF PHC 3738

(a) (b) (c)

Figure 7 Four predators pursuit problem. a) The prey is captured. b) The sixteen possible observations of the

positions of a teammate. c) One of the four rewarded situations (similar situations are obtained by rotation of 90◦).

blind to penalties, they have difficulty in coordinating themselves so as to avoid collisions and non-

support,

• hysteretic Q-learning and WoLF PHC show best results with around 40 captures per trial after 10000

greedy trials.

5.2.3 Four predators pursuit domain

In the four-predator pursuit domains, four agents have to coordinate their actions in order to surround a

single prey in a discrete 7× 7 toroidal grid environment (Figure 7a). The observations of the agents suffer

from low resolution. Indeed, a predator perceives the others according to the 8 cardinal directions and

according to a distance criterion (Figure 7b), that gives 16 possible observations. Given that each predator

perceives its 3 teammates plus the prey, there are 164 possible observations per agent. Each agent has 5

possible actions i.e., a Qi-table of size 164 × 5 for each predator. Concerning the reinforcement function,

if at least one agent is in the situation in Figure 7c, every agent receives R= 25. The low resolution in

the perception induces stochasticity in the environment so the main factor here which complicates the

coordination of predators is the noise.

A trial consists of 1000 steps. After each learning trial is done a greedy trial in which agents are

following their learned greedy policies. For each greedy trial, we plot the number of captures. Results are

given in Figure 8. We can notice that:

• decentralized Q-learning shows interesting results in this stochastic environment. Although the first

captures require a lot of trials (more than 5000) and learned policies are not stable, it is interesting

to notice that once the agents manage to coordinate, the number of captures quickly increases. It

confirms that this algorithm can be applied with success on some MAS and manages the coordination

to some extent,

• the agents that learn with distributed Q-learning do not manage to coordinate. The low resolution in

perceptions induces stochasticity in the environment which puts optimistic agents in the dark,

• WoLF PHC shows best results on average but the performances are variable: for three runs, around

100 captures are realized after 10000 trials, but for the two other runs, no capture has been performed

after 10000 trials yet,
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Figure 8 Number of captures for 10000 trials in the four predators pursuit domain (averaged over 5 runs) with

α= 0.3, ψ = 0.1, β = 0.03, δlose = 0.06, δwin = 0.03, γ = 0.9, Qini = 0.

• hysteretic Q-learning manages first captures at the same time as decentralized Q-learning, but its

performance increases slowly.

5.2.4 Discrete smart surface with 270 agents

Finally, we have developed a benchmark inspired from distributed manipulation systems (Luntz, Messner,

& Choset, 2001) and called discrete smart surface benchmark. The system is an array of 270 actuators

(Figure 9). At each time step, all actuators simultaneously execute one of the 5 possible actions: north,

south, east, west or nop, represented by an arrow or a circle. Uncertainty is added to actions results: with

a probability 0.001, each actuator executes a random action. A 3× 2 object is situated on the surface. The

motion of the object is given by the weighted sum of the actuators actions which are under and by the

object. The weight given to the actions of the actuators by the object is 3. The weight given to the actions

of the actuators under the object is 1. The object moves in the four cardinal directions but it does not

rotate. Additionally, the object cannot get out of the surface and instead stays by the edge. The system’s

state is the position of the object on the grid (according to its upper left corner). Each actuator is driven

by an independent agent which has only access to the position and to its own actions. For the agents, the

goal is to cooperate so as to move the object to a goal position. In this case, all agents receive R= 10.

If the object touches the east and west edges of the surface, every agent receives a penalty (R=−50).

Otherwise the reward is 0. A trial starts with the object at its initial position and ends when the object

reaches the goal position which is an absorbing state.

This benchmark brings together action shadowing induced by penalties, Pareto-selection as there are

several possibilities to reach the goal state, and stochasticity due to uncertainty in actions results. Anyway,

the main interest of this benchmark is to study the coordination of a large number of agents in a Markov

game. Indeed, at each time step, agents under and by the object must coordinate themselves i.e., 16 agents.

For each trial, we plot the number of steps to goal and the sum of received rewards (Figure 10). With

the sum of received rewards, we can observe if the object touches the east and west edges of the surface.

With the number of steps to the goal, we can check if the learned policies are close to best policy which

makes 3 steps per trial (without uncertainty). We can notice that:
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Figure 9 Discrete smart surface

benchmark with 9× 30 agents.
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Figure 10 Steps to goal (on the top) and sum of rewards received at

each trial by an agent (on the bottom) vs. trial number (averaged over 100

runs and logarithmic scale). α= 0.1, ǫ= 0.0005, β = 0.01, δlose = 0.06,

δwin = 0.03, γ = 0.9, Qini = 0, Qmax,ini =−50.

• the environment is stochastic so distributed Q-learning fails to coordinate. Moreover, the sum of

received rewards per trial is low because optimistic agents are blind to penalties; they do not avoid

edges of the surface,

• decentralized Q-learning shows interesting results: after 300 trials, 20 steps are required to reach

the goal and the object touches edges of the surface around 4 times per trial. However, learned

policies are not stable. Mis-coordination penalties and the lack of robustness against exploration lead

to destruction of individual policies. During the experimentations, we notice that agents coordinate

to avoid edges: the object moves round in circles without penalties,

• hysteretic Q-learning is close to decentralized Q-learning. But as these agents are chiefly optimistic,

they do not avoid as much the edges and the sum of rewards increases slowly,

• with WoLF PHC, learned policies are stable but the convergence is slow. Moreover, agents receive

many penalties.

5.3 Summary and Analysis

The results on various matrix and Markov games illustrate the strengths and weaknesses of each algorithm

regarding coordination problems and highlight the importance of exploration. Especially, GLIE strategy
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Table 7 Summary of the explored domains and results of coordination for each algorithm. Symbol ✓ means that the

agents manage to coordinate, symbol ∼ that we can’t conclude about the success of the coordination and no symbol

that the agents fail to coordinate.
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Climbing 1 2 3 ✓ ✓ ✓ ✓ ✓ ✓

Partially stochastic Climbing 1 2 3 ✓ ✓ ✓ ✓ ✓

Stochastic Climbing 1 2 3 ✓ ✓ ✓

Penalty (k = 0) 1 2 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Penalty (k =−100) 1 2 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Large Penalty (k =−100) 1 5 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stochastic Large Penalty 1 5 3 ✓ ✓ ✓ ✓

(k =−100)

Boutilier’s game (k = 0) 6 2 2 ✓ ✓ ✓ ✓ ✓ ✓

Boutilier’s game (k =−100) 6 2 2 ✓ ✓ ✓ ✓ ✓

Stochastic Boutilier’s 6 2 2 ✓ ✓ ✓ ✓ ✓

game (k = 0)

Stochastic Boutilier’s 6 2 2 ✓ ✓ ✓

game (k =−100)

predators pursuit 9702 2 5 ✓ ✓ ✓ ∼ ∼

predators pursuit 164 4 5 ✓ ✓ ∼ ∼ ∼

discrete smart surface 203 270 5 ✓ ✓ ✓ ∼ ∼ ∼

suitable for one environment or one algorithm may be very inefficient with other benchmarks or other

methods. Moreover, the robustness against alter-exploration is a key feature. Indeed, it is crucial for the

agents to be able to learn their individual policies while some of them are taking actions of exploration7.

Distributed Q-learning, WoLF PHC and recursive FMQ have this feature.

The characteristics of each tested environment and results of coordination for each algorithm are

summarized in Table 7. In single-state game or simple multi-state games, we can easily conclude about

the achievement of the coordination as we can evaluate the greedy policy to the optimal one. Yet in more

complex games as predators pursuit or smart surface, we can’t always conclude the effectiveness of the

coordination because we do not know the optimal strategy but only how well the agents could perform

in some restricted conditions. For instance with the discrete smart surface benchmark, we know that the

best policies in case of deterministic actions make three steps per trial; so in case of stochastic actions, it

will probably take slightly more than three steps on average. So we can only check if the learned policies

under uncertainty are close to best policies in case of deterministic actions. That’s why in these complex

benchmarks, we analyse our results by comparing the algorithms to each other and to the one showing the

best results of convergence in the benchmark. We observe that most of the algorithms converge and they

will likely end up reaching the same values after a large number of trials.It has to be noticed that with no

algorithms the learners manage to coordinate in the stochastic climbing and stochastic Boutilier’s games.

7This concept is close to the concept of off-policy algorithms for single-agent problem, see Sutton and Barto (1998)

for example.
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If we consider only the results of coordination, it seems difficult at first sight to analyse why some

methods work with some benchmarks and do not work with others8. However, thanks to the study of

coordination problems proposed in this paper and by comparing with the coordination issues raised

by each environment, we can draw a parallel between successes and failures of algorithms and mis-

coordination factors. Thus, Table 8 specifies problems that each algorithm is able to overcome. First,

no algorithms solves all problems and especially, fully-stochastic environments are still unresolved.

Decentralized and hysteretic Q-learning overcome most of the coordination issues but a well tuned GLIE

strategy is required because they are not robust against alter-exploration. Distributed Q-learning is very

useful as it is assured to converge in deterministic environment with an important capability: it allows

simultaneously the learning of individual policies and exploration i.e., it is robust against exploration.

WoLF PHC may have difficulties against shadowed equilibria. Lastly, recursive FMQ shows best results

since it overcomes all problems in partially stochastic environment, but it is limited to matrix games.

5.4 Discussion

Some important aspects that must be highlighted concerning these experiments and the results presented

in Table 7 are the sensitivity of the algorithms to some parameters as learning rates or initial values.

Indeed the potential exists for divergences given changed parameters. First, it is significant to notice that

we decided to choose the same initial values for all of the experiments so as to conduct fair comparisons

between algorithms. Indeed, the sensitivity of the algorithms to the initial values is a well-known aspect

that has been widely studied in single-agent systems. For instance, the presence of bounds which mark

out diverse behaviors at the beginning of the learning (systematic exploration, “moving round in circles”

or random behavior) has been studied in (Matignon, Laurent, & Le Fort-Piat, 2006). Thus, by choosing

the same initial values in all our experiments, the induced behavior is the same in all cases. However, it

would be actually interesting to study the impact of the initial values in multi-agent systems.

The second aspect concerns the learning rate that is an important issue in multi-agent learning. In

single agent learning, the choice of the learning rate depends on the stochasticity of the process. A small

learning rate acts like a low-pass filter whereas a learning rate equal to one can be used with deterministic

processes. In multi-agent learning, the learning rate can’t be equal to one even if the game is deterministic

due to the exploration actions of the team-mates. Actually, in deterministic Markov games, the learning

rate is linked to the number of agents and to the exploration rate of the agents. That’s why we introduced

the idea of global exploration noted ψ in Section 3.5. It should be noted that we always used a global

exploration close to 0.1 in our experiments. According to our experience, a good choice for the learning

rate is 0.1 for a global exploration of 0.1. As a result, all the domains use this value (except for one

case using GLIE). We also opted for the same learning rate for all the experiments so as to obtain the

same dynamic of the evaluation of the action-value function whatever the algorithm is. If an algorithm

converges faster, it is due to its coordination mechanism and not to a fine tune of the learning rate. Once

more, the objective is to conduct fair comparisons between algorithms.

Some works studied the impact of the learning rate in multi-agent learning. In (Gomes & Kowalczyk,

2009; Wunder, Littman, & Babes, 2010), the authors analyse a continuous-time version of decentralized

Q-learning. These articles open an interesting perspective as regards the Q-learning convergence in multi-

agent settings. It emerges that there may be two alternatives to achieve the Q-learning convergence

in multi-agent settings. The first option could be to adjust the exploration strategy (by using GLIE),

and the second one to play on learning rates. The first one is more efficient but GLIE parameters are

difficult to choose (as mentioned in our article in section 5.1.2); smaller learning rates are safer but create

computational problems. For instance, our results concerning decentralized Q-learning might become

more positive with a smaller learning rate but by generating computational problems. So, the challenge of

choosing between each option is a matter of tradeoff between insuring the optimality but at the cost of a

very slow convergence, and efficiently converging at the risk of failing with a poor exploration strategy.

This tradeoff between time and optimality is all the more important in the multi-agent framework given

8With the exception of distributed Q-learning that complies with its theoretical guarantees.
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Table 8 Synthesis of coordination problems overcome by RL algorithms for independent learners in cooperative

games.
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(Lauer et al., 2000)
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Recursive FMQ YES NO YES YES with a low GOOD

(Matignon et al., 2008) level of noise

the huge number of repetitions or trials required by each method so as to learn to coordinate. So it is

interesting to know if the convergence can be obtained faster with some algorithms than with others.

6 Conclusion

This paper presented a comprehensive review of reinforcement learning algorithms for independent agents

in cooperative multi-agent systems. Five factors which complicate the learning have been identified: the

Pareto-selection problem, the non-stationarity problem, the stochasticity problem, the alter-exploration

problem and the shadowed equilibrium problem. The analysis of the strengths and weaknesses of each

algorithm was carried out from their experimental performances in a variety of fully-cooperative domains.

Table 8 summarizes the problems that each algorithm is able to overcome. Given the sensitivity of the

algorithms to some parameters as learning rates or initial values, we chose the same initial values for all

of the experiments so as to conduct fair comparisons between algorithms and discussed this choice (cf.

section 5.4).

The very first conclusion is that no algorithm is efficient when all coordination problems are combined.

Beyond this fact, we can propose some advices concerning the choice of the algorithm and some

interesting directions for future works.

When the cooperative Markov game is deterministic, distributed Q-learning should be applied to find

optimal policies. Indeed, this is the only algorithm which is proved to converge in this case with an

important capability: it allows simultaneously the learning of individual policies and exploration i.e., it is

robust against alter-exploration. When the game is stochastic, WoLF PHC and recursive FMQ distinguish

themselves from other algorithms. Indeed, the other methods require the use of a well-tuned GLIE strategy

to converge toward a Pareto-optimal equilibrium. It is important to notice that when the number of agents

increases, the difficulty of coordination also increases and the alter-exploration problem outweighs. In

this case, a GLIE strategy is too complicated to tune in practice. As a rule, the issues of the exploration

strategy and the robustness against alter-exploration play a central role for independent learners. In this

paper, we illustrated how exploration strategies can affect convergence. Additionally, we highlighted that

alter-exploration problem can cause instabilities in learned optimal policies.
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The strength of WoLF PHC and of recursive FMQ is precisely that both methods are robust to alter-

exploration. They are able to learn a stable and optimal policy despite the actions of exploration of the

other agents. In addition, they overcome the Pareto-selection problem and work in partially-stochastic

games. Nevertheless, WoLF PHC can fail to find shadowed Pareto-optimal equilibria and then can

converge to a non-shadowed sub-optimal equilibrium. This drawback may be removed by a small tweak

in the algorithm. This is an interesting issue to work on. The recursive FMQ algorithm surmounts the

shadowed-equilibrium problem but is only designed for matrix games. An extension of this algorithm to

the multi-state case is another promising way to get a robust learning method for cooperative independent

learners in stochastic games.

To conclude the paper, it is important to stress the huge number of repetitions or trials required by

each method so as to learn to coordinate, even in small matrix games. We should not underestimate the

complexity of these games since these results suggest that the learning algorithms can be unsuitable to

solve complex applications in realistic time spans. However, we have obtained satisfying results on the

discrete smart surface with 270 agents and these results are added to some successful stories of using

reinforcement learning in a big multi-agent system, as for instance recent results we have obtained on

a real smart surface (Matignon, Laurent, Le Fort-Piat, & Chapuis, 2010). They show that the size is not

always a problem. In fact, the coordination difficulty depends on the interaction between agents. Indeed, in

large multi-agent system, when there is an interaction between agents, it concerns only a few individuals.

Thus, in the discrete smart surface with 270 agents, at most 16 agents can simultaneously interact with the

object (the agents under and by the object), so at most 16 agents are involved in the coordination. In the

predators pursuit domains or in matrix games, the interaction is strong between all the agents. So matrix

games and small Markov games must be seen as a tool to study complex interaction that occurs in larger

multi-agent systems. Finally, the fact that no algorithms are able to learn to coordinate in the stochastic

Climbing and stochastic Boutilier’s games shows that there are many open questions to be addressed by

this field of research.
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Appendix A.

Table 9 were the learning and decay rates used for the results presented in §5.1.1. Here t is the number

of repetitions of the game. With the detailed algorithmic descriptions in Section 4 and these parameters

details, all of the presented results are reproducible.

Table 9 Learning and decay rates used for the results presented in §5.1.1.

Decentralized Q-learning

α= 0.9 γ = 0 τ = 500× e−0.006t + 1 t= 1000 (Climbing game)

α= 0.9 γ = 0 τ = 5000× 0.997t t= 3000 (Penalty game)

Distributed Q-learning

γ = 0 ψ = 0.1 t= 3000

Hysteretic Q-learning

α= 0.1 β = 0.01 γ = 0 τ = 5000e−0.003t t= 3000

WoLF PHC

α= 0.1 γ = 0 δw = 5.10−5 δl = 2δw ψ = 0.1 t= 3000

Recursive FMQ

α= 0.1 γ = 0 αf = 0.01 ψ = 0.1 t= 5000
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Appendix B.

Tables 10, 11 and 12 were the learning and decay rates used for the results presented in §5.1.3. Here t is

the number of repetitions of the game. With the detailed algorithmic descriptions in Section 4 and these

parameters details, all of the presented results are reproducible.

Table 10 Learning and decay rates used for the results presented in §5.1.3.

decentralized and hysteretic Q-learning

agents repetitions algorithm decision exploration

number per trial parameters method strategy

n= 2 t= 10000 α= 0.1 β = 0.05 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0009 ∗ t)

n= 3 t= 30000 α= 0.1 β = 0.05 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0003 ∗ t)

n= 4 t= 50000 α= 0.1 β = 0.01 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0002 ∗ t)

n= 5 t= 80000 α= 0.1 β = 0.01 softmax GLIE

γ = 0 τ(t) = 5000 ∗ exp(−0.0001 ∗ t)

Table 11 Learning and decay rates used for the results presented in §5.1.3.

recursive FMQ

agents repetitions algorithm decision exploration

number per trial parameters method strategy

n= 2 t= 10000 α= 0.1 αf = 0.01 ǫ-greedy stationary

γ = 0 Qmax,ini =−100 ψ = 0.1

n= 3 t= 30000 α= 0.1 αf = 0.01 ǫ-greedy stationary

γ = 0 Qmax,ini =−100 ψ = 0.1

n= 4 t= 50000 α= 0.1 αf = 0.001 ǫ-greedy stationary

γ = 0 Qmax,ini =−100 ψ = 0.15

n= 5 t= 80000 α= 0.1 αf = 0.0001 ǫ-greedy stationary

γ = 0 Qmax,ini =−100 ψ = 0.2

Table 12 Learning and decay rates used for the results presented in §5.1.3.

WoLF-PHC

agents repetitions algorithm decision exploration

number per trial parameters method strategy

n= 2 t= 10000 α= 0.1 δlose = 0.006 ǫ-greedy stationary

γ = 0 δwin = 0.001 ψ = 0.1

n= 3 t= 30000 α= 0.1 δlose = 0.006 ǫ-greedy stationary

γ = 0 δwin = 0.001 ψ = 0.1

n= 4 t= 50000 α= 0.1 δlose = 0.0006 ǫ-greedy stationary

γ = 0 δwin = 0.0001 ψ = 0.15

n= 5 t= 80000 α= 0.1 δlose = 0.0006 ǫ-greedy stationary

γ = 0 δwin = 0.0001 ψ = 0.2
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