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Abstract

In this article, we make a comparative study on a simply supported sandwich beam
subjected to a uniform pressure using different modellings offered by the software
Ansys 5.3 to compute displacements and stresses.

8 nodes quadrilateral elements Plane 82, multi-layered 8 nodes quadrilateral shell
element Shell 91 and multi-layered 20 nodes cubic element Solid 46 are used. Influ-
ence of mesh refinement and of ratio of young’s moduli of layers are studied.

Finally, a local Reissner method is presented and assessed, which permits to
improve the accuracy of interface stresses for high ratio of young’s moduli of layers
using Plane 82 elements.

Key words: Ansys, sandwich structure, interface stresses, local Reissner method,
post-processing

1 Introduction

Sandwich materials really begin to be highly appreciated in the industry, and
especially in the field of transport (automotive, aeronautics, shipbuilding and
railroads) or in civil engineering.

It is therefore important to determine which elements should be used to model
such structures.

A sandwich structure is composed of three layers:
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• two edges made of rigid layers, working in membrane, which represent the
skins;

• a thick and soft central layer, the core, with low rigidity and density and
essentially submitted to transverse shear loading, is sandwiched in between
the edges.

In the design process, interface stresses can be of great importance, since they
play a crucial role in failure modes, as explained in [1,2].

The core being essentially subjected to transverse shear stress, this component,
which is generally very much lower than the others, must not be neglected:
in some cases, effects arising from shear effects overhang others phenomena
(flexural effects for example), as shown for example in [3–6].

The determination of transverse shear stress at interfaces is therefore of par-
ticular importance in the design of new optimized materials.

If we assume that the three layers remain perfectly bonded, then at interfaces:

• the displacement field must be continuous;
• the normal trace of the stress must be continuous.

In this article, we shall study a very simple case using the famous finite element
software Ansys 5.3. We shall not talk about special elements based on hybrid
[7,8], mixed [9–12] or modified [13–15] formulation nor about pre- and post-
processing methods [16,17].

Solutions obtained with different modellings (complex or simple ones) are com-
pared. Particular emphasis is put on their respect of continuity requirements.

By modifying the stiffness of the core, we shall see which modelling should be
preferred by designers.

Finally a method, based on Reissner’s formulation, is developed to improve
the accuracy for new sandwiches.

2 Description of the study

One of the most simple example is the case of the simply supported sandwich
beam subjected to an uniform pressure on its top face. This beam is shown in
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figure 1.

2.1 Characteristics

The geometry is defined as follows:

• The total length of the beam is L = 24 mm;
• its total height H = 2 mm, the core representing 80% of the total height of
this symmetrical sandwich, each skin is 0.2 mm height;

• the thickness of the beam is equal to unity.

The applied pressure is q = −1 N/mm.

2.2 Parameters of the study

In this study, we are interested in determining the structural response at point
A (at the interface between the top skin and the core and located at x1 = L/4)
when different parameters vary.

Skins are made of aluminum (Es = 70000 MPa and νp = 0.34). The core will
be:

• Case A: of carbon/epoxy (Ec = 3400 Mpa and νc = 0.34);
• Case B: of foam (Ec = 340 Mpa and νc = 0.40);
• Case C: of soft foam (Ec = 70 Mpa and νc = 0.40);
• Case D: other material: νc = 0.4 is fixed and Es/Ec varies.

2.3 The modellings

By symmetry, only one half of the beam is modelled.

Before building the different modellings, we define the following parameters
for the meshing:

• ncuts: number of longitudinal cuts (in the beam’s axis direction);
• nskin: number of elements in the thickness of each skin;
• ncore: number of elements in the thickness of the core.
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We shall use the following modellings:

• the reference modelling:
· 2D using the 8 nodes quadrilateral element Plane 82;
· 4 elements through the thickness of each skin (nskin = 4), 32 through the
thickness of the core (ncore = 32), and 400 longitudinal cuts (ncuts =
400) in the beam’s axis directions (16000 elements for the half beam);

This fine meshing yields to the exact solution given by [18].
• a planar modelling using the plane element Plane 82:

1 element is used to model each layers (nskin = ncore = 1), i.e. 3 elements
through the thickness of the sandwich;

• a modelling using the multi-layered cubic element Solid 46:
1 element through the total thickness representing all the layers of the

sandwich structure;
• one modelling done with the multi-layered shell element Shell 91, with sand-
wich option (keyopt(9)=1):
1 element through the total thickness representing all the layers of the

sandwich structure.

2.4 Results of interest

In our studies, we shall focus on the following results of particular interest:

• the maximum displacement of the structure in z direction, denoted Uz in
results;

• the discontinuous components of stresses, σxx, at point A in the skin and in
the core, and the continuous component σzz;

• interlaminar stress: this is the continuous component σxz at point A.

3 Study of the sandwich beam

We now present results obtained with Ansys 5.3 and corresponding to differ-
ent materials and different meshes.

3.1 Influence of ncuts on the different modellings

In this section, we are interested in the structural responses to the different
modellings for Ec = 3400 MPa, Ec = 340 MPa and Ec = 70 MPa.
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Results concerning the case Ec = 340 MPa are plotted in figures 2 for dis-
placements, 3 and 4 for the two continuous components σzz and σxz and 5 and
6 for σxx in the core and in the skin respectively.

Tables 1, 2 and 3 present numerical results and error percentages after con-
vergence for these 3 cases.

From these figures and tables, the following conclusions can be drawn:

• Plane 82 is very much better than others modellings. Nevertheless, it is to
be noticed that it seems to diverge for displacements (with the coarse mesh
used: nskin = ncore = 1);

• Solid 46 is the worst model. It never converges towards the right values (for
any component of stresses nor for displacements);

• Shell 91 is particularly interesting for continuous components of stresses σzz

and σxz;
• Plane 82 is the only modelling leading to a correct determination of the
discontinuous component σxx in the skin and the core;

• It seems that errors increase with the ratio Es/Ec. This point will be studied
in the next section.

3.2 Influence of ratio Es/Ec for ncuts=20

Since every material which can be obtained in a thin skin shape is acceptable
for the skins and every material with low density is acceptable for the core,
sandwich materials cover an extremely wide domain.

A parameter of interest is therefore the ratio of young’s moduli Es/Ec. This
parameter can vary from 4 (old sandwiches, so to speak, very close to lami-
nates) to 1000 (some new high-tech sandwiches developed for very particular
applications go up to 1500). But we must remark that sandwiches often exhibit
a ratio greater than 200.

In this section we shall study the influence of this ratio on the different mod-
ellings when the utilized mesh is fixed to ncuts = 20.

Results concerning displacements are plotted in figure 7. Continuous compo-
nents σzz and σxz are shown in figures 8 and 9. The discontinuous component
σxx is illustrated in figures 10 and 11 in the core and in the skin respectively.

From these figures, the following conclusions can be drawn:
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• Plane 82 is the best modelling for displacements, σzz and σxx in the core
and the skin;

• Shell 91 and Solid 46 are acceptable for displacements and σxx in the core.
They are acceptable for σxx in the skin for Es/Ec ≤ 50;

• Shell 91 leads to an acceptable approximation of σzz, and is very interesting
for σxz;

• Plane 82, which was exceptionally good in the last section, shows some
difficulty here, especially at high Es/Ec ratio for σxz. The influence of the
meshing of the beam with Plane 82 elements is studied in the next section.

3.3 Element Plane 82: influence of mesh refinement

In previous sections, the mesh corresponding to the 8 nodes quadrilateral
element Plane 82 only used 1 element to model 1 layer.

We propose to see what happens when the number of elements through the
thickness of the skins (nskin) and of the core (ncore) vary.

Displacements are plotted in figure 12, σzz and σxz in figures 13 and 14, and
σxx in figures 15 and 16 in the core and in the skin respectively. These com-
putations are done for a ratio Es/Ec = 500.

From these figures, the following conclusions can be drawn:

• results are always accurate when ncore = 8 nskin, i.e. when the meshing is
regular through the thickness;

• nskin and ncore do not have any influence on the convergence of displace-
ments, essentially due to flexion: the number of longitudinal cuts, ncuts, is
therefore the most preponderant parameter.

• a very refined mesh (nskin = 4 and ncore = 8 nskin) must be used in order
to converge towards the right value of σzz;

• a coarse mesh (nskin = 1) does not permit to obtain an acceptable value
of σxz;

• convergence towards σxx reference value in the core is controlled by ncuts.
Results are not improved by increasing nskin nor ncore;

• the last point is also true for the convergence towards σxx value in the skin.

6



4 Local Reissner: improving results for Plane 82

As it can be see from figure 9 and from table 4 (which summaries results and
gives the good “working zone” of the different modellings), Plane 82 is not able
to give accurately the interlaminar stress σxz with a coarse mesh. Since this
component is very important in the design process, results must be improved.

A way of improving results is to refine the meshing. In figure 9, the curve
‘Plane 82/2’ gives results obtained with nskin = 1 and ncore = 2 (instead of
1). This slightest modification of the mesh (4 elements through the thickness
of the sandwich instead of 3) is sufficient to lead to very good results for
Es/Ec ≤ 200.

But, as mentioned before, sandwiches nowadays exhibit ratios generally higher
than 200. In this range, the convergence is only reached with a very refined
meshing: nskin ≥ 3 and ncore = 8 nskin. Such a mesh yields an unacceptable
computation time.

In order to improve the accuracy of stresses, we must answer to the following
question: how are nodal stresses computed?

Nodal stresses τ are generally computed using a minimization process. They
are obtained from nodal displacements q using a least squares method and by
minimizing: ∫

Ω

(σm − σu)
2 dΩ (1)

where σm denotes the mixed way to calculate stresses:

σm = Nστ (2)

and σu the displacements way:

σu = DLNuq (3)

or using the stress projection method presented in [19] by minimizing:

∫
Ω

(σm − σu) dΩ (4)

In these equations, D is the generalized Hooke’s matrix relating stresses to
strains, L the differential operator relating strains to displacements, Nσ and
Nu the matrices of shapes functions for stresses and displacements, and Ω the
volume or surface of interest.
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It is to be noticed that these methods lead to convergence towards Reissner’s
(reference) solution.

As expressed in [20], the minimization process can be global (done over the
whole structure: Ω being the entire structure) or local (done over one element:
Ω being the considered element). Since the local process converges towards the
same limit as the global process, the minimization process chosen is generally
the local one.

Nevertheless, instead of minimizing the difference between two solutions, it
may be more convenient (simpler and faster) to directly find the stress field
using Reissner’s formulation.

In Reissner’s solution, nodal stresses are related to nodal displacements by
[21–24]:

τ = A−1Bq (5)

with:

A = +
∫
Ω

tNσSNσ dΩ (6)

and

B = +
∫
Ω

tNσLNu dΩ (7)

S = D−1 being the compliance matrix.

In order to improve the stress computation at interfaces, we propose to use
the last formulation on two adjacent elements, located on each side of an
interface. Doing so, we ensure the equilibrium state at interface on a better
way. We shall refer to this method as “local Reissner” method.

This kind of method is not more time consuming than least squares methods
generally used (in Ansys for example) to derive nodal stresses from nodal
displacements.

Now looking at figure 17, which is a close-up view of figure 9 for sandwiches
with Es/Ec ≥ 200, we can see that:

• the use of local Reissner’s method (denoted Local Reissner/2 because we
used ncore = 2) permits to really improve the accuracy of σxz, which is of
great importance.

• It is to be noticed that the same mesh with Plane 82 (Plane 82/2) does not
permit to improve results with this high Es/Ec ratio.

• The solution given by Shell 91 is not so good as for lower Es/Ec ratio.
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5 Conclusions

The reference solution has been obtained using a very fine meshing and the 8
node quadrilateral element Plane 82 in order to reach the analytical solution
of Pagano [18].

The first study, influence of ncuts on the different modelling in section 3.1,
seems to lead to the conclusion that Plane 82 is the best model, specially
when looking at figures 2-6 (obtained with a coarse mesh and in the case
Es/Ec ≈ 200). Nevertheless, the study of the influence of the Es/Ec ratio in
section 3.2 permits to see some weakness of this model.

In terms for design quantities:

• all models leads to a correct value of displacements, but Plane 82 is the
most accurate;

• σzz can be correctly given by Shell 91 and Plane 82, the latest being the
most accurate;

• σxz is only very accurately computed with Shell 91, but for Es/Ec ≤ 200;
• σxx in the core can be calculated using any model, Plane 82 being the most
accurate;

• σxx in the skin is very accurately computed with Plane 82 and with Shell
91 (but only for Es/Ec ≤ 20), and acceptable with Solid 46 (and only for
Es/Ec ≤ 20).

A summary of results, and the “working zone” in which the different elements
can be used is given in table 4.

Hence, from the previous results, we can say that:

• for planar problems, Plane 82 is very well adapted. Nevertheless, it is to be
noticed that this method is not very stable for very coarse meshes (small
values of nskin, ncore and ncuts), and that interlaminar stress σxz can only
be reached with a fine meshing;

• Shell 91 (with sandwich option) is a good way of computing sandwich struc-
tures. Nevertheless if the designer must know σxx at interfaces, then this
element can only be used for Es/Ec ≤ 50.

• Solid 46 is not very accurate in the determination of the design quantities.
A model using this kind of element should be avoided. Nevertheless, it is
to be noticed that this element has not been developed to perform such
computations (high differentce of stiffness between layers).
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The presented local Reissner’s method permits to reach excellent results, espe-
cially for the interlaminar stress σxz and for Es/Ec ≥ 200 with a coarse mesh
through the thickness of the sandwih. We can notice that such a meshing, with
4 elements through the thickness of the sandwich yields results very closed to
the exact solution obtained with 40 elements through the thickness!

This method is particularly interesting for the design of new sandwich mate-
rials.

Finally, we want to put emphasis on the fact that this method is particularly
easy to implement, as a stand-alone program, but also in existing finite element
softwares.
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Fig. 1. Sandwich beam
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Fig. 2. Influence of ncuts: Uz (case B)

Fig. 3. Influence of ncuts: σzz (case B)
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Fig. 4. Influence of ncuts: σxz (case B)

Fig. 5. Influence of ncuts: σxx in the core (case B)
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Fig. 6. Influence of ncuts: σxx in the top skin (case B)

Fig. 7. Influence of Es/Ec: Uz (ncuts = 20)

15



Fig. 8. Influence of Es/Ec: σzz (ncuts = 20)

Fig. 9. Influence of Es/Ec: σxz (ncuts = 20)
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Fig. 10. Influence of Es/Ec: σxx in the core (ncuts = 20)

Fig. 11. Influence of Es/Ec: σxx in the top skin (ncuts = 20)
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Fig. 12. Influence of nskin and ncore: Uz (ncuts = 20 and Es/Ec = 500)

Fig. 13. Influence of nskin and ncore: σzz (ncuts = 20 and Es/Ec = 500)
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Fig. 14. Influence of nskin and ncore: σxz (ncuts = 20 and Es/Ec = 500)

Fig. 15. Influence of nskin and ncore: σxx in the core (ncuts = 20 and Es/Ec = 500)
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Fig. 16. Influence of nskin and ncore: σxx in the top skin (ncuts = 20 and
Es/Ec = 500)

Fig. 17. Influence of high Es/Ec ratio: σxz (ncuts = 20)
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Table 1
Case A: Ec = 3400 Mpa

|Uz| |σzz| |σxz| |σxx| |σxx| ncuts
skin core

Ref 0.21596 0.94624 3.1635 123.13 6.2844

P82 0.21527 0.95033 3.2616 123.08 6.2843 400

0.319% 0.432% 3.10% 0.04% 0.001%

S91 0.21388 0.90000 3.1587 126.35 6.1369 1000

0.963% 4.887% 0.15% 2.61% 2.35%

S46 0.20355 0.50000 3.0000 123.28 8.4202 1000

5.746% 47.16% 5.17% 0.12% 34.0%

Table 2
Case B: Ec = 340 Mpa

|Uz| |σzz| |σxz| |σxx| |σxx| ncuts
skin core

Ref 0.51353 0.95461 3.2956 103.71 0.8262

P82 0.52618 0.96321 3.3091 102.38 0.8701 400

2.463% 0.901% 0.41% 1.28% 5.31%

S91 0.55712 0.90000 3.3024 132.09 0.6599 1000

8.488% 5.721% 0.22% 27.4% 20.1%

S46 0.45994 0.50000 3.0000 130.68 1.2042 1000

10.44% 47.62% 8.97% 26.0% 45.7%
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Table 3
Case C: Ec = 70 Mpa

|Uz| |σzz| |σxz| |σxx| |σxx| ncuts
skin core

Ref 1.740 0.96121 3.2926 20.43 0.3614

P82 1.741 0.96847 3.1561 20.77 0.3301 400

0.06% 0.755% 4.15% 1.66% 8.66%

S91 1.987 0.90000 3.3161 132.64 0.1364 1000

14.2% 6.368% 0.71% 549 % 62.2%

S46 1.506 0.50000 3.0000 131.43 0.4802 1000

13.4% 47.98% 8.89% 543 % 32.9%

Table 4
Accuracy of results (ncuts ≥ 20 understood)

Uz σzz σxz σxx σxx
core skin

P82 always good always good acceptable
for Es/Ec ∈
[100, 400]

always good always good

improvement of results

– use a fine meshing: nskin ≥ 3 and ncore = 8 nskin

– use local Reissner’s method

S91 always ac-
ceptable

always ac-
ceptable

always good good for
Es/Ec ≤ 100

good for
Es/Ec ≤ 20

S46 always ac-
ceptable

never accept-
able

acceptable
for Es/Ec ∈
[8, 15]

always weak acceptable
for
Es/Ec ≤ 20
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