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Dynamical systems over Galois �elds: Applications to DES and tothe Signal LanguageMichel Le BorgneIRISA/INRIA, Campus de Beaulieu35042 RENNES CEDEX, FRANCEe-mail : leborgne@irisa.frApril 7, 19931 IntroductionPolynomial dynamical systems over Galois �elds Fp = Z=pZ where p is a prime, were introducedfor studying the logical and synchronisation properties of Signal programs (with p = 3). Itappeared rapidly that these aspects of Signal programs were very closed to Discrete Event Systems(DES). It is always possible to code a DES (at least those speci�ed by �nite state automata), as adynamical system over some Galois �eld. The use of polynomial functions over �nite �elds providesus with e�cient algorithms to represent these functions and polynomial equations. These methodshave been discovered by people working in the �eld of circuit veri�cation and were establishedfor boolean functions i.e. polynomial functions over Z=2Z. The graph data structure which is atthe heart of the method generalizes quite easily to the other �elds Z=pZ. So it was natural totry to use dynamical systems over Galois �elds to solve various control problems in DEDS theory.With these techniques we hope to master, to some extent, the combinatoric explosion experiencedwith automata composition: the number of states of the resulting automata is the product of thenumbers of state of each automata. In contrast, the composition of two dynamical systems issimply obtained by putting the equations together, as usual in mathematics when combinaisons ofequations are considered.Two problems have to be solved for a wide application of logical DES theory: the descriptionof large plants and the speci�cation of properties. We need languages to specify both. The Signallanguage, despite it was designed for the speci�cation of hybrid systems, has some interestingfeatures which may be included in a language for specifying plants. Specifying properties forveri�cation or for synthesis of supervisors is also a di�cult problem. We will restrict in this paperto some general properties of reactive systems.The paper is organized as follows: in section II the theory of dynamical systems over Galois�elds is presented. Section III is devoted to the algorithmic aspects. Signal is briey presentedin section IV. Section V is devoted to the proof of properties of Signal programs while controlproblems are adressed in section VI. 1



2 Polynomial dynamical systems: basic properties2.1 General form of polynomial dynamical systemsDynamical systems over Galois �elds are de�ned by three sets of equations:Q(X; Y ) = 0X 0 = P (X; Y )Q0(X) = 0where X is the vector of state variables (or states for short) and Y the vector of events. The �rstset of equations denoted Q(X; Y ) = 0 is called the constraint equation, it speci�es which event mayoccur in a given state. The second equation is the state transition equation where X 0 denotes thenext value of the state. The last equation put some constraints on the initial state.In the sequel, we will use the notations Fp[X ], Fp[X; Y ] for the rings of polynomials in the vari-ables X and X; Y , with coe�cients in Fp. The dimensions of X and Y will be denoted respectivelyn and m and their elements respectively X1; . . . ; Xn and Y1; . . . ; Ym. A dynamical system will bedenoted (P;Q).Each element (x; y) in Fn+mp such thatQ(x; y) = 0 is termed admissible, an event y is admissiblein the state x if (x; y) is admissible. A trajectory (xi; yi)i�0 initialized in (x0; y0) is a sequence ofadmissible pairs (xi; yi) such that xi+1 = P (xi; yi). We will also consider state trajectories andevent trajectories. The orbit of the dynamical system is the set of states x such that x belongs toa state trajectory initiated in the set of initial states de�ned by the equation Q0(X) = 0.2.2 Ideals, morphisms, and basic toolsThe theory of polynomial dynamical systems [5] uses classical tools in elementary algebraic geom-etry: varieties, ideals, and morphisms. This theory allows us to translate properties of sets intoequivalent properties of associated ideals of polynomials.Ideals and algebraic sets associated with systemsof equations. With the equation Q(X; Y ) =0, we associate the ideal < Q > spanned by the collection of polynomials Q(X; Y ) and the algebraicset V(< Q >) of all (x; y) such that Q(x; y) = 0.Ideals associated with sets. On the other hand, given a subset S of Fn+mp , the set of polyno-mials R such that R(s) = 0 for all s 2 S, is an ideal of Fp[X; Y ] we denote by I(S).Some basic properties. Firstly, it holds that :I(V(< Q >)) = < Q;Xp �X; Y p � Y >where Xp � X (resp. Y p � Y ) stands for the set of polynomials Xpi � Xi (resp Y pi � Yi). Thisequality establishes a one-to-one and onto relation between subsets of Fn+mp and completed ideals,i.e., ideals containing the polynomials Xp�X; Y p� Y . From now we will only consider completedideals and < Q > will denote < Q;Xp �X; Y p � Y >.2



If a is such a completed ideal, the following property is easily veri�ed :P 2 a & Q 2 a, �P p�1 + Qp�1�p�1 2 aAs a consequence of the above property, every completed ideal is spanned by a single generatorcalled a principal generator. These particular generators are used in the practical implementationof the algorithms on ideals.The one-to-one and onto correspondance between completed ideals and sets allows us to worknot with polynomials but with elements of the quotient ring Fp[X; Y ]= < Xp �X; Y p � Y >, thatis with polynomial functions. This remark is essential for the implementation of the algorithmspresented further. For sake of notational simplicity we will continue to work with polynomials inthis paper. A set Q of polynomial will be considered as a set of generators of a completed ideal a ifnone of the corresponding polynomial functions is equal to zero and the set of functions generatesthe ideal (a+ < Xp �X; Y p � Y >)= < Xp �X; Y p � Y >.Notice also that any decreasing sequence of completed ideals is stationnary.Morphisms. A morphism is a polynomial map P : Fn+mp ! Fnp . In fact, due to the �nitnessof the �eld Fp, every map f : Fn+mp ! Fnp is a morphism. With the morphism P is associated acomorphism P � from Fp[X ] into Fp[X; Y ] de�ned by: p 2 Fp[X ] : P �(p(X)) = P �(p(X1; . . . ; Xn)) =p(P1(X; Y ); . . . ; Pn(X; Y ));where P1; . . . ; Pn are the components of P . Informally, P �(p) is obtainedby substituting every Xi in p with the corresponding Pi.The following relations are straightforward:I(P (V(a))) = P ��1(a) (1)V(< P �(b) >) = P�1(V(b)) (2)for all completed ideals a in Fp[X; Y ] and all ideal b in Fp[X ].2.3 Properties of Polynomial Dynamical Systems2.3.1 LivenessRecall a system is alive if, roughly speaking, no deadlock can occur. This de�nition is formalizedas follows.De�nition 1 A state x is alive if there exists a signal y such that Q(x; y) = 0; a set of states Vis alive if every element in V is alive.A dynamical system is alive if for all (x; y) such that Q(x; y) = 0, P (x; y) is an alive state.To check if V is alive, we only have to test if V � projX(V(< Q >)) or, equivalently, if < Q >\Fp[X ] � I(V ). Equivalently, a system is alive i� P (V(< Q >)) � projX(V(< Q >)). Using (1),these properties can be translated into equivalent ones for ideals as follows :Proposition 1 A dynamical system is alive if and only ifP �(< Q > \Fp[X ]) � < Q > :3



2.3.2 InvarianceDe�nition 2 A subset E of states is invariant for a dynamical system if for every x in E andevery y admissible in the state x, the state x0 = P (x; y) is in E.We have the following property:Proposition 2 A subset E is invariant if and only if:P �(I(E)) � < Q > +I(E)Fp[X; Y ];where I(E)Fp[X; Y ] is the ideal generated by I(E) in Fp[X; Y ].The proof is straightforward and can be found in [6].This kind of property covers the class of so-called \safety" properties i.e., properties that in-tuitively state that \nothing bad can happen" or, in our terminology, that \the set of good statesis invariant". It may happen that the set of \good states" V is not invariant. In this case, it isinteresting to �nd the largest invariant subset of V .Notice that Fp[X; Y ] �= (Fp[X ])[Y ], hence a polynomial p 2 Fp[X; Y ] may be rewritten as apolynomial in the variables Y with polynomials in X as coe�cients. So, for p 2 Fp[X; Y ], denoteby CoefX(p) (3)the ideal of Fp[X ] spanned by its coe�cients when rewritten as a polynomial in the variables Y .coefX(a) is de�ned accordingly for any completed ideal a � Fp[X; Y ]. Given any of generatorsf�1(X; Y ); . . . ; �k(X; Y )g of a (as de�ned previously) coefX(a) is generated byfcoefX(�1); . . . ; coefX(�k)gThe geometric meaning of coefX is captured by the following relation:V (coefX(a)) = fx : 8y; (x; y) 2 V(a)g (4)With this de�nition we get the straightforward proposition:Proposition 3 Given an ideal a in Fp[X ] and an ideal b in Fp[X; Y ], the following assertions areequivalent:i) b � aFp[X; Y ]ii) coefX(b) � aUsing this property, we get an algorithm to compute the largest invariant subset included in a givenset E of states. Consider the following chain of ideals:a0 = I(E)a1 = a0 + coefX(P �(a0)\ < Q >c). . .ak = ak�1 + coefX(P �(ak�1)\ < Q >c)where ac denotes the ideal associated with the complementary set of V(a). Any (increasing) chainof ideals must be stationary. Hence, let a(E; P ) denote the largest ideal of this chain. The proofof the following result is straightforward : 4



Theorem 1 With the previous notations, if a(E; P ) is not the entire ring, then V(a(E; P )) isthe largest invariant subset of E. If a(E; P ) is the entire ring Fp[X ] then E contains no properinvariant subset.The absence of invariant subsets is also an interesting property. It means that every trajectoryentering E may eventually leave E. Thus fairness properties can be viewed as particular instancesof invariance properties.An important application of the notion of largest invariant subset is to determine whether a setof states V can be reached starting from a state x0. This problem is equivalent to that of testingif x0 belongs to the largest invariant subset U of Fnp � V , the complement of V in the state space.If x0 belongs to U , then every trajectory starting from x0 stays in U , so V cannot be reached fromx0. Conversely, if x0 does not belong to U , then there is a trajectory intialized in x0 that leavesFnp � V , i.e., this trajectory reaches V .2.3.3 Control-invarianceAn other useful property is that of control-invariance of a set of states E:De�nition 3 1 E is control-invariant if for all state x in E, there exists an event y such thatQ(x; y) = 0 and P (x; y) is still an element of E.Whereas the invariance property of a set E states that every trajectory initialized in E never leavesE, the above property means that it is possible starting from E to allways stay in E. Equivalently,the system is E-stabilizable if we can modify the system, by adding new contraints, in such a waythat E becomes invariant.Proposition 4 E is control-invariant if and only if:(< Q > +P �(I(E)))\ Fp[X ] � I(E)As for the largest invariant subset of a given set E, it is possible to compute the largest control-invariant subset of E. The algorithm is as follows:a0 = I(E)a1 = a0 + (c+ P �(a0))\ Fp[X ]. . .ak+1 = ak + (c+ P �(ak))\ Fp[X ]where c =< Q >. The proof of correctness is similar to the proof of the largest invariant algorithm.It is also of interest to check whether a set of states E does not contain any control-invariant subset.This means that all trajectory entering E must exit E after a �nite delay. This kind of propertymay be used for checking the absence of starvation.1Our de�nition of control-invariance is stronger than the usual one. It implies some kind of liveness. There is nodi�erence with the usual de�nition if we restrict to alive states5



2.3.4 Derived propertiesMany properties may be derived from the three basic properties. For example, a set of states E isattractive if and only if every state trajectory reaches E. It is easy to prove that E is attractive ifand only if the initial states are not in the greatest control-invariant subset of Fnp �E. In the sameway, if we de�ne a recurrent set E as a set which is in�nitely often visited by any trajectory, it iseasy to show that a set E is recurrent if and only if O � E doesn't contain any control-invariantsubset, where O is the orbit of the dynamical system.3 Algorithmic issuesIn the preceeding section a set of algorithms has been presented to solve problems for dynamicalsystems over Galois �elds. In this section we present an e�cient technique for implementing poly-nomial functions. The �rst use of this technique was for p = 2 (boolean functions). It generalizesquite easily to other values of p. For the sake of simplicity, we present the case p = 3.It turns out that all algorithms we introduced, only use a small set of primitive algorithmsinvolving polynomials or ideals. To summarise we have to:� Compute P �(a), the image of ideal a by the comorphism P � (note that P �(a) is not an idealin general). This is the basic tool for analysing state transitions.� Check if a polynomial P belongs to an ideal a, and, more generally, if an ideal a is includedin another one b. This is equivalent to testing for inclusions of set of states or events.� Compute intersections of the form a \ F3[X ] for some ideal a in F3[X; Y ]. This allows us tocompute projections.� Compute the ideal associated with the complement of a set.� Compute the coefX of some ideal, cf. (3). This is the basis for computing largest invariantsubsets.3.1 Finitely generated algebras and families of idempotentsGiven a ring F3[X ]= < X3 � X > of polynomial functions, and a variable Xi, let us de�ne thefollowing family of polynomial functions:h1Xi = �X2i �Xih2Xi = �X2i +Xih3Xi = 1�X2i (5)Throughout this section, polynomials will implicitly refer to elements of F3[X ]= < X3�X >, i.e., toassociated polynomial functions of our quotient ring. In other words, we shall handle polynomials asusually with the additional rule that X3 = X . The three polynomial functions (5) have interestingproperties: (h�Xi)2 = h�Xi for � = 1; 2; 3 (6)h�Xih�Xi = 0 for all � 6= � (7)h1Xi + h2Xi + h3Xi = 1 (8)6



Note that, thanks to the idempotence property (6), h�-polynomials never occur with exponentgreater than 1, so the reader should not confuse h1; h2; h3 with exponents of h, these superscriptscan only refer to indices.Proposition 5 If P (X) is an element of the quotient ringF3[X1; . . . ; Xn]= < X31 �X1; . . . ; X3n �Xn >then there exist a unique triple (P1; P2; P3) of elements of the quotient ring:F3[X2; . . . ; Xn]= < X32 �X2; . . . ; X3n �Xn >with n� 1 variables X2; . . . ; Xn such that:P (X) = h1X1P1 + h1X2P2 + h1X3P3This theorem is a generalisation to a three valued logic of the well-known decomposition theoremof Shannon for boolean functions. From an algebraic point of view, the families fh1Xi ; h2Xi; h3Xig arefamilies of orthogonal idempotents, and the following corollary establishes that F3[X1; . . . ; Xn]= <X31 �X1; . . . ; X3n �Xn > is �nitely generated by families of orthogonal idempotents.Corollary 1 Every element of F3[X1; . . . ; Xn]= < X31 �X1; . . . ; X3n �Xn > has a unique decom-position: P (X) =X a�h�1X1 . . .h�nXnwhere the �i's range over the set f1; 2:3g, � is the word � = �1 . . .�n, and a� 2 F3.The proof is straightforward and relies on a recursion over the number of variables.The decomposition of the polynomial functions using the basis of monomials h�1X1 . . .h�nXn is notinteresting for an e�cient implementation of the arithmetic of polynomial functions since it needs3n coe�cients. It is possible to have a more compact representation but at the price of chosingan order on the variables. Moreover the e�ciency of the representation will depend on the chosenorder.De�nition 4 Given a polynomial function P in F3[X ]= < X3 �X >, and an order X1 � X2 �. . . � Xn on the variables, a h-expression of P is:� either P (X) = c1h1Xi + c2h2Xi + c3h3Xi where ci 2 F3� or P (X) = h1XiP1 + h2XiP2 + h3XiP3 where the Pi are h-expressions with variables greaterthan Xi.A h-expression may be pictured as a ternary tree. For example the polynomial function:X21X22X23 �X21X22X3 �X21X2X23 +X21X2X3 �X21X23�X21X3 �X1X22X23 +X1X22X3 +X1X2X23 �X1X2X3 +X1X23+X1X3 +X22X23 �X22X3 �X2X23 +X2X3 �X23 �X3is represented as: 7



1 0 1 1 0 1 0X3 X3 X3X2 X3 X3 X3X2 1 0 1 1 0 1 0X3 X3 X3X2X1
0 0 0 0 0 0 0 0 00 0 0 01 0-11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0-1 -1 -1 -1 -1 -1 -1 -1 -1-1 -1 -11 0 1 0 1 0where the left branch of a subtree with root Xi represents the h1Xi factor, the middle branch repre-sents the h2Xi factor and the right branch the h3Xi factor. The leaves of the whole tree are labelledwith numerical coe�cients. A polynomial function has several h-expressions, so h-expressions arenot canonical representations. The decomposition introduced in Corollary 1 is a h-expression withrespect to any ordering of the variables. All h-expressions have nice properties with respect to poly-nomial operations. Given an operation op, (sum, product...), and two h-expressions representingpolynomials (with the same order on the variables), say :P (X) = h1X1P1 + h2X1P2 + h3X1P3P 0(X) = h1X1P 01 + h2X1P 02 + h3X1P 03then it holds thatP op P 0 = h1X1(P1 op P 01) + h2X1(P2 op P 02) + h3X1(P3 op P 03) (9)This orthogonality property would allow e�cient implementations of polynomial operations if thenumber of monomials in such h-expressions were not, as previously noticed, too big in general forpractical use.Two ideas give the clue to an e�cient implementation of polynomial functions. The �rst oneis to reduce the h-expressions of the form P (X) = h1XiP1 + h2XiP2 + h3XiP3 by eliminating theidempotents h�Xi when P1 = P2 = P3 and replacing the former expression by the common valueP1. This is possible since the sum of these idempotents is 1 and the resulting expression is still ah-expression.The second idea comes from the fact that, in the tree representation of the h-expressions, itoften happens that several subtrees are identical. Thus it is tempting to have a representationsharing the common subtrees. These two ideas lead to a generalisation of Bryant graphs [11, 12, 13]and fortunately these graphs retain in some way the orthogonality property (9). For example, agraph representing the polynomial function in the above example is obtained �rst by reducing thetree: 8



X1-1 01 0 1 1 0 1 0X3 X3 X3X20 0 1 0 1 1 0 1 0X3 X3 X3X20 0
1 01 0 1 0-1-10 0 1 01 1-1 -1 -1 -1-1 -1 1 0 1 0 1 0and then by sharing the identical subtrees:

1 0X3X3 X2 X11, 0 -1-11,0 -1, 01,-1 01This representation has been introduced in [11] for boolean functions. The representation givenhere is a slight generalisation of Bryant graphs but can be extended to all algebras generated by�nite families of orthogonal idempotents. This kind of representation of polynomial functions hasproved to be e�cient on the average despite it is exponential in the worst case. The e�ciencyof the elementary operations on polynomial functions (sum, product, composition) obtained withthis representation allows us to use in practice principal generators for representing ideals. Wesummarize now the basic toolkit of �nal primitive algorithms :An e�ective toolkit of primitive algorithms :Computing a principal generator of an ideal : if a =< p1; . . . ; pk > is an ideal, a principalgenerator is g = 1� kYi=1(1� p2i ) ; or alternatively p1 � . . .� pkusing the notation p� q = (p2 + q2)2. 9



Testing for inclusion : a1 � a2 is equivalent to g2(1� g21) = 0.Computing intersections a \ F3[X ] : the algorithm is based on the following simple fact: if(X; Y ) = (X1; . . . ; Xn; Y1; . . .Ym) then (x; y1; . . . ; ym�1) belongs to projX;Y1;...;Ym�1(V(a)) ifand only if there exists a ym such thatg(x; y1; . . . ; ym�1; ym) = 0. This is equivalent to the condition:g(x; y1; . . . ; ym�1; 1)g(x; y1; . . . ; ym�1;�1)g(x; y1; . . . ; ym�1; 0) = 0 (10)A simple iteration gives then the full projection. The actual algorithm is more subtle butbasically uses this idea.Complement of a set : if g is a principal generator of a, then 1� g2 is a principal generator ofthe ideal associated with the complement of I(a).Computing the coefX of some ideal : using (4), and noticing that P � Q = 0 i� P = 0 andQ = 0, one can show that this is similar to performing (10), but with the standard productof factors replaced by the � operation.Computing comorphisms : this reduces to elementary operations (sums and products) on poly-nomials and is performed e�ciently using the graph representation.A complete implementation of the algorithms may be founded in [7].4 A brief description of Signal4.1 IntroductionSignal is a synchronous, data-ow oriented language dedicated to real-time applications, to signalprogramming systems and, more generally to C3-systems. We refer the reader to the introductorypaper [1] for a thorough discussion of the principles of synchronous programming and to [2] for anextended presentation of the Signal language, and we concentrate here on the minimum neededfor a good understanding of this paper.Reliable design of real time systems requires static veri�cation of correctness, particularly forreal-time programs that have to meet some critical speci�cations. Classical tools to reason aboutsuch non terminating, continuously interacting systems rely on temporal logic [8, 9] or automatatheory [10]. An alternative approach has been choosen for Signal programs. Logical and temporalaspects of programs are translated into polynomial dynamical systems, and algebraic techniquesare used to prove a wide variety of properties. This approach is motivated by the equational styleof Signal .4.2 The underlying modelOur model handles in�nite sequences of data with a certain kind of restricted asynchronism. Assumethat each sequence, in addition to the normal values it takes in its range, can also take a specialvalue representing the absence of data at that instant. The symbol used for absence is ?. Therefore,an in�nite time sequence of data (we shall refer to informally as a signal in this discussion) maylook like 1;�4;?;?; 4; 2;?; ::: (11)10



which is interpreted as the signal being absent at the instants n = 3; 4; 7; ::: etc. A typical wayof specifying such constraints will be to write equations relating di�erent signals. The followingquestions are immediate from this de�nition:(1) If a single signal is observed, should we distinguish the following samples fromeach other?f1;�4;?;?; 4; 2;?; :::g ; f?; 1;?;�4;?; 4;?; 2;?; :::g ; f1;�4; 4; 2; :::gConsider an \observer"2 who monitors this single signal and does nothing else. Since he is assumedto observe only present values, there is no reason to distinguish the samples above. In fact, the sym-bol ? is simply a tool to specify the relative presence or absence of a signal, given an environment,i.e. other signals that are also observed. Jointly observed signals taking the value ? simultaneouslyfor any environment will be said to possess the same clock, and they will be said to possess di�erentclocks otherwise. Hence clocks may be considered as equivalence classes of signals that are presentsimultaneously. This notion of time makes no reference to any \physical" universal clock: time israther local to each particular subset of signals in consideration.(2) How to interconnect two systems? Consider the following two systems speci�ed viaequations: yn = if xn > 0 then xn else ? (12)and the usual addition on sequences, namelyzn = yn + un (13)In combining these systems, it is certainly preferable to match the successive occurrences y1; y2; :::in (13) with the corresponding present occurrences in (12) so that the usual meaning of additionbe met. But this is in contradiction with the bruteforce conjunction of equations (12,13)yn = if xn > 0 then xn else ?zn = yn + unwhich yields zn = ?+ un whenever xn � 0. To summarize, our formalism will provide a multiformbut coherent notion of time. Other formalisms using the same approach to handle time are theso-called synchronous languages [1, 3, 4].4.3 Signal-kernelWe shall introduce only the primitives of the Signal language, and drop any reference to typing,modular structure, and various declarations; the interested reader is referred to [2]. Signal han-dles in�nite sequences of data with time implicit: such sequences will be referred to as signals.Instructions of Signal are intended to relate clocks as well as values of the various signals involvedin a given system. We term a system of such relations program; programs may be used as modulesand further combined as indicated later.A basic principle in Signal is that a single name is assigned to every signal, so that in the sequel,identical names refer to identical signals. The kernel-language Signal possesses 5 instructions, the�rst of them being a generic one.2in the common sense, no mathematical de�nition is referred to here11



(i) R(x1,...,xp)(ii) y := x $1 init x0(iii) y := x when b(iv) y := u default v(v) P | Q(i) direct extension of instantaneous relations into relations acting on signals:R(x1; :::; xp) () 8n : R(x1n; :::; xpn) holdswhere R(:::) denotes a relation and the index n enumerates the instants at which the signals xiare present. Examples are functions such as z := x+y (8n : zn = xn + yn). A byproduct of thisinstruction is that all referred signals must be present simultaneously, i.e. they must have the sameclock. This is a generic instruction, i.e. we assume a family of relations is available. If R(...) isthe universal relation, i.e., it contains all the p-tuples of the relevant domains, the resulting Signalinstruction only constrains the involved signals to have the same clock: the so obtained instructionwill be writtensynchro {x1,...,xp}and only forces the listed signals to have the same clock.(ii) shift register. y := x $1 init x0 () 8n > 1 : yn = xn�1; y1 = x0Here the index n refers to the values of the signals when they are present. Again this instructionforces the input and output signals to have the same clock. In writing actual programs, we shalldefer the \init" declaration to some speci�c �eld of the program.(iii) condition (b is boolean): y equals x when the signal x and the boolean b are available and bis true; otherwise, y is absent; the result is an event-based undersampling of signals. Here followsa diagram summarizing this instruction:x : 1 2 ? ? 3 4 ? ? 5 6 9 . . .b : t f t ? f t f ? ? f t . . .y : 1 ? ? ? ? 4 ? ? ? ? 9 . . .(iv) y merges u and v, with priority to u when both signals are simultaneously present; thisinstruction is the key to oversampling as we shall see later. Here follows a table summarizing thisinstruction: u : 1 2 ? ? 3 4 ? ? 5 ? 9 . . .v : ? ? ? 3 4 10 ? 8 9 2 ? . . .y : 1 2 ? 3 3 4 ? 8 5 2 9 . . .Instructions (i-iv) specify the elementary programs.12



(v) combination of already de�ned programs: signals with common names in P and Q are consid-ered as identical. For example(| y := zy + a| zy := y $1 x0 |)denotes the system of recurrent equations:yn = zyn + an (14)zyn = yn�1; zy1 = x0On the other hand, the program(| y := x when x>0| z := y+u |)yields if xn > 0 then ( yn = xnzn = yn + unelse yn = un = zn = ? (15)where (xn) denotes the sequence of present values of x. Hence the communication | causes ? to beinserted whenever needed in the second system z:=y+u. This is what we wanted for the example(12,13). Let us explain this mechanism more precisely. Denote by u1; u2; u3; u4; � � � the sequenceof the present values of u (recall that y,z are present simultaneously with u). Then, accordingto point (1) of the discussion at the beginning of this section, u1; u2; u3; u4; � � � is equivalent to itsfollowing expanded version: u : ?; u1;?;?; u2; u3;?;?;?; u4;?; � � � ;for any �nite amount of \?"s inserted between successive occurrences of u. Assuming all signals ofinteger type, suppose the following sequence of values is observed for x:x : �2;+1;�6;�4;+3;+8;�21;�7;�2;+5;�9; � � �Then the amount of inserted \?"s for the above expanded version of u turns out to �t exactly thenegative occurrences of x: this exibility in de�ning u allows us to match the present occurrencesof u with the present occurrences of y, i.e., the positive occurrences of x.Structured programming. We provide here some of the features of the actual Signal languagefor this purpose, for additional details, see [2]. A Signal program is organized as follows :program NAME ={ ? list_of_inputs! list_of_outputs } % interface declaration% begin body of the program(| signal_1 := expr_1| ... 13



| signal_k := expr_k| ...| signal_K := expr_K|) % end body of the programwhere % declarationstype of local variables, initializationsend4.4 An illustrative example : Peterson's algorithmTo illustrate the use of the programming language Signal we present, as an example, a synchronousversion of Peterson's algorithm for critical section handling.Two external devices (clients) share a common resource. The two clients obey the followingprotocol:1. They send to a controller a request for the resource.2. They wait until the controller grants them access.3. When they no longer need it, they inform the controller that the resource becomes free.Our objective is to design a controller that guarantees correct and fair sharing of the resource :both clients never access the resource together at the same time, and a client, after requesting theresource, will never wait for ever.The controller. The controller communicates with client i (i = 1 or 2) by means of threesignals: the input signals Request_i and Free_i for \request" and \deallocation" of the resource,the output signals Access_i grants access to the resource.The program is the following:process CONTROLLER ={ ? event Request1, Free1, Request2, Free2! event Access1, Access2 };The signals Prev reqi and Zpri memorize the requests(| Prev_req1 := Request1 default (not Free1) default Zpr1| Zpr1 := Prev_req1 $1| Prev_req2 := Request2 default (not Free2) default Zpr2| Zpr2 := Prev_req2 $1;The signal P and ZP memorize the last owner of the resource| P := (not Access1) default Access2 default ZP| ZP := P $1;Conict detects simultaneous requests 14



| Conflict := Request1 when Request2;Access is granted by the controller| Access1 := (Request1 when not Prev_req2) default (Conflict when ZP)default (Free2 when Prev_req1)| Access2 := (Request2 when not Prev_req1) default (Conflict when (not ZP))default (Free1 when Prev_req2);The clock of the internal signals Prev reqi and P is the supremum of the clocks of the inputs| synchro { Prev_req1, Prev_req2, P,Request1 default Request2 default Free1 default Free2 }|);Types declarationswherelogical Prev_req1, Zpr1 init false, Prev_req2, Zpr2 init false,P, ZP init true;event ConflictendThis program describes the program interface (the f? . . . , ! . . .g part), the program body and thedeclaration of local signals. Each signal is typed. A signal of event type can be considered as asignal which takes only the value true, i.e., it is a clock.5 Checking properties on Signal programs5.1 Encoding Signal programs using Galois �eldsIn this paper, we concentrate on the subset of Signal that involves only logical (i.e., boolean)and event data types. A corresponding Signal program is an implicit system of multiple clockeddynamical equations which speci�es some �nite state transition system. Accordingly, the mainissues are- compiling, i.e., transforming this implicit system into an equivalent input-output form,- checking properties.In this paper, we focus on the second aspect. A given signal may have one of the following status :absent, true, false as well as the status present we consider as a non determinate \true or false"value. The �eld F3 of integers modulo 3 is used for this purpose via the following coding :absent! 0; true! +1; false! �1The relations between clocks and booleans are then encoded as polynomial equations. For example,the expression a and b = a, where a,b are booleans, is encoded as follows:a2 = b2; a2 = b� a + ab (16)15



In these equations, the variables a; b refer to in�nite sequences of data in F3 with implicit timeindex. The �rst equation of (16) expresses that the two signals a and b must have the same clock,while the second one encodes the particular boolean relation. Dynamical systems appear when thedelay operator ($) is used.We proceed now on presenting the coding Signal programs.Boolean Functions. Boolean functions are translated into a system of two equations, one ex-presses that signals must be synchronous, the other gives the relation between actual values. Forexample, the program C := A or B is encoded as:c2 = a2 = b2c = ab(1� (ab+ a+ b)):The when instruction. The Signal equation Y := X when B, has the polynomial equationy = x(�b� b2) as coding.Default If X, Y, and Z are boolean, Z := X default Y is translated into: z = x+ (1� x2)y.The delay (or shift register). The programY := X $1 init y0is encoded as follows. Introduce a state variable � representing the most recent value of X, thecoding is : �0 = x+ (1� x2)� (17)y = �x2 (18)�0 = y0 (19)where �0 is the next value of �. Equation (18) relates the value of x, the value of y, and the state�. Equation (17) describes what will be the following value of the state. A comprehensive codingmust include the initial value of � corresponding to the initialisation of Y. Note that � is alwayspresent, so it takes only value �1.5.2 Example: the coding of the controllerThe polynomial dynamical system encoding this program has the following equations as stateequations : �10 = pr1 + (1� pr21)�1 ; �10 = �1�20 = pr2 + (1� pr22)�2 ; �20 = �1�p0 = p+ (1� p2)�p ; �p0 = 1The remaining equations are all static equations, i.e., the implicit time index is the same on bothsides: h = r21 + (1� r21)(r22 + (1� r22)(f21 + (1� f21 )f22 ))16



pr1 = r21 + (1� r12)(�f21 + (1� f21 )zpr1)zpr1 = h�1pr2 = r22 + (1� r22)(�f22 + (1� f22 )zpr2)zpr2 = h�2p = �a1 + (1� a21)(a2 + (1� a22)zp))zp = h�pc = r21r22a1 = r21((pr2� pr22) + r22(�zp� zp2)) +f21 (�pr1 � pr21)(1� r21((pr2 � pr22) + r22(�zp� zp2)))a2 = r22((pr1� pr21) + r21(zp� zp2)) +f22 (�pr2 � pr22)(1� r22((pr1 � pr21) + r21(zp� zp2)))In these equations, the variable h is a shorthand forRequest1 default Request2 default Free1 default Free2The variables ri; fi; pri; ai; c are the codings ofRequest_i, Free_i, Prev_req_i, Access_i, Conflictrespectively.5.3 Proving some properties of Peterson algorithmIn this section, we apply the toolkit of algorithms we have presented to check various properties onour Signal implementation of Peterson's algorithm.5.3.1 SafetyThe �rst property we want to prove for our program is the vital condition that both clients nevercan access the resource simultaneously.In our resource allocation problem, as in most real-time problems, one cannot expect to build aprogram that works whatever the external world behaves. Hence a description of the interactionsbetween the external world and the programmust be included in the speci�cations. In our example,the controller does not, indeed, work correctly with anarchic clients. It would be confused ifsome client would send both request and release signals simultaneously. So we will complete thespeci�cations by describing constraints on the behaviour of the clients. The Signal programminglanguage itself can be used for this purpose.An essential property of the behaviour of clients is the interleaving of requests and releases:Free_i (release of the resource by i) occurs exactly once between two subsequent occurences ofRequest_i (request from client i). This is an algebraic property which can be described in Signalusing an auxiliary boolean X_i for each client:(| X_i := not ZX_i| ZX_i := X_i$1 17



| synchro{ Request_i , when X_i}| synchro{ Free_i, when ZX_i}|)where ZX_i is initialized to false.The coding of the speci�cations for each client introduces a new state variable �i with associatedevolution equation: �0i = xi + (1� x2i )�i;and a new system of constraints: zxi = x2i�ixi = �zxir2i = �xi � x2if2i = �zxi � zx2i :In order to prove that both clients cannot own the resource simultaneously we need to expressthe fact \client i is owning the resource". Let us introduce the signalsCS1 := Access1 default (not Free1)CS2 := Access2 default (not Free2)The true (resp. false) values of this signals occur when client i gets (resp. releases) the resource.The de�nition of this signal is translated into:csi = ai + (1� a2i )li:A state variable �i holding the last value of csi represents exactly what we need: client i owns theresource when �i is 1. The evolution equation for �i is�i0 = csi + (1� cs2i )�i:Collecting the polynomial representation of clients, controller, and the equations for csi and �i,we obtain the overall polynomial dynamical system combining the CONTROLLER program with theconstraints speci�ed on clients. Safety is now simple to express: the CONTROLLER program is safe,for clients having the speci�ed behaviour, if \the set of states V such that �1 = 1 and �2 = 1 cannotbe reached from the initial state".In order to check this property, we compute the largest invariant subset of the complement ofV , and then we check if this largest invariant subset contains the initial state. Let us proceed onusing our toolkit.The ideal associated to the complement of V in Fn3 is generated by the polynomial :�1�2(1 + �1)(1 + �2)completed by all polynomials of the form �3 � � where � is a state variable. Recall that our statevariables never take the zero value, cf. Subsection 5.1. As a consequence, we can restrict our setto the complement of V in (F3 � f0g)n, by adding the generators �2 � 1 for all state variable �.18



Hence, the complement of V in (F3 � f0g)n is de�ned by the ideal:I = < �1�2(1 + �1)(1 + �2);�21 � 1; �22 � 1; �21 � 1; �22 � 1; �21 � 1; �22 � 1; �2p � 1 > :The algorithm that computes the largest invariant subset of V(I) yields:J = < (1 + �1)(1 + �2); �21 � 1; �22 � 1;�21 � 1; �22 � 1; �21 � 1; �22 � 1; �2p � 1;(1 + �1)(1� �1); (1 + �2)(1� �2);(1 + �1)(1� �1); (1 + �2)(1� �2);(1 + �1)(1� �1); (1 + �2)(1� �2) > :as the characteristic ideal of the largest invariant subset of V(I). It is easy to check that the initialstate de�ned by: �1 = �2 = �1 = �2 = �1 = �2 = �1 and �p = 1 belongs to V(J).5.3.2 LivenessLiveness of the controller is the property that \at least one client can own the resource". Thisproperty can be established by proving that \the set of states where one of the clients is owning theresource" is reachable from the initial state. Denote by L the so de�ned set of states. The idealde�ning L is generated by the following polynomial:(�1 � 1)(�2 � 1):The method is similar to the previous one with the modi�cation that we expect the initial statenot to belong to the largest invariant subset of the complement of L.5.3.3 FairnessThe fairness of the controller can be proved by checking the absence of starvation: \a client afterasking for the resource, will eventually get it".Let us consider client 1. Extract the following relations from the speci�cations of the controller(�rst two instructions) and the Signal description of the behaviour of the clients (last instruction) :(| Prev_req1 := Request1 default (not Free1) default Zpr1| Zpr1 := Prev_req1$1| CS1 := Request1 default (not Free1)|)Client 1 is waiting from the instant when Request1 occurs until Access1 or Free1 occurs. Considerthe state variables �1 and �1 that respectively memorize the value of Prev_req1 and CS_1. Thestates in which client 1 is in the status \waiting" satisfy the equations :�1 = 1 ; �1 = �1:19



Let us callW1 the set of such states. Starvation of client 1 occurs if there exists an in�nite trajectoryof the state included in W1. Thus starvation can not occur if and only if \W1 contains no stabilisablesubset". This is checked by showing that the largest stabilisable subset of W1 is empty. Let usproceed on checking this last property.For a polynomial system obtained from a Signal program, the t-uple of signals y = (0; . . . ; 0) 2Fm3 is admissible at every state x and causes no transition to occur, i.e., is such that P (x; y) = x.Hence, for such a system, any set of state is stabilizable. But this \zero" t-uple of signals correspondsto the absence of activity of the program. Performing nothing is always allowed for a Signalprogram, but is of course of little interest. So, prior to study stabilization, we have to remove this\zero" signal by adding the equation mYi=1(1� y2i ) = 0 (20)to the set of constraints.3As previously noticed, we only have to consider non-nul states. W1 is then described by theideal: I(W1) =< �1 � 1; �1 + 1; �22 � 1; �2p � 1; �22 � 1; �21 � 1; �22 � 1 > :The largest stabilisable subset of W1 is then computed and happens to be empty. Obviously, thesame property holds when client 2 is considered.6 Controlled dynamical systemsIn the Ramadge and Wonham theory Discrete Event Systems, the physical system (the plant) ismodelled by means of a DES (most often speci�ed by a �nite state automata). The control of theplant is performed by inhibiting some events belonging to a set of controlled events while the otherevents cannot be prevented to occur. It appears that this point of view although general is notalways the most convenient from a practical point of view.In some situations the relations between the plant and the controller are best described byconsidering the plant as emitting signals to the controller which in turn emits signals to control theplant. In this paper we will make a distinction between the two situations. Even if it is possibleto mix the two approach in a single model, we feel that the two approaches are complementary inapplications.6.1 Systems controlled by signalsA dynamical system controlled by means of signals is de�ned by three set of equations:8><>: X 0 = P (X; Y; U)Q(X; Y; U) = 0Q0(X0) = 0where X has the same meaning as above but now we distinguish between uncontrolled signals Yand controlled ones U . That is to say: we can at each instant n, given xn and yn, chose some3It is not necessary to remove \zero" signals to check safety properties, since the additional constraint (20) doesnot modify invariance properties. 20



un which is admissible i.e. such that Q(xn; yn; un) = 0. Such systems will be termed systemscontrolled by signals or signal-controlled systems.If we consider a value of a signal as an event (which implies that some value may occur on asignal while no value occurs on an another one), this model allows simultaneous events.An important property of dynamical systems controlled with signals is control-invariance. Thede�nition is adapted from the preceding one:De�nition 5 A set of states E is control-invariant for a controlled dynamical system if for eachstate x in E and each admissible y, there exists a signal value u such that P (x; y; u) is in E.This property is easily translated for ideals:Proposition 6 A set of states E is control invariant for a dynamical system controlled with signalsif and only if (c + < P �(I(E))>) \ Fp[X; Y ] � I(E)Fp[X; Y ] + cxywhere cxy = c \ Fp[X; Y ] =< Q(X; Y ) > \Fp[X; Y ].6.2 Systems controlled by event inhibitionsTo introduce the model of dynamical systems controlled by means of inhibiting events let us considergeneral dynamical systems: 8><>: X 0 = P (X; Y )Q(X; Y ) = 0Q0(X0) = 0Now we consider a value y of Y as an event. The set of controllable events is then de�ned by theassociated ideal < Qc(Y ) > and the set of uncontrollable events has associated ideal < Qu(Y ) >.These two sets must induce a partition of the set of events, thus the following relations must besatis�ed: < Qc(Y )Qu(Y ) > � Q(X; Y ) \ Fp[Y ]< Qc(Y ); Qu(Y ) > = < 1 >Such systems will be called systems controlled by events or event-controlled systems.Various de�nitions fromRadmage and Wonham theory can be adapted to the dynamical systemsover Galois �elds. We need in particular the following:De�nition 6 A state feedback for an event-controlled dynamical system is an ideal < F (X; Y ) >in Fp[X; Y ] such that: < F (X; Y ) >�< Qu > Fp[X; Y ] + < Q >This de�nition simply states that the feedback admits any uncontrollable event which is admissibleby the plant. The control-invariant property is also adapted from the linguistic formulation:De�nition 7 A set of states E is control-invariant if and only if there exists a state feedback< F (X; Y ) > such that E is invariant for the dynamical system:8>>><>>>: X 0 = P (X; Y )Q(X; Y ) = 0F (X; Y ) = 0Q0(X0) = 021



The following proposition is a straightforward translation of the equivalent proposition in [14].Proposition 7 A set E is control-invariant if and only if it is invariant for the dynamical system:8>>><>>>: X 0 = P (X; Y )Q(X; Y ) = 0Qi(Y ) = 0Q0(X0) = 0An admissible feedback controlling the system such as E is invariant is F (X; Y ) = Qi(Y ). Ofcourse this feedback is the most restrictive for this purpose. It may even be too restrictive: if insome state x 2 E the only admissible events are the controllable ones, x would not be alive for thecontrolled system. Too much restrictive controllers may lead to deadlock situations. This simpleexample shows the need for a de�nition of admissible controllers.6.3 Properties of reactive systemsIn traditional control theory, various control problems are considered but the starting point is ingeneral: given a model of the plant (based on di�erential equations or on di�erence equations)and a control objective, a controller is derived by various means such that the closed loop systembehaviour meets the control objective. Growing experience has allowed for the emergence of somefundamental control objectives: pole placement, disturbance rejection, decoupling ....In the area of DES, not only the models of the plants are very diverse (linguistic models,Petri nets, automata, max-plus algebra, polynomial dynamical systems ....) but the basic controlobjectives are not yet clearly identi�ed and classi�ed. In the Ramadge and Wonham approach, thecontrol objectives are given in terms of languages. Although any objective can be speci�ed thatway, this kind of speci�cation is not of common use in the control community.DES belongs to the family of reactive systems, that are systems continuously interacting withtheir environment. These systems have been studied in the area of computer science where theyappear as models for protocols, real-time systems, computer networks .... Some basic propertiesof these systems have been isolated and studied. We propose to ground our control objective onthese fundamental properties as exposed in the synthetic paper [15]. This paper deals with theproperties of sequences of events taken from a �nite set �.The properties of �nite sequences are de�ned by a language �. In most applications thislanguage is easy to specify (much more easy than an in�nitery language). Given a sequence s 2 �!let us denote by prefn(s) the pre�x of s: s0s1 . . .sn.Following [15] we de�ne several sets of sequences or !�languages:� A(�) is the set of sequences s in �! such that for all n, prefn(s) is a word in �.� E(�) is the set of sequences s in �! such that there exists n and prefn(s) is in �.� R(�) is the set of sequences s in �! such that prefn(s) is a word in � for in�nitely many n.� P (�) is the set of sequences s in �! such that prefn(s) is in � for all n but a �nite number.A property on sequences is then de�ned as the set of all the sequences having that property.Following Manna and Pnueli we de�ne: 22



� A(�) as the safety property induced by �.� E(�) as the guarantee property induced by �.� R(�) as the recurrence property induced by �.� P (�) as the persistence property induced by �.Let us denote by A the set of all languages de�ning safety properties, E , R,P the sets of languagesde�ning guarantee, recurrence and persistence respectively. Relationships exist between these dif-ferent classes of languages. In particular A and E are dual classes for the complementation of setsas are R and P .Topological properties of these classes have been studied. In particular, safety properties corre-spond to closed subsets in �! for the product topology. The relations of these classes with temporallogic formulas make them interesting for specifying in�nitary properties of reactive systems.6.4 Control: State propertiesWe will consider at �rst very simple properties on states. These properties are de�ned by a setof states or equivalently by an ideal a � Fp[X ] de�ning a set of states. We may consider thatV(a) is the set of "good states" and thus a safety property associated with V(a) simply says:8n xn 2 V(a). This condition implies x0 2 V(a), so a controller must take care of the initial states.All the properties which are to be considered in this section can be settled using only one timeindex. For example safety:8n xn 2 V(a) or attractivity 9n xn 2 V(a) are speci�ed with relationsinvolving only one time index. For that reason we will call them static or order zero properties.6.4.1 Admissible state feedbacksAdmissible state feedbacks have di�erent de�nitions depending whether the dynamical system issignal-controlled or event-controlled.De�nition 8 A state feedback for a signal-controlled dynamical system is a couple of equations (orideals) (C0(X); C(X; Y; U)). The controlled system is the dynamical system obtained by addingthe feedback equations to the initial system. This feedback is admissible for the signal-controlleddynamical system (S): 8><>: X 0 = P (X; Y; U)Q(X; Y; U) = 0Q0(X0) = 0if it satis�es the following conditions:� The initial constraints C0 and Q0 have common roots.� For all state x in the orbit of the controlled system, every event y which is admissible at xfor the initial system is also admissible for the controlled system.The last condition indicates that the signals y cannot be controlled. The control equation C(X; Y; U)may be read as: given a state xn and an uncontrolled signal yn, chosing a un such that C(xn; yn; zn) =0 implies an evolution of the state in accordance with the control objective.The proof of the following proposition is straightforward:23



Proposition 8 Given a signal-controlled dynamical system (S) and a set of states E, there existsan admissible state feedback such that E is invariant for the controlled system if and only if:� < Q0(X) > +I(E) 6= 1� E is control-invariant for the dynamical system (S).An admissible feedback is then: < C0(X) >= I(E), C(X; Y; U) = P �(I(E)).Event-controlled systems As for signal-controlled dynamical systems, a controller for an event-controlled dynamical system is a pair (C0; C) where C0 is a constraint on the initial state whichmust be compatible with the initial constraints of the system. The feedback part C(X; Y ) must bea feedback for event-controlled dynamical systems. Moreover we impose the liveness property tothe controlled system.6.4.2 Some control problemsThe properties of sequences will be used for the de�nition of the control objectives. Since staticstate properties are under consideration, the �nite language � is easy to de�ne: a �nite sequencex0x1 . . .xk is in � if and only if xk is in the set of "good states" E. So the associated safety propertystates: 8n xn 2 E i.e. E is an invariant set and the initial state is in E. Similarly, the guaranteeproperty translates into: E is a reachable state, the recurrent property into: E is a recurrent setand the persistence property into: E is invariant and attractive.We will consider control objectives which are conjunction of basic properties of state trajectories.It must be mentioned that basic properties cannot be combined, in general, in a modular way.For example, a safety property put restrictions on the set of state trajectories which may be notcompatible with a guarantee property. The synthesis of a controller insuring both properties mustbe done by considering both properties simultaneously and not by combining a controller insuringsafety with a controller insuring guarantee independantly.6.4.3 SafetyA dynamical system satis�es a state safety property if for all n the state xn belongs to the set of"good states" E. Let us �rst consider signal-controlled systems. The controller is correct if it isacceptable and the orbit of the controlled system8>>><>>>: X 0 = P (X; Y; U)Q(X; Y; U) = 0C(X; Y; U) = 0C0(X0) = 0is included in E. This is equivalent to: there exists a control-invariant subset of E containing theinitial states. If the problem is solved, the orbit of the controlled system has this property. Onthe other hand, suppose a control-invariant subset O of E is given, then it is easy to prove that anacceptable controller is: ( < C(X; Y; U)> = < P �(I(O))(X; Y; U)>< C0(X0) > = I(O)24



The �rst equation insures that the next state will be in O while the second equation forces theinitial state to be in O. Thus solving the control problem reduces to �nd a control-invariant subsetof E. This is done by computing the greatest control-invariant subset of E. The algorithm isderived from (5):a0 = I(E)a1 = a0 + coefX(ccX;Y \ [Fp[X; Y ] \ (< Q > + < P �(a0) >)]). . .ak+1 = ak + coefX(ccX;Y \ [Fp[X; Y ] \ (< Q > + < P �(ak) >)])Let us introduce the operator Isc(a) = coefX(ccX;Y \ [Fp[X; Y ] \ (< Q > + < P �(a) >)]). Thealgorithm may be rewritten now: a0 = I(O)ak+1 = ak + Isc(ak)The increasing sequence of ideals is eventually stationnary. The limit is either the entire ring andthe control problem has no solution, either a proper ideal corresponding to the greatest control-invariant subset of E.Event-driven systems If a controller exists insuring the state safety property de�ned by E thenthe orbit O of the controlled system:8>>><>>>: X 0 = P (X; Y )Q(X; Y ) = 0C(X; Y ) = 0C0(X0) = 0is a subset of E which is invariant with respect to uncontrollable events (the controller always acceptthem) and since the controller is non-blocking the orbit is also control-invariant for the originaldynamical system. The set O satis�es both properties:( coefx(P �(I(O))\ (c+ ei)c) � I(O)(c + P �(I(O))\ Fp[X ] � I(O)Since the two properties are invariant under set unions, the conjunction of them is also invariantunder set unions. As a consequence, there exists a greater subset of E with both properties.We have already introduced algorithms computing the greatest subsets for each property. Thealgorithm for the conjunction of the two properties interleaves the two algorithms as follow:a0 = I(E)a2k+1 = a2k + coefX(a2k \ (c+ ei)c)a2k+2 = a2k+1 + (c + P �(a2k+1))\ Fp[X ]If the limit is not the entire ring, the controller is obtained as in the preceding case.25



6.4.4 Safety+reachabilityLet us denote Es the set of states representing the safety property and Er the set of states repre-senting the reachability property. The reachability we have in mind is the following: the controllerallows the state of the controlled dynamical system to reach Er. It doesn't mean that it is possibleto control the system to enforce this property. The controller we are looking for insures that allthe trajectories of the controlled system are included in Es while for each point of the orbit thereexists a safe trajectory starting in that point and reaching Er.Signal-controlled systems For all set of states E and for all dynamical system, let us denoteAtt(E;Er) the set of states x such that: there exists a trajectory of the dynamical system, startingin x, included in E and reaching Er.Should an acceptable controller insuring the safety and the reachability property exists, thenthe orbit O of the controlled system would have the properties:� O � Es� O is control-invariant (for the original system)� O � Att(O;Er)Reciproquely, if a subset E of Es has the preceding properties, it is not di�cult to show that asatisfactory controller is obtained as previously, provide the initial constraints are compatible.Let us remark that the property E = Att(E;Er) is also invariant under set unions as is thecontrol-invariance. Thus the problem of �nding a controller insuring both safety and reachabilityreduce to the computation of the greatest subset of Es such that:� E is control invariant� E = Att(E;Er)The problem will be completely solved by providing an algorithm to compute the ideal associatedwith Att(E;Er). Let us introduce the function pre:pre(a) = Fp[X ]\ (P �(a)+ < Q >)V(pre(I(E))) is the set of states having at least a successor in E. I(Att(E;Er)) is then the limitof the sequence of ideals: a0 = I(E) + I(Er)ak+1 = ak:(I(E) + pre(ak))The dot denotes the product of ideals corresponding to the union of the corresponding sets. Thissequence is a decreasing sequence of completed ideals, so it is stationnary.The greatest subset of Es having the two properties is then computed by the following algorithm:a0 = I(Es)ak+1 = Att(ak + Isc(ak); Er)mixing the algorithm for the greatest control-invariant with the algorithm for obtaining the greatestsubset such that E = Att(E;Er), ( the function Att( ; ) on ideals corresponding to the functionon sets bearing the same name ). 26



Event-controlled systems The solution of the control problem for event-controlled systemscan be deduced from the one obtained for signal-controlled systems. If the control problem has asolution, then the orbit O of the controlled system must have the following properties:� O � Es,� O is control-invariant for the original system,� O is invariant with respect to uncontrollable events,� O � Att(O;Er).The last three properties are stable under set unions. The solution is obtained as above by com-puting the greatest subset of Es having the three properties.6.4.5 Safety+GuaranteeThis control objective is somewhat a dual of the preceding one. In addition to safety, it is askedthat every trajectory of the controlled system must reach a given set of states Er.Signal-controlled systems We consider again a signal-controlled system and suppose that asolution to the control problem exists. The orbit O of the controlled system has then two properties:� O is included in Es,� for all state x in O, any trajectory starting at x reaches Er.Let us de�ne now for a set of states E, gAtt(E;Er) as the set of states x such that every trajectoryinitialized in x and entirely included in E reaches Er. A necessary and su�cient condition for theexistence of a solution to the control problem is then the existence of a set E such that:� E � Es,� E is control invariant for the original system,� E = gAtt(E;Er)� E \ V(Q0) 6= ;As in the preceding case, the conjunction of the property E = gAtt(E;Er) and the control invarianceis stable under set union. Consequently there exists a greater subset of Es with the two properties.A controller can be derived from the ideal associated with this set if the last condition is satis�ed.It remains to e�ectively compute this set. A necessary stage in this computation is the compu-tation of gAtt(E;Er). Let us introduce the function gpre:gpre(a; b) = coefX(P �(a):(c+ P �(b))c)The set V(gpre(a; b)) is the set of states x such that for all admissible y, if P (x; y) is in V(b) thenP (x; y) is in V(a). That is to say: every successor of x belonging to V(b) is in V(a). The computation27



of the ideal associated with gAtt(E;Er) follows a path similar to the computation of Att. It is thelimit of the decreasing sequence of completed ideals:a0 = I(E) + I(Er)ak+1 = ak:(I(E) +gpre(ak ; I(E)))The computation of the greatest subset of Es with the desired properties is similar to the com-putation in the preceding case. The corresponding ideal is the limit of the increasing chain ofideals: a0 = I(Os)ak+1 = gAtt(ak; I(O2))ak+2 = ak+1 + Isc(ak+1)The existence of a controller is then obtained by checking the compatibility of the initial conditions.Event-controlled systems The solution is very similar to the one obtained in the case of thesafety + reachability property. The controller can be computed by simply replacing Att(E;Er)with gAtt(E;Er).6.4.6 Safety + persistenceOur last example of control objective speci�ed as a static state property will be the conjunctionof a safety property and of a persistence property. The persistence property de�ned by the set ofstates Ep, implies not only the attractivity of Ep as in the preceding case but also it's invariancefor the controlled system. So the existence of a controller implies the control-invariance of the setEp. If Ep is not control-invariant, it is necessary to replace Ep with its greatest control-invariantsubset. Of course, if this subset is empty, the control problem has no solution. From now, we shallconsider Ep as a control-invariant subset of states.Let g be a generator of the ideal obtained by computing a controller insuring the safety propertyand the attractivity of Ep and gp a generator of I(Ep). The two controllers:C1(X; Y; U) = P �(g); C10(X) = g(X)insuring safety and attractivity of Ep andC2(X; Y; U) = (1� gp)P �(gp)insuring the invariance of Ep do not interact. The solution of the control problem is then obtainedby putting the two controllers together.6.5 Control: Locally testable propertiesMany properties of discrete event system cannot be stated with the help of static relations. Forexample if we don't want a signal y never to take the same value two consecutive times, it mustsatisfy the relation: 8n yn+1 � yn 6= 0. Such relations are sometime called dynamic relations or28



relations of order k when they involve time indexes from n to n + k. Such relations may also beused for de�ning implicit dynamical systems.A locally testable property is a property of trajectories which can be tested locally i.e. on�nite segments of trajectories. Given a polynomial p(y0; . . . ; yk), we consider the �nite language� = fy0y1 . . .yn= n � k & p(yn�k ; . . . ; yn) = 0g. The safety property derived from this languagestates: 8n p(yn; . . . ; yn+k) = 0. In the same way, the guarantee property derived from � is:9n p(yn; . . . ; yn+k) = 0. The recurrent and persistent properties are obtained similarly.The solution of control problems involving dynamical locally testable properties uses a tech-nique which is classical in control theory: we simply augment the state of the dynamical sys-tem. Given a dynamical system (P;Q) and a locally testable property de�ned with a polynomial:Pp(Xn; . . . ; Xn�k; Yn�1; . . . ; Yn�k), we de�ne a new dynamical system (Pa; Qa) with state:Zn = (Xn; . . . ; Xn�k; Yn�1; . . . ; Yn�k)and events Tn; Un. The evolution equation is obtained by setting Yn = Tn, Xn+1 = P (Xn; Yn; Un)and shifting the other components. The constraint equation is simply: Qa(Zn; Tn; Un) = Q(Xn; Yn; Un).The dynamical property for the original system is then a static state property for the newsystem and the control problem is solved with the help of the techniques of the previous section.6.6 Control: other propertiesIt is a well known fact in language theory that the locally testable languages form a proper subsetof the class of regular languages [16]. A property de�ned by means of a regular language and notlocally testable is in general speci�ed with an automaton or in our context with a dynamical system.There is no room in this paper to develop the computational techniques for this type of controlspeci�cations, but the basic idea is to combine the two dynamical systems into one and transformthe control speci�cation into a state property.7 ConclusionWe have presented applications of the theory of dynamical systems over Galois �elds to the veri�ca-tion and the synthesis of logic Discrete Events Systems. The example of the Signal programminglanguage gives some clues on how a programming environment for DES could be organized. Formany reasons, engineers prefer to program their own controllers. So they need programming fa-cilities including a checker. Nevertheless, in some complex cases, automatic synthesis is necessary.Moreover, in case of error, they need also a diagnosis facility which may use both aspects: checkingsome properties and synthesis of bad behaviours of the system to give some insight on where theerrors are. For all that purposes, dynamical systems over Galois �elds give the theorical basistogether with e�cient algorithms.References[1] A. Benveniste, G.Berry. The Synchronous Approach to Reactive and Real-Time Systems, Proc.of the IEEE, vol 79, no 9, september 1991,1270-1282.29
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