AUTOMATIC INFERIOR VENA CAVA SEGMENTATION IN CONTRAST-ENHANCED CT VOLUMES

Thierry Lefevre, Benoit Mory, Roberto Ardon, Javier Sanchez-Castro
Medisys Research Lab, Philips Healthcare, France

Anthony Yezzi
Georgia Institute Of Technology, United States

ABSTRACT

This paper presents a novel robust automatic method for the segmentation of the Inferior Vena Cava (IVC) in the proximity of the liver. In clinical diagnosis and surgery planning, IVC segmentation is essential since it strongly impacts both liver volumetry accuracy and vascularity analysis. Given the anatomical variability, the lack of clear boundaries and complexity of the surrounding structures along the IVC, its segmentation remains a difficult and open problem. To cope with such challenging conditions, we developed an implicit representation of a generalized cylinder and optimized a local region-based criterion under dedicated anatomical constraints. Our method was tested on a dataset of 20 contrast-enhanced CT scans, achieving 80% success rate in fully automatic mode. The remaining cases needed minimal user input (one point) to reach 95% success under radiology expert criteria.

1. INTRODUCTION

The Inferior Vena Cava (IVC) is the large vein that carries de-oxygenated blood from the lower half of the body into the right atrium of the heart. Before reaching the heart, the IVC passes through the liver without irrigating it. In the context of liver clinical diagnosis, pre-operative planning and therapy, IVC segmentation from CT scans plays a crucial role. This role is twofold. First, the accuracy of liver volumetry is critical for liver donor transplantation, and considering the IVC as part of the liver significantly overestimates the volume of its parenchyma. Second, the IVC is an essential landmark for the segmentation of the hepatic and portal vascular trees (brightest vessels in Fig.1) which are the base for the definition of liver segments, following a Couinaud anatomical model [1].

In clinical practice, manual segmentation by radiology experts is time-consuming, subjective and difficult. Recently, several fully automatic algorithms for liver segmentation have been proposed and validated against manual segmentation references [2]. However, only few attempts to automatically exclude the IVC from the liver segmentation have been carried out [3, 4]. Automatic IVC segmentation remains difficult given the anatomical inter-patient variability, the lack of well-defined boundaries with the liver parenchyma, the possible presence of nearby tumors and the effect of non-uniform distribution of the contrast agent. Consequently, existing approaches weakly perform under non-ideal scenarios, and the problem remains unresolved up to now. To cope with the aforementioned difficulties, our contribution is twofold: (1) a model of the IVC as an implicit representation of a generalized cylinder and (2) a local region-based optimization criterion under dedicated anatomical constraints.

Vascular analysis has been a very active field of research in image processing. In particular, scale-space theory, medial representations [5], and propagation methods have helped the development of now well-established algorithms for vessel enhancement [6] and centerline extraction [7]. From our experiments, such multi-scale analysis of ridge-like curvilinear structures were insufficient to obtain an accurate delineation of the IVC lumen due to the complexity of the surrounding structures and the lack of clear boundaries in large portions of the IVC surface. Variational segmentation methods, such as implicit surface evolution schemes, minimizing boundary-based [8] or more robust region-based [9] criteria, have also been proposed as a complement to former approaches. Recently, explicit tubular representations were used [10, 11] in a similar context. Related to these works, we propose a variational approach where optimization is done over an implicit generalized cylinder representation with convolution surfaces. These geometrical models, originally developed in computer graphics modeling and animation [12], were recently used for visualization of complex branching vessels [13]. A key novelty of our work is to incorporate a vessel model with convolution surfaces into a region-based varia-
tional segmentation framework (section 2). For the specific application of IVC segmentation, we increase this model robustness with dedicated constraints deduced from other anatomical structures (section 3) to provide clinical practitioners with a fully automatic tool.

2. MODEL DESCRIPTION

We formalize IVC segmentation as an optimal two-phase separation problem, in which foreground and background correspond to the IVC lumen and the surrounding structures (e.g. liver, aorta, intestines), respectively. More specifically, our model relies on an implicit tubular representation of the foreground region.

Many formulations of two-phase image segmentation consider the optimal partition as the best trade-off between shape regularity and region homogeneity. Over the set of all possible partitions \(\{ A \} \) of a domain \(\Omega \), an objective criterion is defined as the sum of some regularization term \(\mathcal{R}(A) \) and image-dependent homogeneity measures \(r_1 \) and \(r_2 \) integrated over the foreground and background regions:

\[
\min_{A} \left\{ \mathcal{R}(A) + \int_{A} r_1(x) \, dx + \int_{\Omega \setminus A} r_2(x) \, dx \right\} \tag{1}
\]

With known intensity distributions \(p_i \) for each region, a common choice is to set \(r_i(x) = -\log p_i(f(x)) \) [14]. In a continuous setting, an implicit representation of \(A \) can be used, defining a real function \(\Phi \) positive in the foreground.

Using the Heaviside function \(H, H(\Phi) \) is the characteristic function of the foreground region \(A \), and (1) is equivalent to

\[
\min_{\Phi} \left\{ \mathcal{R}(\Phi) + \int_{\Omega} H(\Phi(x)) r(x) \, dx \right\} \tag{2}
\]

with \(r(x) = r_1(x) - r_2(x) \)

Assuming a circular cross-section, a vessel branch is often modeled by an open parameterized medial curve \(m(s) : [0, 1] \to \mathbb{R}^3 \), with a set of corresponding point-wise radii. The key idea of our model is to define an implicit analytical representation of such a generalized cylinder. This representation is obtained by integrating a smooth decreasing radial function \(\omega \) centered all over the medial curve \(m(s) \), with continuously-varying scales \(\sigma(s) \) (see Fig. 2):

\[
\Phi_{m, \sigma}(x) = \int_{0}^{1} \omega \left(\frac{\|x - m(s)\|}{\sigma(s)} \right) \|m'(s)\| \, ds - C \tag{3}
\]

where \(x \) is any point in the domain \(\Omega \), \(C \) an arbitrary positive constant and \(\omega \) is typically a Gaussian function. The term \(\|m'(s)\| \) ensures invariance with respect to parameterization.

Substituting the vessel representation (3) into the objective criterion (2) and associating specific regularization terms to the unknown centerline \(m(s) \) and scales \(\sigma(s) \) yields:

\[
\min_{m, \sigma} \left\{ \mathcal{R}(m, \sigma) + \int_{\Omega} H(\Phi_{m, \sigma}(x)) r(x) \, dx \right\}, \tag{4}
\]

where \(\mathcal{R}(m, \sigma) \) is designed to penalize both the length of the centerline and the variations of scale along it, controlled by the positive scalar parameters \(\lambda \) and \(\mu \) respectively:

\[
\mathcal{R}(m, \sigma) = \lambda \int_{0}^{1} \|m'(s)\| \, ds + \mu \int_{0}^{1} |\sigma'(s)|^2 \tag{5}
\]

The Euler-Lagrange equations of the functional in (4) can be found by standard calculus of variations, made easier by the analytical expression of the implicit representation. Due to space limitations, we have omitted the details of these computations. They result in gradient-descent evolution equations for both the centerline and the scales, of the form\(^1 \) (see Fig.3):

\[
\frac{\partial m}{\partial t} = \lambda \kappa(s) n(s) - \int_{\Omega} r(x) N(x, s) \, dx \tag{6}
\]

\[
\frac{\partial \sigma}{\partial t} = \mu \sigma''(s) - \int_{\Omega} r(x) B(x, s) \, dx \tag{7}
\]

where \(\kappa \) is the curvature of the centerline, \(n = m''/\|m''\| \) its normal and functions \(N(x, s) \) and \(B(x, s) \) are given by

\[
N(x, s) = \frac{\omega' \left[\|x - m(s)\| / \sigma(s) \right]}{\|\nabla \Phi_{m, \sigma}(x)\| / \sigma(s)} \|m'(s)\| \frac{x - m(s)}{\|x - m(s)\|} \tag{8}
\]

\[
B(x, s) = -\omega' \left[\|x - m(s)\| / \sigma(s) \right] / \|\nabla \Phi_{m, \sigma}(x)\| \|m'(s)\| \|x - m(s)\| / \sigma(s)^2 \tag{9}
\]

These general evolution equations can be further adapted to IVC segmentation by designing specific homogeneity mea-

\(^1 \)We have here neglected terms derived from parameterization invariance.
sures r_1 and r_2 that capture the local variations inside the lu-
men due to contrast product injection and the complex space-
varying statistics of the outside tissues. A local likelihood
criterion is defined at every x from a weighted combination
of local probability densities $p_i(I(x), s)$ along the centerline:

$$r_i(x) = - \int_0^1 \omega \left(\frac{\|x - m(s)\|}{a} \right) \log p_i(I(x), s)ds$$

where the blending scale a is related to the expected statisti-
cal intensity variations along the vessel [15]. The probability
densities p_i are non-parametric and updated periodically dur-
ing optimization using kernel density estimation.

3. AUTOMATIC IVC SEGMENTATION

![Fig. 4. Left: the hashed area is an axial view of the restriction of our computation domain Ω. Right: Square represents the area where the circle detection filter is applied to locate the second IVC point.](image)

Combined with a local region-based criterion, the previ-
ous implicit vessel model has the required ability to follow
image evidence where available and naturally extrapolate the
surface where it is missing. Nevertheless, fully automatic and
robust segmentation of the IVC requires significant additional
effort. As a non-convex functional, (4) has obviously multiple
local minima, and the IVC is only expected to be one among
those. Therefore, special attention should be paid to the do-
main Ω, fixed during the optimization, and the initial state
(m_0, σ_0) of the tubular model evolution.

Dedicated anatomical constraints: The IVC enters the heart
from its right lower side, runs near the liver, along the ver-
tebral column. Incorporating additional knowledge on these
anatomical structures (heart, liver, spine) allows to restrict the
computation domain Ω and avoid possible mistakes. To
do so, their segmentations need not be precise. Localization
of the vertebral column is obtained by a simple thresholding
since bone intensity values (Hounsfield Units) are generally
above (> 500 HU) those of soft tissues (< 200 HU). Simi-
larly, lungs are easily detected (air is ~1000 HU) and an ap-
proximate positioning of the heart can then be deduced. The
more challenging task of liver segmentation has been exten-
sively studied in recent years, hence we assume it is available.
The last anatomical entity that we detect is the aorta. Unlike
the IVC, this artery, which also runs along the back bone, is
highly visible. Its segmentation is generated using the model
presented in the previous section, taking as an initialization a
line between two initial points: one in the heart and the other
found inside the aorta from the spine position. Finally, the
computation domain Ω is defined as a 3D extrusion along the
spine axis of an angular sector positioned using all recovered
anatomical information (see Fig. 4 left).

Model initialization: The initialization of gradient-descent
equations (6) influences the outcome of our algorithm as well
as its convergence speed. We position the curve m_0 by com-
puting a minimal path within our restricted computation do-
main. The minimal path joins two points, the first located in-
side the heart and the second in a region underneath the liver.
This second point is found as the best response of a standard
2D morphological filter designed for circle detection, applied
on the last axial slice intersecting the liver and in a neigh-
borhood of the previously segmented aorta (see Fig. 4 right). The
minimal path is computed using Dijkstra’s algorithm, penaliz-
ing the square difference to the image intensity at the extrem-
ity points. More precisely, if I_1, I_2 are the image intensities at
at the two extremities, penalization is $\mathcal{P}(x) = \left(I(x) - \frac{I_1 + I_2}{2} \right)^2$.
The initial scale σ_0 is simply set to a constant, deduced from
an anatomical mean radius of 12.5 mm.

4. RESULTS AND CONCLUSION

The automatic IVC segmentation algorithm has been applied
to a database of 20 contrast-enhanced CT volumes acquired in
portal venous phase from scanners of different manufacturers
with a pixel size ranging from 0.63 to 0.78 mm and inter-slice
distance of 2 mm. 16 cases were considered by an expert ra-
diologist as satisfactory, while 3 cases needed a minimal user
interaction in the initialization step. Two fully automatic re-
results are shown in Fig. 5. In one single case, the surface evo-
lution was unable to recover the hardly visible boundaries be-
cause of a excessively poor image quality and unusual patient
anatomy.

The promising results of this preliminary evaluation val-
iddate our choice of a model-based variational approach with
local region homogeneity criteria under specific anatomical
constraints. The application described in this paper is al-
ready a useful clinical tool, reaching 80% success rate fully
automatically and 95% interactively. It also constitutes a first
step towards automatic Couinaud liver segments extraction.

To the best of our knowledge, this is also the first use of
implicit convolution surfaces for image segmentation. In gen-
eral, the advantage of this hybrid representation is to model
smooth complex objects with only simple explicit geometrical
primitives, here a single curve. In the particular context of
variational image segmentation, the original aspect is to
induce the motion of these simple primitives from the analy-
sis of the implicitly-generated surface. Future extensions to
smooth branching structures, vascular trees and other medial
representations are exciting perspectives.
Fig. 5. Segmentation of the IVC in two different CT volumes, in each row. (a)-(b) show a 3D surface rendering, (c)-(d) sagittal views and (e)/(f) axial views, showing the algorithm performance in the absence of clear boundaries with the liver parenchyma.

5. REFERENCES

