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NONEXISTENCE OF POSITIVE SUPERSOLUTIONS OF

ELLIPTIC EQUATIONS VIA THE MAXIMUM PRINCIPLE

SCOTT N. ARMSTRONG AND BOYAN SIRAKOV

Abstract. We introduce a new method for proving the nonexistence of pos-

itive supersolutions of elliptic inequalities in the whole space R
n as well as

exterior domains. The simplicity and robustness of our maximum principle-

based argument provides for its applicability to many elliptic inequalities and

systems, including quasilinear operators such as the p-Laplacian, and non-

divergence form fully nonlinear operators such as Bellman-Isaacs operators.

Our method gives new and optimal results in terms of the nonlinear functions

appearing in the inequalities.

1. Introduction

A well-studied problem in the theory of the elliptic partial differential equations
is that of determining for which nonnegative, nonlinear functions f = f(s, x) there
exists a positive solution or supersolution u > 0 of the equation

(1.1) −Q[u] = f(u, x),

in some subset of R
n; here Q denotes a second-order elliptic differential operator.

A model case is the semilinear inequality

(1.2) −∆u ≥ f(u),

where f is a positive continuous function defined on (0,∞). There is a vast literature
on the problem of obtaining sufficient conditions on f to ensure the nonexistence of
positive supersolutions of such equations, both in R

n and in subsets of R
n, which

encompasses many different choices of operators Q and nonlinear functions f .

In this paper we introduce a new method for proving the nonexistence of super-
solutions of such equations in unbounded domains. It has the advantage of being
both simple and robust, allowing us to prove new and essentially optimal results
for wide classes of equations and systems of equations of type (1.1). In particular,
we extend many of the previous Liouville results by substantially relaxing the hy-
potheses on f required for nonexistence. Namely, we impose only “local” conditions
on the behavior of f(s, x), near s = 0 or s = ∞, and for large |x|. Furthermore,
our approach unites many previously known but seemingly disparate results by
demonstrating that they follow from essentially the same argument.

Our method depends only on properties related to the maximum principle which
are shared by many elliptic operators for which the solvability of (1.1) has been
studied. Consequently, our technique applies to inequalities in both divergence
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and nondivergence form, interpreted in the appropriate (classical, weak Sobolev, or
viscosity) sense.

To give a flavor of our results, let us consider the differential inequality (1.2) in
dimensions n ≥ 3, on the exterior domain R

n \B, where B ⊂ R
n is any ball. Under

only the hypotheses that f : (0,∞) → (0,∞) is positive and continuous, as well as

(1.3) 0 < lim inf
sց0

s−n/(n−2)f(s) ≤ ∞,

we show that there does not exist a positive (classical, viscosity or weak Sobolev)
solution of (1.2). Even this result is new.

The sufficiency of condition (1.3) for nonexistence validates the intuition that,
since we expect positive supersolutions of (1.2) to vanish at infinity in dimensions
n ≥ 3 for a positive f > 0, it is only the behavior of f(s) near s = 0 that should
determine whether or not supersolutions exist. In the next section we prove this
result and give the corresponding result in dimension n = 2, in which case it is the
behavior of f(s) at infinity which determines solvability.

The following is a rough list of the properties we assume the operator Q possesses,
and on which our method relies:

(H1) Q satisfies a weak comparison principle;

(H2) the equations −Q[Φ] = 0 and −Q[Φ̃] = 0 have solutions in R
n \ {0} which

are asymptotically homogeneous and positive (resp. negative) at infinity.

In most cases, Φ and Φ̃ are the fundamental solutions of Q, and in many
familiar cases Φ = −Φ̃;

(H3) nonnegative solutions of −Q[u] ≥ h(x) ≥ 0 have a lower bound (on com-
pact subsets of the underlying domain) in terms of the measure of a set
on which h is greater than a positive constant;

(H4) nonnegative solutions of −Q[u] ≥ 0 satisfy a weak Harnack inequality, or
at least a “very weak” Harnack inequality; and

(H5) the operator Q possesses some homogeneity.

Specific details on these hypotheses and on some operators which satisfy them are
given in Section 3. For the Laplacian, (H1) and (H2) are very standard, (H3)
follows from the positivity of Green’s function, (H4) is a consequence of the mean
value property, and (H5) is obvious. These properties are verified for instance by
quasilinear operators of p-Laplacian type with solutions interpreted in the weak
Sobolev sense, and by fully nonlinear Isaacs operators with solutions interpreted in
the viscosity sense.

We now make the following deliberately vague assertion:

Suppose Q has the properties (H1)-(H5) above, and the behavior of f(s, x) near
s = 0 (and in some cases s = ∞) compares appropriately with that of the functions

Φ and Φ̃ for large |x|. Then there does not exist a positive solution of the inequality

(1.4) −Q[u] ≥ f(u, x) in any exterior domain of R
n.

Obviously a nonexistence result in exterior domains implies the nonexistence of
solutions in R

n as well as the absence of singular solutions in R
n with arbitrary

singularities in a bounded set.
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Rigorous statements with precise assumptions on f will be given in Section 4.
As we will see, the above statement is optimal in the sense that if a model non-
linearity f does not satisfy its hypotheses, then (1.1) has positive supersolutions.
The technique we introduce here extends very easily to systems of inequalities in
unbounded domains.

Let us now give a brief account of the previous results on the subject. Due to the
large number of works in the linear and quasilinear settings, we make no attempt to
create an exhaustive bibliography here. Much more complete accounts can be found
in the book of Veron [37] and the surveys articles of Mitidieri and Pohozaev [25] and
Kondratiev, Liskevich, and Sobol [20]. In 1980, Gidas gave a simple proof of the
fact that the equation −∆u = uσ has no solutions in R

n, provided σ ≤ n/(n − 2).
Condition (1.3) appeared first in Ni and Serrin [27], where the nonexistence of
decaying radial solutions to some quasilinear inequalities like −∆pu ≥ uσ in R

n for
σ ≤ n(p − 1)/(n − p) was proved. In two important papers, Bidaut-Veron [4] and
Bidaut-Veron and Pohozaev [3] extended these results by dropping the restrictions
on the behavior of a supersolution u. In particular, they showed that the inequality
−∆pu ≥ |x|−γuσ has no positive solution in any exterior domain provided that
σ ≤ (n − γ)(p − 1)/(n − p). For more nonexistence results for positive solutions of
quasilinear inequalities with pure power right-hand sides, we refer to Birindelli and
Mitidieri [7], Serrin and Zou [31], Liskevich, Skrypnik, and Skrypnik [24]. Liouville-
type results for semilinear inequalities in nondivergence form can be found in the
paper of Kondratiev, Liskevich, and Sobol [21].

Fully nonlinear inequalities of the form F (D2u) ≥ uσ, where F is an Isaacs op-
erator, were first studied by Cutri and Leoni [13], and later by Felmer and Quaas
[17], in the case of a rotationally invariant F and a solution in the whole space.
These results were recently extended in [1], by a different method, to more general
operators, to exterior domains, and with less restrictive hypotheses on f . In partic-
ular, it was shown in [1] that the inequality F (D2u) ≥ uσ has no positive solutions
in any exterior domain in R

n, provided that σ ≤ (α∗ + 2)/α∗ (or α∗ ≤ 0), where
α∗ = α∗(F ) characterizes the homogeneity of the upward-pointing fundamental
solution of the operator F (as found in [2]).

As far as systems of inequalities are concerned, Liouville results were obtained by
Mitidieri [26] for the case of a whole space, Bidaut-Veron [5] for quasilinear systems
in exterior domains, and Quaas and Sirakov [29] for fully nonlinear systems in the
whole space. For elliptic systems, the literature is more sparse with most results
concerning only systems with pure power right-hand sides such as the Lane-Emden
system −∆u = vσ, −∆v = uρ.

Despite the great variety of approaches and methods, most of the previous results
cited above required a global hypothesis on the function f , usually that f be a power
function or a linear combination of power functions. A notable exception is the very
recent work of D’Ambrosio and Mitidieri [15], who obtained various nonexistence
results for divergence-form quasilinear inequalities in the whole space with only
a local hypothesis on the function f(s) near s = 0 as in (1.3). Their method is
based on sophisticated integral inequalities and depends on the assumption that
the inequality holds in the whole space.

There is a very large literature concerning Liouville results for solutions (not
supersolutions) of equations of the form −Q[u] = f(u) in R

n, which started with
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the well-known work by Gidas and Spruck [18]. These results are in general quite
delicate and depend on the precise behavior of f on the whole interval (0,∞), as
well as on the equality being verified in the whole space. We also note that there has
been a large amount of work on proving Liouville type results for positive solutions
of “coercive” elliptic inequalities Q[u] ≥ f(u, x) (as opposed to −Q[u] ≥ f(u, x)).
We do not consider these problems here.

This paper is organized as follows. In Section 2 we present the main ideas by
proving a Liouville result in the simple particular case of (1.2). We collect some
preliminary observations in Section 3, including a precise list of the properties (H1)-
(H5) above as well as some estimates for the minima of positive supersolutions of
−Q[u] ≥ 0 over annuli. Our main results for scalar equations are presented in
Section 4. We conclude in Section 5 with applications to systems of inequalities.

2. A simple semilinear inequality

In this section, we illustrate our main ideas by considering the model semilinear
inequality

(2.1) −∆u ≥ f(u)

in exterior domains in dimension n ≥ 3, and under the assumption that the non-
linearity f = f(s) is positive and continuous on (0,∞). We will show that the
additional hypothesis

(2.2) lim inf
sց0

s−n/(n−2)f(s) > 0

implies that the inequality (2.1) has no positive solution in any exterior domain.
Notice that we impose no requirements on the behavior of f(s) away from s = 0,
apart from continuity and positivity.

It is easily checked that for q > n/(n − 2), the function

u(x) := cq

(
1 + |x|2

)−1/(q−1)
, cq :=

(
(2n − 4)(q − 1) − 4

(q − 1)2

)1/(q−1)

,

is a smooth supersolution of −∆u = uq in R
n. Moreover, the function ũ(x) :=

cq|x|
−2/(q−1) is a solution of the equation in R

n \ {0}. Thus the following theorem
is seen to be optimal in a certain sense.

Theorem 2.1. Assume that n ≥ 3 and the nonlinearity f : (0,∞) → (0,∞) is
continuous and satisfies (2.2). Then the differential inequality (2.1) has no positive
solution in any exterior domain of R

n.

We have left the statement of Theorem 2.1 intentionally vague as to the notion
of supersolution, since the result holds regardless of whether we consider superso-
lutions in the classical, weak, or viscosity sense.

Several classical facts regarding the Laplacian operator are required for the proof
of Theorem 2.1, and we recall them now. It is convenient for us to state them for
annuli.

A basic ingredient in the proof of Theorem 2.1 is the following “quantitative”
strong maximum principle.

Lemma 2.2. Assume h ∈ L∞(B3 \ B1/2) is nonnegative, and u ≥ 0 satisfies

−∆u ≥ h in B3 \ B1/2.
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Then for each A ⊂ B2 \ B1,

inf
B2\B1

u ≥ c|A| inf
A

h.

This lemma is a simple consequence of the fact that Green’s function for the
Laplacian with respect to any domain is strictly positive away from the boundary
of the domain, which yields

inf
B2\B1

u ≥ c

∫

B2\B1

h(x) dx,

for some c > 0 depending only on the dimension n. See for example [8, Lemma 3.2]
for a more general statement.

In order to show that only the behaviour of f at zero matters for the nonexistence
result to hold, we will employ the following consequence of the mean value theorem.

Lemma 2.3. For every 0 < ν < 1, there exists a constant C̄ = C̄(n, ν) > 1 such
that for any positive superharmonic function u in B3 \ B̄1/2 and any x0 ∈ B2 \B1,
we have ∣∣{u ≤ C̄u(x0)

}
∩ (B2 \ B1)

∣∣ ≥ ν |B2 \ B1| .

Lemma 2.3 is clearly weaker than the weak Harnack inequality. A proof of the
latter can be found in [19, Theorem 8.18] for weak solutions, and in [11, Theorem
4.8] for viscosity solutions.

Applying the comparison principle to a positive superharmonic function and
the fundamental solution Φ(x) = |x|2−n of Laplace’s equation yields the following
simple lemma, which is well-known. For the reader’s convenience, we recall an
elementary proof.

Lemma 2.4. Suppose that u > 0 is superharmonic in an exterior domain Ω of R
n,

with n ≥ 3. Then there are constants C, c > 0, depending only on u, such that

(2.3) cr2−n ≤ inf
B2r\Br

u ≤ C for every sufficiently large r > 0.

Proof. Fix r0 > 0 such that R
n \ Br0 ⊆ Ω. Select c > 0 so small that u ≥ cΦ on

∂Br0 . Then for each ε > 0, there exists R̄ = R̄(ε) > r0 such that u + ε ≥ ε ≥ Φ in
R

n \ BR̄. Applying the maximum principle to

−∆(u + ε) ≥ 0 = −∆Φ

in BR \ Br0 , for each R > R̄(ε), we conclude that u + ε ≥ Φ in R
n \ Br0 . Letting

ε → 0 we obtain u ≥ Φ in R
n \ Br0

, which gives the first inequality in (2.3).
For the second inequality in (2.3), observe that for every r > r0

u(x) ≥ Ψr(x) :=

(
inf

B2r\Br

u

)(
1 − rn−2

0 |x|2−n
)

for every x ∈ ∂(Br \ Br0
),

as well as −∆u ≥ 0 = −∆Ψr in R
n \ Br0

. By the maximum principle we deduce
that u ≥ Ψr(x) in Br \ Br0

. In particular, for every r > 4r0, we have

inf
B4r0

\B2r0

u ≥

(
inf

B2r\Br

u

)(
1 − 22−n

)
,

which yields the second inequality in (2.3). �

Let us now combine the three lemmas above into a proof of Theorem 2.1.
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Proof of Theorem 2.1. Let us suppose that u > 0 is a supersolution of (2.1) in
R

n \ Br0 , for some r0 > 0. For each r > 2r0, denote ur(x) := u(rx) and observe
that ur is a supersolution of

−∆ur ≥ r2f(ur) in R
n \ Br0/r.

For each r > R, define the quantity

m(r) := inf
B̄2\B1

ur = inf
B̄2r\Br

u.

Set Ar := {x ∈ B2 \ B1 : m(r) ≤ ur(x) ≤ C̄m(r)}, where C̄ > 1 is as in Lemma
2.3. Then Lemma 2.3 implies that

|Ar| ≥ (1/2)|B2 \ B1|

and thus applying Lemma 2.2 with h(x) := r2f(ur(x)) produces the estimate

m(r) ≥
1

2
cr2|B2 \ B1| min

s∈[m(r),C̄m(r)]
f(s) for every r ≥ 2r0,

where c > 0 is as in Lemma 2.2. Applying Lemma 2.4 we obtain

(2.4) cr2 min
[m(r),C̄m(r)]

f ≤ m(r) ≤ C.

Since f > 0 on (0,∞), it follows immediately from (2.4) that

lim
r→∞

m(r) = 0.

Hence if r is sufficiently large, (2.2) and (2.4) imply

cr2(m(r))n/(n−2) ≤ m(r).

We may rewrite this inequality as

(2.5) m(r) ≤ Cr2−n for every sufficiently large r ≥ 2r0.

Recall that by Lemma 2.4 we also have, for some c > 0,

(2.6) m(r) ≥ cr2−n for every r > 2r0.

Let us define the quantity

ρ(r) := inf
∂Br

u

Φ
> 0, for r > 2r0, Φ = |x|2−n.

Observe that for every r > r0 and ε > 0, we may choose R > r large enough that

u(x) + ε ≥ ρ(r)Φ(x) on ∂ (BR \ Br) .

By the maximum principle, u(x) + ε ≥ ρ(r)Φ(x) in BR \Br. Sending R → ∞ and
then ε → 0, we discover that

(2.7) u(x) ≥ ρ(r)Φ(x) in R
n \ Br,

that is, ρ(r) = infRn\Br
u/Φ. Therefore the map r 7→ ρ(r) is nondecreasing. For

every r > 2r0, define the function

vr(x) := u(rx) − ρ(r/2)Φ(rx).

Observe that by (2.7) we have vr ≥ 0 in R
n \ B1/2, and

−∆vr ≥ r2f(ur) in R
n \ B1/2.
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Using again Lemmas 2.3 and 2.2 together with (2.2), (2.4) and (2.6), we deduce
that

inf
B2\B1

vr ≥ ar2(m(r))n/(n−2) ≥ ar2−n for every sufficiently large r ≥ 2r0,

where a > 0 does not depend on r. In particular,

u(rx) ≥ (ρ(r/2) + a) Φ(rx) on B2 \ B1.

That is, ρ(r) ≥ ρ(r/2) + a for all sufficiently large r. Therefore we obtain that
limr→∞ ρ(r) = ∞, which contradicts our inequality (2.5). �

Remark 2.5. Note that if instead of (2.2) we assumed the stronger hypothesis
lim infsց0 s−pf(s) > 0 for some p < n/(n−2), then (2.5) is replaced by m(r) ≤ r−β

for some β > n − 2, which immediately contradicts (2.6).

Remark 2.6. If in addition to (2.2) we made the relatively mild assumption

(2.8) lim inf
s→∞

f(s) > 0

then we do not need Lemma 2.3, that is, we do not need to use a weak Harnack
inequality. Indeed, it is obvious from the proof above that (2.8) prevents m(r) from
going to infinity as r → ∞.

The proof of the following analogue of Theorem 2.1 for two dimensions is post-
poned until Section 4, where we obtain it as a consequence of Corollary 4.2.

Theorem 2.7. Let f be a positive, continuous function on (0,∞) which satisfies

(2.9) lim
s→∞

easf(s) = ∞ for every a > 0.

Then the inequality (2.1) has no positive solution in any exterior domain of R
2.

Observe that (2.9) is a condition on f(s) near s = ∞, as opposed to near zero.
This difference from condition (2.2) is due to the behavior of the fundamental solu-
tion of Laplace’s equation near infinity in dimension n = 2 versus higher dimensions.
See Section 4, in particular Corollary 4.2, for a much more detailed study of this
phenomenon.

This above result, which to our knowledge is new, is also sharp. Indeed, notice
that for any a > 0, the function

u(x) :=
2

a
(log |x| + log (log |x|))

is a smooth positive solution of the equation

−∆u = e−au in R
2 \ B3.

As is well-known, there is no positive solution of −∆u ≥ 0 in R
2 \ {0}, except for

constant functions (see also Theorem 4.3 for a more general statement).

3. Preliminaries

3.1. Several properties of supersolutions. In this section we confirm that the
hypotheses of our main result are satisfied by the p-Laplacian operator and fully
nonlinear Isaacs operators.

Recall the p-Laplacian is defined by

∆pu := div
(
|Du|p−2Du

)
, 1 < p < ∞.
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For the sake of simplicity, we do not consider more general quasilinear operators,
although our techniques apply for instance to operators of the more general form
Q[u] = div(A(x,Du)), with A satisfying hypotheses (1.1)-(1.4) in [14].

A uniformly elliptic Isaacs operator F is a function F : Sn → R satisfying the
uniform ellipticity condition

(3.1) M−
λ,Λ(M − N) ≤ F (M) − F (N) ≤ M+

λ,Λ(M − N) for all M,N ∈ Sn,

and which is positively homogeneous of order one:

(3.2) F (tM) = tF (M) for all t ≥ 0, M ∈ Sn.

Here Sn is the set of n-by-n symmetric matrices, and M+
λ,Λ and M−

λ,Λ are the Pucci

extremal operators defined for instance in [11]. The inequalities (3.1) imply that F
in uniformly elliptic. Equivalent to (3.1) and (3.2) is the requirement that F be a
lim-sup of linear, uniformly elliptic operators

F (D2u) = inf
α

sup
β

trace
(
AαβD2u

)

over a collection of matrices {Aαβ} such that λIn ≤ Aαβ ≤ ΛIn for all α and β.
Consult [11] for more on fully nonlinear, uniformly elliptic equations.

Our notion of solution is chosen to suit the particular operator under consider-
ation. The p-Laplacian is of divergence form, and thus we use the weak integral
formulation. More precisely, recall that a weak supersolution of the quasilinear
equation

(3.3) −divA(x,Du) = f(u, x)

in a domain Ω ⊆ R
n is a function u ∈ W 1,p

loc (Ω) with the property that for all
nonnegative smooth ϕ ∈ C∞

0 (Ω), we have
∫

Ω

A(x,Du) · Dϕ dx ≥

∫

Ω

f(u, x)ϕ dx.

When Q[u] = F (D2u) for an Isaacs operators F , the appropriate notion of solution
is that of viscosity solution. Recall that a viscosity solution of the inequality

−F (D2u) ≥ (≤) f(u, x) in Ω

is a function u ∈ C(Ω) such that for each x0 ∈ Ω and ϕ ∈ C2(Ω) for which the map
x 7→ u(x) − ϕ(x) has a local minimum (maximum) at x0, we have

−F (D2ϕ(x0)) ≥ (≤) f(u(x0), x0).

Henceforth, when we write a differential inequality such as −Q[u] ≥ f(u, x), we
intend that it be interpreted the appropriate sense.

We now present a list of properties which these operators share and upon which
our method is based. We will confirm below that the following hold in the case
that Q is the p-Laplacian operator or an Isaacs operator:

(H1) Q satisfies the weak comparison principle; that is, if −Q[u] ≤ 0 ≤ −Q[v]
in a bounded domain Ω, and u ≤ v on ∂Ω, then u ≤ v in Ω;

(H2) Q has fundamental solutions: there exist functions Φ, Φ̃ which satisfy

−Q[Φ] = 0 = −Q[Φ̃] in R
n \ {0}, and are approximately homogeneous

in the sense of (3.6) below;
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(H3) Q satisfies the quantitative strong comparison principle: if −Q[v] ≥ χω ≥
0 = −Q[w] in a bounded Ω and some compact subset ω ⊂ Ω of positive
measure, then v > w + c0 in any K ⊂⊂ Ω, where c0 > 0 depends only on
Q,K,Ω, and a lower bound for |ω|;

(H4) Q satisfies the very weak Harnack inequality: if −Q[v] ≥ 0 in a bounded Ω
and K ⊂⊂ Ω, then for each 0 < τ < 1 there exists C̄ = C̄(τ,Q,K,Ω) > 1
such that for any point x0 ∈ K, we have

∣∣{u ≤ C̄u(x0)
}
∩ K

∣∣ ≥ τ |K|;
(H5) Q has no zero order term and possesses some homogeneity : precisely, we

have Q[u + c] = Q[u] for each constant c ∈ R, and for some p > 1,
Q[tu] = tp−1Q[u] for every t ≥ 0; and if u satisfies −Q[u] ≥ f(u, x) in Ω
and we set ur(x) := u(rx), then −Q[ur] ≥ rpf(rx, ur) in Ωr := Ω/r.

The last hypothesis can be weakened, as will be obvious from the proofs below.
Namely, we can assume that if u satisfies −Q[u] ≥ f(u, x) in Ω, then −Qr[ur] ≥
rpf(ur, rx) on Ωr, for some operator Qr which satisfies the same hypotheses as
Q, with constants independent of r, and such that for some β > 0 the operator
Qt[u] := t−βQ[tu] satisfies the same hypotheses as Q with constants independent
of t > 0.

Let us now recall that both the p-Laplacian and Isaacs operators satisfy con-
ditions (H1)-(H5). We begin by recalling the weak comparison principle. For the
p-Laplacian, we refer for example to [28, Corollary 3.4.2], while for Isaacs operators,
this is a particular case of results in [11, 12].

Proposition 3.1. Let Q denote the p-Laplacian or an Isaacs operator. Suppose
that Ω is a bounded domain, and u and v satisfy the inequalities

−Q[u] ≤ 0 ≤ −Q[v] in Ω,

and u ≤ v on ∂Ω. Then u ≤ v in Ω.

Another important property for our purposes is the availability of solutions of
−Q[u] ≤ 0 with given behavior at infinity. Sharp nonexistence results are obtained
by using the fundamental solutions of −Q[u] = 0. For α ∈ R, we denote

(3.4) ξα(x) :=





|x|−α if α > 0,
− log |x| if α = 0,
−|x|−α if α < 0,

Proposition 3.2. Let Q denote the p-Laplacian or an Isaacs operator. Then there

exist numbers α∗, α̃∗ ∈ (−1,∞) and functions Φ, Φ̃ such that

(3.5) −Q[Φ] = 0 = −Q[Φ̃] in R
n \ {0},

and

cξα∗ ≤ Φ ≤ Cξα∗ , if α∗ 6= 0

cξeα∗ ≤ −Φ̃ ≤ Cξeα∗ , if α̃∗ 6= 0

−C + ξ0 ≤ Φ (resp. − Φ̃) ≤ C + ξ0, if α∗ = 0 (resp. α̃∗ = 0),

(3.6)

for some positive constants c, C > 0.

It is well-known (and can be easily checked) that the p-Laplacian satisfies the

statement above with α∗ = α̃∗ = (n−p)/(p−1) and Φ = −Φ̃ = ξ(n−p)/(p−1). For the
reader interested in extending the results in this paper to more general quasilinear
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operators, we note that results on the existence and behavior of singular solutions
of quasilinear equalities can be found in the classical work of Serrin [30].

For Isaacs operators the question of existence, uniqueness, and properties of
fundamental solutions was studied in detail in the recent work [2]. In particular,
the result above is a consequence of Theorem 1.2 in that paper. We remark that
for nonlinear Isaacs operators we have α∗ 6= α̃∗, except in very particular cases.
This is due to the fact that Isaacs operators are not odd, in general. For the Pucci
extremal operators, for example, we have

α∗
(
M−

λ,Λ

)
= α̃∗

(
M+

λ,Λ

)
=

Λ

λ
(n − 1) − 1,

and

α∗
(
M+

λ,Λ

)
= α̃∗

(
M−

λ,Λ

)
=

λ

Λ
(n − 1) − 1.

Central for our method is the following quantitative (uniform) strong maximum
principle. This result, while well-known (and fundamental to the regularity theory
of linear elliptic equations of Krylov and Safonov, for example) is surprisingly under-
utilized in the theory of elliptic equations.

Theorem 3.3. Let Q denote the p-Laplacian or an Isaacs operator. Assume that
K and A are compact subsets of a smooth bounded domain Ω ⊆ R

n, with |A| > 0.
Suppose that v is nonnegative in Ω and satisfies

−Q[v] ≥ χA in Ω,

where χA denotes the characteristic function of A.

(i) Then there exists a constant c0 = c0(Q, |A|,Ω,K) > 0 such that

v ≥ c0 on K.

(ii) Suppose in addition that v ≥ Φ ≥ 0 on ∂Ω, where Φ is as in the previous
theorem, and 0 6∈ Ω. Then there exists a constant c0 = c0(Q, |A|,Ω,K) > 0
such that

v ≥ Φ + c0 on K.

Proof. For an Isaacs operator, we have

−M−
λ,Λ(D2v) ≥ χA and −M−

λ,Λ(D2(v − Φ)) ≥ χA in Ω,

and thus both (i) and (ii) are consequences of Theorem 3.1, the usual strong max-
imum principle [11, Theorem 4.9], and [29, Theorem A.1]. The result can also be
obtained as a consequence of the results of Krylov and Safonov for linear equations
[22, Chapter 4]; such an argument can be found in the Appendix of [29].

Let us give the proof for the p-Laplacian. Suppose that (i) or (ii) is false so
that there exists a sequence of compact subsets Aj ⊆ Ω with infj |Aj | > 0, and a
sequence of positive functions vj such that −∆pvj ≥ χAj

in Ω and

(3.7) either vj(xj) → 0 or vj(xj) − Φ(xj) → 0 as j → ∞,

for some sequence of points xj ∈ K. Let ṽj solve the Dirichlet problem

−∆pṽj = χAj
in Ω, ṽj = 0 (or ṽj = Φ) on ∂Ω.
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Then by Theorem 3.1, vj ≥ ṽj in Ω, and so we can replace vj by ṽj . For all
ϕ ∈ C∞

0 (Ω) we have

(3.8)

∫

Ω

|Dvj |
p−2Dvj · Dϕ dx =

∫

Aj

ϕ dx.

According to the C1,α estimates for the p-Laplace equation (see [34, 16, 23]), we
deduce that vj is bounded in C1,α(Ω) for some α > 0. Therefore we may extract

a subsequence of vj which converges to a function v0 in C1(Ω). We may pass to
limits in (3.8) to obtain −∆pv0 ≥ 0 in Ω, as well as v0 ≥ 0 on ∂Ω (or v0 ≥ Φ
on ∂Ω). By the strong maximum principle (see [33], or Theorem 3.4 below) we
conclude that either v0 ≡ 0 or v0 > 0 in Ω. In the second case, by the strong
comparison principle (see Theorem 1.4 in [14]), either v0 ≡ Φ or v0 > Φ in Ω.
To apply the strong comparison principle here, we must note that the gradient of
Φ = ξ(n−p)/(p−1) never vanishes in Ω.

By passing to limits in (3.7), we obtain v0 ≡ 0 in Ω, or in the second case v0 ≡ Φ
in Ω. In either case, v0 is p-harmonic, so that a passage to the limit in (3.8) gives

lim
j→∞

∫

Aj

ϕ dx → 0 as j → ∞,

for each ϕ ∈ C∞
0 (Ω). By taking ϕ ≥ 1 except on a very small subset of Ω, this is

easily seen to be a contradiction, according to infj |Aj | > 0. �

The final ingredient of our proofs of the Liouville results is the weak Harnack
inequality. For weak solutions of degenerate quasilinear equations it is due to Serrin
[32] and Trudinger [35]. In the nondivergence framework it was proved by Krylov
and Safonov for strong solutions (see [22]), see also [36], while for viscosity solutions
of Isaacs equations it was obtained by Caffarelli [10]; see also Theorem 4.8 in [11].

Theorem 3.4. Let u ≥ 0 and −Q[u] ≥ 0 in a bounded domain Ω, where Q is the
p-Laplacian or an Isaacs operator. Then there exists γ > 0 depending only on Q
and n, such that for each compact K ⊂ Ω we have

(
−

∫

K

uγ dx

)1/γ

≤ C inf
K

u.

for some positive constant C, which depends only on n, Q, K,Ω.

Remark 3.5. In some cases the use of this theorem can be avoided, at the expense
of strengthening the hypotheses on f , see for instance the remark after the proof
of Theorem 2.1.

Remark 3.6. We actually use only the following weaker result: for each γ < 1
there exists a constant C̄ = C̄(n, Q, γ) > 1 such that for any nonnegative weak
supersolution u of −Q[u] ≥ 0 in the annulus B3 \ B1/2, and any x0 ∈ B2 \ B1, we
have ∣∣{u ≤ C̄u(x0)

}
∩ (B2 \ B1)

∣∣ ≥ γ |B2 \ B1| .

This is a consequence of the “very weak” Harnack inequality, which states that for
every γ > 0, there exists a constant c̄ = c̄(n, Q, γ,Ω,K) ∈ (0, 1) such that for any
nonnegative weak supersolution u of −Q[u] ≥ 0 in Ω,

|{u ≥ 1} ∩ K| ≥ γ |K| implies u ≥ c̄ in K.
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This fact, though a consequence of the weak Harnack inequality, is interesting in
its own right. For instance, it admits a proof which is considerably simpler than
the proof of the weak Harnack inequality while being sufficient to imply the Hölder
estimates for solutions of −Q[u] = 0.

The reader is advised that in the rest of the paper only properties (H1)-(H5) will
be used. In other words, the Liouville theorems stated in Section 4 are proved for
any Q such that the inequalities −Q[u] ≥ (≤)f(x, u) can be interpreted in such a
way that properties (H1)–(H5), or a subset of them, are satisfied.

3.2. Properties of minima of supersolutions on annuli. Our method for prov-
ing Liouville theorems is based on the study of minima of supersolutions in annuli.
In this section we obtain some preliminary estimates by comparing supersolutions
of −Q[u] ≥ 0 with the fundamental solutions of Q from property (H2).

Note that Φ and Φ̃ can be assumed to never vanish in R
n \ Br0 , since if needed

we simply add or subtract a constant from these functions. With this in mind, let
us define the quantities

(3.9) m(r) := inf
B2r\Br

u, ρ(r) := inf
B2r\Br

u

Φ
, ρ̃(r) := inf

B2r\Br

u

Φ̃
.

Lemma 3.7. Assume Q satisfies (H1) and (H2). Suppose that r0 > 0 and u ≥ 0
satisfy

−Q[u] ≥ 0 in R
n \ Br0 .

Then for some r1 > r0,

(3.10)





r 7→ ρ(r) is nondecreasing on (r0,∞), if α∗ > 0,

r 7→ m(r) is nondecreasing on (r0,∞), if α∗ ≤ 0,

r 7→ m(r) is bounded on (r1,∞), if α̃∗ > 0,

r 7→ ρ̃(r) is bounded on (r1,∞), if α̃∗ ≤ 0.

Proof. First consider the case that α∗ > 0. Then Φ > 0 and Φ(x) → 0 as |x| → ∞.
Observe that for every r > r0 and ε > 0, we may choose R > r large enough that

u(x) + ε ≥ ρ(r)Φ(x) on ∂ (BR \ Br) .

By the maximum principle,

u(x) + ε ≥ ρ(r)Φ(x) in BR \ Br.

Sending R → ∞ and then ε → 0, we discover that

u(x) ≥ ρ(r)Φ(x) in R
n \ Br, hence ρ(r) := inf

Rn\Br

u

Φ
.

The desired monotonicity of r 7→ ρ(r) follows.
Next, suppose that α∗ ≤ 0. Recall that in this case Φ(x) < 0 for |x| ≥ r0 and

Φ(x) → −∞ as |x| → ∞. Thus for every δ > 0, we can find R > 0 so large that

u ≥ m(r) + δΦ on ∂ (BR \ Br) .

Using the maximum principle and sending R → ∞, we deduce that

u ≥ m(r) + δΦ in R
n \ Br.

Now let δ → 0 to obtain m(r) := infRn\Br
u, and hence the monotonicity of r 7→

m(r) on the interval (r0,∞).
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Suppose that α̃∗ > 0. Then Φ̃ < 0, and we may normalize Φ̃ so that

max
∂Br0

Φ̃ = −1.

For any r > r0, we clearly have

u(x) ≥

(
inf

B2r\Br

u

)(
1 + Φ̃(x)

)
for each x ∈ ∂ (Br \ Br0) .

By the maximum principle,

u ≥

(
inf

B2r\Br

u

)(
1 + Φ̃

)
in Br \ Br0 ,

for each r > r0. In particular, if k is fixed sufficiently large so that

max
∂Bkr0

u ≥

(
inf

B2r\Br

u

)(
1 − ck−eα∗

)
≥

1

2

(
inf

B2r\Br

u

)
,

we obtain the third statement in (3.10), for r ≥ kr0.
Finally, we consider the case that α̃∗ ≤ 0. Observe that

u(x) ≥ ρ̃(r)

(
Φ̃(x) − max

∂Br0

Φ̃

)
for each x ∈ ∂ (Br \ Br0)

for any r > r0. By the maximum principle,

u(x) ≥ ρ̃(r)

(
Φ̃(x) − max

∂Br0

Φ̃

)
in Br \ Br0 .

Hence

max
∂Bkr0

u ≥ ρ̃(r)

(
min

∂Bkr0

Φ̃ − max
∂Br0

Φ̃

)
.

We fix k sufficiently large so that the quantity in the last parentheses be larger

than one (recall we are in a case when Φ̃ → ∞ as |x| → ∞), and the second part
of (3.10) follows. The lemma is proved. �

The following bounds on m(r) are an immediate consequence of (3.10).

Lemma 3.8. Assume Q satisfies (H1) and (H2). Suppose that r0 > 0 and u ≥ 0
satisfy

−Q[u] ≥ 0 in R
n \ Br0 .

Then for some c, C > 0 depending only on Q,n, u, but not on r,

(3.11)

{
m(r) ≥ cr−α∗

if α∗ > 0,

m(r) ≥ c if α∗ ≤ 0,
and





m(r) ≤ C if α̃∗ > 0,

m(r) ≤ C log r if α̃∗ = 0,

m(r) ≤ Cr−eα∗

if α̃∗ < 0.

In some situations the map r 7→ m(r) is an nonincreasing function, in contrast
with some conclusions of Lemma 3.7.

Lemma 3.9. Assume Q satisfies (H1) and (H2). Suppose u ≥ 0 satisfies either

−Q[u] ≥ 0 in BR or

{
−Q[u] ≥ 0 in BR \ {0},
α̃∗ ≥ 0.

Then r → m(r) is nonincreasing on (0, R).
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Proof. The first statement is obvious, since the maximum principle implies that
m(r) = infBr

u. Let us prove the second statement. By subtracting a constant

from Φ̃ in the case that α̃∗ = 0, we may assume that Φ̃ < 0 in BR \ {0}. Since

Φ̃(x) → −∞ as x → 0, for every 0 < r < R and δ > 0, there exists 0 < ε < r small
enough that

u ≥ m(r) + δΦ̃ on ∂ (Br \ Bε) .

By the maximum principle,

u ≥ m(r) + δΦ̃ in Br \ Bε.

Sending ε → 0 and then δ → 0, we deduce that

u ≥ m(r) in Br \ {0}, hence m(r) = inf
Br\{0}

u.

The monotonicity of the map r 7→ m(r) on the interval (0, R) follows. �

4. The Liouville Theorems

This section contains our main result on the nonexistence of solutions of elliptic
inequalities. As we pointed out in the previous section, all results will be announced
under some or all of the hypotheses (H1)-(H5) on the elliptic operator Q. These
properties hold for solutions of quasilinear inequalities of p-Laplacian type, as well
as for viscosity supersolutions of fully nonlinear equations of Isaacs type. Therefore
all the following results will be valid for such supersolutions and inequalities.

We pursue with this choice of exposition to emphasize the independence of the
method on the particular type of operators and weak solutions that we consider.
We believe that modifications of our arguments will yield analogous results for
inequalities involving other types of operators, for instance mean-curvature type
operators, nondivergence form extensions of the p-Laplacian studied by Birindelli
and Demengel [6], nonlinear integral operators (c.f. [9]), and so on.

4.1. Statement of the main result. We begin by providing a brief overview
of the main ideas in the proof of our main result, Theorem 4.1, which will also
motivate the complicated hypotheses (f1)-(f4), below. Assume that we have a
positive solution u > 0 of the inequality

(4.1) −Q[u] ≥ f(u, x) in R
n \ Br0 .

Setting ur(x) = u(rx) for r ≥ 2r0 and using (H5), we see that ur is a solution of

−Q[ur] ≥ rpf(ur, rx) ≥ 0 in R
n \ B1/2,

where p > 1 is as in (H5). Then property (H4) implies that the set

Ar := {x ∈ B2 \ B1 : m(r) ≤ ur(x) ≤ C̄m(r)}, r > 2r0,

is such that |Ar| ≥ (1/2)|B2 \ B1|, provided C̄ > 1 is large enough. Then by (H3),

(4.2) m(r) ≥ crp inf
m(r)≤s≤C̄m(r), x∈Ar

f(s, rx).

The idea is to discover hypotheses on f which imply that (4.2) is incompatible with
the bounds on m(r) obtained from Lemma 3.8. First, if the simple nondegeneracy
condition (f2) below is in force, then we immediately obtain from (4.2) that either
m(r) → 0 or else m(r) → ∞ as r → ∞. We then impose conditions on f to rule out
both of these alternatives; these are, respectively, (f3) and (f4) below. In light of
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(4.2), we see that the former need concern only the behavior of f(s, x) near s = 0
and |x| = ∞, and the latter the behavior of f(s, x) near s = ∞ and |x| = ∞.

Our precise hypotheses on the function f = f(s, x) are as follows:

(f1) f : (0,∞) × (Rn \ Br0
) → [0,∞) is continuous;

(f2) |x|pf(s, x) → ∞ as |x| → ∞ locally uniformly in s ∈ (0,∞);
(f3) either α∗ ≤ 0, or else α∗ > 0 and there exists a constant µ > 0 such that

if we define

Ψk(x) := |x|p inf
kΦ(x)≤s≤µ

s1−pf(s, x) and h(k) := lim inf
|x|→∞

Ψk(x),

then 0 < h(k) ≤ ∞ for each k > 0, and

lim
k→∞

h(k) = ∞.

(f4) either α̃∗ > 0, or else α̃∗ ≤ 0 and there exists a constant µ > 0 such that
if we define

Ψ̃k(x) := |x|p inf
µ≤s≤keΦ(x)

s1−pf(s, x) and h̃(k) := lim inf
|x|→∞

Ψ̃k(x),

then 0 < h̃(k) ≤ ∞ for each k > 0, and

lim
k→0

h̃(k) = ∞.

Observe that (f3) is void if α∗ ≤ 0, while (f4) is void in the case that α̃∗ > 0. We
recall that for the p-Laplacian operator, we have

α∗ = α̃∗ =
n − p

p − 1
,

while for an Isaacs operator with ellipticity Λ/λ, in general α∗ 6= α̃∗, and each of
α∗ and α̃∗ can be any number in the interval

[
λ

Λ
(n − 1) − 1,

Λ

λ
(n − 1) − 1

]
.

Our main result is:

Theorem 4.1. Assume that n ≥ 2, and Q and f satisfy (H1)-(H5) as well as
(f1)-(f4), above. Then there does not exist a positive supersolution u > 0 of (4.1),
for any r0 > 1.

We prove Theorem 4.1 in the following subsection, and conclude the present one
by stating a consequence for nonlinearities f of the simple form

f(s, x) = |x|−γg(s).

For such f , we observe at once that conditions (f1) and (f2) are together equivalent
to the statement

(4.3) g : (0,∞) → (0,∞) is continuous, and γ < p.

We claim that, together with (4.3), a sufficient condition for (f3) is

(4.4) if α∗ > 0, then lim inf
sց0

s−σ∗

g(s) > 0, for σ∗ := (p − 1) +
p − γ

α∗
.

Observe first that (4.4) implies that

η = η(µ) := inf
0<s<µ

s−σ∗

g(s) > 0, for every µ > 0.
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Thus with Ψk(x) as in (f3), we have for each µ > 0 and all sufficiently large |x|,

Ψk(x) = |x|p inf
kΦ(x)≤s≤µ

s1−pf(s, x) ≥ η inf
kΦ(x)≤s≤µ

|x|p−γs1−p+σ∗

.

Since 1−p+σ∗ = (p−γ)/α∗ > 0, the last infimum above is attained at s = kΦ(x),
and hence we obtain by the asymptotic homogeneity of Φ,

Ψk(x) ≥ cηk1−p+σ∗

|x|p−γ−α∗(1−p+σ∗) = ηk1−p+σ∗

→ ∞ as k → ∞,

where we have also used 1 − p + σ∗ − (p − γ)/α∗ = 0. This confirms that (f3)
holds. A similar analysis on the validity of (f4) when f(s, x) = |x|−γg(s) yields the
following corollary, which contains Theorems 2.1 and 2.7 as very particular cases.

Corollary 4.2. Assume that n ≥ 2 and Q satisfies (H1)-(H5). Then the differential
inequality

−Q[u] ≥ |x|−γg(u), γ < p,

has no positive solution in any exterior domain, provided the function g : (0,∞) →
(0,∞) is continuous and satisfies

if α∗ > 0, then lim inf
sց0

s−σ∗

g(s) > 0, for σ∗ := (p − 1) +
p − γ

α∗
,(4.5)

if α̃∗ = 0, then lim inf
s→∞

easg(s) > 0, for every a > 0,(4.6)

if α̃∗ < 0, then lim inf
s→∞

s−eσ∗

g(s) > 0, for σ̃∗ := (p − 1) +
p − γ

α̃∗
.(4.7)

Observe that

−∞ < σ̃∗ < p − 1 < σ∗ < ∞.

Applied to the model nonlinearity f(s, x) = |x|−γsσ, the conditions (4.5), (4.6) and
(4.7) are sharp. Indeed, it was shown in [1] that the inequality

(4.8) −Q[u] ≥ |x|−γuσ

has a positive solution in R
n \ {0} if σ > σ∗, and even in whole space R

n in the
case γ ≤ 0. The argument in [1] can be easily modified to show that (4.6) and
(4.7) are similarly sharp. For example, in the case α̃∗ = 0, then the function

u(x) = Φ̃(x) + log Φ̃(x) is a supersolution of the inequality

−Q[u] ≥ e−au

in some exterior domain, for some a > 0. We multiplying u by a positive constant,
we can have any a > 0 we wish.

Notice also that we have σ̃∗ > 0 when 0 < p + α̃∗(p − 1) ≤ γ < p. For such
values of γ and α̃∗ < 0, we see that there exist elliptic operators such that sublinear
inequalities with nonlinearities that behave at infinity like uσ, σ ∈ (0, σ̃∗), may have
positive solutions.

Finally, as mentioned above both (f3) and (f4) are void in the case α∗ ≤ 0
and α̃∗ > 0, and we have the nonexistence of supersolutions in exterior domains
under the modest hypotheses (f1) and (f2). In fact, in this case a simpler argument
totally eliminates any hypotheses apart from the nonnegativity of f , provided the
inequality holds in R

n \ {0}. We conclude this subsection with another Liouville
theorem, which is an immediate consequence of Lemmas 3.7 and 3.9.
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Theorem 4.3. Assume Q satisfies (H1) and (H2). Suppose u ≥ 0 satisfies either
{

−Q[u] ≥ 0 in R
n,

α∗ ≤ 0.
or

{
−Q[u] ≥ 0 in R

n \ {0},
α∗ ≤ 0, α̃∗ ≥ 0.

Then u is constant.

Proof. By adding a constant to u, we may suppose that inf u = 0. According to
Lemmas 3.7 and 3.9, the map r 7→ m(r) is constant on (0,∞), and hence m(r) ≡ 0.
The strong maximum principle then implies that u ≡ 0. �

The fact that there do not exist superharmonic functions in R
2 \ {0} which are

bounded below is a very particular case of this theorem. The first part of Theorem
4.3 was obtained for the Pucci minimal operator in [13].

The sharpness of Theorem 4.3 illustrates the difference between nonexistence
results in the whole space and in more general unbounded domains. For instance,
the inequality −∆pu ≥ 0 has no positive solutions in R

n for every p ≥ n, while the
same inequality has no positive solutions in the punctured space R

n \{0} only in
the case p = n.

4.2. Proof of the Main Result. We now give the

Proof of Theorem 4.1. To obtain a contradiction, let us suppose that u > 0 is a
solution of the differential inequality

−Q[u] ≥ f(u, x) in R
n \ Br0 ,

for some r0 > 1. For each r > 2r0, denote ur(x) := u(rx), and observe that (H5)
says ur is a supersolution of

−Q[ur] ≥ rpf(ur, rx) in R
n \ B1/2.

As before, set m(r) := infB2r\Br
u = infB2\B1

ur for r > 2r0. Let C̄ be as in (H4)

with τ = 1/2, K = B̄2 \B1, and Ω = B3 \B1/2. According to (H4), for each r > 2r0

the set Ar := (B2 \ B1) ∩ {m(r) ≤ ur ≤ C̄m(r)} has measure at least 1
2 |B2 \ B1|.

Then (H3) implies that for some c > 0,

(4.9) m(r)
p−1

≥ crp inf
{
f(s, x) : r ≤ |x| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

for every r > 2R. Owing to hypothesis (f2), we immediately deduce that

(4.10) either m(r) → 0 or m(r) → +∞ as r → ∞.

Indeed, if we had a subsequence rj → ∞ such that m(rj) → a ∈ (0,∞), then by
sending r = rj → ∞ in (4.9) we obtain a contradiction to (f2). We will complete
the proof of by showing that the alternatives in (4.10) are contradicted by (f3) and
(f4), respectively.

Case 1: m(r) → 0 as r → ∞. If α∗ ≤ 0, then we may immediately appeal to
Lemma 3.8 to obtain a contradiction. So we need only consider the case that
α∗ > 0, for which Lemma 3.8 provides the lower bound

(4.11) m(r) ≥ cr−α∗

for all r > 2r0.

We next establish the upper bound

(4.12) m(r) ≤ Cr−α∗

for all sufficiently large r > 2r0.
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Let k > 0 and r > 2r0 be very large, and suppose that m(r) ≥ kr−α∗

. Then
assuming that r > 0 is large enough that C̄m(r) ≤ µ, and using (4.9), we have

inf
r≤|x|≤2r

ΨCk(x) ≤ inf
{

s1−p|x|pf(s, x) : r ≤ |x| ≤ 2r, k|x|−α∗

≤ s ≤ µ
}

≤ inf
{
s1−p|x|pf(s, x) : r ≤ |x| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

≤ Cm(r)1−p inf
{
rpf(s, x) : r ≤ |x| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

≤ C.

Owing to (f3), this is clearly impossible if k > 0 and r > 2r0 are large enough.
Thus we obtain the upper bound (4.12), and we have the two-sided estimate

(4.13) cr−α∗

≤ m(r) ≤ Cr−α∗

for large r > 2r0.
According to Lemma 3.7, the map r 7→ ρ(r) is nondecreasing. Thus for every

r > 2r0, the functions

vr(x) := rα∗

u(rx), wr(x) := ρ(r)Φ(x) = ρ(r)rα∗

Φ(rx)

satisfy vr ≥ wr in R
n \ B1, and we have

−Q[vr] ≥ rp+α∗(p−1)f(ur, rx) ≥ 0 = −Q[wr] in R
n \ B1/2.

Note that c ≤ vr ≤ C on Ar, by (4.13). Using (4.9), (4.13), and (f3), for large
enough r > 2r0 we have

inf
Ar

(
rp+α∗(p−1)f(ur, rx)

)
≥ rp inf

Ar

{
f(r−α∗

vr, rx)

(r−α∗vr)p−1

}

≥ c inf
{
s1−p|y|pf(s, y) : r ≤ |y| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

≥ c inf
{

s−1|y|pf(s, y) : r ≤ |y|, cr−α∗

≤ s ≤ µ,
}

= c inf
x≥r

Ψc(x)

≥ c.

Hence for such r,

−Q[c1/(1−p)vr] ≥ χAr
≥ 0 = −Q[c1/(1−p)wr] in B5 \ B1.

According to (H3), for sufficiently large r > 2r0 we have

vr ≥ wr + c0 = (ρ(r) + c1)Φ in B4 \ B2.

for some c1 > 0 which does not depend on r. Unwinding the definitions, we
discover that u ≥ (ρ(r) + c1)Φ in B4r \ B2r. In particular, ρ(2r) ≥ ρ(r) + c1, and
we deduce that ρ(r) → ∞ as r → ∞. This contradicts the second inequality in
(4.13), since obviously ρ(r) ≤ Cm(r) maxr≤|x|≤2r Φ ≤ Cm(r)rα∗

. The proof in the
case limr→0 m(r) = 0 is complete.

Case 2: m(r) → ∞ as r → ∞. If α̃∗ > 0, we obtain an immediate contradiction by
applying Lemma 3.8, so we may suppose that α̃∗ ≤ 0 and the second alternative

in (f4) is in force. We may assume that Φ̃ is normalized so that max∂Br0
Φ̃ = 1, as

well as Φ̃ > 0 on R
n \ Br0 in the case that α̃∗ = 0.

Lemma 3.8 gives the upper bound

(4.14) m(r) ≤ C max
|x|=r

Φ̃(x) ≤ C min
|x|=r

Φ̃(x), r > 2r0,
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using the asymptotic homogeneity of Φ̃. We next establish the lower bound

c max
|x|=r

Φ̃(x) ≤ m(r),

Let k > 0, and assume that r > 2r0 is large enough that m(r) ≥ µ, and sup-

pose that m(r) ≤ k min|x|=r Φ̃(x). Then this, (4.9), and our assumption that
limr→∞ m(r) = ∞ imply that for sufficiently large r > 2r0 we have

inf
r≤|x|≤2r

Ψ̃C̄k(x) ≤ inf
{

s1−p|x|pf(s, x) : r ≤ |x| ≤ 2r, µ ≤ s ≤ C̄kΦ̃(x)
}

≤ inf
{
s1−prpf(s, x) : r ≤ |x| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

≤ Cm(r)1−p inf
{
rpf(s, x) : r ≤ |x| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

≤ C.

This contradicts (f4) if k > 0 is chosen sufficiently small, and we have the lower
bound

c max
|x|=r

Φ̃(x) ≤ c min
|x|=r

Φ̃(x) ≤ m(r).

Recalling (4.14), we have the two-sided estimate

(4.15) c max
|x|=r

Φ̃(x) ≤ m(r) ≤ C min
|x|=r

Φ̃(x) for sufficiently large r > r0.

Define the quantity

ω(r) := inf
∂Br

u

Φ̃ − 1
, r > r0.

By the maximum principle, we have that

u ≥ ω(r)
(
Φ̃ − 1

)
in Br \ Br0 .

Thus for r > 2r0, the functions

vr(x) := u(rx), wr := ω(2r)
(
Φ̃(rx) − 1

)
≥ 0 in B2 \ B1/2,

are such that vr ≥ wr and satisfy the differential inequalities

−Q[vr] ≥ rpf(ur, rx) ≥ 0 = −Q[wr] in R
n \ B1/2.

Using (4.9), (4.15), and (f4), we see that for sufficiently large r > 2r0,

inf
Ar

(rpf(ur, rx)) ≥
1

2p
inf
{
|y|pf(s, y) : r ≤ |y| ≤ 2r, m(r) ≤ s ≤ C̄m(r)

}

≥ cm(r)
p−1

inf
{

s1−p|y|pf(s, y) : µ ≤ s ≤ CΦ̃(y), r ≤ |y|
}

≥ cm(r)
p−1

.

In particular, for such r > 2r0,

−Q[vr] ≥ cm(r)
p−1

χAr
≥ 0 = −Q[wr] in B2 \ B1/2r0

.

Applying (H3) and (H5), we find that

vr ≥ c1m(r) + wr on ∂B1.

for some c1 > 0 which does not depend on r. Using the definition of vr, we discover
that for sufficiently large r > 2r0,

u(x) − ω(2r)
(
Φ̃ − 1

)
≥ c1m(r) ≥ c2Φ̃ on ∂Br,
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and therefore

u(x) − (ω(2r) + c2)
(
Φ̃ − 1

)
> 0 on ∂Br.

for some c2 > 0 which does not depend on r. It follows that ω(r) ≥ ω(2r) + c2 for
all sufficiently large r > 2r0, and hence ω(r) → −∞ as r → ∞. This is an obvious
contradiction, since ω > 0. Our proof is complete. �

5. Applications to systems of inequalities

5.1. Systems of elliptic inequalities. Our approach permits generalizations to
systems of the form

(5.1) −Qi[ui] ≥ fi(u1, . . . , uN , x), i = 1, . . . , N,

where f is a positive, continuous function on (Rn \ Br0
) × (0,∞)N . The method

essentially reduces the question of existence of positive solutions of (5.1) to that of
systems of certain algebraic inequalities.

Assuming that Qi satisfies (H1)-(H5) with constants pi, α∗
i , α̃∗

i , and so on, we
may use the Harnack inequality and the quantitative strong maximum principle as
before to obtain

(5.2) mi(r) ≥ crpi inf
(s1,...,sN ,x)∈Ar

fi(s1, . . . , sN , x) for every 1 ≤ i ≤ N,

where we have set mi(r) := infr≤|x|≤2r ui(x) as well as

Ar :=
{
(s1, . . . , sN , x) : r ≤ |x| ≤ 2r, mi(r) ≤ si ≤ C̄mi(r) for i = 1, . . . , N

}
.

The game is then to impose hypotheses on the functions fi which ensure that the
inequalities (5.2) are incompatible with those of Lemma 3.8 for large r. In the
“critical” cases, we typically obtain a two-sided bound on some mj(r) for large r,
rescale the function uj , and then proceed as in the proof of Theorem 4.1 to obtain
a contradiction.

For instance, if we consider the system

(5.3)

{
−Q1[u] ≥ |x|−γuavb,

−Q2[v] ≥ |x|−δucvd,

in some exterior domain of R
n, then we obtain

(5.4)

{
ma−1

1 (r)mb
2(r) ≤ Crγ−p1 ,

mc
1(r)m

d−1
2 (r) ≤ Crδ−p2 ,

for sufficiently large r. We may then combine (5.4) with the inequalities given by
Lemma 3.8 in order to determine the set of parameters for which these inequali-
ties are incompatible. Notice that we may take parameters a, b, c, d ∈ R, and in
particular we can consider systems with various singularities. It is also possible to
consider operators Q1 and Q2 which are of a different nature; e.g., Q1 may be the
p-Laplacian while Q2 is an Isaacs operator.

Naturally, any attempt at stating a very general result for a system of the form
(5.1) is immediately met with a combinatorial explosion of cases to consider (e.g.,
the various signs of α∗

i and α̃∗
i , corresponding requirements on the functions fi

as some sj are going to zero while others are at infinity, etc). While it will be
apparent that our techniques are sufficiently flexible to yield nonexistence results
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for such general systems, with an eye toward the clarity of our presentation we
study only some special cases here.

Let us calculate the set of parameters (σ1, σ2) ∈ R
2 for which the extended

Lane-Emden system

(5.5)

{
−Q1[u] ≥ vσ1 ,

−Q2[v] ≥ uσ2 ,

has no positive solutions in any exterior domain of R
n. Considering first the case

that σ1, σ2 ≥ 0, we obtain from (5.4) the bounds

(5.6)

{
rp1+σ1p2mσ1σ2−1

1 ≤ C,

rp2+σ2p1mσ1σ2−1
2 ≤ C.

If σ1σ2 ≤ 1, then sending r → ∞ in (5.6) with the second set of inequalities in
Lemma 3.8 immediately yields a contradiction, since we recall that α̃∗ > −1 and
pi > 1. If σ1σ2 > 1 then Lemma 3.8 yields

cr−max{α∗

1 ,0} ≤ m1(r) ≤ Cr−
p1+σ1p2
σ1σ2−1 , cr−max{α∗

2 ,0} ≤ m2(r) ≤ Cr−
p2+σ2p1
σ1σ2−1

This is of course a contradiction, if

α∗
1 <

p1 + σ1p2

σ1σ2 − 1
or α∗

2 <
p2 + σ2p1

σ1σ2 − 1
.

If neither of these strict inequalities holds, but equality holds say in the first, then
we may obtain

α∗
1 + p1 − σ1α

∗
2 ≥ 0, α∗

2 + p2 − σ2α
∗
1 ≥ 0.

The rescaled functions

ur = rα∗

1u(rx), vr = rα∗

2v(rx),

satisfy the system

(5.7)

{
− Q1[ur] ≥ rα∗

1+p1−σ1α∗

2vσ1
r ,

− Q2[vr] ≥ rα∗

2+p2−σ2α∗

1uσ2
r ,

in an exterior domain which does not depend on r ≥ 1. Moreover, the very weak
Harnack inequality implies that for sufficiently large r we have 0 < c ≤ ur ≤ C
on a subset of B2 \ B1 with measure bounded below by a positive constant which
does not depend on r. By applying the quantitative strong maximum principle
to the second, then to the first equation in this system, and using the equality
α∗

1 + p1 − σ1α
∗
2 + σ1(α

∗
2 + p2 − σ2α

∗
1) = 0, we obtain

−Q1[ur] ≥ c > 0

on a subset of B2 \ B1 which has measure bounded below by a positive constant
independently of r. We now proceed as in the proof of Theorem 4.1 to deduce
from (5.15) that rα∗

1m1(r) → ∞ as r → ∞, a contradiction. This completes the
argument in the case that σ1 ≥ 0 and σ2 ≥ 0, and we have found that we have
nonexistence of positive solutions provided that

σ1σ2 ≤ 1, or min

{
α∗

1 −
p1 + σ1p2

σ1σ2 − 1
, α∗

2 −
p2 + σ2p1

σ1σ2 − 1

}
≤ 0.
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Consider now the case that σ1 < 0 and σ2 < 0. Lemma 3.8 yields an immediate
contradiction if either α̃∗

1 ≥ 0 or α̃∗
2 ≥ 0. Thus we assume that α̃∗

1 < 0 and α̃∗
2 < 0,

and obtain {
cr−eα∗

1 ≥ m1(r) ≥ crp1mσ1
2 ≥ rp1−eα∗

2σ1

cr−eα∗

2 ≥ m2(r) ≥ crp2mσ2
1 ≥ rp2−eα∗

1σ2

and we get a contradiction provided

p1 + α̃∗
2(−σ1) + α̃∗

1 > 0 or p2 + α̃∗
1(−σ2) + α̃∗

2 > 0.

If one of these inequalities is an equality, we rescale u or v as above, replacing αi

by α̃i, and Φi by Φ̃i, to reach a contradiction in the same manner.

Finally, in the case that σ1 < 0, σ2 ≥ 0, we get




cr−eα∗

1 ≥ m1(r) ≥ crp1mσ1
2 ≥ rp1−eα∗

2σ1

cr−eα∗

2 ≥ m2(r) ≥ r
p2+σ2p1
1−σ1σ2

from which the arguments above give a contradiction provided that

p1 + α̃∗
2(−σ1) + α̃∗

1 ≥ 0 or
p2 + σ2p1

1 − σ1σ2
≥ −α̃∗

2.

5.2. Autonomous systems of three or more inequalities. Let us now consider
a system of the form

(5.8)





− Q1 [u1] ≥ fk(uk),

− Q2 [u2] ≥ f1(u1),

...

− Qk [uk] ≥ fk−1(uk−1).

For simplicity we assume that pi = p > 1 for all i, as well as

(5.9) α̃∗
i > 0 for every i = 1, . . . , k.

The later hypothesis renders it unnecessary to form an analogue of condition (f4).
Let us state the hypotheses on the functions fi which will ensure nonexistence of
positive solutions of (5.8). We assume that

(5.10) the nonlinearity fi : (0,∞) → (0,∞) is continuous for each i = 1, . . . , k,

as well as

(5.11) 0 < lim inf
sց0

s−σifi(s) ≤ ∞ for each i = 1, . . . , k.

for some exponents σ1, . . . , σk > 0. We will see later that we may assume without
loss of generality that the geometric mean of σ1, . . . σk is at least p − 1. Therefore
let us denote

(5.12) D :=
k∏

i=1

σi − (p − 1)k

and assume for the moment that D > 0. For each 1 ≤ i ≤ k, define the constant

(5.13) βi :=
p

D

k−1∑

j=0

(
(p − 1)j

k−2−j∏

l=0

σk+i−1−l

)
,
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where for notational convenience for i > k we set σi := σ(i mod k), ui := u(i mod k),
and so on, and we define an empty product to have the value of 1. For example,
β1 is given by the expression

β1 =
p

σ1σ2 · · ·σk − (p − 1)k

(
(p − 1)k−1 + (p − 1)k−2σk

+(p − 1)k−3σkσk−1 + . . . + (p − 1)σk · · ·σ3 + σk · · ·σ2

)

We will argue that the system (5.8) has no solution u1, u2, . . . , uk > 0 in any exterior
domain of R

n provided that

min
1≤i≤k

(αi − βi) ≤ 0.

It clearly suffices to show that

α1 ≤ β1 =⇒ nonexistence of a positive solution of (5.8).

Arguing by contradiction, we assume that (5.8) has a solution u1, u2, . . . uk > 0 in
some exterior domain R

n \ Br0 but that α1 ≤ β1. Denote

ui,r(x) := ui(rx) and mi(r) := inf
B2r\Br

ui = inf
B2\B1

ui,r, r > 2r0, i = 1, . . . , k.

For every r > 2r0 and 1 ≤ i ≤ k,

−Qi+1[ui+1,r] ≥ rpfi(ui,r) in R
n \ B1/2.

Arguing as in the proof of Theorem 4.1, for r > 2r0 and 1 ≤ i ≤ k we obtain

(5.14) mi+1(r)
p−1 ≥ crp inf

{
fi(s) : mi(r) ≤ s ≤ C̄mi(r)

}
, for all i = 1, . . . , k,

where c > 0 and C̄ > 1 can be taken independent of i as well as r. By our hypothesis
(5.9) and Lemma 3.8 we deduce that mi(r) ≤ C for all r > 2r0) and all i. Thus
(5.14) implies that

inf
{
fi(s) : mi(r) ≤ s ≤ C̄mi(r)

}
≤ Cr−pmi+1(r)

p−1 → 0

as r → ∞. Since fi is positive and continuous on (0,∞), and mi(r) ≤ C, we deduce
that mi(r) → 0 for all i. Therefore (5.11) and (5.14) imply that for all sufficiently
large r > 2r0 and each i,

mi+1(r) ≥ cr
p

p−1 mi(r)
σi

p−1

By induction we have for sufficiently large r > 2r0,

m1(r) ≥ cr
p

p−1 mk(r)
σk

p−1

≥ cr
p

p−1

(
cr

p

p−1 mk−1(r)
σk−1
p−1

) σk
p−1

= cr
p

p−1 (1+
σk

p−1 )mk−1(r)
σkσk−1

(p−1)2

≥ cr
p

p−1 (1+
σk

p−1 )
(
cr

p

p−1 mk−2(r)
σk−2
p−1

)σkσk−1

(p−1)2

= cr
p

p−1

“
1+

σk
p−1+

σkσk−1

(p−1)2

”

mk−2(r)
σkσk−1σk−2

(p−1)3

...

≥ crAm1(r)
B
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where we have written

A :=
p

p − 1

(
1 +

σk

p − 1
+

σkσk−1

(p − 1)2
+ . . . +

σkσk−1 · · ·σ2

(p − 1)k−1

)

and

B :=
σkσk−1 · · ·σ1

(p − 1)k
.

Observing that A/(B − 1) = β1 and rearranging the inequality above, we discover

m1(r) ≤ Cr−β1 for sufficiently large r > 2r0.

Since we have the lower bound m1(r) ≥ cr−α1 , we deduce an immediate contra-
diction in the case that β1 > α1. Thus we may assume that β1 = α1. Hence
rAm1(r)

B ≥ cm1(r). Thus the string of inequalities above may be reversed, that
is, we have

mi+1(r) ≤ Cr
p

p−1 mi(r)
σi

p−1

for sufficiently large r and all i. Using this for i = k, we discover that on the set
Ar :=

{
x ∈ B2 \ B1 : mk(r) ≤ uk(rx) ≤ C̄mk(r)

}
we have

−Q1[u1,r] ≥ rpfk(uk,r) ≥ crpmk(r)σk ≥ cm1(r)
p−1 ≥ cr−α1(p−1).

Defining v1,r := rα1u1,r, we obtain

(5.15) −Q1[v1,r] ≥ c in Ar.

We now proceed as in the proof of Theorem 4.1 to deduce from the inequality (5.15)
that rα1m1(r) → ∞ as r → ∞, a contradiction.

Finally, notice that if D ≤ 0, then we may simply replace σ1 by a larger number
so that D > 0, but D is small enough that β1 > α1. Notice that the hypothesis
(5.11) weakens as σ1 increases. We have proved the following theorem:

Theorem 5.1. Fix p > 1 and an integer k ≥ 2, and suppose that for each i =
1, . . . , k the elliptic operator Qi[·] satisfies the hypotheses of Section 4 with constants
α∗

i and α̃∗
i , and such that (5.9) holds. Let σ1, . . . , σk > 0 and fi satisfy (5.10),

(5.11), D be given by (5.12), and βi given by (5.13). Suppose that either D ≤ 0, or

D > 0 and min
1≤i≤k

(αi − βi) ≤ 0.

Then, denoting f0 := fk and u0 := uk, the system of inequalities

−Qi[ui] ≥ fi−1(ui−1), 1 ≤ i ≤ k

has no positive solution u1, . . . , uk > 0 in any exterior domain of R
n.
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2000.

[14] Lucio Damascelli. Comparison theorems for some quasilinear degenerate el-
liptic operators and applications to symmetry and monotonicity results. Ann.
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