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Functional Ito calculus and stochastic integral representation

of martingales

Rama Cont David-Antoine Fournié

First draft: June 2009. This version: Feb 2010.∗

Abstract

We develop a non-anticipative calculus for functionals of a continuous semimartingale, using
a notion of pathwise functional derivative. A functional extension of the Ito formula is derived
and used to obtain a constructive martingale representation theorem for a class of continuous
martingales verifying a regularity property. By contrast with the Clark-Haussmann-Ocone for-
mula, this representation involves non-anticipative quantities which can be computed pathwise.

These results are used to construct a weak derivative acting on square-integrable martingales,
which is shown to be the inverse of the Ito integral, and derive an integration by parts formula for
Ito stochastic integrals. We show that this weak derivative may be viewed as a non-anticipative
“lifting” of the Malliavin derivative.

Regular functionals of an Ito martingale which have the local martingale property are char-
acterized as solutions of a functional differential equation, for which a uniqueness result is given.

Keywords: stochastic calculus, functional calculus, Ito formula, integration by parts, Malliavin
derivative, martingale representation, semimartingale, Wiener functionals, functional Feynman-Kac
formula, Kolmogorov equation, Clark-Ocone formula.
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1 Introduction

Ito’s stochastic calculus [15, 16, 8, 24, 20, 28] has proven to be a powerful and useful tool in analyzing
phenomena involving random, irregular evolution in time.

Two characteristics distinguish the Ito calculus from other approaches to integration, which may
also apply to stochastic processes. First is the possibility of dealing with processes, such as Brownian
motion, which have non-smooth trajectories with infinite variation. Second is the non-anticipative
nature of the quantities involved: viewed as a functional on the space of paths indexed by time, a
non-anticipative quantity may only depend on the underlying path up to the current time. This
notion, first formalized by Doob [9] in the 1950s via the concept of a filtered probability space, is
the mathematical counterpart to the idea of causality.

Two pillars of stochastic calculus are the theory of stochastic integration, which allows to

define integrals
∫ T

0
Y dX for of a large class of non-anticipative integrands Y with respect to a

semimartingale X = (X(t), t ∈ [0, T ]), and the Ito formula [15, 16, 24] which allows to represent
smooth functions Y (t) = f(t,X(t)) of a semimartingale in terms of such stochastic integrals. A
central concept in both cases is the notion of quadratic variation [X] of a semimartingale, which
differentiates Ito calculus from the calculus of smooth functions. Whereas the class of integrands Y
covers a wide range of non-anticipative path-dependent functionals of X, the Ito formula is limited
to functions of the current value of X.

Given that in many applications such as statistics of processes, physics or mathematical finance,
one is led to consider functionals of a semimartingale X and its quadratic variation process [X] such
as: ∫ t

0

g(t,Xt)d[X](t), G(t,Xt, [X]t), or E[G(T,X(T ), [X](T ))∣ℱt] (1)

(where X(t) denotes the value at time t and Xt = (X(u), u ∈ [0, t]) the path up to time t) there has
been a sustained interest in extending the framework of stochastic calculus to such path-dependent
functionals.

In this context, the Malliavin calculus [3, 4, 25, 23, 26, 29, 30] has proven to be a powerful tool
for investigating various properties of Brownian functionals, in particular the smoothness of their
densities.

Yet the construction of Malliavin derivative, which is a weak derivative for functionals on Wiener
space, does not refer to the underlying filtration ℱt. Hence, it naturally leads to representations of
functionals in terms of anticipative processes [4, 14, 26], whereas in applications it is more natural
to consider non-anticipative, or causal, versions of such representations.

In a recent insightful work, B. Dupire [10] has proposed a method to extend the Ito formula to
a functional setting in a non-anticipative manner. Building on this insight, we develop hereafter a
non-anticipative calculus [6] for a class of functionals -including the above examples- which may be
represented as

Y (t) = Ft({X(u), 0 ≤ u ≤ t}, {A(u), 0 ≤ u ≤ t}) = Ft(Xt, At) (2)

where A is the local quadratic variation defined by [X](t) =
∫ t

0
A(u)du and the functional

Ft : D([0, t],ℝd)×D([0, t], S+
d )→ ℝ
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represents the dependence of Y on the underlying path and its quadratic variation. For such func-
tionals, we define an appropriate notion of regularity (Section 2.2) and a non-anticipative notion
of pathwise derivative (Section 3). Introducing At as additional variable allows us to control the
dependence of Y with respect to the ”quadratic variation” [X] by requiring smoothness properties
of Ft with respect to the variable At in the supremum norm, without resorting to p-variation norms
as in rough path theory [21]. This allows to consider a wider range of functionals, as in (1).

Using these pathwise derivatives, we derive a functional Ito formula (Section 4), which extends
the usual Ito formula in two ways: it allows for path-dependence and for dependence with respect
to quadratic variation process (Theorem 18). This result gives a rigorous mathematical framework
for developing and extending the ideas proposed by B. Dupire [10] to a larger class of functionals
which notably allow for dependence on the quadratic variation along a path.

We use the functional Ito formula to derive a constructive version of the martingale representation
theorem (Section 5), which can be seen as a non-anticipative form of the Clark-Haussmann-Ocone
formula [4, 13, 14, 26].

The martingale representation formula allows to obtain an integration by parts formula for Ito
stochastic integrals (Theorem 24), which enables in turn to define a weak functional derivative for
a class of square-integrable martingales (Section 6). We argue that this weak derivative may be
viewed as a non-anticipative “lifting” of the Malliavin derivative (Theorem 29).

Finally, we show that regular functionals of an Ito martingale which have the local martingale
property are characterized as solutions of a functional analogue of Kolmogorov’s backward equation
(Section 7), for which a uniqueness result is given (Theorem 32).

Our method follows the spirit of H. Föllmer’s [12] pathwise approach to Ito calculus. Sections 2,
3 and 4 are essentially “pathwise” results which can in fact be restated in purely analytical terms [5].
Probabilistic considerations become prominent when applying the functional calculus to martingales
(Sections 5, 6 and 7).

2 Functionals representation of non-anticipative processes

Let X : [0, T ]×Ω 7→ ℝd be a continuous, ℝd−valued semimartingale defined on a filtered probability
space (Ω,ℬ,ℬt,ℙ). The paths of X then lie in C0([0, T ],ℝd), which we will view as a subspace of
D([0, t],ℝd) the space of cadlag functions with values in ℝd. For a path x ∈ D([0, T ],ℝd), denote
by x(t) the value of x at t and by xt = (x(u), 0 ≤ u ≤ t) the restriction of x to [0, t]. Thus xt ∈
D([0, t],ℝd). For a process X we shall similarly denote X(t) its value at t and Xt = (X(u), 0 ≤ u ≤ t)
its path on [0, t].

Denote by ℱt = ℱXt+ the right-continuous augmentation of the natural filtration of X and by
[X] = ([Xi, Xj ], i, j = 1..d) the quadratic (co-)variation process, taking values in the set S+

d of
positive d× d matrices. We assume that

[X](t) =

∫ t

0

A(s)ds (3)

for some cadlag process A with values in S+
d . The paths of A lie in St = D([0, t], S+

d ), the space of
cadlag functions with values S+

d .
A process Y : [0, T ] × Ω 7→ ℝd which is progressively measurable with respect to ℱt may be

represented as

Y (t) = Ft({X(u), 0 ≤ u ≤ t}, {A(u), 0 ≤ u ≤ t}) = Ft(Xt, At) (4)
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where F = (Ft)t∈[0,T ] is a family of functionals

Ft : D([0, t],ℝd)× St → ℝ

representing the dependence of Y (t) on the underlying path of X and its quadratic variation.
Introducing the process A as additional variable may seem redundant at this stage: indeed

A(t) is itself ℱt− measurable i.e. a functional of Xt. However, it is not a continuous functional
with respect to the supremum norm or other usual topologies on D([0, t],ℝd). Introducing At as
a second argument in the functional will allow us to control the regularity of Y with respect to
[X]t =

∫ t
0
A(u)du without resorting to p-variation norms, simply by requiring continuity of Ft in

supremum or Lp norms with respect to the second variable (see Section 2.2).
As a result of the non-anticipative character of the functional, Ft only depends on the path up

to t. This motivates viewing F = (Ft)t∈[0,T ] as a map defined on the vector bundle:

Υ =
∪

t∈[0,T ]

D([0, t],ℝd)×D([0, t], S+
d ) (5)

Definition 1 (Non-anticipative functional on path space). A non-anticipative functional on Υ is a
family F = (Ft)t∈[0,T ] where

Ft : D([0, t],ℝd)×D([0, t], S+
d ) 7→ ℝ

(x, v) → Ft(x, v)

is measurable with respect to ℬt, the filtration generated by the canonical process on D([0, t],ℝd)×
D([0, t], S+

d ).

We denote

Υc =
∪

t∈[0,T ]

C([0, t],ℝd)×D([0, t], S+
d ) (6)

the sub-bundle where the first element is a continuous path.

2.1 Horizontal and vertical perturbation of a path

Consider a path x ∈ D([0, T ]),ℝd) and denote by xt ∈ D([0, t],ℝd) its restriction to [0, t] for t < T .
For ℎ ≥ 0, the horizontal extension xt,ℎ ∈ D([0, t+ ℎ],ℝd) of xt to [0, t+ ℎ] is defined as

xt,ℎ(u) = x(u) u ∈ [0, t] ; xt,ℎ(u) = x(t) u ∈]t, t+ ℎ] (7)

For ℎ ∈ ℝd, we define the vertical perturbation xℎt of xt as the cadlag path obtained by shifting the
endpoint by ℎ:

xℎt (u) = xt(u) u ∈ [0, t[ xℎt (t) = x(t) + ℎ (8)

or in other words xℎt (u) = xt(u) + ℎ1t=u.
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Figure 1: Left: horizontal extension xt,ℎ of a path x ∈ C0([0, t],ℝ). Right: vertical extension xℎt .

We now define two notions of distance between two paths, not necessarily defined on the same
time interval. For T ≥ t′ = t+ℎ ≥ t ≥ 0, (x, v) ∈ D([0, t],ℝd)×S+

t and (x′, v′) ∈ D([0, t+ℎ],ℝd)×
St+ℎ define

d∞( (x, v), (x′, v′) ) = sup
u∈[0,t+ℎ]

∣xt,ℎ(u)− x′(u)∣+ sup
u∈[0,t+ℎ]

∣vt,ℎ(u)− v′(u)∣+ ℎ (9)

d∞,1( (x, v), (x′, v′) ) = sup
u∈[0,t+ℎ]

∣xt,ℎ(u)− x′(u)∣+
∫ t+ℎ

0

∣vt,ℎ(u)− v′(u)∣du+ ℎ (10)

If the paths (x, v), (x′, v′) are defined on the same time interval, then d∞((x, v), (x′, v′)) is simply
the distance in supremum norm. The introduction of the distance d∞,1 is motivated by the fact

that, if Xi, i = 1, 2 are continuous semimartingales with quadratic variation [X]i(t) =
∫ t

0
Ai(u)du

then:

d∞,1((X1
t , A

1
t ), (X

2
t , A

2
t )) = ∥X1

t −X2
t ∥∞ + ∥[X]1t − [X]2t∥TV (11)

where ∣∣.∣∣TV is the total variation norm. This will give us an appropriate definition of continuity
for functionals depending on the quadratic variation process.

2.2 Regularity for non-anticipative functionals

Using the distances defined above, we now introduce classes of (right) continuous non-anticipative
functional on Υ.

Definition 2 (Right-continuous functionals). Define F∞r as the set of functionals F = (Ft, t ∈ [0, T [)
on Υ which are ”right-continuous” for the d∞ metric:

∀t ∈ [0, T [,∀ℎ ∈ [0, T − t] ∀� > 0, ∃� > 0,

∀(x, v) ∈ D([0, t],ℝd)× St, ∀(x′, v′) ∈ D([0, t+ ℎ],ℝ)× St+ℎ,
d∞((x, v), (x′, v′)) < � ⇒ ∣Ft(x, v)− Ft+ℎ(x′, v′)∣ < � (12)

6



Definition 3 (Continuous functionals). Define F∞ as the set of functionals F = (Ft, t ∈ [0, T ]) on
Υ which are continuous up to time T for the d∞ metric:

∀t ∈ [0, T [, ∀(x, v) ∈ D([0, t],ℝd)× St,∀� > 0,∃� > 0,∀t′ ∈ [0, T [,

∀(x′, v′) ∈ D([0, t′],ℝd)× St′ , d∞((x, v), (x′, v′)) < � ⇒ ∣Ft(x, v)− Ft′(x′, v′)∣ < � (13)

Most examples of functionals discussed in the introduction are continuous, in total variation
norm, with respect to the path [X]t of the quadratic variation process [X](t) =

∫ t
0
A(u)du i.e.

continuous in L1-norm with respect to the path At of its derivative. This motivates the following
definition:

Definition 4. Define F∞,1 as the set of functionals F = (Ft, t ∈ [0, T ]) on Υ which are continuous
up to time T for the d∞,1 metric:

∀t ∈ [0, T ], ∀(x, v) ∈ D([0, t],ℝd)× St,∀� > 0,∃� > 0,∀t′ ∈ [0, T ],

∀(x′, v′) ∈ D([0, t′],ℝd)× St′ , d∞,1((x, v), (x′, v′)) < � ⇒ ∣Ft(x, v)− Ft′(x′, v′)∣ < � (14)

and

∀x ∈ D([0, T ],ℝd),∀v ∈ S+
T ,∃� > 0, C > 0, ∀x′ ∈ D([0, t],ℝd),∀v′ ∈ St,

d∞((xt, vt), (x
′, v′)) < � ⇒ ∣Ft(x′, vt)− Ft(x′, v′)∣ ≤ C∣∣v − v′∣∣1 (15)

We call a functional “boundedness preserving” if it remains bounded on each bounded set of
paths, in the following sense:

Definition 5 ( Boundedness-preserving functionals). Define B([0, T )) as the set of non-anticipative
functionals F on Υ([0, T ]) such that for every compact subset K of ℝd, every R > 0 and t0 < T
there exists a constant CK,R,t0 such that:

∀t ≤ t0,∀(x, v) ∈ D([0, t],K)× St, sup
s∈[0,t]

∣v(s)∣ < R⇒ ∣Ft(x, v)∣ < CK,R,t0 (16)

Remark 6. We note that F∞,1 ⊂ F∞ ⊂ F∞r and that d∞-convergence is stronger than d∞,1-
convergence.

2.3 Measurability properties

Composing a non-anticipative functional F with the process (X,A) yields an ℱt−adapted process
Y (t) = Ft(Xt, At). The results below link the measurability and pathwise regularity of Y to the
regularity of the functional F in terms of the classes F∞r ,F∞,F∞,1 defined above.

Lemma 7 (Pathwise regularity).
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1. If F ∈ F∞r then for any (x, v) ∈ D([0, T ],ℝd) × D([0, T ], S), the path t 7→ Ft(xt, vt) is right
continuous.

2. If F ∈ F∞ then for any (x, v) ∈ D([0, T ],ℝd) ×D([0, T ], S), the path t 7→ Ft(xt, vt) is cadlag
and continuous at all points were (x, v) is continuous.

3. If F ∈ F∞,1 then for any (x, v) ∈ D([0, T ],ℝd) × D([0, T ], S), the path t 7→ Ft(xt, vt) is
furthermore cadlag and continuous at all points where x is continuous.

Proof. 1. Let F ∈ F∞r . For ℎ > 0 sufficiently small,

d∞((xt+ℎ, vt+ℎ), (xt, vt)) = sup
u∈(t,t+ℎ]

∣x(u)− x(t)∣+ sup
u∈(t,t+ℎ]

∣v(u)− v(t)∣+ ℎ (17)

Since both x and v are cadlag, this quantity converges to 0 as ℎ→ 0+. The d∞ right continuity
of F at (x, v) then implies

Ft+ℎ(xt+ℎ, vt+ℎ)− Ft(xt, vt)
ℎ→0+

→ 0

so t 7→ Ft(xt, vt) is right continuous.

2. If F ∈ F∞ and that the jump of (x, v) at time t is (�x, �v). Then

d∞((xt−ℎ, vt−ℎ), (x−�xt , v−�vt )) = sup
u∈[t−ℎ,t)

∣x(u)− x(t)∣+ sup
u∈[t−ℎ,t)

∣v(u)− v(t)∣+ ℎ

and this quantity goes to 0 because x and v have left limits. Hence the path has left-limit
Ft(x

−�x
t , v−�vt ) at t.

3. Assume now that F ∈ F∞,1, and that (x, v) is continuous at t.

d∞,1((xt−ℎ, vt−ℎ), (xt, vt)) = sup
u∈(t−ℎ,t]

∣x(u)− x(t− ℎ)∣+
∫ t

t−ℎ
∣v(u)− v(t− ℎ)∣+ ℎ (18)

As ℎ → 0 the integral term goes to 0 since v is cadlag hence bounded on [0, T ]. So if x is
continuous at t, (18) goes to zero as ℎ → 0 and the d∞,1 continuity of F at (x, v) yields the
result. If x has jump � at t, apply the same argument to x−� to find Ft(x

−�, v) as left limit.

Theorem 8. Let F ∈ F∞r . Then Y (t) = Ft(Xt, At) defines an optional process.
If A is a.s. continuous, then Y is a predictable process.

In particular, any F ∈ F∞r is a non-anticipative functional in the sense of Definition 1.
We propose first an easy-to-read proof of this theorem under the additional assumption that A is

a continuous process. The (more technical) proof for the cadlag case is given in the Appendix A.1.

Continuous case. Assume that F ∈ F∞r and that the paths of (X,A) are almost-surely continuous.
Then by Lemma 7, the paths of Y are almost-surely right continuous. so it is enough to prove that

8



Yt is ℱt-measurable. Introduce the subdivision tin = iT
2n , i = 0..2n of [0, T ], as well as the following

piecewise-constant approximations of X and A:

Xn(t) =

2n∑
k=0

X(tnk )1[tnk ,t
n
k+1)(t) +XT 1{T}(t)

An(t) =

2n∑
k=0

A(tnk )1[tnk ,t
n
k+1)(t) +XT 1{T}(t) (19)

The random variable Y n(t) = Ft(X
n
t , A

n
t ) is a continuous function of the random variables

{X(tnk ), A(tnk ), tnk ≤ t} hence is ℱt-measurable. The representation above shows in fact that Y n(t) is
ℱt-measurable. Xn

t and Ant converge respectively to Xt and At almost-surely so Y n(t)→n→∞ Y (t)
a.s., hence Y (t) is ℱt-measurable.

To show predictability of Y (t), we will express it as limit of caglad adapted processes. For

t ∈ [0, T ], define in(t) to be the integer such that t ∈ ( (i−1)T
n , iTn ]. Define the process: Y n((x, v), t) =

Fin(t)(Xt,
in(t)T
n −t, At, in(t)T

n −t), which has left-continuous trajectories since as

d∞

(
(X

t,i
in(t)T
n −t, i

n(t)T
n −t, At, in(t)T

n −t), (Xt, At)
)
s→t−→ 0 a.s.

Moreover, Y n(t) is ℱt-measurable by the same approximation argument on (X,A) used to prove the
first part of the theorem, hence Y n(t) is predictable. Now, by d∞-right continuity of F , Y n(t)→ Y (t)
almost surely, which proves that Y is predictable.

3 Pathwise derivatives of non-anticipative functionals

3.1 Horizontal and vertical derivatives

We now define pathwise derivatives for a functional F = (Ft)t∈[0,T [ ∈ F∞, following an idea of
Dupire [10].

Definition 9 (Horizontal derivative). The horizontal derivative at (x, v) ∈ D([0, t],ℝd) × St of
non-anticipative functional F = (Ft)t∈[0,T [ is defined as

DtF (x, v) = lim
ℎ→0+

Ft+ℎ(xt,ℎ, vt,ℎ)− Ft(x, v)

ℎ
(20)

if the corresponding limit exists. If (20) is defined for all (x, v) ∈ Υ the map

DtF : D([0, t],ℝd)× St 7→ ℝd

(x, v) → DtF (x, v) (21)

defines a non-anticipative functional DF = (DtF )t∈[0,T ], the horizontal derivative of F .
F is said to be horizontally differentiable if DF is right-continuous i.e. DF ∈ F∞r .

This pathwise derivative was introduced by B. Dupire [10] as a generalization of the time-
derivative to path-dependent functionals, in the case where F (x, v) = G(x) is continuous in supre-
mum norm. It can be seen as a “Lagrangian” derivative along the path x.

Dupire [10] also introduced a pathwise spatial derivative for such functionals, which we now
introduce. Denote (ei, i = 1..d) the canonical basis in ℝd.

9



Definition 10. A non-anticipative functional F = (Ft)t∈[0,T [ is said to be vertically differentiable

at (x, v) ∈ D([0, t]),ℝd)×D([0, t], S) if

ℝd 7→ ℝ
e → Ft(x

e
t , vt)

is differentiable at 0. Its gradient at 0

∇xFt (x, v) = (∂iFt(x, v), i = 1..d) where ∂iFt(x, v) = lim
ℎ→0

Ft(x
ℎei
t , v)− Ft(x, v)

ℎ
(22)

is called the vertical derivative of Ft at (x, v). If (22) is defined for all (x, v) ∈ Υ, the maps

∇xF : D([0, t],ℝd)× St 7→ ℝd

(x, v) → ∇xFt(x, v) (23)

define a non-anticipative functional ∇xF = (∇xFt)t∈[0,T ], the vertical derivative of F .
F is said to be vertically differentiable on Υ if ∇xF ∈ F∞r .

Remark 11. ∂iFt(x, v) is simply the directional derivative of Ft in direction (1{t}ei, 0). Note that
this involves examining cadlag perturbations of the path x, even if x is continuous.

Remark 12. If Ft(x, v) = f(t, x(t)) with f ∈ C1,1([0, T [×ℝd) then we retrieve the usual partial
derivatives:

DtFt(x, v) = ∂tf(t,X(t)) ∇xFt(Xt, At) = ∇xf(t,X(t)).

Remark 13. Bismut [3] considered directional derivatives of functionals on D([0, T ],ℝd) in the in the
direction of purely discontinuous (e.g. piecewise constant) functions with finite variation, which is
similar to Def. 10. This notion, used in [3] to derive an integration by parts formula for pure-jump
processes, seems natural in that context. We will show that the directional derivative (22) also
intervenes naturally when the underlying process X is continuous, which is less obvious.

Note that, unlike the definition of a Fréchet derivative in which F is perturbed along all direc-
tions in C0([0, T ],ℝd) or the case of a Malliavin derivative [22, 23] in which F is perturbed along
all Cameron-Martin (i.e. absolutely continuous) functions, we only examine local perturbations, so
∇xF and DtF seem to contain less information on the behavior of the functional F . Neverthe-
less we will show in the Section 4 that these derivatives are sufficient to reconstitute the path of
Y (t) = Ft(Xt, At): the pieces add up to the whole.

Definition 14. Define ℂj,k([0, T ]) as the set of functionals F ∈ F∞r which are differentiable
j times horizontally and k time vertically at all (x, v) ∈ Ut × St, t < T , and the derivatives
DmF,m ≤ j,∇nxF, n ≤ k define elements of F∞r .

Define ℂj,kb ([0, T ]) as the set of functionals F ∈ ℂj,k([0, T ]) such that the horizontal derivatives
up to order j and vertical derivatives up to order k are in B.

Example 1 (Smooth functions). Let us start by noting that, in the case where F reduces to a smooth
function of X(t),

Ft(xt, vt) = f(t, x(t)) (24)

10



where f ∈ Cj,k([0, T ]× ℝd), the pathwise derivatives reduces to the usual ones: F ∈ ℂj,kb with:

DitF (xt, vt) = ∂itf(t, x(t)) ∇mx Ft(xt, vt) = ∂mx f(t, x(t)) (25)

In fact F ∈ ℂj,k simply requires f to be j times right-differentiable in time, and that right-derivatives
in time and derivatives in space be jointly continuous in space and right-continuous in time.

Example 2 (Integrals with respect to quadratic variation). A process Y (t) =
∫ t

0
g(X(u))d[X](u)

where g ∈ C0(ℝd) may be represented by the functional

Ft(xt, vt) =

∫ t

0

g(x(u))v(u)du (26)

It is readily observed that F ∈ ℂ1,∞
b , with:

DtF (xt, vt) = g(x(t))v(t) ∇jxFt(xt, vt) = 0 (27)

Example 3. The martingale Y (t) = X(t)2 − [X](t) is represented by the functional

Ft(xt, vt) = x(t)2 −
∫ t

0

v(u)du (28)

Then F ∈ ℂ1,∞
b with:

DtF (x, v) = −v(t) ∇xFt(xt, vt) = 2x(t)

∇2
xFt(xt, vt) = 2 ∇jxFt(xt, vt) = 0, j ≥ 3 (29)

Example 4 (Doléans exponential). The exponential martingale Y = exp(X − [X]/2) may be repre-
sented by the functional

Ft(xt, vt) = ex(t)− 1
2

∫ t
0
v(u)du (30)

Elementary computations show that F ∈ ℂ1,∞
b with:

DtF (x, v) = −1

2
v(t)Ft(x, v) ∇jxFt(xt, vt) = Ft(xt, vt) (31)

Note that, although At may be expressed as a functional of Xt, this functional is not continuous
and without introducing the second variable v ∈ St, it is not possible to represent Examples 2, 3
and 4 as a right-continuous functional of x alone.

3.2 Obstructions to regularity

It is instructive to observe what prevents a functional from being regular in the sense of Definition
14. The examples below illustrate the fundamental obstructions to regularity:

11



Example 5 (Delayed functionals). Ft(xt, vt) = x(t − �) defines a ℂ0,∞
b functional. All vertical

derivatives are 0. However, it fails to be horizontally differentiable.

Example 6 (Jump of x at the current time). Ft(xt, vt) = x(t)− x(t−) defines a functional which is
infinitely differentiable and has regular pathwise derivatives:

DtF (xt, vt) = 0 ∇xFt(xt, vt) = 1 (32)

However, the functional itself fails to be F∞r .

Example 7 (Jump of x at a fixed time). Ft(xt, vt) = 1t≥t0(x(t0) − x(t0−)) defines a functional in
F∞,1 which admits horizontal and vertical derivatives at any order at each point (x, v). However,
∇xFt(xt, vt) = 1t=t0 fails to be right continuous so F is not vertically differentiable in the sense of
Definition 10.

Example 8 (Maximum). Ft(xt, vt) = sups≤t x(s) is F∞,1 but fails to be vertically differentiable on
the set

{(xt, vt) ∈ D([0, t],ℝd)× St, x(t) = sup
s≤t

x(s)}.

3.3 Pathwise derivatives of an adapted process

Consider now an ℱt−adapted process (Y (t))t∈[0,T ] given by a functional representation

Y (t) = Ft(Xt, At) (33)

where F ∈ F∞,1 has right-continuous horizontal and vertical derivatives DtF ∈ F∞r and ∇xF ∈ F∞r .
SinceX has continuous paths, Y only depends on the restriction of F to Υc =

∪
t∈[0,T ] C([0, t],ℝd)×

St. Therefore, the representation (33) of Y by F : Υ → ℝ in (33) is not unique, as the following
example shows.

Example 9 (Non-uniqueness of functional representation). Take d = 1. The quadratic variation
process [X] may be represented by the following functionals:

F 0(xt, vt) =

∫ t

0

v(u)du

F 1(xt, vt) =

(
lim
n

t2n∑
i=0

∣x(
i+ 1

2n
)− x(

i

2n
)∣2
)

1limn
∑
i≤t2n (x( i+1

2n )−x( i
2n ))2<∞

F 2(xt, vt) =

⎛⎝lim
n

t2n∑
i=0

∣x(
i+ 1

2n
)− x(

i

2n
)∣2 −

∑
0≤s<t

∣Δx(s)∣2
⎞⎠1limn

∑t2n

i=0 ∣x( i+1
2n )−x( i

2n )∣2<∞ 1∑
s<t ∣Δx(s)∣2<∞

where Δx(t) = x(t)−x(t−) denotes the discontinuity of x at t. If X is a continuous semimartingale,
then

F 0
t (Xt, At) = F 1

t (Xt, At) = F 2
t (Xt, At) = [X](t)

Yet F 0 ∈ ℂ1,2
b but F 1, F 2 are not even right-continuous: F i /∈ F∞r for i = 1, 2.
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However, the definition of ∇xF (Definition 10), which involves evaluating F on cadlag paths,
seems to depend on the choice of the representation, in particular on the values taken by F outside
Υc. This non-uniqueness, not addressed in [10], must be resolved before one can define the pathwise
derivative of a process in an instrinsic manner.

The following key result shows that, if Y has a functional representation (33) where F is differ-
entiable in the sense of Defs. 9 and 10 and the derivatives define elements of F∞r , then ∇xFt(Xt, At)
is uniquely defined, independently of the choice of the representation F :

Theorem 15. If F 1, F 2 ∈ ℂ1,1([0, T )) ∩ F∞ coincide on continuous paths:

∀t < T, ∀(x, v) ∈ C0([0, T ],ℝd)× ST , F 1
t (xt, vt) = F 2

t (x, v)

then ∀t < T, ∀(x, v) ∈ C0([0, T ],ℝd)× ST ,∇xF 1
t (xt, vt) = ∇xF 2

t (xt, vt)

Proof. Let F = F 1 − F 2 ∈ F∞([0, T ]) and (x, v) ∈ C0([0, T ],ℝd) × ST . Then Ft(x, v) = 0 for all
t ≤ T . It is then obvious that DtF (x, v) is also 0 on continuous paths because the extension (xt,ℎ)
of xt is itself a continuous path. Assume now that there exists some (x, v) ∈ C0([0, T ],ℝd)×ST such
that for some 1 ≤ i ≤ d and t ∈ [0, T [, ∂iFt(x, v) > 0. Define the following extension of xt to [0, T ]:

z(u) = x(u), u ≤ t
zj(u) = xj(t) + 1i=j(u− t), t ≤ u ≤ T, 1 ≤ j ≤ d (34)

Let � = 1
2∂iFt(x, v). By the right-continuity of ∂iF and DtF at (x, v), we may choose ℎ < T − t

sufficiently small such that, for any t′ ∈ [t, T [, for any (x′, v′) ∈ Ut′ × St′ ,

d∞((x, v), (x′, v′)) < ℎ⇒ ∂iFt′(x
′, v′) > � and ∣DtF (x′, v′)∣ < 1 (35)

Define the following sequence of piecewise constant approximations of zt+ℎ:

zn(u) = z̃n = z(u), u ≤ t

znj (u) = xj(t) + 1i=j
ℎ

n

n∑
k=1

1 kℎ
n ≤u−t

, t ≤ u ≤ t+ ℎ, 1 ≤ j ≤ d (36)

Since d∞((z, vt,ℎ), (zn, vt,ℎ)) = ℎ
n → 0,

∣Ft+ℎ(z, vt,ℎ)− Ft+ℎ(zn, vt,ℎ)∣ n→+∞→ 0

We can now decompose Ft+ℎ(zn, vt,ℎ)− Ft(x, v) as

Ft+ℎ(zn, vt,ℎ)− Ft(x, v) =

n∑
k=1

Ft+ kℎ
n

(zn
t+ kℎ

n
, vt, kℎn

)− Ft+ kℎ
n

(zn
t+ kℎ

n −
, vt, kℎn

)

+

n∑
k=1

Ft+ kℎ
n

(zn
t+ kℎ

n −
, vt, kℎn

)− F
t+

(k−1)ℎ
n

(zn
t+

(k−1)ℎ
n

, v
t,

(k−1)ℎ
n

) (37)

where the first sum corresponds to jumps of zn at times t+ kℎ
n and the second sum to its extension

by a constant on [t+ (k−1)ℎ
n , t+ kℎ

n ].

Ft+ kℎ
n

(zn
t+ kℎ

n
, vt, kℎn

)− Ft+ kℎ
n

(zn
t+ kℎ

n −
, vt, kℎn

) = �(
ℎ

n
)− �(0) (38)
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where � is defined as
�(u) = Ft+ kℎ

n
((zn)uei

t+ kℎ
n −

, vt, kℎn
)

Since F is vertically differentiable, � is differentiable and

�′(u) = ∂iFt+ kℎ
n

((zn)uei
t+ kℎ

n −
, vt, kℎn

)

is right-continuous. Since
d∞((x, v), ((zn)uei

t+ kℎ
n −

, vt, kℎn
)) ≤ ℎ,

�′(u) > � hence:
n∑
k=1

Ft+ kℎ
n

(zn
t+ kℎ

n
, vt, kℎn

)− Ft+ kℎ
n

(zn
t+ kℎ

n −
, vt, kℎn

) > �ℎ.

On the other hand

Ft+ kℎ
n

(zn
t+ kℎ

n −
, vt, kℎn

)− F
t+

(k−1)ℎ
n

(zn
t+

(k−1)ℎ
n

, v
t,

(k−1)ℎ
n

) =  (
ℎ

n
)−  (0)

where
 (u) = F

t+
(k−1)ℎ+u

n
(zn
t+

(k−1)ℎ+u
n

, v
t,

(k−1)ℎ+u
n

)

so that  is right-differentiable on ]0, ℎn [ with right-derivative:

 ′r(u) = D
t+

(k−1)ℎ+u
n

F
t+

(k−1)ℎ+u
n

(zn
t+

(k−1)ℎ+u
n

, v
t,

(k−1)ℎ+u
n

)

Since F ∈ F∞([0, T ]),  is also continuous by theorem 7 so

n∑
k=1

Ft+ kℎ
n

(zn
t+ kℎ

n −
, vt, kℎn

)− F
t+

(k−1)ℎ
n

(zn
t+

(k−1)ℎ
n

, v
t,

(k−1)ℎ
n

) =

∫ ℎ

0

Dt+uF (znt+u, vt,u)du

Noting that:

d∞((znt+u, vt,u), (zt+u, vt,u)) ≤ ℎ

n

we obtain that:
Dt+uF (znt+u, vt,u) →

n→+∞
Dt+uF (zt+u, vt,u) = 0

since the path of zt+u is continuous. Moreover ∣DtFt+u(znt+u, vt,u)∣ ≤ 1 since d∞((znt+u, vt,u), (x, v)) ≤
ℎ, so by dominated convergence the integral goes to 0 as n→∞. Writing:

Ft+ℎ(z, vt,ℎ)− Ft(x, v) = [Ft+ℎ(z, vt,ℎ)− Ft+ℎ(zn, vt,ℎ)] + [Ft+ℎ(zn, vt,ℎ)− Ft(x, v)]

and taking the limit on n→∞ leads to Ft+ℎ(z, vt,ℎ)− Ft(x, v) ≥ �ℎ, a contradiction.

The above result implies in particular that, if ∇xF i ∈ ℂ1,1([0, T ]), and F 1(x, v) = F 2(x, v) for
any continuous path x, then ∇2

xF
1 and ∇2

xF
2 must also coincide on continuous paths.

We now show that the same result can be obtained under the weaker assumption that F i ∈
ℂ1,2([0, T ]), using a probabilistic argument. Interestingly, while the previous result on the uniqueness
of the first vertical derivative is based on the fundamental theorem of calculus, the proof of the
following theorem is based on its stochastic equivalent, the Itô formula [15, 16].
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Theorem 16. If F 1, F 2 ∈ ℂ1,2([0, T )) ∩ F∞ coincide on continuous paths:

∀(x, v) ∈ C0([0, T ],ℝd)× ST , ∀t ∈ [0, T [, F 1
t (xt, vt) = F 2

t (x, v) (39)

then their second vertical derivatives also coincide on continuous paths:

∀(x, v) ∈ C0([0, T ],ℝd)× ST , ∀t ∈ [0, T [, ∇2
xF

1
t (xt, vt) = ∇2

xF
2
t (xt, vt)

Proof. Let F = F 1−F 2. Assume that there exists some (x, v) ∈ D([0, T ],ℝd)×ST such that for some
t < T , and some direction ℎ ∈ ℝd, ∥ℎ∥ = 1, tℎ∇2

xFt(xt, vt).ℎ > 0, and denote � = 1
2
tℎ∇2

xFt(xt, vt).ℎ.
We will show that this leads to a contradiction. We already know that ∇xFt(xt, vt) = 0 by theorem
15. Let � > 0 be small enough so that:

∀t′ > t,∀(x′, v′) ∈ Ut′ × St′ , d∞((xt, vt), (x
′, v′)) < �

⇒ ∣Ft′(x′, v′)∣ < ∣Ft(xt, vt)∣+ 1, ∣∇xFt′(x′, v′)∣ < 1, tℎ∇2
xFt′(x

′, v′).ℎ > � (40)

Let W be a one dimensional Brownian motion on some probability space (Ω̃,ℬ,ℙ), (ℬs) its natural
filtration, and let

� = inf{s > 0, ∣W (s)∣ = �

2
} (41)

Define, for t′ ∈ [0, T ],

U(t′) = x(t′)1t′≤t + (x(t) +W ((t′ − t) ∧ �)ℎ)1t′>t (42)

and notice that for all s < �
2 ,

d∞((Ut+s, vt,s), (xt, vt)) < � (43)

Define the following piecewise constant approximations of the stopped process W � :

Wn(s) =
n−1∑
i=0

W (i
�

2n
∧ �)1s∈[i �2n ,(i+1) �

2n ) +W (
�

2
∧ �)1s= �

2
, 0 ≤ s ≤ �

2n
(44)

Denoting

Z(s) = Ft+s(Ut+s, vt,s), s ∈ [0, T − t] (45)

Un(t′) = x(t′)1t′≤t + (x(t) +Wn((t′ − t) ∧ �)ℎ)1t′>t Zn(s) = Ft+s(U
n
t+s, vt,s) (46)

we have the following decomposition:

Z(
�

2
)− Z(0) = Z(

�

2
)− Zn(

�

2
) +

n∑
i=1

Zn(i
�

2n
)− Zn(i

�

2n
−)

+

n−1∑
i=0

Zn((i+ 1)
�

2n
−)− Zn(i

�

2n
) (47)
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The first term in (47) goes to 0 almost surely since

d∞((Ut+ �
2
, vt, �2 ), (Unt+ �

2
, vt, �2 ))

n→∞→ 0. (48)

The second term in (47) may be expressed as

Zn(i
�

2n
)− Zn(i

�

2n
−) = �i(W (i

�

2n
)−W ((i− 1)

�

2n
))− �i(0) (49)

where:
�i(u, !) = Ft+i �2n (Un,uℎt+i �2n−

(!), vt,i �2n )

Note that �i(u, !) is measurable with respect to ℬ(i−1)�/2n whereas its argument in (49) is indepen-

dent with respect to ℬ(i−1)�/2n. Let Ω1 = {! ∈ Ω̃, t 7→ W (t, !) continuous}. Then ℙ(Ω1) = 1
and for any ! ∈ Ω1, �i(., !) is C2 with:

�′i(u, !) = ∇xFt+i �2n (Un,uℎt+i �2n−
(!), vt,i �2n )ℎ

�′′i (u, !) = tℎ∇2
xFt+i �2n (Un,uℎt+i �2n−

(!), vt,i �2n ).ℎ (50)

So, using the above arguments we can apply the Ito formula to (49) for each ! ∈ Ω1. We therefore
obtain, summing on i and denoting i(s) the index such that s ∈ [(i− 1) �

2n , i
�

2n ):

n∑
i=1

Zn(i
�

2n
)− Zn(i

�

2n
−) =

∫ �
2

0

∇xFt+i(s) �
2n

(Un,uℎt+i(s) �
2n−

, vt,i(s) �
2n

)ℎdW (s)

+

∫ �
2

0

tℎ.∇2
xFt+i(s) �

2n
(Un,uℎt+i(s) �

2n−
, vt,i(s) �

2n
).ℎds (51)

Since the first derivative is bounded by (40), the stochastic integral is a martingale, so taking
expectation leads to:

E[

n∑
i=1

Zn(i
�

2n
)− Zn(i

�

2n
−)] > �

�

2
(52)

Now

Zn((i+ 1)
�

2n
−)− Zn(i

�

2n
) =  (

�

2n
)−  (0) (53)

where

 (u) = Ft+(i−1) �
2n+u(Unt+(i−1) �

2n ,u
, vt,(i−1) �

2n+u) (54)

is right-differentiable with right derivative:

 ′(u) = DtFt+(i−1) �
2n+u(Un(i−1) �

2n ,u
, vt,(i−1) �

2n+u) (55)

Since F ∈ F∞([0, T ]),  is continuous by theorem 8 and the fundamental theorem of calculus yields:

n−1∑
i=0

Zn((i+ 1)
�

2n
−)− Zn(i

�

2n
) =

∫ �
2

0

DtFt+s(Unt+(i(s)−1) �
2n+u, vt,s)ds (56)
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The integrand converges to DtFt+s(Ut+(i(s)−1) �
2n+u, vt,s) = 0 since DtF is zero whenever the first

argument is a continuous path. Since this term is also bounded, by dominated convergence the
integral converges almost surely to 0.
It is obvious that Z( �2 ) = 0 since F (x, v) = 0 whenever x is a continuous path. On the other hand,
since all derivatives of F appearing in (47) are bounded, the dominated convergence theorem allows
to take expectations of both sides in (47) with respect to the Wiener measure and obtain � �2 = 0, a
contradiction.

Using Theorems 15 and 16, we can now define the horizontal and vertical derivatives for an
ℱt-adapted process Y which admits a ℂ1,2-representation, i.e. extending the pathwise derivatives
introduced in Definitions 9–10 to functionals which are defined almost-surely.

Theorems 15 and 16 guarantee that the derivatives of Y are independent of the choice of the
functional representation in (4):

Definition 17 (Horizontal and vertical derivative of a process). Define C1,2(X) the set of ℱt-adapted
processes Y which admit a ℂ1,2-representation:

C1,2(X) = {Y, ∃F ∈ ℂ1,2([0, T ]) ∩ F∞,1, Y (t) = Ft(Xt, At) ℙ− a.s.} (57)

For Y ∈ C1,2(X) the following right-continuous non-anticipative processes:

DY (t) = DtF (Xt, At) ∇XY (t) = ∇xFt(Xt, At) ∇2
XY (t) = ∇2

xFt(Xt, At) (58)

are uniquely defined up to an evanescent set, independently of the choice of the functional represen-
tation F ∈ ℂ1,2([0, T ]) ∩ F∞,1.

We will call DY the horizontal derivative of Y and ∇XY the vertical derivative of Y with respect
to X.

Similarly, we will denote C1,2
b (X) the set of processes Y ∈ C1,2(X) which admit a representation

Y (t) = Ft(Xt, At) with F ∈ ℂ1,2
b ([0, T ]) ∩ F∞,1.

The operators

D : C1,2(X) 7→ C(X) (59)

and ∇X : C1,2(X) 7→ C(X) (60)

map a process Y ∈ C1,2(X) into an optional process belonging

C(X) = {Y, ∃F ∈ F∞r , Y (t) = Ft(Xt, At) ℙ− a.s.}, (61)

the set of non-anticipative process with right-continuous path-dependence.

4 Functional Ito formula

We are now ready to state a functional change of variable formula which extends the Ito formula to
path-dependent functionals of a semimartingale:
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Theorem 18 (Functional Ito formula). Let Y ∈ C1,2
b (X). For any t ∈ [0, T [,

Y (t)− Y (0) =

∫ t

0

DY (u)du+

∫ t

0

1

2
tr[t∇2

XY (u) d[X](u)] +

∫ t

0

∇XY (u).dX(u) a.s. (62)

In particular, for any F ∈ ℂ1,2
b ([0, T ]) ∩ F∞,1([0, T ]), Y (t) = Ft(Xt, At) is a semimartingale.

We note that:

∙ Note that the dependence of F on the second variable A does not enter the formula (62).
Indeed, under our regularity assumptions, variations in A lead to “higher order” terms which
do no contribute.

∙ As expected, in the case where X is continuous then Y depends on F and its derivatives
only via their values on continuous paths. More precisely, Y can be reconstructed from the
second-order jet of F on C =

∪
t∈[0,T [ C0([0, t],ℝd)×D([0, t], S+

d ) ⊂ Υ.

The basic idea of the proof, as in the the classical derivation of the Ito formula [8, 24, 28], is to
approximate the path of X using piecewise constant predictable processes along a subdivision of
[0, T ]. A crucial remark, due to Dupire [10], is that the variations of a functional along a piecewise
constant path may be decomposed into successive “horizontal” and “vertical” increments, involving
only the partial functions used in the definitions of the pathwise derivatives (Definitions 9 and 10).
This allows to express the functional F along a piecewise constant path in the form (62). The
last step is to take limits along a sequence of piecewise constant approximations of X, using the
continuity properties of the pathwise derivatives. The control of the remainder terms is somewhat
more involved than in the usual proof of the Ito formula given that we are dealing with functionals.

We give here the proof in the case where A is continuous. The general case where A is allowed
to be discontinuous (cadlag) is treated in Appendix A.2.

Continuous case. Since Y ∈ C1,2
b (X), Theorem 8 implies that all the integrands in (62) are pre-

dictable processes.
Let us first assume that X does takes values in a compact set K and that ∥A∥∞ ≤ R for some

R > 0. Then the integrands in (62) are a.s. bounded; in particular the stochastic integral term is
well-defined.

Let �n = (tni , i = 0..2n) be the dyadic subdivision of [0, T ], ie tni = t i2n . The following arguments
apply pathwise. Using the uniform continuity of X and A on [0, t],

�n = sup{∣A(u)−A(tni )∣+ ∣X(u)−X(tni )∣+ t

2n
, i ≤ 2n, u ∈ [tni , t

n
i+1]} n→∞→ 0.

Let � > 0, C > 0 be such that, for any s < T , for any (x, v) ∈ D([0, s],ℝd)×S+
s , d∞((Xs, As), (x, v)) <

� ⇒ ∣Fs(x,As)− Fs(x, vs)∣ ≤ C∣∣As − vs∣∣1, and we will assume n large enough so that �n < �.

Denoting nX =
∑2n−1
i=0 X(tni )1[tni ,t

n
i+1) + X(t)1{t} the cadlag piecewise constant approximation

of Xt along �n,

Ft(Xt, At)− F0(X0, A0) = Ft(Xt, At)− Ft(nXt, At) +
kn−1∑
i=0

Ftni+1
(nXtni+1

, Atni+1
)− Ftni (nXtni

, Atni ) (63)
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First, note that ∣F (Xt, At)−F (nXt, At)∣ → 0 as n→∞. Denote �i = Xtni+1
−Xtni

and ℎi = tni+1−tni .
Each term in the sum can then be decomposed as

[Ftni+1
(nXtni+1

, Atni+1
)− Ftni+1

(nXtni+1
, Atni ,ℎi)] + [Ftni+1

(nXtni+1
, Atni ,ℎi)− Ftni+1

(nXtni ,ℎi
, Atni ,ℎi)]

+[Ftni+1
(nXtni ,ℎi

, Atni ,ℎi)− Ftni (nXtni
, Atni )] (64)

The first term in (64) is bounded by

C∥Atni+1
−Atni ,ℎi∥1 = C

∫ tni+1

ti

∣A(s)−A(tni )∣ds ≤ C∣tni+1 − tni ∣�n.

Summing over i leads to a term which is bounded by Ct�n, hence converging to 0 as n→∞.
Denote by nYtni+1

=n Xtni ,ℎi
the horizontal extension of nXti to [tni , t

n
i+1]. Since nX is piecewise

constant, nY
�i
tni+1

=n Xtni+1
so the second term in (64) can be written �(X(tni+1) − X(tni ) ) − �(0)

where

�(u) = Ftni+1
(nY

u
tni+1

, Atni ,ℎi) (65)

Since F ∈ ℂ1,2, this implies that � is C2 and

�′(u) = ∇xFtni+1
(nY

u
tni+1

, Atni ,ℎi) �′′(u) = ∇2
xFtni+1

(nY
u
tni+1

, Atni ,ℎi) (66)

Applying the Ito formula to � then allows to rewrite the second term in (64) as

�(X(tni+1)−X(tni ) )− �(0) =

∫ tni+1

tni

∇xFtni+1
(nY

X(s)−X(tni )
tni+1

, Atni ,ℎi)dX(s)

+
1

2

∫ tni+1

tni

tr[
1

2
t∇2

xFtni+1
(nY

X(s)−X(tni )
tni+1

, Atni ,ℎi)d[X](s)]

The third term in (64) can be expressed as  (tni+1 − ti) −  (0) where  (ℎ) = Ftni+1
(nXtni ,ℎ

, Atni ,ℎ).

By lemma 7,  is continuous and right-differentiable with  ′(ℎ) = Dtni+1
F (nXtni ,ℎ

, Atni ,ℎ) so

Ftni+1
(nXtni ,ℎi

, Atni ,ℎi)− Ftni (nXtni
, Atni ) =

∫ tni+1

ti

DsF (nXtni ,s−ti , Atni ,s−ti) ds (67)

Summing over i = 1..2n and denoting i(s) the index such that s ∈ [tni(s), t
n
i(s)+1), we have shown:

Ft(Xt, At)− F0(X0, A0) =

∫ t

0

DsF (nXtn
i(s)

,s−tn
i(s)
, Atn

i(s)
,s−tn

i(s)
)ds

+

∫ t

0

∇xFtn
i(s)+1

(nY
X(s)−X(tni(s))

tn
i(s)+1

, Atn
i(s)

,ℎi(s))dX(s)

+
1

2

∫ t

0

tr
(
t∇2

xFtni(s)+1
(nY

X(s)−X(tni(s))

tn
i(s)+1

, Atn
i(s)

,ℎi(s))d[X]
)

+ r(�n)

where r(�n) → 0 as n → ∞. The d∞-distance to (Xs, As) of all terms appearing in the vari-
ous integrals is less than �n, hence they converge respectively to DsF (Xs, As),∇xFs(Xs, As), and
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∇2
xFs(Xs, As) as n → ∞ by d∞ right-continuity. Since the derivatives are in B the integrands in

the various above integrals are bounded by a constant dependant only on F ,K and R and t hence
non-dependant on s nor on !, hence the dominated convergence theorem and the dominated conver-
gence theorem for the stochastic integrals [28, Ch.IV Theorem 32] ensure that the integrals above
converge in probability, uniformly on [0, t0], for any t0 < T to the corresponding terms appearing in
(62) as n→∞.

Consider now the general case where X and A may be unbounded. Let Kn be an increasing
sequence of compact sets with

∪
n≥0Kn = ℝd and denote

�n = inf{s < t∣Xs /∈ Kn or ∣As∣ > n} ∧ t

which are optional times. Applying the previous result to the stopped process (Xt∧�n , At∧�n) leads
to:

Ft(Xt∧�n , At∧�n)− Y (0) =

∫ t∧�n

0

DY (u)du+
1

2

∫ t∧�n

0

tr
(
t∇2

XFu(Xu, Au)d[X](u)
)

+

∫ t∧�n

0

∇XY.dX +

∫ t

t∧�n
DtF (Xu∧�n , Au∧�n)du (68)

The terms in the first line converges almost surely to the integral up to time t since t∧�n = t almost
surely for n sufficiently large. For the same reason the last term converges almost surely to 0.

Remark 19. The above proof is probabilistic and makes use of the Ito formula (for functions of
semimartingales). In the companion paper [5] we give a non-probabilistic proof of Theorem 18,
which allows X to have discontinuous (cadlag) trajectories using the analytical approach of Föllmer
[12].

An immediate corollary of Theorem 18 is that any regular functional of a local martingale which
has finite variation is equal to the integral of its horizontal derivative:

Corollary 20. If X is a local martingale and Y ∈ C1,2
b (X) is a process with finite variation then

∇XY (t) = 0 d[X]× dℙ-almost everywhere and

Y (t) =

∫ t

0

DY (u) du

Proof. Y ∈ C1,2
b (X) is a continuous semimartingale by Theorem 18, with canonical decomposition

given by (62). If Y has finite variation, then by formula (62), its continuous martingale component

should be zero i.e.
∫ t

0
∇XY.dX = 0 a.s. Computing the quadratic variation of this martingale we

obtain ∫ T

0

tr
(
t∇XY.∇XY.d[X]

)
= 0

which implies in particular that ∥∇XY i∥2 = 0 d[Xi] × dℙ-almost everywhere for i = 1..d. Thus,
∇XY (t, !) = 0 for (t, !) /∈ A ⊂ [0, T ] × Ω where [Xi] × ℙ(A) = 0 for i = 1..d. From (the locality

of) Definition 10 we deduce that ∇2
XY (t, !) = 0 for (t, !) /∈ A. In particular

∫ t
0

tr
(
∇2
XY.d[X]

)
= 0

which entails the result.

Example 10. If Ft(xt, vt) = f(t, x(t)) where f ∈ C1,2([0, T ]× ℝd), (62) reduces to the standard Itô
formula.
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Example 11. For integral functionals of the form

Ft(xt, vt) =

∫ t

0

g(x(u))v(u)du (69)

where g ∈ C0(ℝd), the Ito formula reduces to the trivial relation

Ft(Xt, At) =

∫ t

0

g(X(u))A(u)du (70)

since the vertical derivatives are zero in this case.

Example 12. For a scalar semimartingale X, applying the formula to Ft(xt, vt) = x(t)2 −
∫ t

0
v(u)du

yields the well-known Ito product formula:

X(t)2 − [X](t) =

∫ t

0

2X.dX (71)

Example 13. For the Doléans functional (Ex. 4)

Ft(xt, vt) = ex(t)− 1
2

∫ t
0
v(u)du (72)

the formula (62) yields the well-known integral representation

exp(X(t)− 1

2
[X](t) ) =

∫ t

0

eX(u)− 1
2 [X](u)dX(u) (73)

5 Martingale representation formula

We consider now the case where the process X is a continuous martingale. We will show that, in
this case, the functional Ito formula (Theorem (18)) leads to an explicit martingale representation
formula for ℱt-martingales in C1,2(X). This result may be seen as a non-anticipative counterpart of
the Clark-Haussmann-Ocone formula [4, 26, 14] and generalizes explicit martingale representation
formulas previously obtained in a Markovian context by Elliott and Kohlmann [11] and Jacod et al.
[17].

5.1 Martingale representation theorem

Consider an ℱT measurable random variable H with E∣H∣ <∞ and consider the martingale Y (t) =
E[H∣ℱt]. If Y ∈ C1,2

b (X), we obtain the following martingale representation:

Theorem 21. If Y ∈ C1,2(X) then

Y (T ) = E[Y (T )] +

∫ T

0

∇XY (t)dX(t) (74)

Note that regularity assumptions are given not on H = Y (T ) but on the functionals Y (t) =
E[H∣ℱt], which is typically more regular than H itself.
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Proof. Theorem 18 implies that for t ∈ [0, T [:

Y (t) = [

∫ t

0

DuF (Xu, Au)du+
1

2

∫ t

0

tr[t∇2
xFu(Xu, Au)d[X](u)] +

∫ t

0

∇xFu(Xu, Au)dX(u) (75)

Given the regularity assumptions on F , the first term in this sum is a finite variation process while the
second is a local martingale. However, Y is a martingale and the decomposition of a semimartingale
as sum of finite variation process and local martingale is unique. Hence the first term is 0 and:
Y (t) =

∫ t
0
Fu(Xu, Au)dXu. Since F ∈ F∞,1 Y (t) has limit FT (XT , AT ) as t → T , the stochastic

integral also converges, which concludes the proof.

Example 14.

If the Doleans-Dade exponential eX(t)− 1
2 [X](t) is a martingale, applying Theorem 21 to the functional

Ft(xt, vt) = ex(t)−
∫ t
0
v(u)du yields the familiar formula:

eX(t)− 1
2 [X](t) = 1 +

∫ t

0

eX(s)− 1
2 [X](s)dX(s) (76)

If X(t)2 is integrable, applying Theorem 21 to the functional Ft(x(t), v(t)) = x(t)2 −
∫ t

0
v(u)du, we

obtain the well-known Ito product formula

X(t)2 − [X](t) =

∫ t

0

2X(s)dX(s) (77)

5.2 Relation with the Malliavin derivative

The reader familiar with Malliavin calculus is by now probably intrigued by the relation between
the pathwise calculus introduced above and the stochastic calculus of variations as introduced by
Malliavin [23] and developed by Bismut [2, 3], Stroock [30], Shigekawa [29], Watanabe [33] and
others.

To investigate this relation, consider the case where X(t) = W (t) is the Brownian motion and
ℙ the Wiener measure. Denote by Ω0 the canonical Wiener space (C0([0, T ],ℝd), ∥.∥∞,ℙ) endowed
with its Borelian �-algebra, the filtration of the canonical process.

Consider an ℱT -measurable functional H = H(X(t), t ∈ [0, T ]) = H(XT ) with E[∣H∣2] < ∞
and define the martingale Y (t) = E[H∣ℱt]. If H is differentiable in the Malliavin sense [23, 25, 30]
e.g. H ∈ D1,2 with Malliavin derivative DtH, then the Clark-Haussmann-Ocone formula [18, 26, 25]
gives a stochastic integral representation of the martingale Y in terms of the Malliavin derivative of
H:

H = E[H] +

∫ T

0

pE[DtH∣ℱt]dWt (78)

where pE[DtH∣ℱt] denotes the predictable projection of the Malliavin derivative. Similar represen-
tations have been obtained under a variety of conditions [2, 7, 11, 1].

As shown by Pardoux and Peng [27, Prop. 2.2] in the Markovian case, one does not really need
the full specification of the (anticipative) process (DtH)t∈[0,T ] in order to recover the (predictable)
martingale representation of H. Indeed, when X is a (Markovian) diffusion process, Pardoux &
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Peng [27, Prop. 2.2] show that in fact the integrand is given by the “diagonal” Malliavin derivative
DtYt, which is non-anticipative.

Theorem 21 shows that this result holds beyond the Markovian case and yields an explicit
non-anticipative representation for the martingale Y as a pathwise derivative of the martingale Y ,
provided that Y ∈ ℂ1,2(X).

The uniqueness of the integrand in the martingale representation (74) leads to the following
result:

Theorem 22. Denote by

∙ P the set of ℱt-adapted processes on [0, T ] with values in L1(Ω,ℱT ,ℙ).

∙ Ap the set of (anticipative) processes on [0, T ] with values in Lp(Ω,ℱT ,ℙ).

∙ D the Malliavin derivative operator, which associates to a random variable H ∈ D1,1(0, T ) the
(anticipative) process (DtH)t∈[0,T ] ∈ A1.

∙ ℍ the set of Malliavin-differentiable functionals H ∈ D1,1(0, T ) whose predictable projection
Ht = pE[H∣ℱt] admits a C1,2

b (W ) version:

ℍ = {H ∈ D1,1, ∃Y ∈ C1,2
b (W ), E[H∣ℱt] = Y (t) dt× dℙ− a.e}

Then the following diagram is commutative, in the sense of dt× dℙ almost everywhere equality:

ℍ D→ A1

↓(pE[.∣ℱt])t∈[0,T ] ↓(pE[.∣ℱt])t∈[0,T ]

C1,2
b (W )

∇W→ P

Proof. The Clark-Haussmann-Ocone formula extended to D1,1 in [18] gives

H = E[H] +

∫ T

0

pE[DtH∣ℱt]dWt (79)

where pE[DtH∣ℱt] denotes the predictable projection of the Malliavin derivative. On other hand
theorem 21 gives:

H = E[H] +

∫ T

0

∇WE[H∣ℱt]dW (t) (80)

Hence:

pE[DtH∣ℱt] = ∇WE[H∣ℱt] (81)

dt× dℙ almost everywhere.

Let us conclude with a note on potential applications to numerical simulation. Unlike the Clark-
Haussmann-Ocone representation which requires to simulate the anticipative process DtH and com-
pute conditional expectations, ∇XY only involves non-anticipative quantities which can be com-
puted in a pathwise manner. This implies the usefulness of (74) for the numerical computation of
martingale representations, a topic which we further explore in a forthcoming work.
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6 Weak derivatives and integration by parts for stochastic
integrals

Assume now that X is a continuous, square-integrable real-valued martingale. We will now extend
the operator ∇X to a weak derivative over a space of stochastic integrals, that is, an operator which
verifies

∇X
(∫

�.dX

)
= �, dt× dℙ− a.s. (82)

for square-integrable stochastic integrals of the form:

Y (t) =

∫ t

0

�sdX(s) where E

[∫ t

0

�2
sd[X](s)

]
<∞ (83)

Let ℒ2(X) be the Hilbert space of progressively-measurable processes � such that:

∣∣�∣∣2ℒ2(X) = E

[∫ t

0

�2
sd[X](s)

]
<∞ (84)

and ℐ2(X) be the space of square-integrable stochastic integrals with respect to X:

ℐ2(X) = {
∫ .

0

�(t)dX(t), � ∈ ℒ2(X)} (85)

endowed with the norm

∣∣Y ∣∣22 = E[Y (T )2] (86)

The Ito integral � 7→
∫ .

0
�sdX(s) is then a bijective isometry from ℒ2(X) to ℐ2(X) [28].

Definition 23 (Space of test processes). The space of test processes D(X) is defined as

D(X) = C1,2
b (X) ∩ ℐ2(X) (87)

Theorem 24 (Integration by parts on D(X)). Let Y, Z ∈ D(X). Then:

E [Y (T )Z(T )] = E

[∫ T

0

∇XY (t)∇XZ(t)d[X](t)

]
(88)

Proof. Let Y,Z ∈ D(X) ⊂ C1,2
b (X). Then Y,Z are martingales with Y (0) = Z(0) = 0 and

E[∣Y (T )∣2] <∞, E[∣Z(T )∣2] <∞. Applying Theorem 21 to Y and Z, we obtain

E [Y (T )Z(T )] = E[

∫ T

0

∇XY dX
∫ T

0

∇XZdX]

Applying the Ito isometry formula yields the result.
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Using this result, we can extend the operator ∇X in a weak sense to a suitable space of the
space of (square-integrable) stochastic integrals, where ∇XY is characterized by (88) being satisfied
against all test processes.

The following definition introduces the Hilbert space W1,2(X) of martingales on which ∇X acts
as a weak derivative, characterized by integration-by-part formula (88). This definition may be also
viewed as a non-anticipative counterpart of Wiener-Sobolev spaces in the Malliavin calculus [23, 29].

Definition 25 (Martingale Sobolev space). The Martingale Sobolev space W1,2(X) is defined as
the closure in ℐ2(X) of D(X).

The Martingale Sobolev space W1,2(X) is in fact none other than ℐ2(X), the set of square-
integrable stochastic integrals:

Lemma 26. {∇XY, Y ∈ D(X)} is dense in ℒ2(X) and

W1,2(X) = ℐ2(X).

Proof. We first observe that the set of “cylindrical” integrands of the form

�n,f,(t1,..,tn)(t) = f(X(t1), ..., X(tn))1t>tn

where n ≥ 1, 0 ≤ t1 < .. < tn ≤ T and f ∈ C∞b (ℝn → ℝ is a total set in ℒ2(X) i.e. the linear span
of U of such functions is dense in ℒ2(X).

For such an integrand �n,f,(t1,..,tn), the stochastic integral with respect to X is given by the
martingale

Y (t) = IX(�n,f,(t1,..,tn))(t) = Ft(Xt, At)

where the functional F is defined on Υ as:

Ft(xt, vt) = f(x(t1−), ..., x(tn−))(x(t)− x(tn−))1t>tn ∈ F∞,1

so that:
∇xFt(xt, vt) = f(xt1−, ..., xtn−)1t>tn ∈ F∞r ∩ B

∇2
xFt(xt, vt) = 0,DtF (xt, vt) = 0

which prove that F ∈ ℂ1,2
b ∩ F∞,1. Hence, Y ∈ C1,2

b (X). Since f is bounded, Y is obviously square
integrable so Y ∈ D(X). Hence IX(U) ⊂ D(X).

Since IX is a bijective isometry from ℒ2(X) to ℐ2(X), the density of U in ℒ2(X) entails the
density of IX(U) in ℐ2(X), so W 1,2(X) = ℐ2(X).

Theorem 27 (Weak derivative on W1,2(X)). The vertical derivative ∇X : D(X) 7→ ℒ2(X) is
closable on W1,2(X). Its closure defines a bijective isometry

∇X : W1,2(X) 7→ ℒ2(X)∫ T

0

�.dX 7→ � (89)

characterized by the following integration by parts formula: for Y ∈ W1,2(X), ∇XY is the unique
element of ℒ2(X) such that

∀Z ∈ D(X), E[Y (T )Z(T )] = E

[∫ T

0

∇XY (t)∇XZ(t)d[X](t)

]
. (90)
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In particular, ∇X is the adjoint of the Ito stochastic integral

IX : ℒ2(X) 7→ W1,2(X)

� 7→
∫ .

0

�.dX (91)

in the following sense:

∀� ∈ ℒ2(X), ∀Y ∈ W1,2(X), < Y, IX(�) >W1,2(X)=< ∇XY, � >ℒ2(X) (92)

i.e. E[Y (T )

∫ T

0

�.dX] = E[

∫ T

0

∇XY �.d[X] ] (93)

Proof. Any Y ∈ W1,2(X) may be written as Y (t) =
∫ t

0
�(s)dX(s) for some � ∈ ℒ2(X), which is

uniquely defined d[X]×dℙ a.e. The Ito isometry formula then guarantees that (90) holds for �. One
still needs to prove that (90) uniquely characterizes �. If some process  also satisfies (90), then,
denoting Y ′ = ℐX( ) its stochastic integral with respect to X, (90) then implies that U = Y ′ − Y
verifies

∀Z ∈ D(X), < U,Z >W1,2(X)= E[U(T )Z(T )] = 0

which implies U = 0 d[X] × dℙ a.e. since by construction D(X) is dense in W1,2(X). Hence,
∇X : D(X) 7→ ℒ2(X) is closable on W1,2(X)

This construction shows that ∇X : W1,2(X) 7→ ℒ2(X) is a bijective isometry which coincides
with the adjoint of the Ito integral on W1,2(X).

Thus, Ito’s stochastic integral ℐX with respect to X, viewed as the map

IX : ℒ2(X) 7→ W1,2(X)

admits an inverse on W1,2(X) which is a weak form of the vertical derivative ∇X introduced in
Definition 10.

Remark 28. In other words, we have established that for any � ∈ ℒ2(X) the relation

∇X (�.X) (t) = �(t) where (�.X)(t) =

∫ t

0

�(u)dX(u) (94)

holds in a weak sense.

In particular these results hold when X = W is a Brownian motion. We can now restate a
square-integrable version of theorem 22, which holds on D1,2, and where the operator ∇W is defined
in the weak sense of theorem 27.

Theorem 29 (Lifting theorem). Consider Ω0 = C0([0, T ],ℝd) endowed with its Borelian �-algebra,
the filtration of the canonical process and the Wiener measure ℙ. Then the following diagram is
commutative is the sense of dt× dℙ equality:

ℐ2(W )
∇W→ ℒ2(W )

↑(E[.∣ℱt])t∈[0,T ] ↑(E[.∣ℱt])t∈[0,T ]

D1,2 D→ A2
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Remark 30. With a slight abuse of notation, the above result can be also written as

∀H ∈ L2(Ω0,ℱT ,ℙ), ∇W (E[H∣ℱt]) = E[DtH∣ℱt] (95)

In other words, the conditional expectation operator intertwines ∇W with the Malliavin derivative.

Thus, the conditional expectation operator (more precisely: the predictable projection on ℱt)
can be viewed as a morphism which “lifts” relations obtained in the framework of Malliavin calculus
into relations between non-anticipative quantities, where the Malliavin derivative and the Skorokhod
integral are replaced by the weak derivative operator ∇W and the Ito stochastic integral. Obviously,
making this last statement precise is a whole research program, beyond the scope of this paper.

7 Functional equations for martingales

Consider now a semimartingale X whose characteristics are right-continuous functionals:

dX(t) = bt(Xt, At)dt+ �t(Xt, At)dW (t) (96)

where b, � are non-anticipative functionals on Υ (in the sense of Definition 1) with values in ℝd-
valued (resp. ℝd×n, whose coordinates are in F∞r . The topological support of the law of (X,A) in
(C0([0, T ],ℝd)×ST , ∥.∥∞) is defined to be the subset supp(X,A) of all paths (x, v) ∈ C0([0, T ],ℝd)×
ST for which every (open) neighborhood has positive measure:

supp(X,A) = {(x, v) ∈ C0([0, T ],ℝd)× ST ∣ for any Borel neighborhood V of (x, v),ℙ((X,A) ∈ V ) > 0}

Functionals of X which have the (local) martingale property play an important role in control
theory and harmonic analysis. The following result characterizes a functional F ∈ ℂ1,2

b ∩ F∞,1
which define a local martingale as the solution to a functional version of the Kolmogorov backward
equation:

Theorem 31 (Functional equation for C1,2 martingales). If F ∈ ℂ1,2
b ∩F∞,1, then Y (t) = Ft(Xt, At)

is a local martingale if and only if F satisfies the functional partial differential equation:

DtF (xt, vt) + bt(xt, vt)∇xFt(xt, vt) +
1

2
tr[∇2

xF (xt, vt)�t
t�t(xt, vt)] = 0, (97)

on the topological support of the law of the process (X,A) in (C0([0, T ],ℝd)× ST , ∥.∥∞).

Proof. If F ∈ ℂ1,2
b ∩ F∞,1, then applying Theorem 18 to Y (t) = Ft(Xt, At), (97) implies that the

finite variation term in (62) is almost-surely zero: Y (t) =
∫ t

0
∇xFt(Xt, At)dX(t). Hence Y is a local

martingale.
Conversely, assume that Y is a local martingale. Note that Y is continuous by Theorem 7.

Suppose the functional relation (97) is not satisfied at some (x, v) belongs to the supp(X,A) ⊂
C0([0, T ],ℝd)× ST . Then there exists t0 < T , � > 0 and � > 0 such that

∣DtF (xt, vt) + bt(xt, vt)∇xFt(xt, vt) +
1

2
tr[∇2

xF (xt, vt)�t
t�t(xt, vt)]∣ > � (98)
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for t ∈ [t0, t0 + �], by right-continuity of the expression. By continuity of the expression for the d∞
norm, there exist an open neighborhood of (x, v) in C0([0, T ],ℝd)× ST such that, for all (x′, v′) in
this neighborhood and all t ∈ [t0, t0 + �]:

∣DtF (x′t, v
′
t) + bt(x

′
t, v
′
t)∇xFt(xt, vt) +

1

2
tr[∇2

xF (x′t, v
′
t)�t

t�t(x
′
t, v
′
t)]∣ >

�

2
(99)

Since (X,A) belongs to this neighborhood with non-zero probability, it proves that:

DtF (Xt, At) + bt(Xt, At)∇xFt(xt, vt) +
1

2
tr[∇2

xF (Xt, At)�t
t�t(Xt, At)]∣ >

�

2
(100)

with non-zero dt×dℙ measure. Applying theorem 18 to the process Y (t) = Ft(Xt, At) then leads to
a contradiction, because as a continuous local martingale its finite variation part should be null.

The martingale property of F (X,A) implies no restriction on the behavior of F outside supp(X,A)
so one cannot hope for uniqueness of F on Υ in general. However, the following result gives a con-
dition for uniqueness of a solution of (97) on supp(X,A):

Theorem 32 (Uniqueness result). Let ℎ be a continuous functional on (C0([0, T ])×ST , ∥.∥∞). Any
solution F ∈ ℂ1,2

b of the functional equation (97), verifying

FT (x, v) = ℎ(x, v) (101)

E[ sup
t∈[0,T ]

∣Ft(Xt, At)∣] <∞ (102)

is uniquely defined on the topological support supp(X,A) of (X,A) in (C0([0, T ],ℝd) × ST , ∥.∥): if
F 1, F 2 ∈ ℂ1,2

b ([0, T ]) verify (97)-(101)-(102) then

∀(x, v) ∈ supp(X,A), ∀t ∈ [0, T ] F 1
t (xt, vt) = F 2

t (xt, vt). (103)

Proof. Let F 1 and F 2 be two such solutions. Theorem 31 shows that they are local martingales.
The integrability condition (102) guarantees that they are true martingales, so that we have the
equality: F 1

t (Xt, At) = F 2
t (Xt, At) = E[ℎ(XT , AT )∣ℱt] almost surely. Hence reasoning along the

lines of the proof of theorem 31 shows that F 1
t (xt, vt) = F 2

t (xt, vt) if (x, v) ∈ supp(X,A).

Example 15. Consider a scalar diffusion

dX(t) = b(t,X(t))dt+ �(t,X(t))dW (t) X(0) = x0 (104)

whose law ℙx0 is defined as the solution of the martingale problem [32] for the operator

Ltf =
1

2
�2(t, x)∂2

xf(t, x) + b(t, x)∂xf(t, x)

where b and � are continuous and bounded functions, with � bounded away from zero. We are
interested in computing the martingale

Y (t) = E[

∫ T

0

g(t,X(t))d[X](t)∣ℱt] (105)
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for a continuous bounded function g. The topological support of the process (X,A) under ℙx0 is
then given by the Stroock-Varadhan support theorem [31, Theorem 3.1.] which yields:

{(x, (�2(t, x(t)))t∈[0,T ]) ∣x ∈ C0(ℝd, [0, T ]), x(0) = x0}, (106)

From theorem 31 a necessary condition for Y to have a a functional representation Y = F (X,A)
with F ∈ ℂ1,2([0, T ]) is

DtF (xt, (�
2(u, x(u)))u≤t) + b(t, x(t))∇xFt(xt, (�2(u, x(u)))u∈[0,t]) (107)

+
1

2
�2(t, x(t))∇2

xFt(xt, (�
2(u, x(u)))u∈[0,t]) = 0

together with the terminal condition:

FT (xT , (�
2(u, x(u))u∈[0,T ]) =

∫ T

0

g(t, x(t))�2(t, x(t))dt (108)

for all x ∈ C0(ℝd), x(0) = x0. Moreover, from theorem 32, we know that there any solution satisfying
the integrability condition:

E[ sup
t∈[0,T ]

∣Ft(Xt, At)∣] <∞ (109)

is unique on supp(X,A). If such a solution exists, then the martingale Ft(Xt, At) is a version of Y .
To find such a solution, we look for a functional of the form:

Ft(xt, vt) =

∫ t

0

g(u, x(u))v(u)du+ f(t, x(t))

where f is a smooth C1,2 function. Elementary computation show that F ∈ ℂ1,2([0, T ]); so F is
solution of the functional equation (107) if and only if f satisfies the Partial Differential Equation
with source term:

1

2
�2(t, x)∂2

xf(t, x) + b(t, x)∂xf(t, x) + ∂tf(t, x) = −g(t, x)�2(t, x) (110)

with terminal condition f(T, x) = 0

The existence of a solution f with at most exponential growth is then guaranteed by standard results
on parabolic PDEs [19]. In particular, theorem 32 guarantees that there is at most one solution such
that:

E[ sup
t∈[0,T ]

∣f(t,X(t))∣] <∞ (111)

Hence the martingale Y in (105) is given by

Y (t) =

∫ t

0

g(u,X(u))d[X](u) + f(t,X(t))

where f is the unique solution of the PDE (110).
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A Proof of Theorems 8 and 18

A.1 Proofs of theorem 8

In order to prove theorem 8 in the general case where A is just required to be cadlag, we need the
following three lemmas:

Lemma 33. Let f be a cadlag function on [0, T ] and define Δf(t) = f(t)− f(t−). Then

∇� > 0, ∃� > 0, ∣x− y∣ ≤ � ⇒ ∣f(x)− f(y)∣ ≤ �+ sup
t∈[x,y]

{∣Δf(t)∣} (112)

Proof. Assume the conclusion does not hold. Then there exists a sequence (xn, yn)n≥1 such that
xn ≤ yn, yn − xn → 0 but ∣f(xn)− f(yn)∣ > �+ supt∈[xn,yn]{∣Δf(t)∣}. We can extract a convergent
subsequence (x (n)) such that x (n) → x. Noting that either an infinity of terms of the sequence are
less than x or an infinity are more than x, we can extract monotone subsequences (un, vn)n≥1 which
converge to x. If (un), (vn) both converge to x from above or from below, ∣f(un)−f(vn)∣ → 0 which
yields a contradiction. If one converges from above and the other from below, supt∈[un,vn]{∣Δf(t)∣} >
∣Δf(x)∣ but ∣f(un) − f(vn)∣ → ∣Δf(x)∣, which results in a contradiction as well. Therefore (112)
must hold.

Lemma 34. If � ∈ ℝ and V is an adapted cadlag process defined on a filtered probability space
(Ω,F, (ℱt)t≥0,ℙ) and � is a optional time, then:

� = inf{t > �, ∣V (t)− V (t−)∣ > �} (113)

is a stopping time.

Proof. We can write that:

{� ≤ t} =
∪

q∈ℚ
∩

[0,t)

({� ≤ t− q}
∩
{ sup
t∈(t−q,t]

∣V (u)− V (u−)∣ > �} (114)

and

{ sup
u∈(t−q,t]

∣V (u)− V (u−)∣ > �} =
∪
n0>1

∩
n>n0

{ sup
1≤i≤2n

∣V (t− q i− 1

2n
)− V (t− q i

2n
)∣ > �} (115)

thanks to the lemma 33.

The following lemma is a consequence of lemma 33:

Lemma 35 (Uniform approximation of cadlag functions by step functions).
Let ℎ be a cadlag function on [0, T ] and (tnk )n≥0,k=0..n is a sequence of subdivisions 0 = tn0 < t1 <
... < tnkn = T of [0, T ] such that:

sup
0≤i≤k−1

∣tni+1 − tni ∣
n→∞→ 0 sup

u∈[0,T ]∖{tn0 ,...,tnkn}
∣Δf(u)∣ n→∞→ 0

then

sup
u∈[0,T ]

∣ℎ(u)−
kn−1∑
i=0

ℎ(ti)1[tni ,t
n
i+1)(u) + ℎ(tnkn)1{tnkn}

(u)∣ n→∞→ 0 (116)
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We can now prove Theorem 8 in the general case where A is only assumed to be cadlag.
Proof of Theorem 8: Since the trajectories of Y (t) are right continuous we just have to prove that
the process is adapted. For this we introduce a sequence of random subdivision of [0, T ], indexed
by n, as follows: starting with the deterministic subdivision tni = iT

2n , i = 0..2n we add the time of
jumps of X and A of size greater or equal to 1

n . We define the following sequence of stopping times:

�n0 = 0 �nk = inf{t > �nk−1∣2nt ∈ ℕ or ∣A(t)−A(t−)∣ > 1

n
} ∧ T (117)

We define the stepwise approximations of X and A along the subdivision of index n:

Xn(t) =

∞∑
k=0

X�nk
1[�nk ,�

n
k+1)(t) +XT 1{T}(t)

An(t) =

∞∑
k=0

A�nk 1[�nk ,�
n
k+1)(t) +XT 1{T}(t) (118)

as well as their truncations of rank K:

KX
n(t) =

K∑
k=0

X�nk
1[�nk ,�

n
k+1)(t) +XT 1{T}(t)

KA
n(t) =

K∑
k=0

A�nk 1[�nk ,�
n
k+1)(t) +XT 1{T}(t) (119)

The random variable Y n(t) = Ft(X
n
t , A

n
t ) can be written as the following almost-sure limit:

Y n(t) = lim
K→∞

Ft(KX
n
t ,K A

n
t ) (120)

because KX
n
t ,K A

n
t coincides with Xn

t , A
n
t for K sufficiently large. The truncations Ft(KX

n
t ,K A

n
t )

are Gt-measurable as they are continuous functions of the random variables {X(�nk )1�nk ≤t, A(�nk )1�nk ≤t},
so Y n(t) is Gt-measurable. Thanks to lemma 35, Xn

t and Ant almost surely converge uniformly to
Xt and At, hence Y n(t) converges almost surely to Y (t), which concludes the proof.

A.2 Proofs of Theorem 18

Following is the proof of theorem 18 in the general case where A is just assumed to be cadlag.

Proof. Let us first assume that X does not exit a compact set K and that ∥A∥∞ ≤ R for some R > 0.
Let us introduce a sequence of random subdivision of [0, T ], indexed by n, as follows: starting with
the deterministic subdivision tni = iT

2n , i = 0..2n we add the time of jumps of X and A of size greater
or equal to 1

n . We define the following sequence of stopping times:

�n0 = 0 �nk = inf{t > �nk−1∣2nt ∈ ℕ or ∣A(t)−A(t−)∣ > 1

n
} ∧ t (121)

The following arguments apply pathwise. Lemma 35 ensures that �n = sup{∣A(u) − A(�ni )∣ +
∣X(u)−X(�ni )∣+ t

2n , i ≤ 2n, u ∈ [�ni , �
n
i+1]} →n→∞ 0. Let � > 0, C > 0 be such that, for any s < T ,
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for any (x, v) ∈ D([0, s],ℝd)×S+
s , d∞((Xs, As), (x, v)) < � ⇒ ∣Fs(x,As)−Fs(x, vs)∣ ≤ C∣∣As−vs∣∣1,

and we will assume n large enough so that �n < �.
Denoting nX =

∑∞
i=0X(�ni )1[�ni ,�

n
i+1) +X(t)1{t} the cadlag piecewise constant approximation of

Xt,

Ft(Xt, At)− F0(X0, A0) = Ft(Xt, At)− Ft(nXt, At) +
kn−1∑
i=0

F�ni+1
(nX�ni+1

, A�ni+1
)− F�ni (nX�ni

, A�ni ) (122)

It is first obvious that ∣F (Xt, At) − F (nXt, At)∣ → 0 as n → ∞. Denote �i = X�ni+1
− X�ni

and
ℎi = �ni+1 − �ni . Each term in the sum can then be decomposed as

[F�ni+1
(nX�ni+1

, A�ni+1
)− F�ni+1

(nX�ni+1
, A�ni ,ℎi)] + [F�ni+1

(nX�ni+1
, A�ni ,ℎi)− F�ni+1

(nX�ni ,ℎi
, A�ni ,ℎi)]

+F�ni+1
(nX�ni ,ℎi

, A�ni ,ℎi)− F�ni (nX�ni
, A�ni ) (123)

The first term in (123) is bounded by

C∥A�ni+1
−A�ni ,ℎi∥1 = C

∫ �ni+1

ti

∣A(s)−A(�ni )∣ds ≤ C∣�ni+1 − �ni ∣�n

by right continuity of A. Summing over i leads to a term which is bounded by Ct�n, hence converging
to 0 as n→∞.

Denote by nY�ni+1
=n X�ni ,ℎi

the horizontal extension of nXti to [�ni , �
n
i+1]. Noting that nY

�i
�ni+1

=n

X�ni+1
, the second term in (123) can be written �(X(�ni+1)−X(�ni ) )−�(0) where �(u) = F�ni+1

(nY
u
�ni+1

, A�ni ,ℎi).

Since F ∈ ℂ1,2([0, T ]), � is C2 and �′(u) = ∇xF�ni+1
(nY

u
�ni+1

, A�ni ,ℎi),�
′′(u) = ∇2

xF�ni+1
(nY

u
�ni+1

, A�ni ,ℎi).

Applying the Ito formula yields

�(X(�ni+1)−X(�ni ) )− �(0) =

∫ �ni+1

�ni

∇xF�ni+1
(nY

X(s)−X(�ni )
�ni+1

, A�ni ,ℎi)dX(s)

+
1

2

∫ �ni+1

�ni

tr[t∇2
xF�ni+1

(nY
X(s)−X(�ni )
�ni+1

, A�ni ,ℎi)d[X](s)] (124)

The third term in (123) can be expressed as  (�ni+1−ti)− (0) where  (ℎ) = F�ni+1
(nX�ni ,ℎ

, A�ni ,ℎ).

By lemma 7,  is continuous and right-differentiable with  ′(ℎ) = D�ni+1+ℎF (nX�ni ,ℎ
, A�ni ,ℎ) so

F�ni+1
(nX�ni ,ℎi

, A�ni ,ℎi)− F�ni (nX�ni
, A�ni ) =

∫ �ni+1

ti

DsF (nX�ni ,s−ti , A�ni ,s−ti) ds (125)

Summing over i = 1 and denoting i(s) the index such that s ∈ [�ni(s), �
n
i(s)+1), we have shown:

Ft(Xt, At)− F0(X0, A0) =

∫ t

0

DsF (nX�n
i(s)

,s−�n
i(s)
, A�n

i(s)
,s−�n

i(s)
)ds

+

∫ t

0

∇xF�n
i(s)+1

(nY
X(s)−X(�ni(s))

�n
i(s)+1

, A�n
i(s)

,ℎi(s))dX(s)

+[
1

2

∫ t

0

tr
(
∇2
xF�ni(s)+1

(nY
X(s)−X(�ni(s))

�n
i(s)+1

, A�n
i(s)

,ℎi(s)).A(s)
)
ds (126)
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where r(�n) → 0 as n → ∞. All the approximations of (X,A) appearing in the various inte-
grals have a d∞-distance from (Xs, As) less than �n hence all the integrands appearing in the above
integrals converge respectively to DsF (Xs, As),∇xFs(Xs, As),∇2

xFs(Xs, As) as n→∞ by d∞ right-
continuity. Since the derivatives are in B the integrands in the various above integrals are bounded
by a constant dependant only on F ,K and R and t hence does not depend on s nor on !. The dom-
inated convergence and the dominated convergence theorem for the stochastic integrals [28, Ch.IV
Theorem 32] then ensure that the integrals converge in probability, uniformly on [0, t] for each t < T ,
to the terms appearing in (62) as n→∞.

Now we consider the general case where X and A may be unbounded. Let Kn be an increasing
sequence of compact sets,

∪
n≥0Kn = ℝd, and denote �n = infs < t∣Xs ∈ ℝ −Kn or ∣As∣ > n ∧ t,

which are optional times. Applying the previous result to the stopped processes (X�n , A�n) leads
to:

Ft(X
�n
t , A�nt ) =

∫ �n

0

[DtY (u)du+

∫ t

0

1

2
tr[t∇2

XFu(Xu, Au)d[X](u)] +

∫ �n

0

∇XY (u).dX(u)

+

∫ t

t∧�n
DtFt(X

�n
u , A�nu )du (127)

The terms in the first line converges almost surely to the integral up to time t since almost surely
t ∧ �n = t for n sufficiently large, and for the same reason the integral in the second line converges
almost surely to 0.
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