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Abstract

We study a financial model with one risk-free and one risky asset subject to liquidity

risk and price impact. In this market, an investor may transfer funds between the two

assets at any discrete time. Each purchase or sale policy decision affects the price of

the risky asset and incurs some fixed transaction cost. The objective is to maximize

the expected utility from terminal liquidation value over a finite horizon and subject

to a solvency constraint. This is formulated as an impulse control problem under state

constraint and we prove that the value function is characterized as the unique con-

strained viscosity solution to the associated quasi-variational Hamilton-Jacobi-Bellman

inequality.
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1 Introduction

Classical market models in mathematical finance assume perfect elasticity of traded assets :

traders act as price takers, so that they buy and sell with arbitrary size without changing

the price. However, the market microstructure literature has shown both theoretically and

empirically that large trades move the price of the underlying assets. Moreover, in practice,

investors face trading strategies constraints, typically of finite variation, and they cannot

rebalance them continuously. We then usually speak about liquidity risk or illiquid markets.

While the assumption of perfect liquidity market may not be practically important over

a very long term horizon, price impact can have a significant difference over a short time

horizon.

Several suggestions have been proposed to formalize the liquidity risk. In [22] and [2],

the impact of trading strategies on prices is explained by the presence of an insider. In

the market manipulation literature, prices are assumed to depend directly on the trading

strategies. For instance, the paper [11] considers a diffusion model for the price dynamics

with coefficients depending on the large investor’s strategy, while [14], [25], [5] or [7] develop

a continuous-time model where prices depend on strategies via a reaction function. We

mention also in this direction a recent paper [8] in a discrete-time model. Notice that

liquidity risk is also related to transaction cost literature, see e.g. [12] and [20], since

transactions costs incur finite variation on trading strategies and bid/ask spead on the

assets price. Most of these cited papers focus on the implications of their liquidity risk

modelization on arbitrage and asset pricing.

In this paper, we propose a model of liquidity risk and price impact that adopts both

perspectives of market manipulation and transaction cost literature. Our model is inspired

from the recent papers [27] and [16], and may be described roughly as follows. Trading

on illiquid assets is not allowed continuously due to some fixed costs but only at any

discrete times. These liquidity constraints on strategies are in accordance with practitioner

literature. There is an investor, who is large in the sense that his strategies affect asset

prices : prices are pushed up when buying stock shares and moved down when selling

shares. In this context, we study an optimal portfolio choice problem over a finite horizon :

the investor maximizes his expected utility from terminal liquidation wealth and under a

natural economic solvency constraint.

Our optimization problem is formulated as a parabolic impulse control problem with

three variables (besides time variable) related to the cash holdings, number of stock shares

and price. This problem is known to be associated by the dynamic programming principle

to a Hamilton-Jacobi-Bellman (HJB) quasi-variational inequality, see [4]. We refer to [19],

[21], [6] or [24] for some recent papers involving applications of impulse controls in finance,

mostly over an infinite horizon and in dimension 1, except [21] and [24] in dimension 2.

Moreover, in our context, the economic solvency condition requires that liquidation wealth

is nonnegative, which is translated into a state constraint.

The features of our stochastic control problem make appear several technical difficulties

related to the nonlinearity of the impulse transaction function and the solvency constraint.

In particular, the liquidation net wealth may grow after transaction, which makes nontrivial
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the finiteness of the value function. Hence, the Merton bound does not provide as e.g. in

transaction cost models, a natural upper bound on the value function. Instead, we provide

a suitable “linearization” of the liquidation value that provides a sharp upper bound of the

value function. The solvency region (or state domain) is not convex and its boundary even

not smooth, in contrast with transaction cost model (see [12]), so that continuity of the

value function is not direct. Moreover, the boundary of the solvency region is not absorbing

as in transaction cost models and singular control problems, and the value function may be

discontinuous on some parts of the boundary. In our general set-up, it is then natural to

consider the HJB equation with the concept of (discontinuous) viscosity solutions, which

provides by now a well established method for dealing with stochastic control problems,

see e.g. the book [13]. More precisely, we need to consider constrained viscosity solutions

to handle the state constraints. Our first main result is to prove that the value function

is a constrained viscosity solution to its associated HJB quasi-variational inequality, by

adapting arguments from [24]. Our second main result is a comparison principle for the

state constraint HJB quasi-variational inequality, which ensures a PDE characterization

for the value function of our problem. Previous comparison results derived for variational

inequality (see [17], [28]) associated to impulse problem do not apply here. In our context,

we prove that one can compare a subsolution with a supersolution to the HJB quasi-

variational inequality provided that one can compare them at the terminal date (as usual in

parabolic problems) but also on some part D0 of the solvency boundary. We follow general

viscosity solutions technique, see e.g. [10], with specificities coming from the nonlocal

impulse operator and the boundary conditions. To handle the impulse obstacle, and in

the spirit of [18], we produce a suitable strict supersolution of the HJB quasi-variational

inequality. For the boundary conditions and following [26], the general idea is to build

a test function so that the minimum associated with the (strict) supersolution cannot be

on the boundary. However, the method in [26] does not apply here since it requires the

continuity of the supersolution on the boundary, which is precisely not the case in our

model. Instead, we adapt a method in [3], which requires the smoothness of the boundary.

This is the case here except on the part D0 of the boundary, but for which one can prove

directly the continuity of the value function.

The paper is organized as follows. In the next Section 2, we formulate our impulse

control problem with solvency constraint. Section 3 recalls the HJB quasi-variational in-

equality associated to the problem, and states the main result. In Section 4, we derive

several useful properties on the value function. Section 5 is devoted to the PDE viscosity

characterization of the value function.

2 Problem formulation

Let (Ω,F ,P) be a probability space equipped with a filtration (Ft)0≤t≤T supporting an

one-dimensional Brownian motion W on a finite horizon [0, T ], T < ∞. We consider a

financial market consisting of a money market account yielding a constant interest rate r

≥ 0 and a risky asset (or stock) of price process P = (Pt). We denote by Xt the amount of

money (or cash holdings) and by Yt the number of shares in the stock held by the investor

3



at time t.

Liquidity constraints. We assume that the investor can only trade discretely on [0, T ).

This is modelled through an impulse control strategy α = (τn, ζn)n≥1 : τ1 ≤ . . . τn ≤ . . . <

T are stopping times representing the intervention times of the investor and ζn, n ≥ 1, are

Fτn-measurable random variables valued in R and giving the number of stock purchased if

ζn ≥ 0 or selled if ζn < 0 at these times. The sequence (τn, ζn) may be a priori finite or

infinite. The dynamics of Y is then given by :

Ys = Yτn , τn ≤ s < τn+1

Yτn+1 = Yτn + ζn+1. (2.1)

Notice that we do not allow trade at the terminal date T , which is the liquidation date.

Price impact. The large investor affects the price of the risky stock P by his purchases

and sales : the stock price goes up when the trader buys and goes down when he sells

and the impact is increasing with the size of the order. We then introduce a price impact

positive function Q(y, p) which indicates the post-order price when the large investor trades

a position of y shares of stock at a pre-order price p. In absence of price impact, we have

Q(y, p) = p. Here, we have Q(0, p) = p meaning that no trading incurs no impact and Q is

nondecreasing in y with Q(y, p) ≥ (resp. ≤) p for y ≥ (resp. ≤) 0. Actually, in the rest of

the paper, we consider a price impact function in the form

Q(y, p) = peλy, where λ > 0.

We denote θ(y, p) the transaction cost function which indicates the (algebraic) cost for a

(large) investor with a position of y shares in stock when the pre-trade price is p :

θ(y, p) = yQ(y, p)

The cost function l ≥ 0 7→ lQ(l, p) indicates the amount of money to be paid by the large

investor for buying l shares of stock when the pre-order price is p. The revenue function

m ≥ 0 7→ mQ(−m, p) represents the amount of money obtained by the large investor for

selling m shares of stock when the pre-order price is p. The liquidation function ℓ(y, p)

which represents the value that an investor would obtained by liquidating immediately his

stock position by a single block trade is given by

ℓ(y, p) = −θ(−y, p).

We then model the dynamics of the price impact as follows. In the absence of trading, the

price process is governed by

dPs = Ps(bds+ σdWs),

where b, σ are constants with σ > 0. When a discrete trading ∆Ys := Ys − Ys− occurs at

time s, the price impact is

Ps = Q(∆Ys, Ps−), i.e. ∆Ps := Ps − Ps− = Q(∆Ys, Ps−) − Ps− .
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In other words, given a trading strategy (τn, ζn)n≥1, the price process P is given by

Ps = Pτn

P 0
s

P 0
τn

, τn ≤ s < τn+1,

Pτn+1 = Q(ζn+1, Pτ−
n+1

), (2.2)

where

P 0
s = exp

((

b−
σ2

2

)

s+ σWs

)

.

Notice that with this modelling of price impact, the price process P is always strictly

positive, i.e. valued in R∗
+ = (0,∞).

Cash holdings. In absence of transactions, the process X grows deterministically at

exponential rate r :

dXs = rXsds.

When a discrete trading ∆Ys occurs at time s with pretrade price Ps− , we assume that in

addition to the transaction of stocks θ(∆Ys, Ps−), there is a fixed cost k > 0 to be paid.

This results in a variation of cash holdings by :

∆Xs := Xs −Xs− = −θ(∆Ys, Ps−) − k.

In other words, the cash holdings process X of the large investor is given by :

Xs = Xτn

X0
s

X0
τn

, τn ≤ s < τn+1,

Xτn+1 = Xτ−
n+1

− θ(ζn+1, Pτ−
n+1

) − k, (2.3)

with

X0
s = exp(rs).

The assumption that any trading incurs a fixed cost of money to be paid will rule out

continuous trading, i.e. optimally, the sequence (τn, ζn) is not degenerate in the sense that

for all n, τn < τn+1 and ζn 6= 0 a.s.

Liquidation value and solvency constraint. If the agent has the amount x in the bank

account, the number of shares y of stocks at the preorder price p, i.e. a state value z =

(x, y, p), his net wealth or liquidation value is given by :

L(z) = max[L0(z), L1(z)]1y≥0 + L0(z)1y<0, (2.4)

where

L0(z) = x+ ℓ(y, p) − k, L1(z) = x.

The interpretation is the following. L0(z) corresponds to the net wealth of the agent when

he liquidates his position in stock. Moreover, if he has a long position in stock, i.e. y ≥ 0,
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he can bin his stock shares, by keeping only his cash amount, which leads to a net wealth

L1(z). This last possibility may be advantageous, i.e. L1(z) ≥ L0(z), due to the fixed cost

k. Hence, globally, his net wealth is given by (2.4).

We then naturally introduce the liquidation solvency region (see Figure 1) :

S =
{

z = (x, y, p) ∈ R × R × R∗
+ : L(z) > 0

}

,

and we denote its boundary and its closure by

∂S =
{

z = (x, y, p) ∈ R × R × R∗
+ : L(z) = 0

}

and S̄ = S ∪ ∂S.

Remark 2.1 In the absence of liquidity risk, i.e λ = 0, and fixed transaction cost, i.e. k

= 0, we have the usual net wealth constraint : L(z) = x + py ≥ 0. In our context, the

function L is clearly continuous on {z = (x, y, p) ∈ R×R×R∗
+ : y 6= 0}. It is discontinuous

on z0 = (x, 0, p) ∈ S̄, but it is easy to check that it is upper-semicontinuous on z0, so that

globally L is upper-semicontinuous. Hence S̄ is closed in R × R × R∗
+.

Remark 2.2 For any p > 0, the function y 7→ ℓ(y, p) = pye−λy is increasing on [0, 1/λ],

decreasing on [1/λ,∞) with l(0, p) = limy→∞ l(y, p) = 0 and l(1/λ, p) = pe−1/λ. We then

distinguish the two cases :

⋆ if p < kλe, then l(y, p) < k for all y ≥ 0.

⋆ if p ≥ kλe, then there exists an unique y1(p) ∈ (0, 1/λ] and y2(p) ∈ [1/λ,∞) such that

l(y1(p), p) = l(y2(p), p) = k with l(y, p) < k for all y ∈ [0, y1(p)) ∪ (y2(p),∞). Moreover,

y1(p) (resp. y2(p)) decreases to 0 (resp. increases to ∞) when p goes to infinity, while y1(p)

(resp.y2(p)) increases (resp. decreases) to 1/λ when p decreases to kλe.

The boundary of the solvency region may then be explicited as follows (see Figures 2 and

3) :

∂S = ∂−ℓ S ∪ ∂yS ∪ ∂x
0S ∪ ∂x

1S ∪ ∂x
2S ∪ ∂+

ℓ S,

where

∂−ℓ S =
{

z = (x, y, p) ∈ R × R × R∗
+ : x+ ℓ(y, p) = k, y ≤ 0

}

∂yS =
{

z = (x, y, p) ∈ R × R × R∗
+ : 0 ≤ x < k, y = 0

}

∂x
0S =

{

z = (x, y, p) ∈ R × R × R∗
+ : x = 0, y > 0, p < kλe

}

∂x
1S =

{

z = (x, y, p) ∈ R × R × R∗
+ : x = 0, 0 < y < y1(p)), p ≥ kλe

}

∂x
2S =

{

z = (x, y, p) ∈ R × R × R∗
+ : x = 0, y > y2(p), p ≥ kλe

}

∂+
ℓ S =

{

z = (x, y, p) ∈ R × R × R∗
+ : x+ ℓ(y, p) = k, y1(p) ≤ y ≤ y2(p), p ≥ kλe

}

.

In the sequel, we also introduce the corner lines in ∂S :

D0 = {(0, 0)} × R∗
+ ⊂ ∂yS

Dk = {(k, 0)} × R∗
+ ⊂ ∂−ℓ S

C1 = {(0, y1(p), p) : p ∈ R∗
+} ⊂ ∂+

ℓ S

C2 = {(0, y2(p), p) : p ∈ R∗
+} ⊂ ∂+

ℓ S.
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Admissible controls. Given t ∈ [0, T ], z = (x, y, p) ∈ S̄ and an initial state Zt− = z,

we say that the impulse control strategy α = (τn, ζn)n≥1 is admissible if the process Zs

= (Xs, Ys, Ps) given by (2.1)-(2.2)-(2.3) (with the convention τ0 = t) lies in S̄ for all s ∈

[t, T ]. We denote by A(t, z) the set of all such policies. We shall see later that this set of

admissible controls is nonempty for all (t, z) ∈ [0, T ] × S̄.

Remark 2.3 We recall that we do not allow intervention time at T , which is the liquidation

date. This means that for all α ∈ A(t, z), the associated state process Z is continuous at

T , i.e. ZT− = ZT .

In the sequel, for t ∈ [0, T ], z = (x, y, p) ∈ S̄, we also denote X0,t,x
s = xX0

s /X
0
t , P 0,t,p

s =

pP 0
s /P

0
t , Z0,t,z

s = (X0,t,x
s , y, P 0,t,p

s ), t ≤ s ≤ T , the state process when no transaction (i.e.

no impulse control) is applied between t and T , i.e. the solution to :

dZ0
s =







rX0
s

0

bP 0
s






ds+







0

0

σP 0
s






dWs, (2.5)

starting from z at time t.

Investment problem. We consider an utility function U from R+ into R, strictly increas-

ing, concave and w.l.o.g. U(0) = 0, and s.t. there exist K ≥ 0, γ ∈ [0, 1) :

U(w) ≤ Kwγ , ∀w ≥ 0, (2.6)

We denote UL the function defined on S̄ by :

UL(z) = U(L(z)).

We study the problem of maximizing the expected utility from terminal liquidation wealth

and we then consider the value function :

v(t, z) = sup
α∈A(t,z)

E [UL(ZT )] , (t, z) ∈ [0, T ] × S̄. (2.7)

Remark 2.4 We shall see later that for all α ∈ A(t, z) 6= ∅, UL(ZT ) is integrable so that

the expectation in (2.7) is well-defined. Since U is nonnegative and nondecreasing, we

immediately get a lower bound for the value function :

v(t, z) ≥ U(0) = 0, ∀t ∈ [0, T ], z = (x, y, p) ∈ S̄.

We shall also see later that the value function v is finite in [0, T ] × S̄ by providing a sharp

upper bound.

Notice that in contrast to financial models without frictions or with proportional trans-

action costs, the dynamics of the state process Z = (X,Y, P ) is nonlinear and then the

value function v does not inherit the concavity property of the utility function. The sol-

vency region is even not convex. In particular, one cannot derive as usual the continuity of

the value function as a consequence of the concavity property. Moreover, for power-utility
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functions U(w) = Kwγ , the value function does not inherit the homogeneity property of

the utility function.

We adopt a dynamic programming approach to study this utility maximization problem.

Since the value function is not smooth and actually since we do not know its continuity a

priori, we use the notion of constrained viscosity solutions in order to provide a weak formu-

lation to the quasi-variational inequality arising from the dynamic programming principle

and the boundary conditions coming from the solvency constraint. We end this section by

recalling the dynamic programming principle for our stochastic control problem.

Dynamic programming principle. For all (t, z) ∈ [0, T ) × S̄, we have

v(t, z) = sup
α∈A(t,z)

E [v(τ, Zτ )] , (2.8)

where τ = τ(α) is any stopping time valued in [t, T ] depending on α in (2.8). The precise

meaning is :

(i) for all α ∈ A(t, z), for all τ ∈ Tt,T , set of stopping times valued in [t, T ] :

E[v(τ, Zτ )] ≤ v(t, z) (2.9)

(ii) for all ε > 0, there exists α̂ε ∈ A(t, z) s.t. for all τ ∈ Tt,T :

v(t, z) ≤ E[v(τ, Ẑε
τ )] + ε. (2.10)

Here Ẑε denotes the state process starting from z at t and controlled by α̂ε.

3 Quasi-variational Hamilton-Jacobi-Bellman inequality and

the main result

In this section, we provide an heuristic derivation of the dynamic programming quasi-

variational inequality satisfied by the value function. We introduce some notations and

state the main result. Starting from the initial state Zt− = z = (x, y, p) ∈ S̄ at time t, the

investor has the following decisions :

(i) He immediately trades ζ shares of stock so that the state process jumps at time t to Zt

= (Xt, Yt, Pt) = (x− θ(ζ, p)− k, y+ ζ,Q(ζ, p)). We then introduce the impulse transaction

function from S̄ × R into R × R × R∗
+ :

Γ(z, ζ) = (x− θ(ζ, p) − k, y + ζ,Q(ζ, p)),

and the set of admissible transactions :

C(z) = {ζ ∈ R : L(Γ(z, ζ)) ≥ 0} .

By definition of the value function, we then have, as a consequence of the dynamic pro-

gramming principle (2.9), applied to τ = t and by choosing any admissible control α ∈

A(t, z) with immediate impulse at t with size ζ ∈ C(z) :

v(t, z) ≥ v(t,Γ(z, ζ)), ∀ζ ∈ C(z). (3.1)
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We then define the impulse operator :

Hϕ(t, z) = sup
ζ∈C(z)

ϕ(t,Γ(z, ζ)),

for any measurable function ϕ on [0, T ] × S̄. If for some z ∈ S̄, the set C(z) is empty, we

set by convention Hϕ(t, z) = −∞. From (3.1), we get :

v ≥ Hv, on [0, T ] × S̄. (3.2)

(ii) He does not trade during some small interval [t, τ ] where the state price evolves accord-

ing to :

dZs = d







Xs

Ys

Ps






=







rXs

0

bPs






ds+







0

0

σPs






dWs. (3.3)

By the dynamic programming principle (2.9), we have

v(t, z) ≥ E [v(τ, Zτ )] ,

whenever the state process Zs = (Xs, Ys, Ps) stays in S̄ during [t, τ ], which is possible during

some small period time [t, τ ] if z ∈ S. If v were smooth, applying Itô’s formula to v(Zs)

between t and τ and sending τ to t, we would obtain :

−
∂v

∂t
− Lv ≥ 0 on [0, T ) × S. (3.4)

where L is the infinitesimal generator associated to the system (3.3) :

Lv = rx
∂v

∂x
+ bp

∂v

∂p
+

1

2
σ2p2∂

2v

∂p2
.

Since one of the two decisions (i) and (ii) should be optimal, we obtain the quasi-

variational inequality satisfied by the value function :

min

[

−
∂v

∂t
− Lv , v −Hv

]

= 0, on [0, T ) × S. (3.5)

The time-space liquidation solvency region [0, T ) × S is then divided into the following

regions :

⋆ A no-trade region

NT = {(t, z) ∈ [0, T ) × S : v(t, z) > Hv(t, z)} ,

⋆ A trade region

T = {(t, z) ∈ [0, T ) × S : v(t, z) = Hv(t, z)} .

The rigorous characterization of the value function through the quasi-variational in-

equality (3.5) together with the boundary and terminal conditions will be proved in Section

5 by means of constrained viscosity solutions. Our main result is the following theorem,

which follows from the results proved in Sections 4 and 5.
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Theorem 3.1 The value function v is continuous on [0, T )×S and is the unique (in [0, T )×

S) constrained viscosity solution to (3.5) satisfying the boundary and terminal condition :

lim
(t′, z′) → (t, z)

z′ ∈ S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T ) ×D0

lim
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′) = max[UL(z),HUL(z)], ∀z ∈ S̄,

and the growth condition :

|v(t, z)| ≤ K
(

1 +
(

x+
p

λ

))γ
, ∀(t, z) ∈ [0, T ) × S

for some positive constant K < ∞.

4 Properties of the value function

4.1 Some properties on the impulse transactions set

As mentioned in Section 1, it is not clear why the set of admissible controls is not empty.

To prove this fact, we need to derive some preliminary remarks on the set of admissible

transactions C(z). Suppose the current position of the investor is a point z = (x, y, p) ∈ S̄.

If he makes a transaction of size ζ at that time, then after the transaction the new position

is given by Γ(z, ζ) = (x′, y′, p′) with

x′ = x− θ(ζ, p) − k = x− pζeλζ − k

y′ = y + ζ

p′ = Q(ζ, p) = peλζ .

Hence, the net wealth value with liquidation is given by :

L0(Γ(z, ζ)) = x′ + ℓ(y′, p′) − k = x− pζeλζ − k + peλζ(y + ζ)e−λ(y+ζ) − k

= x+ ℓ(y, p) − k + pζ(e−λy − eλζ) − k

= L0(z) + pg(y, ζ) − k, (4.1)

with

g(y, ζ) = ζ(e−λy − eλζ). (4.2)

Globally, the net wealth after transaction is equal to :

L(Γ(z, ζ)) = max [L0(Γ(z, ζ)), L1(Γ(z, ζ))] 1y+ζ≥0 + L0(Γ(z, ζ))1y+ζ<0.

We then see that, in contrast with transaction costs models, the net wealth may grow

after some transaction. We first prove the following elementary lemma.
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Lemma 4.1 For any y ∈ R, there exists an unique ζ̄(y) ∈ R s.t.

ḡ(y) := max
ζ∈R

g(y, ζ) = ζ̄(y)(e−λy − eλζ̄(y)). (4.3)

(i) The function ζ̄ is differentiable, decreasing one to one from R into (−1/λ,∞) with ζ̄(0)

= 0, and

0 < ζ̄(y) < −y if y < 0 and −y < ζ̄(y) < 0 if y > 0.

(ii) The function ḡ is differentiable, decreasing on (−∞, 0), increasing on (0,∞), with ḡ(0)

= 0, limy→−∞ ḡ(y) = ∞ , limy→∞ ḡ(y) = e−1/λ, and for all p > 0,

ℓ(y, p) + pḡ(y) < 0 if y < 0 and −ℓ(y, p) + pḡ(y) < 0 if 0 < y ≤
1

λ
.

Proof. (i) For fixed y, a straightforward study of the differentiable function ζ → gy(ζ) :=

g(y, ζ) shows that there exists an unique ζ̄(y) ∈ R such that :

G(y, ζ̄(y)) = g′y(ζ̄(y)) = e−λy − eλζ̄(y)(1 + λζ̄(y)) = 0,

g′y(ζ) > ( resp. <) 0 ⇐⇒ ζ < ( resp. >) ζ̄(y)

This proves that gy is increasing on (−∞, ζ̄(y)) and decreasing on (ζ̄(y),∞) with

max
ζ∈R

gy(ζ) = gy(ζ̄(y)) := ḡ(y),

i.e. (4.3). Since g′y(−1/λ) = e−λy > 0, we notice that ζ̄(y) is valued in (−1/λ,∞) for all y

∈ R. Moreover, since the differentiable function (y, ζ) → G(y, ζ) := g′y(ζ) is decreasing in

y on R :
∂G

∂y
< 0 and decreasing in ζ on (−1/λ,∞) :

∂G

∂ζ
< 0, we derive by the implicit

theorem that ζ̄(y) is a differentiable decreasing function on R. Since G(y,−1/λ) = e−λy

goes to zero as y goes to infinity, we also obtain that ζ̄(y) goes to −1/λ as y goes to infinity.

By noting that for all ζ, G(y, ζ) goes to ∞ when y goes to −∞, we deduce that ζ̄(y) goes

to ∞ as y goes to −∞. Since G(0, 0) = 0, we also have ζ̄(0) = 0. Notice also that G(y,−y)

= λye−λy : hence, when y < 0, G(y,−y) < 0 = G(y, ζ̄(y)) so that ζ̄(y) < −y, and when y

> 0, G(y,−y) > 0 = G(y, ζ̄(y)) so that ζ̄(y) > −y.

(ii) By the envelope theorem, the function ḡ defined by ḡ(y) = maxζ∈R g(y, ζ) =

g(y, ζ̄(y)) is differentiable on R with

ḡ′(y) =
∂g

∂y
(y, ζ̄(y)) = −λζ̄(y)e−λζ̄(y), y ∈ R.

Since ζ̄(y) > (resp. <) 0 iff y < (resp. >) 0 with ζ̄(0) = 0, we deduce the decreasing (resp.

increasing) property of ḡ on (−∞, 0) (resp. (0,∞)) with ḡ(0) = 0. Since ζ̄(y) converges to

−1/λ as y goes to infinity, we immediately see from expression (4.3) of ḡ that ḡ(y) converges

to e−1/λ as y goes to infinity. For y < 0 and by taking ζ = −y/2 in the maximum in (4.3),

we have ḡ(y) ≥ −y(e−λy − e−λy/2)/2, which shows that ḡ(y) goes to infinity as y goes to

−∞. When y < 0, we have 0 < ζ̄(y) < −y, and thus by (4.3), we get :

ḡ(y) < −y
(

e−λy − eλζ̄(y)
)

,

12



and so ℓ(y, p)+ pḡ(y) < pyeλζ̄(y) < 0 for all p > 0. When y > 0, we have ζ̄(y) < 0 and thus

by (4.3), we get : ḡ(y) < −ζ̄(y)eλζ̄(y). Now, since the function ζ 7→ −ζeλζ is decreasing on

[−1/λ, 0], we have for all 0 < y ≤ 1/λ, −1/λ ≤ −y < ζ̄(y) and so

ḡ(y) < ye−λy.

This proves pḡ(y) ≤ ℓ(y, p) for all 0 < y ≤ 1/λ and p > 0. ✷

We next state the following useful result on the set of admissible transactions.

Lemma 4.2 For all z ∈ S̄, the set C(z) is compact, eventually empty. We have :

C(z) = ∅ if z ∈ ∂yS ∪ ∂x
0S ∪ ∂x

1S,

−
1

λ
∈ C(z) ⊂ (−y, 0) if z ∈ ∂x

2S,

−y ∈ C(z) ⊂

{

[0,−y] if z ∈ ∂−ℓ S

[−y, 0) if z ∈ ∂+
ℓ S

Moreover,

C(z) = {−y} if z ∈ (∂−ℓ S ∪ ∂+,λ
ℓ S) ∩Nℓ

ζ̄(y) ∈ C(z) if z ∈ (∂−ℓ S ∪ ∂+
ℓ S) ∩ (S̄ \ Nℓ).

where

∂+,λ
ℓ S = ∂+

ℓ S ∩

{

z ∈ S̄ : y ≤
1

λ

}

,

Nℓ =
{

z ∈ S̄ : pḡ(y) < k
}

.

Proof. For any z ∈ S̄, we write C(z) = C0(z) ∪ C1(z) where C0(z) = {ζ ∈ R : L0(Γ(z, ζ)) ≥

0} and C1(z) = {ζ ∈ R : L1(Γ(z, ζ)) ≥ 0, y + ζ ≥ 0}. From (4.1) and by noting that the

function ζ 7→ pg(y, ζ) goes to −∞ as |ζ| goes to infinity, we see that C0(z) is bounded.

Since the function ζ 7→ pθ(ζ, p) goes to infinity as ζ goes to infinity, we also see that

C1(z) is bounded. Hence, C(z) is bounded. Moreover, for any z = (x, y, p) ∈ S̄, the

function ζ 7→ L(Γ(z, ζ)) is uppersemicontinuous : it is indeed continuous on R \ {−y} and

uppersemicontinuous on −y. This implies the closure property and then the compactness

of C(z).

⋆ Fix some arbitrary z ∈ ∂yS. Then, for any ζ ∈ R, we have L0(Γ(z, ζ)) = x−k+pg(0, ζ)−k.

Since g(0, ζ) ≤ 0 for all ζ ∈ R and x ≤ k, we see that L(Γ(z, ζ)) < 0 for all ζ ∈ R. On

the other hand, we have L1(Γ(z, ζ)) = x − θ(ζ, p) − k. Since θ(ζ, p) ≥ 0 for all ζ ≥ 0,

and recalling that x < k, we also see that L1(Γ(z, ζ)) = x − θ(ζ, p) − k < 0 for all ζ ≥ 0.

Therefore L(Γ(z, ζ)) < 0 for all ζ ∈ R and so C(z) is empty.

⋆ Fix some arbitrary z ∈ ∂x
0S. Then, for any ζ ∈ R, we have L0(Γ(z, ζ)) = ℓ(y, p) − k +

pg(y, ζ) − k. Now, we recall from Remark 2.2 that ℓ(y, p) ≤ p/(λe) < k. Moreover, by

Lemma 4.1, we have pg(y, ζ) ≤ pḡ(y) ≤ p/(λe) < k. This implies L0(Γ(z, ζ)) < 0 for any ζ

∈ R. On the other hand, we have L1(Γ(z, ζ)) = −θ(ζ, p) − k. Since θ(ζ, p) ≥ −p/(λe) for

all ζ ∈ R, we get L1(Γ(z, ζ)) ≤ p/(λe) − k < 0. Therefore C(z) is empty.

13



⋆ Fix some arbitrary z ∈ ∂x
1S. Then, for any ζ ∈ R, we have L0(Γ(z, ζ)) = ℓ(y, p) − k +

pg(y, ζ) − k. Now, we recall from Remark 2.2 that ℓ(y, p) < k. Moreover, since 0 < y ≤

1/λ, we get from Lemma 4.1 : pg(y, ζ) ≤ pḡ(y) < ℓ(y, p) < k for all ζ ∈ R. This implies

L0(Γ(z, ζ)) < 0 for any ζ ∈ R. On the other hand, we have L1(Γ(z, ζ)) = −θ(ζ, p) − k.

Since the function ζ 7→ θ(ζ, p) is increasing on [−1/λ,∞) and y < 1/λ, we have for all ζ

≥ −y, θ(ζ, p) ≥ θ(−y, p) = −ℓ(y, p), and so −θ(ζ, p) − k ≤ ℓ(y, p) − k < 0. This implies

L1(Γ(z, ζ)) < 0 for all ζ ∈ R and thus C(z) is empty.

⋆ Fix some arbitrary z ∈ ∂x
2S. Then for ζ = −1/λ, we have θ(ζ, p) = −p/(λe) and y + ζ

> 0 (see Remark 2.2). Hence, L(Γ(z,−1/λ)) ≥ L1(Γ(z,−1/λ)) ≥ 0 and so −1/λ ∈ C(z).

Moreover, take some arbitrary ζ ∈ C(z) = C0(z) ∪ C1(z). In the case where ζ ∈ C0(z),

i.e. L0(Γ(z, ζ)) = ℓ(y, p) − k + pg(y, ζ) − k ≥ 0, and recalling that ℓ(y, p) < k, we must

have necessarily g(y, ζ) > 0. This implies −y < ζ < 0. Similarly, when ζ ∈ C1(z), i.e.

−θ(ζ, p) − k ≥ 0 and y + ζ ≥ 0, we must have −y < ζ < 0. Therefore, C(z) ⊂ (−y, 0).

⋆ Fix some arbitrary z ∈ ∂−ℓ S ∪ ∂+
ℓ S. Then we have L(Γ(z,−y)) = L1(Γ(z,−y)) = 0,

which shows that ζ = −y ∈ C(z). Consider now the case where z ∈ ∂−ℓ S ∪ ∂+,λ
ℓ S. We

claim that C1(z) = {−y}. Indeed, take some ζ ∈ C1(z), i.e. x − θ(ζ, p) − k ≥ 0 and y + ζ

≥ 0. Then, θ(ζ, p) ≥ θ(−y, p) = −ℓ(y, p) (since ζ 7→ θ(ζ, p) is increasing on [−1/λ,∞) and

−y ≥ −1/λ) and so 0 ≤ x− θ(ζ, p)−k ≤ x+ ℓ(y, p)−k = 0. Hence, we must have ζ = −y.

Take now some arbitrary ζ ∈ C0(z). Hence, L0(Γ(z, ζ)) = pg(y, ζ) − k ≥ 0, and we must

have necessarily g(y, ζ) ≥ 0. Since y ≤ 0, this implies 0 ≤ ζ ≤ −y. We have then showed

that C(z) ⊂ [−y, 0]. Consider now the case where z ∈ ∂+
ℓ S and take some arbitrary ζ ∈

C(z) = C0(z) ∪ C1(z). If ζ ∈ C0(z), then similarly as above, we must have pg(y, ζ)− k ≥ 0.

Since y > 0, this implies −y ≤ ζ < 0. If ζ ∈ C1(z), i.e. x− θ(ζ, p) − k ≥ 0 and y + ζ ≥ 0,

and recalling that x < k, we must have also −y ≤ ζ < 0. We have then showed that C(z)

⊂ [−y, 0).

Notice that for z ∈ (∂−ℓ S ∪ ∂+
ℓ S) ∩ Nℓ, we have L0(Γ(z, ζ)) ≤ pḡ(y)− k < 0 for all ζ ∈

R. Hence, C0(z) = ∅. We have already seen that C1(z) = {−y} when z ∈ ∂−ℓ S ∪ ∂+,λ
ℓ S and

so C(z) = {−y} when z ∈ (∂−ℓ S ∪ ∂+,λ
ℓ S) ∩ Nℓ. Finally, when z ∈ (∂−ℓ S ∪ ∂+

ℓ S)∩ (S̄ \Nℓ),

we have L0(Γ(z, ζ̄(u))) = pḡ(y) − k ≥ 0, which shows that ζ̄(y) ∈ C(z). ✷

Remark 4.1 Actually, we have a more precise result on the compactness result of C(z).

Let z ∈ S̄ and (zn)n be a sequence in S̄ converging to z. Consider any sequence (ζn)n with

ζn ∈ C(zn), i.e. L(Γ(zn, ζn)) ≥ 0 :

max [L0(zn) + png(yn, ζn) − k, x− θ(ζn, pn) − k] 1yn+ζn≥0

+ [L0(zn) + png(yn, ζn) − k] 1yn+ζn<0 ≥ 0.

Since g(y, ζ) and −θ(ζ, p) goes to −∞ as ζ goes to infinity, and g(y, ζ) goes to −∞ as ζ

goes to −∞, this proves that the sequence (ζn) is bounded. Hence, up to a subsequence,

(ζn) converges to some ζ ∈ R. Since the function L is uppersemicontinuous, we see that

the limit ζ satisfies : L(Γ(z, ζ)) ≥ 0, i.e. ζ lies in C(z).

Corollary 4.1 For all (t, z) ∈ [0, T ) × S̄, we have A(t, z) 6= ∅.
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Proof. By continuity of the process Z0,t,z
s , t ≤ s ≤ T , it is clear that it suffices to prove

A(t, z) 6= ∅ for any t ∈ [0, T ) × ∂S. Fix now some arbitrary t ∈ [0, T ). From Lemma 4.2,

the set of admissible transactions C(z) contains at least one nonzero element for any z ∈

∂x
2S ∪ ∂+

ℓ S ∪ ∂−ℓ S \Dk. So once the state process reaches this boundary part, it is possible

to jump inside the open solvency region S. Hence, we only have to check that A(t, z) is

nonempty when z ∈ ∂x
0S ∪ ∂x

1S ∪ ∂yS ∪ Dk. This is clear when z ∈ ∂yS ∪ Dk : indeed,

by doing nothing the state process Zs = Z0,t,z
s = (xer(s−t), 0, P 0,t,p

s ), t ≤ s ≤ T , obviously

stays in S̄, since x ≥ 0 and so L1(Zs) ≥ 0 for all t ≤ s ≤ T . Similarly, when z ∈ ∂x
0S ∪

∂x
1S, by doing nothing the state process Zs = Z0,t,z

s = (0, y, P 0,t,p
s ), t ≤ s ≤ T , also stays

in S̄ since y ≥ 0 and so L1(Zs) ≥ 0 for all t ≤ s ≤ T . ✷

We next turn to the finiteness of the value function, which is not trivial due to the

impulse control. As mentioned above, since the net wealth may grow after transaction due

to the nonlinearity of the liquidation function, one cannot bound the value function v by

the value function of the Merton problem with liquidated net wealth. We then introduce a

suitable “linearization” of the net wealth by defining the following functions on S̄ :

L̃(z) = x+
p

λ
(1 − e−λy), z = (x, y, p) ∈ S̄,

L̄(z) = x+
p

λ
, z = (x, y, p) ∈ S̄.

Lemma 4.3 For all z = (x, y, p) ∈ S̄ , we have :

0 ≤ L(z) ≤ L̃(z) ≤ L̄(z) (4.4)

and for all ζ ∈ C(z)

L̃(Γ(z, ζ)) ≤ L̃(z) − k (4.5)

L̄(Γ(z, ζ)) ≤ L̄(z) − k. (4.6)

In particular, we have C(z) = ∅ for all z ∈ Ñ := {z ∈ S : L̃(z) < k}.

Proof. 1) The inequality L̃ ≤ L̄ is clear. Notice that for all y ∈ R, we have

0 ≤ 1 − e−λy − λye−λy. (4.7)

This immediately implies for all z = (x, y, p) ∈ S̄,

L0(z) ≤ L̃(z). (4.8)

If y ≥ 0, we obviously have L1(z) = x ≤ L̃(z) and so L(z) ≤ L̃(z). If y < 0, then L(z) =

L0(z) ≤ L̃(z) by (4.8).

2) For any z = (x, y, p) ∈ S̄ and ζ ∈ R, a straightforward computation shows that

L̃(Γ(z, ζ)) = L̃(z) − k +
p

λ
(eλζ − 1 − λζeλζ)

≤ L̃(z) − k,
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from (4.7). Similarly, we have

L̄(Γ(z, ζ)) = L̄(z) − k +
p

λ
(eλζ − 1 − λζeλζ) ≤ L̄(z) − k.

Finally, if z ∈ Ñc, we have from (4.6), L̃(Γ(z, ζ)) < 0 for all ζ ∈ C(z), which shows with

(4.4) that C(z) = ∅. ✷

As a first direct corollary, we check that the no-trade region is not empty.

Corollary 4.2 We have NT 6= ∅. More precisely, for each t ∈ [0, T ), the t-section of NT,

i.e. NT(t) = {z ∈ S : (t, z) ∈ NT} contains the nonempty subset Ñ of S.

Proof. This follows from the fact that for any z lying in the nonempty set Ñ of S, we

have C(z) = ∅. In particular, Hv(t, z) = −∞ < v(t, z) for (t, z) ∈ [0, T ) × Ñ . ✷

As a second corollary, we have the following uniform bound on the controlled state

process.

Corollary 4.3 For any (t, z) ∈ [0, T ] × S̄, we have almost surely for all t ≤ s ≤ T :

sup
α∈A(t,z)

L(Zs) ≤ sup
α∈A(t,z)

L̃(Zs) ≤ L̃(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p

s

λ
(1 − e−λy), (4.9)

sup
α∈A(t,z)

L(Zs) ≤ sup
α∈A(t,z)

L̄(Zs) ≤ L̄(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p

s

λ
, (4.10)

sup
α∈A(t,z)

|Xs| ≤
e

e− 1
L̄(Z0,t,z

s ), (4.11)

sup
α∈A(t,z)

Ps ≤
λe

e− 1
L̄(Z0,t,z

s ). (4.12)

Proof. Fix (t, z) ∈ [0, T ]×S̄ and consider for any α ∈ A(t, z), the process L̃(Zs), t ≤ s ≤ T ,

which is nonnegative by (4.4). When a transaction occurs at time s, we deduce from (4.5)

that the variation ∆L̃(Zs) = L̃(Zs) − L̃(Zs−) is always negative : ∆L̃(Zs) ≤ −k ≤ 0.

Therefore, the process L̃(Zs) is smaller than its continuous part :

L(Zs) ≤ L̃(Zs) ≤ L̃(Z0,t,z
s ), t ≤ s ≤ T, a.s. (4.13)

which proves (4.9) from the arbitrariness of α. Relation (4.10) is proved similarly.

From the second inequality in (4.10), we have for all α ∈ A(t, z) :

Xs ≤ L̄(Z0,t,z
s ) −

Ps

λ
, t ≤ s ≤ T, a.s. (4.14)

≤ L̄(Z0,t,z
s ), t ≤ s ≤ T, a.s. (4.15)

By definition of L and using (4.14), we have :

0 ≤ L(Zs) ≤ max

(

L̄(Z0,t,z
s ) −

Ps

λ
(1 − λYse

−λYs), L̄(Z0,t,z
s ) −

Ps

λ

)

≤ L̄(Z0,t,z
s ) −

Ps

λ

(

1 −
1

e

)

, t ≤ s ≤ T, a.s.
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since the function y 7→ λye−λy is upper bounded by 1/e. We then deduce

Ps ≤
λe

e− 1
L̄(Z0,t,z

s ), t ≤ s ≤ T, a.s. (4.16)

and so (4.12) from the arbitrariness of α. By recalling that Xs +Ps/λ ≥ 0 and using (4.16),

we get

−
e

e− 1
L̄(Z0,t,z

s ) ≤ Xs, t ≤ s ≤ T, a.s.

By combining with (4.15) and from the arbitrariness of α, we obtain (4.11). ✷

As a third direct corollary, we state that the number of intervention times is finite.

More precisely, we have the following result :

Corollary 4.4 For any (t, z) ∈ [0, T ]×S̄, α = (τn, ζn) ∈ A(t, z), the number of intervertion

times strictly between t and T is finite a.s. :

Nt(α) := Card {n : t < τn < T}

≤
1

k

[

L̄(Zt) − L̄(ZT−) +

∫ T

t

(

rXs +
Ps

λ

)

ds+

∫ T

t

σ

λ
PsdWs

]

<∞ a.s.(4.17)

Proof. Fix some (t, z) ∈ [0, T ] × S̄ and α ∈ A(t, z), and consider Zs = (Xs, Ys, Ps),

t ≤ s ≤ T , the associated controlled state process. By applying Itô’s formula to L̄(Zs) =

Xs + Ps/λ between t and T , we have :

0 ≤ L̄(ZT−) = L̄(Zt) +

∫ T

t

(

rXs +
Ps

λ

)

ds+

∫ T

t

σ

λ
PsdWs +

∑

t<s<T

∆L(Zs)

≤ L̄(Zt) +

∫ T

t

(

rXs +
Ps

λ

)

ds+

∫ T

t

σ

λ
PsdWs − kNt(α),

by (4.6). We deduce the required result :

Nt(α) ≤
1

k

[

L̄(Zt) − L̄(ZT−) +

∫ T

t

(

rXs +
Ps

λ

)

ds+

∫ T

t

σ

λ
PsdWs

]

< ∞ a.s.

✷

4.2 Bound on the value function

We now give a sharp upper bound on the value function.

Proposition 4.1 For all t ∈ [0, T ], z = (x, y, p) ∈ S̄, we have

sup
α∈A(t,z)

UL (ZT ) ≤ U
(

L̃
(

Z0,t,z
T

))

∈ L1(P). (4.18)

In particular, the family {UL(ZT ), α ∈ A(t, z)} is uniformly integrable and we have

v(t, z) ≤ v0(t, z) := E

[

U
(

L̃
(

Z0,t,z
T

))]

, (t, z) ∈ [0, T ] × S̄, (4.19)
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with

v0(t, z) ≤ Keρ(T−t)L̃(z)γ , (4.20)

where ρ is a positive constant s.t.

ρ >
γ

1 − γ

b2 + r2 + σ2r(1 − γ)

σ2
. (4.21)

Proof. Fix (t, z) ∈ [0, T ] × S̄ and consider for some arbitrary α ∈ A(t, z), the process

L̃(Zs), t ≤ s ≤ T , which is nonnegative by (4.4). By (4.9), we have :

L(Zs) ≤ L̃(Zs) ≤ L̃(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p

s

λ
(1 − e−λy), t ≤ s ≤ T. (4.22)

From the arbitrariness of α and the nondecreasing property of U , we get the inequality in

(4.18). From the growth condition (2.6) on the nonnegative function U and since clearly

|X0,t,x
T |γ and (P 0,t,p

T )γ are integrable, i.e. in L1(P), we have U

(

X0,t,x
T +

P 0,t,p
T

λ (1 − e−λy)

)

∈ L1(P). This clearly implies (4.19).

Consider now the nonnegative function :

ϕ(t, z) = eρ(T−t)L̃(z)γ = eρ(T−t)
(

x+
p

λ
(1 − e−λy)

)γ

and notice that ϕ is smooth C2 on [0, T ]× (S̄ \D0). Now, we claim that for ρ large enough,

the function ϕ satisfies :

−
∂ϕ

∂t
(t, z) − Lϕ(t, z) ≥ 0, ∀ (t, z) ∈ [0, T ] × S̄ \D0. (4.23)

Indeed, a straightforward calculation shows that for all t ∈ [0, T ), z = (x, y, p) ∈ S̄ \D0 :

−
∂ϕ

∂t
(t, z) − Lϕ(t, z)

= eρ(T−t)L̃(z)γ−2

[

Ax2 +B
(p

λ
(1 − e−λy)

)2
+ 2Cx

p

λ
(1 − e−λy)

]

, (4.24)

where

A = ρ− rγ, B = ρ− bγ +
1

2
σ2γ(1 − γ), C = ρ−

(b+ r)γ

2
.

Hence, (4.23) is satisfied whenever A > 0 and BC −A2 > 0, which is the case for ρ larger

than the constant in the r.h.s. of (4.21).

Fix some (t, z) ∈ [0, T ) × S̄. If z = (0, 0, p) then we clearly have v0(t, z) = U(0) and

so inequality (4.20) follows from U(0) ≤ K1 (see (2.6)). Consider now the case where z ∈

S̄ \ D0 and notice that the process Z0,t,z
s = (X0,t,x

s , y, P 0,t,p
s ) never reaches {(0, 0)} × R∗

+.

Consider the stopping time

TR = inf
{

s ≥ t : |Z0,t,z
s | > R

}

∧ T
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so that the stopped process (Z0,t,z
s∧TR

)t≤s≤T stays in the bounded set {z = (x, y, p) ∈ S̄ \D0 :

|z| ≤ R} on which ϕ(t, .) is smooth C2 and its derivative in p,
∂ϕ

∂p
is bounded. By applying

Itô’s formula to ϕ(s, Z0,t,z
s ) between s = t and s = TR, we have :

ϕ(TR, Z
0,t,z
TR

) = ϕ(t, z) +

∫ TR

t

(

∂ϕ

∂t
+ Lϕ

)

(s, Z0,t,z
s )ds+

∫ TR

t

∂ϕ

∂p
(s, Z0,t,z

s )σP 0,t,p
s dWs.

Since the integrand in the stochastic integral is bounded, we get by taking expectation in

the last relation :

E[ϕ(TR, Z
0,t,z
TR

)] = ϕ(t, z) + E

[∫ TR

t

(

∂ϕ

∂t
+ Lϕ

)

(s, Z0,t,z
s )ds

]

≤ ϕ(t, z),

where we used in the last inequality (4.23). Now, for almost ω ∈ Ω, for R large enough (≥

R̄(ω)), we have TR = T so that ϕ(TR, ZTR
) converges a.s. to ϕ(T,ZT ). By Fatou’s lemma,

we deduce that E[ϕ(T,ZT )] ≤ ϕ(t, z). Since ϕ(T, z) = L̃(z)γ , this yields

E

[

L̃
(

Z0,t,z
T

)γ]

≤ ϕ(t, z). (4.25)

Finally, by the growth condition (2.6), this proves the required upper bound on the value

function v. ✷

Remark 4.2 The upper bound of the last proposition shows that the value function lies

in the set of functions satisfying the growth condition :

Gγ([0, T ] × S̄) =

{

u : [0, T ] × S̄ −→ R, sup
[0,T ]×S̄

|u(t, z)|

1 +
(

x+ p
λ

)γ <∞

}

.

Remark 4.3 The upper bound (4.19) is sharp in the sense that when λ goes to zero (no

price impact), we find the usual Merton bound :

v(t, z) ≤ E[U(X0,t,x
T + yP 0,t,p

T )] ≤ Keρ(T−t)(x+ py)γ .

As a corollary, we can explicit the value function on the hyperplane of S̄ :

S̄y = R+ × {0} × R∗
+ ⊂ S̄,

where the agent does not hold any stock shares.

Corollary 4.5 For any t ∈ [0, T ), z = (x, 0, p) ∈ S̄y, the investor optimally do not transact

during [t, T ], i.e.

v(t, z) = E

[

U
(

X0,t,x
T

)]

= U
(

xer(T−t)
)

.

Proof. For z = (x, 0, p) ∈ S̄y, let us consider the no impulse control strategy starting from

z at t which leads at the terminal date to a net wealth L(Z0,t,z
T ) = X0,t,x

T = xer(T−t). We

then have v(t, z) ≥ E[U(X0,t,x
T )] = U(xer(T−t)). On the other hand, we have from (4.19) :

v(t, z) ≤ v0(t, z) = E[U(X0,t,x
T )]. This proves the required result. ✷
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4.3 Boundary properties

We now turn to the behavior of the value function on the boundary of the solvency region.

The situation is more complex than in models with proportional transaction costs where the

boundary of the solvency region is an absorbing barrier and all transactions are stopped.

Here, the behavior depends on which part of the boundary is the state, as showed in the

following proposition.

Proposition 4.2 1) We have

v = Hv on [0, T ) × (∂−ℓ S \Dk ∪ ∂+
ℓ S) (4.26)

and

Hv = 0 on [0, T ) × (∂−ℓ S ∪ ∂+,λ
ℓ S) ∩Nℓ. (4.27)

2) We have

v > Hv on [0, T ) × ∂yS ∪ ∂x
0S ∪ ∂x

1S ∪Dk. (4.28)

and

v = 0 on [0, T ) ×D0, (4.29)

v(t, z) = U(ker(T−t)), (t, z) ∈ [0, T ) ∈ Dk. (4.30)

Proof. 1. a) Fix some (t, z) ∈ [0, T ) × (∂−ℓ S \Dk ∪ ∂+
ℓ S) and consider an arbitrary α =

(τn, ζn)n≥1 ∈ A(t, z). We claim that τ1 = t a.s. i.e. one has to transact immediately at

time t in order to satisfy the solvency constraint.

⋆ Consider first the case where z ∈ ∂−ℓ S \Dk. Then on [t, τ1], Xs = xer(s−t), Ys = y <

0, Ps = pP 0
s , and so L(Zs) = L0(Z

0,t,z
s ). Hence, by integrating between t and τ1, we get :

0 ≤ e−r(τ1−t)L0(Z
0,t,z
τ1 ) =

∫ τ1

t
e−r(u−t)P 0

uye
−λy [(b− r)du+ σdWu] . (4.31)

By Girsanov’s theorem, one can define a probability measure Q equivalent to P under which

Ŵs = Ws + (b − r)s/σ is a Brownian motion. Under this measure, the stochastic integral
∫ τ1
t e−r(u−t)P 0

uye
−λyσdŴu has zero expectation from which we deduce with (4.31) that

∫ τ1

t
e−r(u−t)P 0

uye
−λyσdŴu = 0 a.s.

Since y 6= 0 and P 0
s > 0 a.s., this implies τ1 = t a.s.

⋆ Consider the case where z ∈ ∂+
ℓ S. Then on [t, τ1], Xs = xer(s−t)< 0, Ys = y, Ps =

pP 0
s , and so L(Zs) = L0(Zs). By the same argument as above, we deduce τ1 = t.

By applying the dynamic programming principle (2.8) for τ = τ1, we clearly deduce

(4.26).

b) Fix some (t, z = (x, y, p)) ∈ [0, T ) × (∂−ℓ S ∪ ∂+,λ
ℓ S) ∩ Nℓ. Then, from Lemma 4.2, C(z)

= {−y} and so Hv(t, z) = v(t,Γ(z,−y)) = v(t, 0, 0, p). Now, from Corollary 4.5, we have

for all z0 = (0, 0, p) ∈ D0, v(t, z0) = U(0) = 0, which proves (4.29) and so (4.27).
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2. Fix some t ∈ [0, T ) and z ∈ ∂yS ∪ ∂x
0S ∪ ∂x

1S. Then by Lemma 4.2, C(z) = ∅, hence

Hv(t, z) = −∞ and so (4.28) is trivial. For z = (k, 0, p) ∈ Dk, we have by Lemma 4.2, C(z)

= {0} and so Hv(t, z) = v(t,Γ(z, 0)) = v(t, 0, 0, p) = 0 by (4.29). Therefore, from Corollary

4.5, we have for z = (k, 0, p) ∈ Dk : v(t, z) = U(ker(T−t)) > 0 = Hv(t, z). ✷

Remark 4.4 The last proposition and its proof means that when the state reaches ∂−ℓ S \

Dk ∪ ∂+
ℓ S, one has to transact immediately since the no transaction strategy is not ad-

missible. Moreover, if one is in (∂−ℓ S ∪ ∂+,λ
ℓ S) ∩ Nℓ, one jumps directly to D0 where all

transactions are stopped. On the other hand, if the state is in ∂yS ∪ ∂x
0S ∪ ∂x

1S ∪Dk, one

should do not transact : admissible transaction does not exist on ∂yS ∪ ∂x
0S ∪ ∂x

1S while

the only zero admissible transaction on Dk is suboptimal with respect to the no transac-

tion control. In the remaining part ∂x
2S of the boundary, both decisions, transaction and

no-transaction, are admissible : we only know that one of these decisions should be chosen

optimally but we are not able to explicit which one is optimal. A summary of the behavior

of the optimal strategy on the boundary of the solvency region is depicted in Figures 2 and

3.

The next result states the continuity of the value function on the part D0 of the solvency

boundary.

Corollary 4.6 The value function v is continuous on [0, T ) ×D0 :

lim
(t′,z′)→(t,z)

v(t′, z′) = v(t, z) = 0, ∀(t, z) ∈ [0, T ) ×D0.

Proof. This is a direct consequence of (4.19) and (4.29). ✷

Remark 4.5 Notice that except on D0, the value function is in general discontinuous on

the boundary of the solvency region. More precisely, for any t ∈ [0, T ), z ∈ Dk, we have

from (4.26)-(4.27) :

lim
z′ → z

z′ ∈ ∂
−

ℓ
S \ Dk

v(t, z′) = 0,

while from Corollary 4.5 :

lim
z′ → z

z′ ∈ S̄y

v(t, z′) = U(ker(T−t)).

This shows that v is discontinuous on [0, T ) × Dk. Similarly, one can show that v is

discontinuous on [0, T ) × (∂x
1S ∩ ∂+

ℓ S).

4.4 Terminal condition

We end this section by determining the terminal condition of the value function. As we

shall see, this terminal condition takes into account the fact that just before the liquidation

date T , one can do an impulse transaction : the effect is to lift-up the utility function UL

through the impulse transaction operator H. More precisely, we set

v∗(T, z) := lim sup
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′), v∗(T, z) := lim inf
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′)
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Proposition 4.3 We have

v∗(T, z) = v∗(T, z) = Ū(z), ∀z ∈ S̄,

where

Ū(z) := max [UL(z),HUL(z)] .

Proof. 1) Fix some z ∈ S̄ and consider some sequence (tm, zm)m ∈ [0, T ) × S converging

to (T, z) and s.t. limm v(tm, zm) = v∗(T, z). By taking the no impulse control strategy on

[tm, T ], we have

v(tm, zm) ≥ E

[

UL(Z0,tm,zm

T )
]

.

Since Z0,tm,zm

T converges a.s. to z when m goes to infinity by continuity of the diffusion

Z0,t,z in its initial conditions (t, z), we deduce by Fatou’s lemma that :

v∗(T, z) ≥ UL(z). (4.32)

Take now some arbitrary ζ ∈ C(z). Consider first the case where L(Γ(z, ζ)) > 0. We claim

that for m large enough, ζ ∈ C(zm). Indeed,

⋆ suppose that ζ 6= −y. Then, by continuity of the function z′ 7→ L(Γ(z′, ζ)) on {z′ =

(x′, y′, p′) : y′ 6= ζ}, we deduce that L(Γ(zm, ζ)) converges to L(Γ(z, ζ)) > 0 and so for m

large enough, ζ ∈ C(zm).

⋆ Suppose that ζ = −y, i.e. L(Γ(z, ζ)) = x+ ℓ(y, p) − k > 0. Notice that

L(Γ(zm, ζ)) = max
[

L0(zm) − k + pg(−y, ym), xm + ye−λypm − k
]

1ym−y≥0

+ L0(zm)1ym−y<0.

We then see that lim infm→∞ L(Γ(zm, ζ)) ≥ L(Γ(z, ζ)), and so for m large enough, ζ ∈

C(zm).

One may then consider the admissible control with immediate impulse at tm with size ζ

and no other impulse until T so that the associated state process is Ztm,zm = Z0,tm,Γ(zm,ζ)

and thus

v(tm, zm) ≥ E

[

UL

(

Z
0,tm,Γ(zm,ζ)
T

)]

.

Sending m to infinity, we obtain :

v∗(T, z) ≥ UL(Γ(z, ζ)), (4.33)

for all ζ in C(z) s.t. L(Γ(z, ζ)) > 0. This last inequality (4.33) holds obviously true when

L(Γ(z, ζ)) = 0 since in this case UL(Γ(z, ζ)) = 0 ≤ v∗(T, z). By combining with (4.32), we

get v∗(T, z) ≥ Ū(z).

2) Fix some z ∈ S̄ and consider some sequence (tm, zm)m ∈ [0, T ) × S converging to

(T, z) and s.t. limm v(tm, zm) = v∗(T, z). For any m, one can find α̂m = (τ̂m
n , ζ̂

m
n )n ∈

A(tm, zm) s.t.

v(tm, zm) ≤ E

[

UL(Ẑm
T )
]

+
1

m
(4.34)
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where Ẑm = (X̂m, Ŷ m, P̂m) denotes the state process controlled by α̂m and given in T by :

Ẑm
T = Ẑm

T− = zm +

∫ T

tm

B(Ẑm
s )ds+

∫ T

tm

Σ(Ẑm
s )dWs +

∑

tm≤u<T

∆Ẑm
s

= zm + (Γ(zm, ζ
m
1 ) − zm) 1τm

1 =tm +Rm
T (4.35)

with B(z) = (rx, 0, bp) and Σ(z) = (0, 0, σp) and

Rm
T =

∫ T

tm

B(Ẑm
s )ds+

∫ T

tm

Σ(Ẑm
s )dWs +

∑

tm<s<T

∆Ẑm
s . (4.36)

We rewrite (4.34) as

v(tm, zm) ≤ E
[

{UL(Γ(zm, ζ
m
1 ) +Rm

T ) − UL(zm +Rm
T )} 1τm

1 =tm

+ UL(zm +Rm
T )] +

1

m
(4.37)

We claim that Rm
T converges a.s. to 0 as m goes to infinity. Indeed, from the uniform

bounds (4.11)-(4.12), we have

|B(Ẑm
s )| + |Σ(Ẑm

s )| ≤ (r + (b+ σ)λ)
e

e− 1
L(Z0,t,zm

s )

≤ Cte L(Z0,t,z
s ), tm ≤ s ≤ T, a.s.,

for some positive Cte independent of m. We then deduce that the Lebesgue and stochastic

integral in (4.36) converge a.s. to zero as m goes to infinity, i.e. tm goes to T . On the other

hand, by same argument as in Remark 4.1, we see that for each tm < s < T , the jump

∆Zm
s is uniformly bounded in m. Moreover, by (4.17), we have

Ntm(α̂m) ≤
1

k

[

L̄(Ẑm
tm) − L̄(Ẑm

T−) +

∫ T

tm

(

rX̂m
s +

P̂m
s

λ

)

ds+

∫ T

tm

σ

λ
P̂m

s dWs

]

.(4.38)

Similarly as above, by the uniform bounds in (4.11)-(4.12), the integrals in (4.38) converge

to zero as m goes to infinity. From the left-continuity of the state process Ẑm and the

continuity of L̄, we deduce that L̄(Ẑm
tm) − L̄(Zm

T−) converge to zero as m goes to infinity.

Therefore,
∑

tm<s<T ∆Ẑm
s goes to zero as m goes to infinity, which proves the required zero

convergence of Rm
T .

By Remark 4.1, the sequence of jump size (ζm
1 )m is bounded, and up to a subsequence,

converges, as m goes to infinity, to some ζ ∈ C(z). Moreover, it is easy to check that the

family {U(X0,tm,xm

T +
P 0,tm,pm

T

λ (1 − e−λym)),m ≥ 1} is uniformly integrable so that from

(4.18), the family {UL(Ẑm
T ),m ≥ 1} is also uniformly integrable. Therefore, we can send m

to infinity into (4.34) (or (4.37)) by the dominated convergence theorem and get :

v∗(T, z) ≤ E

[

{UL(Γ(z, ζ)) − UL(z)} lim sup
m→∞

1τm
1 =tm + UL(z)

]

≤ max

{

UL(z), sup
ζ∈C(z)

UL(Γ(z, ζ))

}

.

By completing with (4.32), this proves v∗(T, z) = v∗(T, z) = Ū(z). ✷
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Remark 4.6 The previous result shows in particular that the value function is discontin-

uous on T . Indeed, recalling that we do not allow any impulse transaction at T , we have

v(T, z) = UL(z) for all z ∈ S̄. Moreover, by Proposition 4.3, we have v(T−, z) = Ū(z),

hence v(., z) is discontinuous on T for all z ∈ {z ∈ S̄ : HUL(z) > UL(z)} 6= ∅.

5 Viscosity characterization

In this section, we intend to provide a rigorous characterization of the value function by

means of (constrained) viscosity solution to the quasi-variational inequality :

min

[

−
∂v

∂t
− Lv, v −Hv

]

= 0, (5.1)

together with appropriate boundary conditions and terminal condition.

As mentioned previously, the value function is not known to be continuous a priori and

so we shall work with the notion of discontinuous viscosity solutions. For a locally bounded

function u on [0, T )× S̄ (which is the case of the value function v), we denote by u∗ (resp.

u∗) the lower semi-continuous (lsc) (resp. upper semi-continuous (usc)) envelope of u. We

recall that in general, u∗ ≤ u ≤ u∗, and that u is lsc iff u = u∗, u is scs iff u = u∗, and u is

continuous iff u∗ = u∗ (= u). We denote by LSC([0, T ) × S̄) (resp. USC([0, T ) × S̄)) the

set of lsc (resp. usc) functions on [0, T ) × S̄.

We work with the suitable notion of constrained viscosity solutions, introduced in [26]

for first-order equations, for taking into account boundary conditions arising in state con-

straints. The use of constrained viscosity solutions was initiated in [29] for stochastic control

problems arising in optimal investment problems. The definition is given as follows :

Definition 5.1 (i) Let O ⊂ S̄. A locally bounded function u on [0, T ) × S̄ is a viscosity

subsolution of (5.1) in [0, T ) ×O if for all (t̄, z̄) ∈ [0, T ) ×O and ϕ ∈ C1,2([0, T ) × S̄) s.t.

(u∗ − ϕ)(t̄, z̄) = 0 and (t̄, z̄) is a maximum of u∗ − ϕ on [0, T ) ×O, we have

min

[

−
∂ϕ

∂t
(t̄, z̄) − Lϕ(t̄, z̄), u∗(t̄, z̄) −Hu∗(t̄, z̄)

]

≤ 0. (5.2)

(ii) Let O ⊂ S̄. A locally bounded function u on [0, T ) × S̄ is a viscosity supersolution of

(5.1) in [0, T ) ×O if for all (t̄, z̄) ∈ [0, T ) ×O and ϕ ∈ C1,2([0, T ) × S̄) s.t. (u∗ − ϕ)(t̄, z̄)

= 0 and (t̄, z̄) is a minimum of u∗ − ϕ on [0, T ) ×O, we have

min

[

−
∂ϕ

∂t
(t̄, z̄) − Lϕ(t̄, z̄), u∗(t̄, z̄) −Hu∗(t̄, z̄)

]

≥ 0. (5.3)

(iii) A locally bounded function u on [0, T )×S̄ is a constrained viscosity solution of (5.1) in

[0, T ) × S if u is a viscosity subsolution of (5.1) in [0, T ) × S̄ and a viscosity supersolution

of (5.1) in [0, T ) × S.

Remark 5.1 There is an equivalent formulation of viscosity solutions, which is useful for

proving uniqueness results, see [10] :
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(i) Let O ⊂ S̄. A function u ∈ USC([0, T )×S̄) is a viscosity subsolution of (5.1) in [0, T )×O

if

min

[

−q0 − rxq1 − bpq3 −
1

2
σ2p2M33, u(t, z) −Hu(t, z)

]

≤ 0, (5.4)

for all (t, z = (x, y, p)) ∈ [0, T ) ×O, (q0, q = (qi)1≤i≤3,M = (Mij)1≤i,j≤3) ∈ J̄2,+u(t, z).

(ii) Let O ⊂ S̄. A function u ∈ LSC([0, T ) × S) is a viscosity supersolution of (5.1) in

[0, T ) ×O if

min

[

−q0 − rxq1 − bpq3 −
1

2
σ2p2M33, u(t, z) −Hu(t, z)

]

≥ 0, (5.5)

for all (t, z = (x, y, p)) ∈ [0, T ) ×O, (q0, q = (qi)1≤i≤3,M = (Mij)1≤i,j≤3) ∈ J̄2,−u(t, z).

(iii) A locally bounded function u on [0, T ) × S̄ is a constrained viscosity solution to (5.1)

if u∗ satisfies (5.4) for all (t, z) ∈ [0, T )× S̄, (q,M) ∈ J2,+u∗(t, z), and u∗ satisfies (5.5) for

all (t, z) ∈ [0, T ) × S, (q,M) ∈ J2,−u∗(t, z).

Here J2,+u(t, z) is the parabolic second order superjet defined by :

J2,+u(t, z) =
{

(q0, q,M) ∈ R × R3 × S3 :

lim sup
(t′, z′) → (t, z)

(t′, z′) ∈ [0, T ) × S

u(t′, z′) − u(t, z) − q0(t
′ − t) − q.(z′ − z) − 1

2(z′ − z).M(z′ − z)

|t′ − t| + |z′ − z|2
≤ 0











,

S3 is the set of symmetric 3 × 3 matrices, J̄2,+u(t, z) is its closure :

J̄2,+u(t, x) =
{

(q0, q,M) = lim
m→∞

(qm
0 , q

m,Mm) with (qm
0 , q

m,Mm) ∈ J2,+u(tm, zm)

and lim
m→∞

(tm, zm, u(tm, zm)) = (t, z, u(t, z))
}

,

and J2,−u(t, x) = −J2,+(−u)(t, x), J̄2,−u(t, x) = −J̄2,+(−u)(t, x).

5.1 Viscosity property

Our first main result of this section is the following.

Theorem 5.1 The value function v is a constrained viscosity solution to (5.1) in [0, T )×S.

Remark 5.2 The state constraint and the boundary conditions is translated through the

PDE characterization via the subsolution property, which has to hold true on the whole

closed region S̄. This formalizes the property that on the boundary of the solvency region,

one of the two possible decisions, immediate impulse transaction or no-transaction, should

be chosen optimally.

We need some auxiliary results on the impulse operator H.

Lemma 5.1 Let u be a locally bounded function on [0, T ) × S̄.

(i) Hu∗ ≤ (Hu)∗. Moreover, if u is lsc then Hu is also lsc.

(ii) Hu∗ is usc and (Hu)∗ ≤ Hu∗.
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Proof. (i) Let (tn, zn) be a sequence in [0, T ) × S̄ converging to (t, z) and s.t. Hu(tn, zn)

converges to (Hu)∗(t, z). Then, using also the lowersemicontinuity of u∗ and the continuity

of Γ, we have :

Hu∗(t, z) = sup
ζ∈C(z)

u∗(t,Γ(z, ζ)) ≤ sup
ζ∈C(z)

lim inf
n→∞

u∗(tn,Γ(zn, ζ))

≤ lim inf
n→∞

sup
ζ∈C(z)

u∗(tn,Γ(zn, ζ))

≤ lim
n→∞

Hu(tn, zn) = (Hu)∗(t, z).

Suppose now that u is lsc and let (t, z) ∈ [0, T ) × S̄ and let (tn, zn)n≥1 be a sequence in

[0, T )×S̄ converging to (t, z) (as n goes to infinity). By definition of the lsc envelope (Hu)∗,

we then have :

Hu(t, z) = Hu∗(t, z) ≤ (Hu)∗(t, z) ≤ lim inf
n→∞

Hu(tn, zn),

which shows the lower-semicontinuity of Hu.

(ii) Fix some (t, z) ∈ [0, T ) × S̄ and let (tn, zn)n≥1 be a sequence in [0, T ) × S̄ converging

to (t, z) (as n goes to infinity). Since u∗ is usc, Γ is continuous, and C(zn) is compact for

each n ≥ 1, there exists a sequence (ζ̂n)n≥1 with ζ̂n ∈ C(zn) such that :

Hu∗(tn, zn) = u∗(tn,Γ(zn, ζ̂n)), ∀n ≥ 1.

By Remark 4.1, the sequence (ζ̂n)n≥1 converges, up to a subsequence, to some ζ̂ ∈ C(z).

Therefore, we get :

Hu∗(t, z) ≥ u∗(t,Γ(z, ζ̂)) ≥ lim sup
n→∞

u∗(tn,Γ(zn, ζ̂n)) = lim sup
n→∞

Hu∗(tn, zn),

which proves that Hu∗ is usc.

On the other hand, fix some (t, z) ∈ [0, T ] × S̄ and let (tn, zn)n≥1 be a sequence in

[0, T ] × S̄ converging to (t, z) and s.t. Hu(tn, zn) converges to (Hu)∗(t, z). Then, we have

(Hu)∗(t, z) = lim
n→∞

Hu(tn, zn) ≤ lim sup
n→∞

Hu∗(tn, zn) ≤ Hu∗(t, z),

which shows that (Hu)∗ ≤ Hu∗. ✷

We first prove the supersolution property.

Proof of supersolution property on [0, T ) × S.

Let (t̄, z̄) ∈ [0, T )×S and ϕ ∈ C1,2([0, T )×S̄) s.t. v∗(t̄, z̄) = ϕ(t̄, z̄) and ϕ ≤ v∗ on [0, T )×S.

Recall that from (3.2), we have v ≥ Hv on [0, T ] × S̄. Combining with Lemma 5.1 (i), we

obtain Hv∗(t̄, z̄) ≤ (Hv)∗(t̄, z̄) ≤ v∗(t̄, z̄), and so it remains to show that

−
∂ϕ

∂t
(t̄, z̄) − Lϕ(t̄, z̄) ≥ 0. (5.6)

From the definition of v∗, there exists a sequence (tm, zm)m≥1 ∈ [0, T )×S s.t. (tm, zm) and

v(tm, zm) converge respectively to (t̄, z̄) and v∗(t̄, z̄) as m goes to infinity. By continuity

of ϕ, we also have that γm := v(tm, zm) − ϕ(tm, zm) converges to 0 as m goes to infinity.
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Since (t̄, z̄) ∈ [0, T )×S, there exists η > 0 s.t. for m large enough, tm < T and B(zm, η/2)

⊂ B(z̄, η) := {|z − z̄| < η} ⊂ S. Let us then consider the admissible control in A(tm, zm)

with no impulse until the first exit time τm before T of the associated state process Zs =

Z0,tm,zm
s from B(zm, η/2) :

τm = inf
{

s ≥ tm : |Z0,tm,zm
s − zm| ≥ η/2

}

∧ T.

Consider also a strictly positive sequence (hm)m s.t. hm and γm/hm converge to zero as m

goes to infinity. By using the dynamic programming principle (2.9) for v(tm, zm) and τ̂m
:= τm ∧ (tm + hm), we get :

v(tm, zm) = γm + ϕ(tm, zm) ≥ E[v(τ̂m, Z
0,tm,zm

τ̂m
)]

≥ E[ϕ(τ̂m, Z
0,tm,zm

τ̂m
),

since ϕ ≤ v∗ ≤ v on [0, T ) × S. Now, by applying Itô’s formula to ϕ(s, Z0,tm,zm
s ) between

tm and τ̂m and noting that the integrand of the stochastic integral term is bounded, we

obtain by taking expectation :

γm

hm
+ E

[

1

hm

∫ τ̂m

tm

(

−
∂ϕ

∂t
− Lϕ

)

(s, Z0,tm,zm
s )ds

]

≥ 0. (5.7)

By continuity a.s. of Z0,tm,zm
s , we have for m large enough, τ̂m = tm + hm, and so by the

mean-value theorem, the random variable inside the expectation in (5.7) converges a.s. to

(−
∂ϕ

∂t
− Lϕ)(t̄, z̄) as m goes to infinity. Since this random variable is also bounded by a

constant independent of m, we conclude by the dominated convergence theorem and obtain

(5.6).

We next prove the subsolution property.

Proof of subsolution property on [0, T ) × S̄.

Let (t̄, z̄) ∈ [0, T )×S̄ and ϕ ∈ C1,2([0, T )×S̄) s.t. v∗(t̄, z̄) = ϕ(t̄, z̄) and ϕ ≥ v∗ on [0, T )×S̄.

If v∗(t̄, z̄) ≤ Hv∗(t̄, z̄) then the subsolution inequality holds trivially. Consider now the case

where v∗(t̄, z̄) > Hv∗(t̄, z̄) and argue by contradiction by assuming on the contrary that

η := −
∂ϕ

∂t
(t̄, z̄) − Lϕ(t̄, z̄) > 0.

By continuity of ϕ and its derivatives, there exists some δ0 > 0 s.t. t̄+ δ0 < T and for all

0 < δ ≤ δ0 :

−
∂ϕ

∂t
(t, z) − Lϕ(t, z) >

η

2
, ∀ (t, z) ∈ ((t̄− δ)+, t̄+ δ) ×B(z̄, δ) ∩ S̄. (5.8)

From the definition of v∗, there exists a sequence (tm, zm)m≥1 ∈ ((t̄ − δ/2)+, t̄ + δ/2) ×

B(z̄, δ/2) ∩ S̄ s.t. (tm, zm) and v(tm, zm) converge respectively to (t̄, z̄) and v∗(t̄, z̄) as m

goes to infinity. By continuity of ϕ, we also have that γm := v(tm, zm)−ϕ(tm, zm) converges

to 0 as m goes to infinity. By the dynamic programming principle (2.10), given m ≥ 1,

there exists α̂m = (τ̂m
n , ζ̂

m
n )n≥1 s.t. for any stopping time τ valued in [tm, T ], we have

v(tm, zm) ≤ E[v(τ, Ẑm
τ )] +

1

m
.
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Here Ẑm is the state process, starting from zm at tm, and controlled by α̂m. By choosing

τ = τ̄m : = τ̂m
1 ∧ τm

δ where

τm
δ = inf

{

s ≥ tm : Ẑm
s /∈ B(zm, δ/2)

}

∧ (tm + δ/2)

is the first exit time before tm + δ/2 of Ẑm from the open ball B(zm, δ/2), we then get :

v(tm, zm) ≤ E[v(τ̄m, Ẑτ̄m,−)1τm
δ

<τ̂m
1

] + E[v(τ̄m,Γ(Ẑτ̄m,− , ζ̂m
1 ))1τ̂m

1 ≤τm
δ

] +
1

m

≤ E[v(τ̄m, Ẑτ̄m,−)1τm
δ

<τ̂m
1

] + E[Hv(τ̄m, Ẑτ̄m,−)1τ̂m
1 ≤τm

δ
] +

1

m
. (5.9)

Now, since Hv ≤ v ≤ v∗ ≤ ϕ on [0, T ) × S̄, we obtain :

ϕ(tm, zm) + γm ≤ E[ϕ(τ̄m, Ẑτ̄m,−)] +
1

m
.

By applying Itô’s formula to ϕ(s, Ẑm
s ) between tm and τ̄m, we then get :

γm ≤ E

[∫ τ̄m

tm

(

∂ϕ

∂t
+ Lϕ

)

(s, Ẑm
s )ds

]

+
1

m

≤ −
η

2
E[τ̄m − tm] +

1

m
,

from (5.8). This implies

lim
m→∞

E[τ̄m] = t̄. (5.10)

On the other hand, we have by (5.9)

v(tm, zm) ≤ sup
|t′ − t| < δ

|z′ − z| < δ

v(t′, z′)P[τm
δ < τ̂m

1 ] + sup
|t′ − t| < δ

|z′ − z| < δ

Hv(t′, z′)P[τ̂m
1 ≤ τm

δ ] +
1

m
.

From (5.10), we then get by sending m to infinity :

v∗(t̄, z̄) ≤ sup
|t′ − t| < δ

|z′ − z| < δ

Hv(t′, z′).

Hence, sending δ to zero and by Lemma 5.1 (ii), we have

v∗(t̄, z̄) ≤ lim
δ↓0

sup
|t′ − t| < δ

|z′ − z| < δ

Hv(t′, z′) = (Hv)∗(t̄, z̄)

≤ H∗v(t̄, z̄),

which is the required contradiction.
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5.2 Comparison principle

We finally turn to uniqueness question. Our next main result is a comparison principle for

constrained (discontinuous) viscosity solutions to the quasi-variational inequality (5.1). It

states that we can compare a viscosity subsolution to (5.1) on [0, T ) × S̄ and a viscosity

supersolution to (5.1) on [0, T ) × S, provided that we can compare them at the terminal

date (as usual in parabolic problems) but also on the part D0 of the solvency boundary.

Theorem 5.2 Suppose u ∈ Gγ([0, T ] × S̄) ∩ USC([0, T ) × S̄) is a viscosity subsolution to

(5.1) in [0, T )× S̄ and w ∈ Gγ([0, T ]× S̄) ∩ LSC([0, T )× S̄) is a viscosity supersolution to

(5.1) in [0, T ) × S such that :

u(t, z) ≤ lim inf
(t′, z′) → (t, z)

w(t′, z′), ∀ (t, z) ∈ [0, T ) ×D0,(5.11)

u(T, z) := lim sup
(t, z′) → (T, z)

t < T, z′ ∈ S

u(t, z′) ≤ w(T, z) := lim inf
(t, z′) → (T, z)

t < T, z′ ∈ S

w(t, z′), ∀ z ∈ S̄. (5.12)

Then,

u ≤ w on [0, T ] × S.

Remark 5.3 Notice that one cannot hope to derive a comparison principle in the whole

closed region S̄ since it would imply the continuity of the value function on S̄, which is not

true, see Remark 4.5.

In order to deal with the impulse obstacle in the comparison principle, we first produce

some suitable perturbation of viscosity supersolutions. This strict viscosity supersolution

argument was introduced by [18], and used e.g. in [1] for dealing with gradient constraints

in singular control problem.

Lemma 5.2 Let γ′ ∈ (0, 1) and choose ρ′ s.t.

ρ′ >
γ′

1 − γ′
b2 + r2 + σ2r(1 − γ′)

σ2
∨ b ∨ (σ2 − b)

Given ν ≥ 0, consider the perturbation smooth function on [0, T ] × S̄ :

φν(t, z) = eρ
′(T−t)

[

L̃(z)γ′
+ ν

(

eλy

p
+ pe−λy

)]

. (5.13)

Let w ∈ LSC([0, T ) × S̄) be a viscosity supersolution to (5.1) in [0, T ) × S. Then for any

m ≥ 1, any compact set K of R × R × R∗
+, the usc function

wm = w +
1

m
φν

is a strict viscosity supersolution to (5.1) in [0, T ) × S ∩ K : there exists some constant δ

(depending on K) s.t.

min

[

−q0 − rxq1 − bpq3 −
1

2
σ2p2M33, wm(t, z) −Hwm(t, z)

]

≥
δ

m
, (5.14)
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for all (t, z = (x, y, p)) ∈ [0, T ) ×O, (q0, q = (qi)1≤i≤3,M = (Mij)1≤i,j≤3) ∈ J̄2,−wm(t, z).

Moreover, for γ ∈ (0, γ′) and ν > 0, if w ∈ Gγ([0, T ] × S̄), and u is also a function in

Gγ([0, T ] × S̄), then for any t ∈ [0, T ], m ≥ 1,

lim
|z|→∞

(u− wm)(t, z) = −∞. (5.15)

Proof. We set

f1(t, z) = eρ
′(T−t)L̃(z)γ′

, f2(t, z) = eρ
′(T−t)

(

eλy

p
+ pe−λy

)

.

From (4.5), we have for all t ∈ [0, T ), z ∈ S \ Ñ = {z ∈ S : L̃(z) ≥ k} :

f1(t,Γ(z, ζ)) ≤ eρ
′(T−t)(L̃(z) − k)γ′

, ∀ζ ∈ C(z),

and so

(f1 −Hf1)(t, z) ≥ eρ
′(T−t)

[

L̃(z)γ′
− (L̃(z) − k)γ′

]

> 0 (5.16)

Notice that relation (5.16) holds trivially true when z ∈ N since in this case C(z) = ∅ and

so Hf(t, z) = −∞. We then deduce that for any compact set K of R × ×R × R∗
+, there

exists some constant δ0 > 0 s.t.

f1 −Hf1 ≥ δ0, on [0, T ) × S ∩ K.

Moreover, a direct calculation shows that for all (t, z) ∈ [0, T ] × S̄, ζ ∈ C(z), f2(t,Γ(z, ζ))

= f2(t, z), and so

f2 −Hf2 = 0.

This implies

φν −Hφν = f1 + νf2 − H(f1 + νf2) ≥ (f1 −Hf1) + ν(f2 −Hf2)

≥ δ0, on [0, T ) × S ∩ K. (5.17)

On the other hand, the same calculation as in (4.24) shows that for ρ′ large enough, actually

strictly larger than γ′

1−γ′
b2+r2+σ2r(1−γ′)

σ2 , we have −
∂f1

∂t
−Lf1 > 0 on [0, T )×S. Hence, for

any compact set K of R ××R × R∗
+, there exists some constant δ1 > 0 s.t.

−
∂f1

∂t
− Lf1 ≥ δ1 on [0, T ) × S ∩ K.

A direct calculation also shows that for all (t, z) ∈ [0, T ] × S̄ :

−
∂f2

∂t
(t, z) − Lf2(t, z) = eρ

′(T−t)

[

(ρ′ + b− σ2)
eλy

p
+ (ρ′ − b)pe−λy

]

≥ 0,
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since ρ′ ≥ (σ2 − b) ∨ b. This implies that for any compact set K of R × ×R × R∗
+, there

exists some constant δ1 > 0 s.t.

−
∂φν

∂t
− Lφν = −

∂f1

∂t
− Lf1 + ν

(

−
∂f2

∂t
− Lf2

)

≥ δ1 on [0, T ) × S ∩ K. (5.18)

By writing the viscosity supersolution property of w, we deduce from the inequalities (5.17)-

(5.18) the viscosity supersolution of wm to

min

[

−
∂wm

∂t
− Lwm, wm −Hwm

]

≥
δ

m
on [0, T ) × S ∩ K,

and so (5.14), where we set δ = δ0 ∧ δ1. Finally, since u,w ∈ Gγ([0, T ] × S̄), we have for

some positive constant K :

(u− wm)(t, z) ≤ K
[

1 +
(

x+
p

λ

)γ]

−
1

m

[

(

x+
p

λ

)γ′

+ ν

(

eλy

p
+ pe−λy

)]

−→ −∞, as |z| → ∞,

since γ′ > γ and ν > 0. ✷

We now follow general viscosity solution technique, based on the Ishii technique (see [10])

and adapt arguments from [17], [24] for handling with the nonlocal intervention operator

H and [3], [1] for the boundary conditions.

Proof of Theorem 5.2

Let u and w as in Theorem 5.2. We (re)define w on [0, T ) × ∂S by :

w(t, z) = lim inf
(t′, z′) → (t, z)

(t′, z′) ∈ [̄0, T ) × S

w(t′, z′), ∀(t, z) ∈ [0, T ) × ∂S, (5.19)

and construct a strict viscosity supersolution to (5.1) according to Lemma 5.2, by consid-

ering for m ≥ 1, the usc function on [0, T ) × S̄ :

wm = w +
1

m
φν , (5.20)

where φν is given in (5.13) for some given ν > 0. Recalling the definitions (5.12) of u and

w on {T}× S̄, we have then an extension of u and wm, which are usc and lsc on [0, T ]× S̄.

In order to prove the comparison principle, it is sufficient to show that sup[0,T ]×S̄(u−wm)

≤ 0 for all m ≥ 1, since the required result is obtained by letting m to infinity. We argue

by contradiction and suppose that there exists some m ≥ 1 s.t.

µ := sup
[0,T ]×S̄

(u− wm) > 0.

Since u−wm is usc on [0, T ] × S̄, lim|z|→∞(u−wm)(z) = −∞ by (5.15), (u−wm)(T, .) ≤

0 by (5.12), and (u−wm)(t, z) ≤ 0 for (t, z) ∈ [0, T )×D0 by (5.11), there exists a an open

set K of R × R × R∗
+ with closure K̄ compact s.t.

Arg max
[0,T ]×S̄

(u− wm) 6= ∅ ⊂ [0, T ) × S̄ \D0 ∩ K.
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Take then some (t0, z0) ∈ [0, T ) × S̄ \D0 ∩K s.t. µ = (u−wm)(t0, z0) and distinguish the

two cases :

• Case 1. : z0 ∈ ∂S \D0 ∩ K.

⋆ From (5.19), there exists a sequence (ti, zi)i≥1 in [0, T )×S ∩K converging to (t0, z0) s.t.

wm(ti, zi) tends to wm(t0, z0) when i goes to infinity. We then set βi = |ti−t0|, εi = |zi−z0|

and consider the function Φi defined on [0, T ]2 × (S̄ ∩ K̄)2 by :

Φi(t, t
′, z, z′) = u(t, z) − wm(t′, z′) − ϕi(t, t

′, z, z′) (5.21)

ϕi(t, t
′, z, z′) = |t− t0|

2 + |z − z0|
4

+
|t− t′|2

2βi
+

|z − z′|2

2εi
+

(

d(z′)

d(zi)
− 1

)4

.

Here d(z) denotes the distance from z to ∂S. We claim that for z0 /∈ D0, there exists an

open neighborhood V0 ⊂ K of z0 in which this distance function d(.) is twice continuously

differentiable with bounded derivatives. This is well-known (see e.g. [15]) when z0 lies

in the smooth parts ∂S \ (Dk ∪ C1 ∪ C2) of the boundary ∂S. This is also true for z0 ∈

Dk ∪C1 ∪C2. Indeed, at these corner lines of the boundary, the inner normal vectors form

an acute angle (positive scalar product) and thus one can extend from z0 the boundary

to a smooth boundary so that the distance d is equal, locally on a neighborhood of z0, to

the distance to this smooth boundary. Notice that this is not true when z0 ∈ D0, which

forms a right angle. Now, since Φi is usc on the compact set [0, T ]2 × (S̄ ∩ K̄)2, there exists

(t̂i, t̂
′
i, ẑi, ẑ

′
i) ∈ [0, T ]2 × (S̄ ∩ K̄)2 that attains its maximum on [0, T ]2 × (S̄ ∩ K̄)2 :

µi := sup
[0,T ]2×(S̄∩K)2

Φi(t, t
′, z, z′) = Φi(t̂i, t̂

′
i, ẑi, ẑ

′
i).

Moreover, there exists a subsequence, still denoted (t̂i, t̂
′
i, ẑi, ẑ

′
i)i≥1, converging to some

(t̂0, t̂
′
0, ẑ0, ẑ

′
0) ∈ [0, T ]2 × (S̄ ∩ K̄)2. By writing that Φi(t0, ti, z0, zi) ≤ Φi(t̂i, t̂

′
i, ẑi, ẑ

′
i), we

have :

u(t0, z0) − wm(ti, zi) −
1

2
(|ti − t0| + |zi − z0|) (5.22)

≤ µi = u(t̂i, ẑi) − wm(t̂′i, ẑ
′
i) −

(

|t̂i − t0|
2 + |ẑi − z0|

4
)

−Ri (5.23)

≤ u(t̂i, ẑi) − wm(t̂′i, ẑ
′
i) −

(

|t̂i − t0|
2 + |ẑi − z0|

4
)

, (5.24)

where we set

Ri =
|t̂i − t̂′i|

2

2βi
+

|ẑi − ẑ′i|
2

2εi
+

(

d(ẑ′i)

d(zi)
− 1

)4

.

From the boundedness of u, wm on [0, T ] × S̄ ∩ K̄, we deduce by inequality (5.23) the

boundedness of the sequence (Ri)i≥1, which implies t̂0 = t̂′0 and ẑ0 = ẑ′0. Then, by sending

i to infinity into (5.22) and (5.24), with the uppersemicontinuity (resp. lowersemicontinuity)

of u (resp. wm), we obtain µ = u(t0, z0) − wm(t0, z0) ≤ u(t̂0, ẑ0) − wm(t̂0, ẑ0) − |t̂0 − t0|
2

− |ẑ0 − z0|
4. By the definition of µ, this shows :

t̂0 = t̂′0 = t0, ẑ0 = ẑ′0 = z0. (5.25)
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Sending again i to infinity into (5.22)-(5.23)-(5.24), we thus derive that µ ≤ limi µi = µ −

limiRi ≤ µ, and so

µi −→ µ (5.26)

|t̂i − t̂′i|
2

2βi
+

|ẑi − ẑ′i|
2

2εi
+

(

d(ẑ′i)

d(zi)
− 1

)4

→ 0, (5.27)

as i goes to infinity. In particular, for i large enough , we have t̂i, t̂
′
i < T (since t0 < T ),

d(ẑ′i) ≥ d(zi)/2 > 0, and so ẑ′i ∈ S. For i large enough, we may also assume that ẑi, ẑ
′
i lie

in the neighborhood V0 of z0 so that the derivatives upon order 2 of d at ẑi and ẑ′i exist

and are bounded.

⋆ We may then apply Ishii’s lemma (see Theorem 8.3 in [10]) to (t̂i, t̂
′
i, ẑi, ẑ

′
i) ∈ [0, T ) ×

[0, T )× S̄ ∩ V0 ×S ∩V0 that attains the maximum of Φi in (5.21). Hence, there exist 3× 3

matrices M = (Mjl)1≤j,l≤3 and M ′ = (M ′
jl)1≤j,l≤3 s.t. :

(q0, q,M) ∈ J̄2,+u(t̂i, ẑi),
(

q′0, q
′,M ′

)

∈ J̄2,−wm(t̂′i, ẑ
′
i)

where

q0 =
∂ϕi

∂t
(t̂i, t̂

′
i, ẑ,t̂

′
i), q = (qj)1≤j≤3 = Dzϕi(t̂i, t̂

′
i, ẑi, ẑ

′
i) (5.28)

q′0 = −
∂ϕi

∂t
(t̂i, t̂

′
i, ẑ,t̂

′
i), q′ = (q′j)1≤j≤3 = −Dz′ϕi(t̂i, t̂

′
i, ẑi, ẑ

′
i). (5.29)

and
(

M 0

0 −M ′

)

≤ D2
z,z′ϕi(t̂i, t̂

′
i, ẑi, ẑ

′
i) + εi

(

D2
z,z′ϕi(t̂i, t̂

′
i, ẑi, ẑ

′
i)
)2

(5.30)

By writing the viscosity subsolution property (5.4) of u and the strict viscosity supersolution

(5.14) of wm, we have :

min

[

−q0 − rx̂iq1 − bp̂iq3 −
1

2
σ2p̂2

iM33, u(t̂i, ẑi) −Hu(t̂i, ẑi)

]

≤ 0 (5.31)

min

[

−q′0 − rx̂′iq
′
1 − bp̂′iq

′
3 −

1

2
σ2p̂′2i M

′
33, wm(t̂′i, ẑ

′
i) −Hwm(t̂′i, ẑ

′
i)

]

≥
δ

m
. (5.32)

We then distinguish the following two possibilities in (5.31) :

1. u(t̂i, ẑi) −Hu(t̂i, ẑi) ≤ 0.

Since, from (5.32), we also have: wm(t̂′i, ẑ
′
i) − Hwm(t̂′i, ẑ

′
i) ≥ δ

m , we obtain by combining

these two inequalities :

µi ≤ u(t̂i, ẑi) − wm(t̂′i, ẑ
′
i) ≤ Hu(t̂i, ẑi) −Hwm(t̂′i, ẑ

′
i) −

δ

m

Sending i to ∞, and by (5.26), we obtain :

µ ≤ lim sup
i→∞

Hu(t̂i, ẑi) − lim inf
i→∞

Hwm(t̂′i, ẑ
′
i) −

δ

m

≤ Hu(t0, z0) −Hwm(t0, z0) −
δ

m
,
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from (5.25) and where we used the upper-semicontinuity of Hu and the lower-semicontinuity

of Hwm (see Lemma 5.1). By compactness of C(z0), and since u is usc, there exists some

ζ0 ∈ C(z0) s.t. Hu(t0, z0) = u(t0,Γ(z0, ζ0)). We then get the desired contradiction :

µ ≤ Hu(t0, z0) −Hwm(t0, z0) −
δ

m

≤ u(t0,Γ(z0, ζ0)) − wm(t0,Γ(z0, ζ0)) −
δ

m
≤ µ−

δ

m
.

2. −q0 − rx̂iq1 − bp̂iq3 −
1
2σ

2p̂2
iM33 ≤ 0.

Since, from (5.32), we also have: −q′0 − rx̂′iq
′
1 − bp̂′iq

′
3 − 1

2σ
2p̂′2i M

′
33 ≥ δ

m , we obtain by

combining these two inequalities :

−(q0 − q′0) − r(x̂iq1 − x̂′iq
′
1) − b(p̂iq3 − p̂′iq

′
3) −

1

2
σ2(p̂2

iM33 − p̂′2i M
′
33) ≤ −

δ

m
.(5.33)

Now, from (5.28)-(5.29), we explicit :

q0 = 2(t̂i − t0) +
(t̂i − t̂′i)

βi
, q = 4(ẑi − z0)|ẑi − z0|

2 +
(ẑi − ẑ′i)

εi

q′0 =
(t̂i − t̂′i)

βi
, q′ =

(ẑi − ẑ′i)

εi
− 4Dd(ẑ′i)

(

d(ẑ′i)

d(zi)
− 1

)3

and we see by (5.25) and (5.27) that q0 − q′0, x̂iq1 − x̂′iq
′
1 and p̂iq3 − p̂′iq

′
3 converge to zero

when i goes to infinity. Moreover, from (5.30), we have :

1

2
σ2p̂2

iM33 −
1

2
σ2p̂′2i M

′
33 ≤ Ei, (5.34)

where

Ei = Ai

(

D2
z,z′ϕi(t̂i, t̂

′
i, ẑi, ẑ

′
i) + εi

(

D2
z,z′ϕi(t̂i, t̂

′
i, ẑi, ẑ

′
i)
)2
)

A⊺

i

= Ai





(

1
εi
I3 + Pi − 1

εi
I3

− 1
εi
I3

1
εi
I3 +Qi

)

+ εi

(

1
εi
I3 + Pi − 1

εi
I3

− 1
εi
I3

1
εi
I3 +Qi

)2


A⊺

i

with

Ai =
(

0, 0, p̂i, 0, 0, p̂
′
i

)

Pi = 4|ẑi − z0|
2I3 + 8(ẑi − z0)(ẑi − z0)

⊺

Qi = 12

(

d(ẑ′i)

d(ẑ′i)
− 1

)2

Dd(ẑ′i)Dd(ẑ
′
i)

⊺ + 4

(

d(ẑ′i)

d(ẑ′i)
− 1

)3

D2d(ẑ′i).

Here ⊺ denotes the transpose operator. After some straightforward calculation, we then

get :

Ei = 3
(p̂′i − p̂i)

2

εi
+Ai

((

3Pi −2Qi

−2Pi 3Qi

)

+ εi

(

P 2
i 0

0 Q2
i

))

A⊺

i ,
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which converges also to zero from (5.25) and (5.27). Therefore, by sending i to infinity

into (5.33), we see that the lim sup of its l.h.s. is nonnegative, which gives the required

contradiction : 0 ≤ −δ/m.

• Case 2. : z0 ∈ S ∩ K.

This case is dealt similarly as in Case 1. and its proof is omitted. It suffices e.g. to consider

the function

Ψi(t, z, z
′) = u(t, z) − wm(t, z′) − ψi(t, z, z

′)

ψi(t, z, z
′) = |t− t0|

2 + |z − z0|
4 +

i

2
|z − z′|2,

for i ≥ 1, and to take a maximum (t̃i, z̃i, z̃
′
i) of Ψi. We then show that the sequence

(t̃i, z̃i, z̃
′
i)i≥1 converges to (t0, z0, z0) as i goes to infinity and we apply Ishii’s lemma to get

the required contradiction.

By combining previous results, we then finally obtain the following PDE characterization

of the value function.

Corollary 5.1 The value function v is continuous on [0, T ) × S and is the unique (in

[0, T ) × S) constrained viscosity solution to (5.1) lying in Gγ([0, T ] × S̄) and satisfying the

boundary condition :

lim
(t′,z′)→(t,z)

v(t′, z′) = 0, ∀(t, z) ∈ [0, T ) ×D0,

and the terminal condition

v(T−, z) := lim
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′) = Ū(z), ∀z ∈ S̄.

Proof. From Theorem 5.1, v∗ is an usc viscosity subsolution to (5.1) in [0, T ) × S̄ and

v∗ is a lsc viscosity supersolution to (5.1) in [0, T ) × S. Moreover, by Corollary 4.6 and

Proposition 4.3, we have v∗(t, z) = v∗(t, z) = 0 for all (t, z) ∈ [0, T ) ×D0, and v∗(T, z) =

v∗(T, z) = Ū(z) for all z ∈ S̄. Then by Theorem 5.2, we deduce v∗ ≤ v∗ on [0, T ]×S, which

proves the continuity of v on [0, T ) × S. On the other hand, suppose that ṽ is another

constrained viscosity solution to (5.1) with lim(t′,z′)→(t,z) v(t
′, z′) = 0 for (t, z) ∈ [0, T )×D0

and ṽ(T−, z) = Ū(z) for z ∈ S̄. Then, ṽ∗(t, z) = v∗(t, z) = v∗(t, z) = ṽ∗(t, z) for (t, z) ∈

[0, T ) × D0 and ṽ∗(T, z) = v∗(T, z) = v∗(T, z) = ṽ∗(T, z) for z in S̄. We then deduce by

Theorem 5.2 that v∗ ≤ ṽ∗ ≤ ṽ∗ ≤ v∗ on [0, T ] × S. This proves v = ṽ on [0, T ) × S. ✷

6 Conclusion

We formulated a model for optimal portfolio selection under liquidity risk and price impact.

Our main result is a characterization of the value function as the unique constrained visco-

sity solution to the quasi-variational Hamilton-Jacobi-Bellman inequality associated to this

impulse control problem under solvency constraints. The main technical difficulties come

from the nonlinearity due to price impact, and the state constraint. They are overcomed
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with the specific exponential form of the price impact function : a natural theoretical

question is to extend our results for general price impact functions. Once we have provided

a complete PDE characterization of the value function, the next step, from an applied view

point, is to numerically solve this quasi-variational inequality. This can be realized for

instance by iterated optimal stopping problems as done in [9]. Moreover, from an economic

viewpoint, it would be of course interesting to analyse the effects of liquidity risk and price

impact in our model on the optimal portfolio in a classical market without frictions, e.g.

the Merton model. These numerical and economical studies are the topics of a forthcoming

work, see [23].
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