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Asymptotic derivation of the section-averaged shallow
water equations for natural river hydraulics

Luca Bonaventura? Astrid Decoene/Fausto Saleri

MOX - Modelling and Scientific Computing
Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano
Via Bonardi 9, 20133 Milano, Italy

Abstract

The section-averaged shallow water model usually applied in river and open channel
hydraulics is derived asymptotically up to second order in the vertical /longitudinal length
ratio, starting from the three-dimensional Reynolds-averaged Navier-Stokes equations for
incompressible free surface flows. The derivation is carried out under quite general as-
sumptions on the geometry of the channel, thus allowing for the application of the result-
ing equations to natural rivers with arbitrarily shaped cross sections. As a result of the
derivation, a generalized friction term is obtained, that does not rely on local uniformity
assumptions and that can be computed directly from three-dimensional turbulence models,
without need for local uniformity assumptions. The modified equations including the novel
friction term are compared to the classical Saint Venant equations in the case of steady
state open channel flows, where analytic solutions are available, showing that the solutions
resulting from the modified equation set are much closer to the three-dimensional solutions
than those of the classical equation set. Furthermore, it is shown that the proposed formu-
lation yields results that are very similar to those obtained with empirical friction closures
widely applied in computational hydraulics. The generalized friction term derived therefore
justifies a posteriori these empirical closures, while allowing to avoid the assumptions on
local flow uniformity on which these closures rely.

Keywords: Computational hydraulics; shallow water equations;Saint Venant equations.

1 Introduction

In environmental modelling of free surface flows, whenever the ratio between the vertical and
longitudinal scales is small enough, the so-called Shallow Water approximation is usually intro-
duced, in order to reduce the computational cost implied by the numerical solution of three-
dimensional free surface flow equations. Models based on this approximation are extensively
used to simulate various geophysical phenomena, such as rivers and coastal flows,[6, 8] oceans
and even avalanches,[1] and they have been used in hydraulics for a very long time. When
the viscosity is neglected and a rectangular channel section is assumed, the derivation of the
one-dimensional Shallow Water system is classical, see e.g.[13]. However, this derivation is un-
satisfactory, since viscosity effects are added a posteriori and the three-dimensional geometry
is not arbitrary.
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tastrid.decoene@mate. polimi.it
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In Ref.[7], Gerbeau and Perthame derive rigourously, by asymptotic analysis, a one -
dimensional viscous Saint-Venant system from the two-dimensional Navier-Stokes equations
with molecular viscosity, linear friction boundary conditions and flat bathymetry. The effect of
the viscosity is recovered in a one-dimensional friction term and in a one-dimensional diffusion
term, both resulting from the derivation. The final system is a second order approximation
— with respect to the ratio between the vertical and longitudinal scales — of the original two-
dimensional model. Other systems have been derived in the same spirit. In Ref.[12], the asymp-
totic analysis is made through a variable change in a reference domain, independent of the ratio
parameter and time. Marche proposes in Ref.[10] the derivation of a two-dimensional viscous
shallow water system taking into account capillary effects, varying bathymetry and a molecular
viscosity. However, in order to simulate realistic river flows, three-dimensional geometries and
turbulence phenomena must be taken into account. Thus, the Reynolds-averaged Navier-Stokes
equations (RANS) on an arbitrary three-dimensional domain are a more appropriate starting
point for the derivation of simplified systems. In Ref.[5], Saleri et al. derived a two-dimensional
viscous shallow water system from the three-dimensional RANS equations, taking into account
a non-flat bathymetry, atmospheric pressure effects and considering a constant vertical eddy
viscosity and linear friction boundary conditions.

In this paper, we have chosen to proceed as in Ref.[7], extending the analysis to the three-
dimensional RANS equations with anisotropic Reynolds tensor for free surface flows in arbitrary
geometry, with nonlinear friction boundary conditions entirely analogous to those actually used
in practice in hydraulics applications. We present a rigourous derivation of the section-averaged
system, including the effects of eddy viscosity and friction. This derivation is also aimed at
providing an adequate framework for the rigorous derivation of coupling between three- and
one-dimensional free surface models. The equation system obtained allows to compute the free
surface level of the flow as well as a section-averaged velocity. If applied to channels with
rectangular cross-section, this system is similar to the classical section-averaged shallow water
equations [11], except for the friction term. Indeed, our derivation shows that, in order to take
into account effects up to the second order in the asymptotic parameter, the classical friction
term should be corrected by a term which depends on the turbulent vertical viscosity. This
conclusion is in agreement with the one of Gerbeau et al. in Ref.[7] for two-dimensional flows
with constant viscosity over a flat bathymetry. Indeed, if the vertical viscosity and friction
coefficients are taken to be constant and the flow is homogeneous in the transversal direction,
we retrieve the same friction correction as in Ref.[7]. However, our derivation provides the
expression of the friction correction term in a more general case, which includes turbulent
flows, nonlinear friction boundary conditions and three-dimensional arbitrary geometry.

In particular, we compute the correction term associated to a specific model for the verti-
cal profile of turbulent velocity. Furthermore, for steady state open channel flows admitting
analytic solutions of the three-dimensional as well as the simplified models, we show that the
solutions computed including our correction term are much closer to those of the three dimen-
sional model than those of the standard shallow water model. If empirical friction closures
are introduced, as commonly done in computational hydraulics (see e.g.[2]), one obtains results
very similar to those of our generalized friction term for steady state open channel solutions.
Thus, the generalized friction term resulting from the present derivation justifies a posteriori
these empirical closures, while allowing to avoid the assumptions on local flow uniformity on
which these closures rely. The friction correction term can be easily included in section aver-
aged models such as the one proposed by Deponti et al. in Ref.[3], [4]. Its use is also expected
to ease the coupling of three- and one-dimensional free surface models in the framework of an
integrated hydrological basin model.



3. Asymptotic derivation of the section-averaged shallow water equations

In section 2 of this paper we review the three-dimensional RANS equations and their bound-
ary conditions. Then, we derive the section-averaged shallow water model in section 3 and in
section 4 we give the expression of the friction correction term in the laminar and turbulent
cases. Finally, in section 5, we compare the analytical solutions of the three-dimensional and
the section-averaged models in the particular case of steady state open channel flows with
rectangular cross-section, in order to show the accuracy gain achieved by adding the friction
correction.

2 The Reynolds-averaged Navier-Stokes equations

2.1 The three-dimensional equations with boundary conditions

We consider the motion of an incompressible fluid with constant density p > 0, in a three-
dimensional domain ; = Q(¢) which is normal with respect to the vertical direction z. We
denote by w the projection of §2; on the zy-plane, defined as follows:

wt)={(z,y) €eR*/0 <z <L, li(x,t) <y <lo(z,t)} ,

where [; and Iy are the time and space dependent transversal limits of the flow, and L its
length. We assume the bottom of the domain to be fixed and impervious. We call n and b the
functions describing the free surface and the bottom, which is assumed to be fixed in time. The
three-dimensional domain is defined by

O = {(z,y,2) e R/ (2,y) € w(t), b(x,y) <z <n(z,y,t)},

as illustrated in Figure 1. The boundary of the domain €); is denoted by 9€); and can be
decomposed into four separate parts: the free surface I's(¢), the bottom surface 'y, the inflow
boundary T';,(t) and the outflow boundary T, (t).

1) p / Lxb x

Figure 1: Three-dimensional domain

The governing equations for the motion of the fluid are the incompressible Reynolds-
Averaged Navier-Stokes (RANS) equations in €2, valid for any ¢ € (0,7, which can be written

as follows: I .
= _v. (=
dt <p0'T> .f +g9, (1)

V.U = 0,
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where U = (u,v,w)? is the velocity of the fluid, o is the stress tensor, f = (fu, fy, f2)T
d
the sum of the external forces applied on the fluid, 7 denotes the total time derivative and

g = (0,0,—g)T the gravity acceleration. We only consider Newtonian fluids, for which the
tensor o is written in the following way:

where p is the pressure and o the viscous stress tensor. Since we are considering flows in
presence of gravity, that is aligned with the vertical direction, we consider a turbulence model
given through an anisotropic relationship between the stress tensor o and the strain-rate tensor

D= VU + (VU)".
Following Levermore and Sammartino in Ref. [9], we take:
o paDi2 peDig
o = | D2 o022 pDos |, (3)

poD31 pyD3o D33
where

1 1
011 = ,Uh(]D)ll — 5(]1)11 + ]D)QQ)) + ,Ue§(]D)11 + D22)7

and ) )
092 = pp (Do — 5(]@11 + D)) + ,Ue§(]D)11 + Dga).

The positive coefficients up, p, and p. are the eddy viscosities. They can be interpreted as the
eddy viscosity relative to the horizontal shear motion, the eddy viscosity relative to the vertical
shear motion, and the bulk viscosity relative to the expansion rate in the horizontal direction,
respectively.

The system is closed by suitable initial and boundary conditions. We denote by n, the
outward normal to the free surface, which depends on time:

_ 1 on on 4

Nng T 7"\ a9 )
\/1+yvn|2( oz~ 0Oy

and by ny the outward normal to the bottom:

)

1 0b 0b 7

ny = a. 049 v
’ \/1+|Vb|2(8:r dy

while vectors t; ; and t; 2 form a basis for the tangent plane to the bottom surface:

)

1 b
tb,l = 3 (1,07 a—$ T7
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and

In a viscous flow, the velocity is zero on a solid wall, so that the so-called “no-slip” condition
should be applied on the bottom:

U=0 on I. (4)

However, the boundary layer at the bottom is hardly ever resolved at typical resolutions of
environmental models. Furthermore, it is necessary to describe in some approximate fashion the
subgrid scale surface roughness. Thus, condition (4) is generally substituted by two boundary
conditions assigned at a small distance Az, from the wall, which represents the typical length
scale of the bottom boundary layer. In addition, the velocity is considered zero at a distance
Az of the wall, which represents the typical length scale of the bottom surface roughness, and
should be much smaller than Az,:

Azy << Az (5)

The first boundary condition is a kinematic condition:
U-n, =0 at z=0b(z,y) + Az, (6)

and the second one is a dynamic condition which accounts for friction effects:
1 T
(EJT-nb) -ty = —a||U||U -t at z="b(z,y) + Az, (7)

where o > 0 is a dimensionless friction coefficient. Note that n; and ¢, are, respectively, the
outward normal and a tangent vector to the bottom surface, so that condition (7) is indeed an
assumption on the profile of the tangential velocity component along the direction normal to
the bottom surface. A logarithmic wall law is usually assumed for tangential velocity near the
bottom, see e.g. [11], so that a parabolic model is chosen for the vertical eddy viscosity, as well
as a particular value of the friction coefficient «, depending on the value of Az, that will be
described in greater detail later. In the following we will denote z,(z,y) = b(z,y) + Az,.

At the free surface, the velocity of the fluid is equal to the velocity of the free surface itself.
This is expressed by the following kinematic condition:

0
8_7157 —U-ns =0 on T'4(t). (8)

The dynamical condition at the free surface takes into account the atmospheric stress,

where p, is the atmospheric pressure.
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2.2 Adimensionalization of the system

Let us consider the following absolute scales: L for the total length, H for the depth and U
for the z-component of the velocity. We denote by e the ratio between the vertical and the
longitudinal scales:

H
€= —.
L

In addition we introduce the following dimensionless quantities:

Kh _,Uv Z/:,Ue G:E p:pa
e pUL’ UQ.g? a pU2

The scale for time is L/U, for the vertical velocity it is W = e U, and for the pressure P = p U2
For the sake of simplicity we indicate again by u, v, w, p, n and b, respectively, velocity
components, pressure, free surface and bottom elevation, after rescaling. Using these notations
in (1) we obtain the following adimensionalized system, written as a function of the primitive
unknowns u, v, w and p:

(Ou  Ou® Ouwv Ouw Op

ot or "oy T o: Tos

)08 208
(5 2)

(g - -3

v  Ouwv Ov: Ovw Op

E—i_ ox +8—y+ 0z +8y N

2 8_w+8uw+0vw+8w +@——G+£ y%—ke%a—w
ot o Ay Dz o ox \ "0z Tz

-l—g V@ +62g I/a—w +g 2ya—w
oy \ "0z oy \ "0y 0z 0z )’




7. Asymptotic derivation of the section-averag

ed shallow water equations

Coherently, the rescaled boundary conditions are, on the free surface I's(¢),

(On  On  On _
E—i_ 8:1:+ ay
on ov on ov  Ou
8a:<p (vn +ve) g + 0 E)ay> By ( n5a ay>
(Lo owy o
"\eoz ox) Oz’
on v  Ou on ov ou (11)
ax< (a 8y>> a( ~ ) g+ 0 Ve)@x)
1 0v 8w B @
6282 _paE)y’
_on (0w 20w\ _On [ (0v  ,0w\)
02 \""\ 2z T 0z oy \""\ 2z " oy P
ow
+2Vea—_paa
and near the bottom at z = z,,
(u@ ob w
Ox 8y_ ’
ox h “Ox h “ Oy “0z oy "\ 0z Yy
(Y L ou 0w
oz €2 "\ 82 oz
L W[ (0, 0w
ox oy \ " \ 0z oy
1 ob
- _ m - -
avu® 4 v4 4 e“w Eu—i-eaxw N (b,e), (12)
% v 8v+8u +% (v +I/)@—(l/ —I/)@—QI/a—w
or \ "\ oz " dy y \" " oy VT o 0,
o\ 1 v LOw
+ {5 ) — 5 ) (w(a+es
dy €2 0z oy
Wb [ (0 0w
ox oy \ "\ 0z ox
= —avu? +v? + w? <1v + e—w) N(b,e¢).
€ oy
(
where
B 0b .5  5,0b,
N(b,e>—\/1+e (5o + (50
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3 Derivation of the section-averaged shallow water model

3.1 Second order approximation in ¢

In order to derive our section-averaged shallow water model, a number of approximations have
to be performed. Firstly, we assume that the vertical eddy viscosity is first order with respect
to the ratio between the vertical and longitudinal scales, that is,

Uy = € Upo, (13)

where v, ¢ is a given positive quantity. This assumption can be justified by a simple dimensional
analysis. Indeed, following the Prandtl hypothesis, the eddy viscosity is homogeneous to a length
times a velocity, and more precisely

I
i I |IDY], (14)

where [,,, is the mixing length of the turbulent flow and ||D|| is the norm of the strain-rate
tensor. When considering the vertical eddy viscosity, I, is homogeneous to a depth and the
strain-rate tensor reduces to the vertical acceleration, therefore we conclude that

ou
0z

7

_Nl?n

: (15)

Note that Prandtl’s mixing length model — see for instance Ref. [11] — is based on this assump-
tion. Adimensionalizing this expression of u, gives:

~2 [U? [, 04 00 ow ~2 100
Li ~ H2 U™ [ OUyg OV 9 DY) Lyl | 1
UL, ~ HL, \/H (Gor e G+ Gor) ~vmnt |2, ao)
where the “hat” denotes here the adimensional variables. Thus
)
o lyy |00
v = S0~ ¢, |as (e) (17)

Moreover, the horizontal and bulk viscosities are of same order as the vertical eddy viscosity,
and therefore we can write:

Vh = € Uhyp, Ve = € Ve, (18)

where v, and v, are two given positive quantities. Finally, we assume a slow varying
bathymetry in the longitudinal direction, as it has been done often in these derivations — see
for instance Ref. [5] —, and we consider a constant atmospheric pressure, that is

% =0(e) and Vp,=0. (19)
ox

Since our aim is to obtain a second order approximation with respect to € of the three-
dimensional system, we neglect quantities of order O(e?). In this way, under the previous
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assumptions, (10) becomes:

( Ou
ot

v
ot

0z

@
ox

ou?

—+—+

ox

Ouv
ox

oy 0z or ¢ ox h,0 0 9z h,0 &0 oy
+ g (8_u + @) + 1 g 8_u + g a_w
‘ oy Vo oy Oz ¢ 02\ “o: "%z )
6_1)2 + &}_w + @ — 2 (@ + @)
oy 0z oy “or \M0 oy O

68y h,0 e,0 8y h,0 e,0 O c 02 v,0 02

R
‘9z \7V0 oy )’

g4l ouy O N O (,, Ow
B “or \""az ) Ty \"0h, ) T8, \ 0, )

0 oy oy
+1I/ @—i-ey dw _ On
v,0 92 v,0 Oz paaxy

RO O T
v,0 02 v,0 Ay = paayy
ou 0 ov
(6 UOaZ) a_Z(GVU,O&) _p+257/e,06_ Pa,

(21)



10. L. Bonaventura,A. Decoene,F. Saleri

and near the bottom at z = z,,

0b 0b

U— +V— =W,

% €(Vho+ . )a—u—e(u -, )@—261/ ow
Oz h,0 e,0 Oz h,0 e,0 8y e,0 0z

L[, (o0 Y 1w ou
dy O\ Bz dy e W0, TG

(22)

where u = (u,v) is the horizontal velocity. Notice that, neglecting terms in O(e) in (22)2 and
(22)3, we obtain the classical boundary condition on the bottom (see e.g. Ref. [2]) :

ou

= —af|lul|u.

3.2 Vertical integration of the equations

We will now vertically-integrate system (20) between the free surface and the reference level z,
at which the bottom conditions are given. We will denote by h the corrected water depth, that
is the real water depth corrected by the distance Az,:

h(l‘,y,t) = 77(1‘7?/,75) - zr(xvy)
= U(vayvt) - b(l‘,y) — Az, (23)

Then, for any three-dimensional variable f, we denote with f the average along the vertical
direction,

1 n
f(l',y,t) = m/@ f(x,y,z,t)dz.

Let us first vertically-integrate the momentum equation (20); for u between the reference bot-
tom level z, and the free surface. Making use of the Leibnitz rule yields:
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ohi  Ohu? O  Ohp ww(n) — ww(zy) — M) — 01
ot | or | oy | ox K e " T b

ob 4 on ob on ob

o [ ou ov
— %/Z <(—: (Vho + VB’O)E?_:E —€e(vpo — Ve’0)8_y> dz

L (e ),
0y /., € Vh,0 oy O :

0 ou ov

- 8_Z (6 (Vho + Ve,O)% —e(Vno — Ve,o)a—y> .
on Oou  Ov

T oy <6 Vh,O(a_y + %)> s

T O L A A L
o €(Vh,0 T Ve,0 O €(Vh,0 — Ve,0 By

+ b €V, (%-i-@)
oy h.0 Jdy Oz

Z=2Zr

2=z
n 1 ou n 811)‘
— U, - € U, - .
€ v,0 0z In—2z, v,0 ox ln—2z,

Using the kinematic boundary conditions (21); and (22);, as well as (21)2 and (22)2, the
equation reduces to:

ohu Ohu® Ohuv Ohp  On allu(z)|] b
ot T or T oy T ow T Peo o ) = gpp(E)

+ —/77 o+ o) — o —ve0) ) e (2a)
. € O . h,0 e,0 Oz h,0 e,0 Ay

+ eg/n v (%—F@) dz
dy /.. Yoy " ox ‘

ob ow
+ 2e 8_:75(%’0@)

On the other hand, by vertically-integrating equation (20)3 between z and the free surface, we
obtain:
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m/ o ou 0 v
p= o) + G- — ¢ [ (G + e @

0
—) + 2¢€, 0_w
0z z=n T 0z

_ a [ ou on ou
= v + Gl=2) — e o [ (o a5 + ¢ 3 (o)

o [ ov on ov
L ) )

Lo ow
EVe O -
zZ=n &0 0z

— 2¢€ (Ve,O

z=n

zZ="

w
— 26 (VB,OE)

Applying now the dynamic condition (21)4 at the free surface, we deduce the following expres-
sion for the pressure:

ow o [ ou
p = ps + Gn—2) + 2eye70$ — e%/z (VMO%)CM

(25)
o [" ov
— € a—y . <VU,O%> dé + 0(62).
Note that the pressure near the bottom at z = 2, is given by
w a [" ou

r) — Pa h 2 e, 0 5 _ - . v,0 5 d

p(z) Pa + Gh G(V’Oaz)z:zr eax/zr (V’08z> ?
(26)

o [ ov 9
— € 8_y/z <VU,O%> do + O(e),

b
and therefore, recalling that i 0(¢), we can conclude

o o b
a_$p(zr) = paa_x + Gh%‘i‘O(E ) (27)
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Let us now vertically integrate this expression of the pressure from the bottom reference depth
z = z, to the surface:

0z

m/so M ou P .
~e [ (G [ o oo+ 3, [ veagpris)

2 n
= hp, + Gh— + 26/ (Veogqj)dz

- <8z// Vvoa(s d(5dz+—// Vv085 d(5dz> (28)

ou 0b
€ <ax/zvr (Z/’U,Og)d + ay . (Z/’U,Oaz)dz>

h? K
=  hp, + G— + 26/ (VGO

2 n
hp = hp, + G% + 26/ (1/@708—w)dz
Zr

ow
0z

(83:// Vyoa(s d5dz+—// Vyoa(s dddz).

The momentum equation (24) therefore writes:

)dz

oht  Ohu?  Ohuw d h? aoflu(z)| ob
8t+ax+8y +G8_:E7__ € uz) = Gh8_$

0 N ow o (" ou Ov
Y P et = o2y
683: </ZT(V670 az)dz> T ay/ZT < h0(8y+8x)> dz
o [" 0 ov
+ € %/z,« <(Vh,0 + Ve’O)a_;L — (Vho —ve 0)8y> dz

(8:10// VUO@& d5dz+—// Vyoa(s dédz).

An analogous equation can be obtained by vertically integrating the continuity equation (20)4:

Oh  Ohu  Ohv

3.3 Section averaged equations

Since the equations are now vertically-integrated, they are defined on w(x,t) x I, where we
recall that w(t) = {(z,y) € R? /0 <z < L, ly(z,t) <y < ly(x,t)}. We can therefore integrate
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them along the y-axis between [y (z,t) and l2(x,t). In addition we point out that, for any scalar

quantity f, , i
< / r fdz) (y:ll = ( / r fdz> \yzb _ 0. (31)

This assumption is justified in the case of a natural river, whose depth tends to zero as the
banks are approached. Note however that we can retrieve the same section averaged model
under the hypothesis that

ol

Ox
as happens for instance in straight or mildly curved channels. For the sake of clarity we do only
report the derivation in the first case, that is with hypothesis (31).

oly

T = 0(e), (32)

= O(¢?) and

We denote

la
A(z,t) :/l h(z,y,t)dy,
1

- l2 prn
f(.iU,y,t) = ﬁ/ / f(:v,y,z,t)dzdy,

l

l2
Q($,t) = /l /nu(x7yvzat)dZdy = A(l‘,t)ﬁ(.ﬁ,y,t}-

(s

From now on we make the further assumption that the transversal velocity v is small with
respect to the longitudinal velocity component w. This hypothesis is consistent with regimes
that allow to use a section averaged model on u. We therefore assume that:

Il _

O(e) . (33)

ul

We integrate the momentum equation (24) on u. Using the Leibnitz rule and (31), we obtain:

8(AT) (A 2 9 (p2
o T e ) wm\7

Y =~ 1 [ allutznluteniy

I

b2 ob 0 la rm ow
_ G s hﬁ_xdy — 26% </11 /ZT (Ve70£)dzdy>
o [tz m o P
+ € 3_96/11 /ZT <(1/h,o + Z/e,o)a—z — (Upo — Ue’0)8_Z> dzdy

O ([ [T  ou
+ 6@</Z1 /ZT/Z (VU,()% )d(SdZdy> .

2 g (h? 2 9n L ron  ob
(= )dy = ——hdy = —h——h)dy.
of g (7)o = o o = o [ (Gn-5)

(34)

Note that
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Note also that, from the continuity equation,

_26_</:/ Veo dzdy) — 26—</:/ u+—)dzdy> ,

and then, using this last expression in the right-hand side of (34), we obtain the following
section averaged momentum equation:

Q aQZ l2 877 1/l2
ot ox L O 7.0 e ). o [u(z)|[u(zr)dy

o [tz [ ou Ov
€ a_fﬂ/h /ZT <Vh,0(% 8y)) dzdy

35)
2 Ou 81} (
+ 36 — / ( )) dzdy
noJs 8y
l2
v d(5d d
w gl [ [eagma,
where
5 la prn 1/2
= </ / u?(z,y, 2, t) dzdy) i
l
Denoting by ( the momentum correction (or Boussinesq) coefficient
lo 2
/ / u_ dz dy,
1 Jzr
we have that _
aQZ ﬁQQ
ox Oz A
The integration of the continuity equation (30)4 gives
0A oQ
il e
ot * ox ’ (36)

that is the classical continuity equation of the one-dimensional open channel equations.

3.4 Asymptotic analysis of the section-averaged equations

We now go back to the three-dimensional equations in order to model th e friction term and show
that we can neglect the last viscous term in the right-hand side of the momentum equation (35).

From the three-dimensional momentum equation (20); we deduce that

5 (nogr) = 06! (37)
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0
In addition, boundary condition (21)s indicates that I/U’O—u = O(e) at the free surface. Func-

0z
0
tion z — Vu,oa—u is of the order O(e) at the surface boundary z = 7, and so is its derivative
z
with respect to z. The function is therefore of the order O(e) along the whole depth, that is :

)
VU,Oa—Z =O0(e) on Q. (38)

ou
Since v, ¢ is independent of the ration €, we can conclude that — = O(e) and therefore :

0z
u(z,y,z,t) = a(z,y,t) + O(e). (39)

Equation (38) has two important consequences. First, it shows that the friction coefficient «
is necessarily also of the first order in e. Indeed, from boundary condition (22),, we have that

Vv708_u = af|ullu + O(?) at z = z,. Thus, since Vu,oa—u = O(e) on €, we have that a = O(e).
z
In the following we will assume that

a = eqp. (40)

On the other hand equation (38) shows that the third viscous term in the momentum equation
(35) is second order in .

Furthermore, from (25) we know that

p(a:,y,z,t) = pa+G(T]—Z)+O(6). (41)

Using (39) and (41) in the three-dimensional momentum equation (20); we can write:

1 8< 8u> ou Ou®> Ouv Ouw Op

<9z "%, o or "oy To: Ton

z

ou 0u®> Ouv Ouw on
o T Ty T as TG T O (42)

ou da o o

Note that for the last step we use the fact that, from continuity,

~ Ow _Ou  Ov _ou 0Ov

U& = _U(a_$+a_y) = —u(a—$+8—y)+0(€).

On the other hand the vertically-integrated momentum equation (24) gives

h @-i-ﬂ@-i-@@-i-(;@ +u %4-@4-@
ot ox oy ox ot ox dy

=  — aollu(z)||lulzr) + O(e),
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and using the vertically-averaged continuity equation (30),

ou ou _Ou oh  aollu(z)||u(z)
ot T Ty T T h + Ole).

Replacing this expression in (42) we have that

10 < au> __ collu(z)||u(z)

e Vu,Og h + O(e).

Let us now integrate this expression from the bottom reference depth z = z, to z:
1 Ou 1 ou apllu(zr)|| u(zr) (2 — b)

EVU’O& = E(VU?O&)LZ:ZT h

+ O(e).

Using boundary condition (22)y we get:

1 ou z—b
frnge = alluCl) (1-552) + 06

so that
ou z

Ep = eao|lu(z)||u(z) <7LV;

v,0

> + O(é?).

We vertically-integrate again this expression from the bottom reference depth z = z,. to z,
yielding

n—246
u o= ulz) +6a0||u(zr)||u(zr)/ 1205 + 0
2 th,O
(43)
r N -0
= u(z) <1+60‘0”“(Z)”/ 1 d&) + 0(e).
h 2 VU,()
Integrating on the vertical and dividing by the water depth h we obtain:
1 [
0= 5[ uds = uz) (@t cadllutn)l|mia) + O, (44)

where for the sake of simplicity we have denoted

1 [ [#n=94§
m(vyp) = ﬁ/ / 77V - dddz.
Zr Zr v,

Equation (44) leads us to two important results. On one hand, it gives us some information
about the Boussinesq coefficient 5. Indeed, from (43) we deduce that

2 r -
@ = i) (14 220l P20 45 4 o),
Zr v,

and therefore:

%/Z‘flﬂdz = UZ(ZT) (1 +26a0||’u,(2’r)||m(yv70)) + 0(62)

= u? (1 — 2eap[u(z)][m(ve,0)) (1 + 2ea0| [u(z)[[m(10)) + O(€?)

= a2 + O(e?).
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Thus _
w2 = @’ + 0(62), (45)

which means that, up to the second order in ¢, the Boussinesq coefficient § only depends on
the transversal variations of the velocity v (and not on its vertical variations). Indeed:

l2
ha?dy
1 [k /” 2 /11
Zr

1 —dzdy = A l 5 + O(€2).
2
B )
1

72
On the other hand equation (44) allows to model the friction term, that is:

S

B3 =

la
/ ol [z (2 )dy (46)

51
For this purpose we need to express the velocity at z = z,. with respect to the vertically-averaged
velocity . From (44) we have that
|l

2
T+ caoluC[mtveg) T O (47)

u(zr)| =
In addition, assumption (33) gives:
luz)ll = Vulz)? +o(z)? = Julz)]+O0(). (48)

Using this expression of ||u(z,)|| in (47) yields:

|l

2
T - ) 4
L T g Tt O o
and the friction term writes:
agllu(z)||u(z) = aolu(z)|u(z) + O(€?)

o |u| u 2

(T cao o) mGreg)? T O

_ Qo |u| U + 0(62) )

14 2eaq |[u(z,)| m(vy0)
Furthermore, using (49) we can write that:

2 b
1 + 2eaq|u(z)|m(vyp) = 1 + eag |ubl m(vy o)

1+ e |u(zr)| m(ve0)
1+ 2eaq [ubl m(vyo)(1 — eag [u(z:)| m(v0)) + O(€?)
1 + 2eaq [ublm(vyo) + O(€?) .

Neglecting the O(¢2?) term, we finally obtain an approximation of the friction term (46) which
is independent of the velocity at z = z,, that is:

l2 l2 o |ulu
- [Cattenlutendy = -1 [ an oy (50)

€Jiy e Ji, 1+2am(vo)lul

In this way we have overcome the initial difficulty and we use expression (50) to model the
friction term in the momentum equation (35).
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3.5 The section averaged shallow water model

We have derived a section-averaged shallow water model which is an approximation of the
second order in € of the initial three-dimensional free surface flow problem (1) with boundary
conditions (6)-(9). Switching to the dimensional variables, this model writes:

oQ o [ Q2 on oo || a
a1 +ax<5A>+g/h hoe® = /l e W
(L) )
l
0 oy (Ou O
" a—</ L?(%‘a—y)dzdy)

0A 0Q

where

20"“’/ / P0=9) 454, (52)

acts as a correction to the classical one-dimensional frlctlon term, and (§ is the momentum
correction coefficient l
2
/ ha?dy
5

8 = AZQ—Q. (53)
( / hady )
I

This model results of a direct asymptotic derivation from the three-dimensional free surface
flow equations. In addition, this derivation is very general since it is valid for flows with arbitrary
cross-section, non-constant, turbulent viscosity and non-linear boundary conditions. Thus, we
expect the coupling of such a reduced model to a three-dimensional model to be easier and yield
better results.

4 Computation of the corrected friction term

In this section we give an explicit expression of the friction correction to use in the laminar case
and with a parabolic turbulence model for the vertical eddy viscosity.

4.1 The laminar case

We first consider the case where a constant vertical viscosity u, is used. Note that in order to

be consistent with our analysis, its adimensional value v, = % must be O(e). In that case
p

_ 3
// P=0) ysgn = P
Ho 3

and therefore the correction (52) of the frlctlon term writes:

we have that

Cq = ——ah|ul. 54
Sl (54)
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Note that in this case we retrieve a friction correction term which is very similar to the one
presented by Gerbeau et al. in Ref. [7]. Indeed, starting from a linear friction boundary
condition, Gerbeau et al. obtain the correction:

_ 1y

-7 55
3w (55)

cf
where f is the constant friction coefficient considered in their model. In our analysis, we have
started from nonlinear boundary conditions, which explains the difference in the friction cor-
rection for this special case. If repeating our derivation under the hypothesis of 7], exactly the
same correction is obtained.

If the flow is homogeneous in the y-direction and has a rectangular-cross-section, u = Q and

A
the friction term in (51) writes

a1Q)
- Q. (56)
h2l <1 L2P, @>
3y

4.2 Parabolic model for the vertical eddy viscosity

Let us now consider a turbulence model, see e.g. [11]|, which assumes a parabolic distribution
of the vertical eddy viscosity over the water depth, vanishing on the bottom:

% = rku*(z—b) <1—%), (57)

where « is the von Karman constant and ux the friction velocity, defined by ux = +/||ml||/p,

Tp being the bottom stress. Note that A + Az, is the real water height. A simple dimensional
Ho

pUL

analysis shows that we have v, = = O(e) as expected.
In the case of a uniform flow in an open channel, this turbulence model allows to retrieve
a logarithmic profile of the tangential velocity component of the form:

Ut z—>

mo ). (58)

u*

where wu; is the tangential velocity component and Az is the distance to the wall at which the
velocity is zero. Note that in this case, from boundary condition (7) at z = z,, we can retrieve
the value of the friction coefficient « for which the profile of the tangential velocity is actually

(58), that is:
)
Az,
a = K htaz . (59)

Az, 2
In
( (AZO))
In the general case, for strongly three-dimensional and non-uniform flows, it can be assumed

that the tangential velocity has a logarithmic profile of the form (58) inside a boundary layer
near the wall. The parabolic viscosity model (57) can therefore also be applied to general flows,
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together with definition (59) of the friction coefficient.

The asymptotic analysis in section 3.4 has shown that the friction coefficient « is of the first
order in e. Following definition (59), this gives a condition on the ratio between the distance
to the wall Az, at which the friction condition is imposed, and the distance to the wall Az
at which the tangential velocity is zero. It will be checked in the following that the values we
consider for this coefficient in section 5 are indeed compatible with a reasonable choice of e.

Let us give an expression of the friction correction term with this turbulence model. By
analytical computation we have that

// (n— 6d5d Azr(h—l-AzT) h+ Az, In h+ Az, )
Az, Az,

The friction correction (52) then writes:

Cq —

2alal ((h+ Az.)? h Az, (h+ Az,)
( e In(1+ Azr) - :

ru*

Coming back to the adimensional variables and using (44), we have that:

alu eap |t €Q qu
alil _ canldl _ caoluGrll | o)
u* u* u*

where the “hat” denotes here the adimensional variables. Therefore, up to the second order in
6’
alul  alu(z)
u* ut

Now, considering that z,. is near enough to the wall to be inside the logarithmic layer, we can
use equations (58) and (59) to obtain:

Az,
) = (fai-32).

We finally retrieve the following expression of the friction correction:

2
2\« (I—AZT) ((h—i—Azr) (1 h _Azr(h—f—Azr)) '

In(1+ Az,_) " (60)

If the flow is homogeneous in the y-direction and has a rectangular-cross-section, u = % and

the friction term in (51) writes

a @l Q

h2l( \/—\/7<h—|—Azr (1 +AZT)_AZT(}L;AZT)>> :

(61)
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5 Comparison of the three-dimensional and the section-averaged
solutions in the case of flows with rectangular cross-section

Our aim is now to illustrate the accuracy gain achieved by taking into account the correction of
the friction term in the section-averaged model. In addition, we want to compare the friction
term derived here to one of the empirical closures widely used in computational hydraulics (see
e.g. [2]). For this purpose, we restrict ourselves to the case of rectangular cross-section open
channels, for which steady state solutions can be computed analytically. Note that these flows
are representative of the main physical features of river flows and are commonly used as a first
benchmark in many hydraulics applications.

In this case the water depth h is constant along the y-direction and, denoting by [ the width
of the river, the section area is A = [h. In addition we suppose p. = up = 0. The section
averaged shallow water model then writes in the more classical form:

lo o
@+Q<BQ—2>+9A@=—/ a|u|ﬂdy
l

ot ox A ox , IT+eca

(62)
0A QR
e + ol 0.

Note that the Boussinesq term (53) then reduces to § = [

(/hbudy)Q'

We emphasize the fact that in this particular case we obtain the classical section-averaged
equations,[3] with a correction of the friction term.

Remark 5.1 If the flow is homogeneous in the y-direction, we have that u = Q and therefore

A
the friction term writes
a @l
el
A? (1+cq)
Without correction the friction term reduces to
a Q[
- A2 Q7

which is the expression of the friction in the classical section-averaged shallow water equations.

We choose a three-dimensional test case with an analytic solution, to be compared to the
analytic solution of the section-averaged model with and without friction correction. The test
case consists of a steady state turbulent flow in a channel with a slight slope i, as illustrated
in figure 2.

We take the channel as the reference configuration — (x,y, z) in figure 2 — and we suppose that
ph = pte = 0. The flow is steady and uniform in the z-direction, and the free surface is perfectly
parallel to the bottom, that is:

0b

9% \T _ T
ax,O) , U = (u,0,0)". (63)

Vi =(
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Wx)

)8

Figure 2: Uniform flow in a chanel with slope

Rewriting the three-dimensional RANS equations (1) in the new reference configuration, and
considering (63), we retrieve the following system:
10p

23 Ho ou

1 _ . 29 w2 Ho OU 4
or gsinf + (cos”f —sin” ) 87;( p 87;) (64)
Lop = —gcosf + 2cos€sin9(c0529—sin29)£(& %), (65)
p Oz 0z p 0z

where 6 is the angle of the slope. The boundary conditions on the free surface are:

Ho Ou

P = DPa and ? % = 0, (66)
and near the bottom at z = z,: 5
T = avO)lulu, (67)

1
(cos? § — sin? 0)2"

0
Since u does not depend on x, we deduce from (65) that 8_p is independent of =, and therefore
z

where ¥(6) =

0
also the pressure p. Thus a—p = 0 and equation (64) reduces to:
i

d 1y Ou

@(? 5) = —g6(0), (68)

sin 0

(cos? § — sin? 0)2"
surface 7, and using boundary condition (66) we obtain:

where ¢(0) = Integrating (68) from an arbitrary elevation z to the free

ou p(n —2)
5, = g¢(9)T- (69)
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Integrating now (69) from z to the reference depth z, near the bottom we obtain the following
expression of the velocity:

w = ulz) + go(0) / ’ Wdé. (70)

This expression can be vertically-integrated on the entire water column in order to retrieve an
expression of the flow. Indeed,

la prm l2
= / / wdzdy = / <hu zr) + go(0 / / dédz) dy,
1 Jzr l1

and since the flow is homogeneous in the y-direction:

Q = Au(z,) + glo(d / / d(Sd

Let us now retrieve an expression of the velocity near the bottom at z = z,. From (69) with

z = z, we have that 5
u
e 28 = go(o)n.
p aZ |Z:Z'r

Using boundary condition (67) we obtain:
a|u(zr)|u(zr)¢(6) = gh¢(9),
and since in the particular case we are considering the velocity is always positive, we have that:

() = ghsinf ' (71)

«

Finally we have derived the following expression of the flow:

fghsind 7% pln =0
q:%:h %_i_gqg(e)/zr/zr%dédz, (72)

which is an analytic solution of the three-dimensional problem considered in this section.

This three-dimensional solution is to be compared with the analytic solution of the section-
averaged model (62) with and without friction correction. In the particular case considered
here we can easily derive the following analytic solution to the section-averaged equations:

ghip
o

g =h (1+cq) - (73)

Note that if the correction of the friction term is not taken into account in the section-averaged

model, the analytic solution is:

ghip
panll

q=nh

(74)

Since ¢, and p,, can depend on the flow rate ¢, equations (72), (73) and (74) yield an implicit
relation between ¢ and h. We have solved this relation for different values of the water depth
h, in order to compare the analytic solutions of the different models. We have made several
comparisons that we describe next, and for which we have used a density p = lkg/m? and a
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value of the slope ip = 1072

First, we have compared the solutions in the laminar case, with a constant vertical viscosity
p = 0.01. In this case, consistently with the discussion in section 4.1, we have used a constant
friction coefficient a given by the Chézy law

a=g/x*, (75)

where ¢ is the gravity and x is the Chézy coefficient. Figures 3 and 4 show the profile of the
analytical water depth h as a function of the flow ¢ for x = 66.5 m1/2/s and y = 3Om1/2/s,
respectively. The solid line corresponds to the three-dimensional solution given by (72), the
starred line corresponds to the solution to the section-averaged model with friction correction

given by (73), wheareas the dotted line corresponds to the solution without friction correction
(74).

Chezy coefficient of 66.5

25 T T
_ 7 - *
~ *
- *
2k 7 * i
-
S -7
= 15F - g
= .
a e
[} Py
D e
- 7
m 7
T 1f K g
= p
Vi
— — —section—averaged without correction
051 . . . g
* section—averaged with correction
—3d
7
4
0 1 1 1 1
0 0.5 1 15 2 25

Discharge (m2/s]

Figure 3: Analytic solutions for the three-dimensional problem (solid line), the section-averaged
problem with friction correction (starred line) and without correction (dashed line). Laminar
case with v = 0.01 and with y = 66.5.

We have then compared the solution of the different models in the turbulent case, using the
parabolic model (57) for the turbulent vertical viscosity, and the friction coefficient « given by
definition (59). For this case we have chosen Azy = 107° m and Az, = 0.03h m, but similar
results can be obtained with a wide range of values for these layer amplitudes. Figure 5 shows
the profile of the analytic water depth h as a function of the flow ¢ for the different models.

As we can see, the analytic solution of the section-averaged model is much closer to the
three-dimensional solution when the friction correction is taken into account. This is true when
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Chezy coefficient of 30

4.5 T T
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35+ e |
3F -7 |
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Figure 4: Analytic solutions for the three-dimensional problem (solid line), the section-averaged
problem with friction correction (starred line) and without correction (dashed line). Laminar
case with v = 0.01 and with y = 30.

taking a constant vertical viscosity, as well as when using the parabolic turbulence model. The
results obtained in this test case, which is a relevant regime for river hydraulics, confirm that
the classical friction term in the section-averaged shallow water equations should be corrected
as defined in (51).

However, in hydraulic engineering, the classical section-averaged model is often used with
empirical closures that yield a friction coefficient a depending on the fluid depth. For instance,
in the case of uniform flows, the friction coefficient « used in the section-averaged equations can
be derived from the Chézy law (75) by some assumption on the turbulent velocity profile. In
the case of a logarithmic velocity profile and assuming the standard values for the von Karman
constant, one can derive the following formula for the Chézy coefficient:

h+ Az,

= 7.83In (———
x n ( eAzg

) (76)
where we recall that Azg is the distance at which the velocity is supposed to be zero, and Az,
is the reference distance to the wall at which the wall law condition is imposed. Carrying out
the same derivation for the three-dimensional equations yields instead the following formula for

the Chézy coefficient:
2Az,

€Az

x = 7.83In( ) . (77)

Our aim is now to compare, in the case of uniform steady state flows, the solutions of the
different models: 1) the three-dimensional model, 2) the section averaged model with and 3)
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Parabolic turbulence model
T
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Figure 5: Analytic solutions for the three-dimensional problem (solid line), the section-averaged
problem with friction correction (starred line) and without correction (dashed line ). Case with
a parabolic turbulent and « given by (59).

without friction correction, all using the analytic value of the friction coefficient @ given by
(59), and 4) the solution of the section averaged model using the empirical friction closure (76).
Of course we consider the parabolic model (57) for the vertical viscosity.

Let us first compare the values of the friction coefficient o using the different formulas. Fig-
ure 6 shows the profile as a function of the water depth of, respectively, the three-dimensional
analytic friction coefficient o defined by (59) (solid line), the friction coefficient resulting from
the empirical closure for the three-dimensional model (starred line), given by (75) with a Chézy
coefficient computed using formula (77), and the coefficient used for the section-averaged model
(dashed line), with a Chézy coefficient computed using formula (76). As we can see, the friction
coefficient resulting from the empirical closure for the three-dimensional model is quasi-identical
to the three-dimensional analytic value, whereas the coefficient used for the section-averaged
model is significantly different.

Let us now compare the solutions for the different models using the different values of the
friction coefficient . Figure 7 shows the profile of the analytical water depth A as a function of
the flow ¢. Asin figure 5, the solid line corresponds to the solution (72) of the three-dimensional
model, the starred line to the section-averaged solution (73) with friction correction, and the
dashed line corresponds to the solution without friction correction (74). These three solutions
have been computed using the analytic friction coefficient « defined by (59). The additional
profile is the dotted line, which corresponds to the section-averaged solution without friction
correction (74), but with the empirical friction coefficient a given by formula (76). We see
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X107 Comparison of the friction coefficient
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Figure 6: Values of the friction coefficient o with respect to the water depth. Analytic value
given by (59) (solid line), value for the three-dimensional model (starred line) given by (75) and
(77), and value for the section-averaged model (dashed line), given by (75) and (76).

that this profile is identical to the solution (73) of the section-averaged model with friction
correction using the friction coefficient « defined by (59). We can therefore conclude that, in
this case, the correction ¢, defined by (52) and derived in this work for the friction term of the
section-averaged model, has the same effect on the solution of the model as the introduction of
an empirical closure formula for the friction coefficient. However, our correction is independent
of the uniformity assumptions that are instead necessary to derive formula (76). Thus, our
correction can be applied in a much wider range of flows, with a rigorous justification based on
the asymptotic derivation we have presented.

6 Conclusions

In this paper, we have extended the analysis of Ref. [7] to the three-dimensional RANS equa-
tions with anisotropic Reynolds tensor for free surface flows in arbitrary geometry. A rigourous
derivation of a section-averaged system has been presented, including the effects of eddy viscos-
ity and friction. When applied to flows with rectangular cross-section, this system is similar to
the classical section-averaged shallow water equations,[11] except for the friction term. Indeed,
our derivation shows that, in order to take into account effects up to the second order in the
asymptotic parameter, the classical friction term should be corrected by a term which depends
on the turbulent vertical viscosity. The generalized friction term obtained does not rely on
local uniformity assumptions and can be computed directly from three-dimensional turbulence
models, without need for local uniformity assumptions. This conclusion is in good agreement
with the one achieved by Gerbeau et al. in Ref. [7] for two-dimensional flows with constant vis-
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Parabolic turbulence model
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Figure 7: Analytic solutions for the three-dimensional problem (solid line), the section-averaged
problem with friction correction (starred line) and without correction (dashed line ). Case with
a parabolic turbulent and « given by (59).

cosity over a flat bottom. Indeed, if the vertical viscosity is taken constant and linear boundary
conditions are considered, and when the flow is homogeneous in the transversal direction, we
retrieve the same friction correction as in Ref. [7]. Our derivation provides the expression of
the friction correction term in a more general case than those treated by Ref. [7], including
turbulent flows, non-linear boundary conditions and three-dimensional arbitrary geometries. In
particular, we compute the correction term associated to a specific model for the vertical profile
of turbulent velocity. For steady state open channel flows admitting analytic solutions of the
three-dimensional as well as the simplified models, we have shown that the solutions computed
including our correction term are much closer to those of the three dimensional model than those
of the standard shallow water model. Furthermore, we show that our formulation yields results
that are very similar to those obtained including in the classical equations empirical friction
closures derived in computational hydraulics. The generalized friction term resulting from the
present derivation can also be interpreted as a generalization and an a posterior: justification
of these empirical closures, that allows to avoid the assumptions on local flow uniformity on
which these closures rely.

In a forthcoming work, we plan to take advantage of the present results by including the
friction correction term in section averaged models such as the one proposed by Deponti ea in
Ref. [3]. Its use is also expected to ease the coupling of three- and one-dimensional free surface
models in the framework of an integrated hydrological basin model.
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