

Initial stages of cobalt oxidation by FTIR spectroscopy

M. Lenglet, J. Lopitaux, L. Terrier, Philippe Chartier, J. Koenig, E. Nkeng, G. Poillerat

▶ To cite this version:

M. Lenglet, J. Lopitaux, L. Terrier, Philippe Chartier, J. Koenig, et al.. Initial stages of cobalt oxidation by FTIR spectroscopy. Journal de Physique IV Proceedings, 1993, 03 (C9), pp.C9-477-C9-483. 10.1051/jp4:1993951. jpa-00252391

HAL Id: jpa-00252391 https://hal.science/jpa-00252391v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Initial stages of cobalt oxidation by FTIR spectroscopy

M. Lenglet⁽¹⁾, J. Lopitaux⁽¹⁾, L. Terrier⁽¹⁾, P. Chartier⁽²⁾, J.F. Koenig⁽²⁾, P. Nkeng⁽²⁾ and G. Poillerat⁽²⁾

- (¹) Laboratoire de Physicochimie des Matériaux, Université de Rouen, B.P. 08, 76131 Mont Saint Aignan Cedex, France
- (²) Laboratoire d'Electrochimie et de Chimie Physique du corps solide, URA 405, ULP, 4 rue Blaise Pascal, 67000 Strasbourg, France

Abstract. — The behaviour of specular reflectance of cobalt oxides on metal has been studied theoretically (CoO/Co system) and experimentally (Co₃O₄/Co system; the thin films are obtained by chemical spray pyrolysis) in the infrared region. CoO may be identified by a LO mode at 585 cm⁻¹ and by a TO mode at 345 cm⁻¹. Co₃O₄ is characterized by five bands respectively at 690 (LO), 660 (TO), 605 (LO), 560 (TO) and 390 cm⁻¹. These experimental results allow the characterization of CoO and Co₃O₄ grown on metal during the initial stages of thermal oxidation (400–750 °C). For film thicknesses in the range 10-1000 nm, the amounts of CoO and Co₃O₄ in the duplex structure layers may be estimated by FTIR reflectance spectroscopy. FTIR and XRD studies reveal a cyclic behaviour in the growth of the Co₃O₄/CoO/Co system.

1. Introduction.

The purpose of this work is to determine the nature of oxide films on cobalt in the initial oxidation period during which a non parabolic behaviour prevailed.

The feasibility of employing reflectance infrared spectroscopy to analyze the composition, thickness, and growth of thin films on metal surfaces has been discussed and demonstrated by several investigators.

2. Experimental.

Cobalt plates ($12.5 \times 12.5 \text{ mm}$) were cut from Co foils (0.125 mm thick, 99.9%, impurities: Fe 180 ppm; Ni 800 ppm; C 30 ppm; S 150 ppm, Goodfellow). The various treatments to which the metal was subjected are as follows: mechanical polishing (3 μ m grade diamond paste), ultrasonic cleaning under alcohol and heating in air laboratory. Heat treatments in order to thermally oxidize pure Co were performed in the range 400 - 700 °C, for times between 2 and 60 minutes.

Thin Co_3O_4 films on cobalt plates cleaned with ethyl alcohol and just dried, were obtained by chemical spray pyrolysis of a 0.3 M Co $(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ (Merck 2536) aqueous solution, acidified with 1 ml l⁻¹ of HNO₃. The experimental set up used in the preparation of the films was described elsewhere [1]. The solution was sprayed with an aerograph (Paasche VLS), on the cobalt plates beeing placed on the hot platform of a cylindrical furnace. The furnace was regulated to give a constant temperature of 420 ± 20 °C just above the plate surface during the spray process. Air was employed as the carrier gas at a 2 bar pressure. The flow rate of the solution was adjusted to 4 ml mn⁻¹ with a peristaltic pump. The deposited mass was weighed and the film thicknesses were estimated from the theoretical crystallographic density. All samples were checked by X-ray diffraction patterns recorded on a Philips diffractometer or a near grazing incidence X-ray diffraction Inel equipment.

A 710 Nicolet Fourier transform spectrophotometer equipped with reflectance attachments was used to obtain infrared reflectance spectra. The angle of incidence and the reference were 16° and an aluminium mirror, 80° and a gold mirror for the accessories from Perkin Elmer and Spectra Tech respectively. The incident beam was unpolarized. The surface morphology of oxidized Co samples and thin Co_3O_4 films deposited by spray pyrolysis was examined with a scanning electron microscope (Jeol).

3. Results.

3.1 CHARACTERIZATION OF COBALT OXIDES THIN FILMS ON METAL BY FTIR RELFECTANCE SPECTROSCOPY.

System CoO/Co: The interpretation of reflection spectra of thin oxide films on metal is based on reflectance calculations. Equations derived from reference [2] including the interactions of absorption bands with interference fringes for different angles of incidence have been used to study the systems: NiO/Ni [3], Cu₂O/Cu [4], Cr₂O₃/Cr [4] and Fe₂O₃/Fe [5]. The perspectation of classical oscillators used to calculate the optical constants of CoO are issued

The parameters of classical oscillators used to calculate the optical constants of CoO are issued

Fig. 1. — A) Calculated infrared reflectance spectra of CoO films on cobalt at various thicknesses: 1) 0.1 μ m; 2) 0.5 μ m; 3) 2 μ m; and angles of incidence: a) 80°; b) 16°; B) Experimental infrared reflectance spectra of Co₃O₄ films at various thicknesses: 1) 0.25 μ m; 2) 0.5 μ m; 3) 2 μ m and angles of incidence a) 80°; b) 16° (Absorption at ~ 585 cm⁻¹ and 330 cm⁻¹ are respectively due to LO and TO modes of CoO).

from reference [6]:

$$\varepsilon_{\infty} = 5.3; \ \varepsilon_0 = 13.0; \ \omega_{\rm T} = 350 \ {\rm cm}^{-1}; \ \gamma = 3 \ {\rm cm}^{-1}.$$

Optical data for Co metal from Ordal [7] were used with a linear interpolation procedure between experimental points. The evolution of the spectrum with incidence angle and thickness values (Fig. 1A) is similar to that observed for the system NiO/Ni. The observed band near 550 cm⁻¹ is attributed to the longitudinal optical mode (LO) of CoO. The low-frequency band at 345 cm⁻¹ is due to the transversal optical mode (TO). A shift to larger wavenumbers 550 to 585 cm⁻¹ is theoretically observed for the LO band at 80°, with increasing thicknesses in the range 0.1-2 μ m. An experimental shift has been observed (from 585 cm⁻¹ : LO band of a 50 nm film to 620 nm for a 10 μ m layer).

System Co_3O_4/Co : The infrared spectrum of the normal II-III spinel Co_3O_4 obtained in the transmission mode consists of four bands at 672, 590, 392 and 220 cm⁻¹ [8].

The lack of the parameters of classical oscillators system used to calculate the optical constants of Co_3O_4 leads us to study the experimental spectra of thin Co_3O_4 films on cobalt.

Scanning electron microscopy studies indicate that the oxide films follow the shape of the Co substratum. The morphology of surfaces is identical to that of Co samples oxidized in the range 500-750 °C, [9] and this study. On thin Co₃O₄ films prepared by spray pyrolysis some granulations ($\leq 1 \mu$ m) are noticed. A similar result has been obtained for thin Co₃O₄ films on Ti [10]. The analysis of the experimental spectra (Fig. 2B) is presented in table I.

Thickness (µm)			0.25	0.5	2	Assignment
			690 (670 sh.)	691	694	ω
				658	655 *	ω
	RS	80°	605	606	607	ω
Band positions			559	553	543	ω
(cm ⁻¹)				394	388	ω _L ?
	ĺ		661	657	655 *	ω
	RS	16°	559	552	548	ω
				390	388	

Table I. — Analysis of the experimental infrared reflectance spectra of the Co_3O_4/Co system.

3.2 STUDY OF THE INITIAL STAGES OF COBALT OXIDATION AT $p_{O_2} = 0.21$ atm.IN THE RANGE 400-750 °C. — The kinetics of oxidation of cobalt at low temperature has received little attention. Between 400 ad 1400 °C a parabolic relationship is obeyed with some initial deviations in the range 400-800 °C. According to the stability diagram for the Co-O system, oxidation of cobalt in air under 1 atm pressure at temperatures below 900 °C would yield a layer comprising CoO and Co₃O₄ if formation of these phases were not prevented by nucleation or kinetics constraints. Each oxide would exist as a separate layer, the CoO being adjacent to the metal

Fig. 2. — A) IR reflectance spectra at 80° off-normal of Co samples oxidized at 400 °C: a) 5 min; b) 15 min; c) 60 min; B) IR reflectance spectra at 80° and 16° off-normal. Samples oxidized at 500 °C: a) 2 min; b) 5 min; c) 60 min.

and the Co_3O_4 being adjacent to the gas phase. This type of scale morphology has, in fact, been observed by many investigators [9, 11-13].

X-ray diffraction. — Table II shows a comparative analysis of X-ray diffraction measurements for CoO and Co₃O₄. The experimental Bragg intensities measured on a polycristalline Co₃O₄ sample using a diffractometer and on thin Co₃O₄ films analyzed with a near grazing incidence equipment are in excellent agreement. Values too large of the I_{220}/I_{111} and I_{220}/I_{222} intensity ratios for the spinel phase (Tab. II) indicate orientation effects owing to the enhancement of the 220 peak as mentioned by Païdassi [9]: this is observed for layers thicker than 1 μ m.

FTIR reflectance spectroscopy. — The preliminary study of calculated reflectance spectra of the CoO/Co system and of experimental reflectance spectra of the Co_3O_4/Co system allows the use of FTIR reflectance spectroscopy in view of a better understanding of the early stages of cobalt oxidation (Fig. 2).

For very thin films (~ 0.1 μ m) at an 80° incidence angle, Co₃O₄ is easily characterized by the two longitudinal optical modes (LO) at 690 and 605 cm⁻¹, CoO by its LO band at 580 cm⁻¹ (Figs. 2A, B(a)). The change of incidence angle reveals the spinel phase by the TO bands at 660 and 560 cm⁻¹ in thin films where the monoxide is largely predominant (Fig. 2B(a)).

Sample		pern	nitteo	gg re	flect	ions		Ref.	
	111	220	311	222	400	422	511	440	
Co ₃ O ₄									
polycristalline	20	40	100	11	25	11	35	45	JCPDS 9-418
u	13	31	100	8	23	10	34	49	[16]
	13	39	100	9	30	16			this study
thin film on	18	39	100	10	26	10	37	42	this study *
metallic									
substrate	_				-				
		perm	nitteo	l Bra	gg re	flect	ions		
	_	111		200	220	3	11		l
Co0		75	:	100	50		20		JCPDS 9-402
polycristalline		75	-	100	75		35		this study

Table II. — Comparison of the experimental Bragg intensities and reference data for reference compounds.

Table III. — X-ray diffraction: experimental values of intensity ratios (polycristalline cobalt oxides and thin films developped by thermal oxidation of pure cobalt).

[Relative	Polycristalline samples	Thin Co ₃ 0 ₄ film on							
1	intensity	(Average of results	cobalt prepared by	500°C			600°C			
Oxide	ratio	listed in table 2)	spray pyrolysis	5	15	60	2	3.5	5	15
	I ₂₂₀ /I ₁₁₁	2.47	2	1.92	2.75	3	3.3	2.9		3.75
co304	I ₂₂₀ /I ₂₂₂	3.44	3.9	4	4.7	4.7	5	4.4		
	I ₁₁₁ /I ₂₂₂	1.62	1.80	2	1.92	1.63	1.8	1.71	1.8	1.69
CoO	I ₂₂₀ /I ₂₀₀	0.67	1		0.78	0.93	0.67	0.81		0.87

For thicker layers ($\sim 1 \,\mu$ m), the bands relative to the transversal optical modes of Co₃O₄ become stronger than the LO modes and the low-frequency bands appear in the range 300-400 cm⁻¹ (Fig. 2B(c)). A shift to larger wavenumbers theoretically determined is experimentally observed at near grazing incidence (80°) for the LO band of CoO with increasing thickness (580 to 610 cm⁻¹, thickness; 0.1 to 10 μ m).

The energy separation between calculated and experimental shifts (respectively 550 to 585 cm⁻¹ and 580-610 cm⁻¹) remains unexplained and cannot be attributed to the duplex structure of oxide layers. Analysis of the experimental spectra is presented in table IV.

4. Conclusion. Correlation between X-ray diffraction and FTIR spectroscopy measurements.

The experimental results presented in table V show that the composition of the oxide layer may be determined either by X-ray diffraction or by FTIR reflectance spectroscopy.

The present work on oxidized cobalt surfaces reveals that FTIR specular spectroscopy is very valuable, in the oxide thickness range 10-1000 nm, for identification and quantity

T (°C)	4	00	500			600				Assig	nment	
Time (min.)	5	60	2	5	15	60	2	3.5	5	15	O4	C00
	<u>687</u>	687	688	<u>690</u>	692	695	695	695	695	696	ω	
	668	665	667	664	660	656	661	656	656	658	$\omega_{\rm T}$	
	602			606	607	608	608	609	609	614	$\omega_{\rm L}$	
RS 80°	<u>577</u>	<u>582</u>	<u>581</u>	584	587	595	593	597	595	598		ω_{L}
	564			559	<u>553</u>	<u>541</u>	<u>549</u>	<u>540</u>	<u>546</u>		ω	
					389	390	392	392	391	388	ω _L	
				-		330	331	324	327			ω
Band positions			661	659	658	655	658	<u>655</u>	<u>658</u>		ω	
(cm ⁻¹)			577									$\omega_{\rm L}$
			<u>561</u>	<u>559</u>	<u>555</u>	<u>542</u>	550	540	<u>546</u>		ω	
RS 16°					389	389	390	390	390			
	l					324	328	<u>322</u>	324			ω _r
Approximative	0.1	~0.3		0.2	0.5	1	0.8	1	1	2.15		
thickness (µm)											L	

Table IV. — Energy and assignment of bands observed on spectra recorded at 80° and 16° (<u>687</u> band of maximum intensity).

Table V. — Analysis of the duplex structure of oxide layers formed during thermal oxidation of cobalt by X-ray diffraction and FTIR reflectance spectroscopy (spectra recorded at 80°).

Temperature			2	3 5 Ex	posure time (mi	inutes)	15	60
	DV	IC00/IC0204	A		3 77			<u>-</u>
	KA	ICco /ICco			2.77		*	2.4
		-0002007 -00304220			1.21		1.40	3.03
	FTIR	I ₆₀₅ /I ₅₈₅			0.87		0.98	1.07
500°C		I ₃₃₀ /I ₃₉₀						3.30
· · ·		Main phase	Co0		Co ₃ O ₄		Co304	CoO
		Thickness (µm)			- 0.2		~ 0.5	1
	RX	IC00200/IC0304111	7.2	10			7	3.6
	1	$I_{CoO_{200}}/I_{CO_3O_{4_{220}}}$	2.17	3.4	2.54		~ 1.8	<u>~ 0.75</u>
600°C	FTIR	I ₆₀₅ /I ₅₈₅	0.98	1.07	0.98		t	t
		I ₃₃₀ /I ₃₉₀	2.61	3.71	3.05		+	† ·
		Main phase	CoO, Co ₃ 0 ₄	CoO	C00, C0304		Co304	Co304
		Thickness (µm)	~ 0.8	1	~ 1		~ 2.15	3.6
		$I_{CoO_{200}}/I_{CO_{3}O_{4220}}$	1.5		1.36	0.86		
750°C		Main phase	Co304		Co304	C0304		
		Thickness (µm)	~ 2.6		3.6	4		
t For layers	thicker	than 1 µm, the	FTIR reflecta	nce spec	tra become to	oo comple	x because	e of the
superimpositio	on of inte	rference fringes.			•			
1.8 : the ICOC) / ICO1	O_{4000} ratio is reduc	ed owing to th	e enhance	ment of the 220	peak of	the spinel	l phase
due to orienta	ation effe	ects [9].						
(If [CoO] = [C	$0_{3}0_{4}$], the	a ratios I _{CoOpen} / I	Co304111 and ICC	0 ₂₀₀ / ICc	304220 are respe	ectively 6	.5 and 2.5	5).

determination of oxides in duplex structure layers.

In the temperature range 500-600 °C, different steps are observed in the initial transient stage of cobalt oxidation during which the monoxide and the spinel phase are successively

the main phase.

This cyclic behaviour may be partly explained by the important change of the Co_3O_4 nonstoichiometry [14] involving different values of the diffusion coefficient of cations in spinel phase. The variation of Co_3O_4 UV-Vis-NIR diffuse reflectance with temperature and time exposure supports this hypothesis [15].

References

- [1] HAMDANI M., KOENIG J.F., CHARTIER P., J. Appl. Electrochem. 18 (1988) 561.
- [2] SWALLOW G.A., ALLEN G.C., Oxid. Met. 17 (1982) 141.
- [3] LE CALVAR M., LENGLET M., Structure and Reactivity of Surfaces, C. Morterra, A. Zecchina, G. Costa Eds. (Elsevier, Amsterdam, 1989) p.567.
- [4] MACHEFERT J.M., LE CALVAR M., LENGLET M., Surf. Interf. Anal. 17 (1991) 137.
- [5] GUILLAMET R., LENGLET M., ADAM F., Solid State Commun. (1992) submitted.
- [6] GIELISE P.J., PENDL J.N., MANSUR L.C., MARSHALL R., MITRA S.S., MYKOLAJEWYCZ R., SMAKULA A., J. Appl. Phys. 36 (1965) 2446.
- [7] ORDAL M.A., LONG L.L., BELL R.J., BELL S.E., ALEXANDER R.W., WARDC A., Appl. Opt. 22 (1983) 1099.
- [8] PREUDHOMME J., Thesis (Liège, 1970).
- [9] PAIDASSI J., VALLEE M.G., PEPIN P., Mém. Sci. Rev. Métall. LXII (1965) 789; LXII (1965) 857.
- [10] SINGH R.N., KOENIG J.F., POILLERAT G., CHARTIER P., J. Electrochem. Soc. 137 (1990) 1408.
- [11] HSU H.S., YUREK G.J., Oxid. Met. 17 (1982) 55.
- [12] TOMPKINS H.G., AUGIS J.A., Oxid. Met. 16 (1981) 355.
- [13] GULBRANSEN E.A., ANDREW K.F., J. Electrochem. Soc. 98 (1951) 241.
- [14] LE COUSTUMER R.L., Thesis (Lille, 1983).
- [15] LENGLET M., unpublished results.
- [16] LIU X., PREWITT C.T., Phys. Chem. Miner. 17 (1990) 168.

Commission paritaire N° 57920

Directrice de la Publication : Jeanne BERGER