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QUALITATIVE ANALYSIS OF THE DYNAMIC CRACK INITIATION AND PROPAGATION

M. WATANABE

Kinki University, Faculty of Engineering, Umenobe, Takaya,
Higashi-Hiroshima 729-17, Japan

résumé: Des résultats expérimentaux de fissuration rapide sont analysés & partire de 1’équation de
conservation de 'energie prenant en compte 1’effet de microcavités générées au sommet de la
fissure. Le rayon moyen des microcavités est supposé croitre selon une loi de puissance t* et le
volume des microcavitésest défini par 12 et leur densité de distribution par B, les valeurs de «
sont estimées en fonction de celles de B. La rugosité de surface peut étre analysée qualitativement
a partir de la détermination expérimentale des paramétres D et 8. La condition postulée
d’incitation de la fissure est étendue 2 la phase de propagation. Les résultats sont en accord

qualitatif avec les expériences.

Abstract-Experimental results of the fast fracture of the crack is analyzed
based on the extended energy balance equation in which the effect of
micr ovoids generated at the tip of the crack is taken into account. We assume
that the average radius r of microvoids grow in time as roc t* , ie.,
microvoids grow in the self-similar manner, statistically. It’s volume is
defined as r D and the density distribution function n(r) of the microvoids is
assumed to be noc rP, where D and B are numbers. The surface roughness

{r ) defined as the average radius of microvoids is compared with the
experiment. Thus we can estimate the numbers @ and 8 as a =5.5for 1
B> 0and a > 5.5for 2 » B, 1, respectively. We have shown that the
surface roughness which is called as “mirror”, “mist” and “hackle” can be
qualitatively analyzed from the energy balance equation if the parameters D
and B are measured experimentally. Furthermore, we have postulated the
initiation condition of the dynamically loaded crack and extended it to the
propagation stage. This postulate and it’s extension show the qualitative
agreement with the experimental observations.

I. Introduction.

We analyze the results of the series of the experiments on the fast fr actute perfor med
by Ravi-Chandar and Knauss /1/. The specimen material used in their experiment is
Homalite 100 and it’s size is chosen such that the reflected waves do not interact with the
crack tip for the duration of the experiment and thus a literally unbounded {plate)
medium is simulated. They applied the tensile stress using the electromagnetic loading
device and measured the stress intensity factor history by the method of caustics.
Investigating various differ ent aspects of the dynamic fracture, they found that crack
propagation occurs by the linking up of many microvoids(er microcracks). Our
analysis is based on this observation and the assumption that microvoids grow in the
self -similar manner statistically.
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I1.The growth law and the density of the microvoids.

The micr omechanics of rupture of polymers under tensile stress was thoroughly
investigated /2/. For example, physical mechanism of the generation of microvoids is
clar ified in the frame work of ther mal activation theory of fracture of solids. Z hurkov
and Kuksenko /3/ propposed the hypothesis that the formation and development of
micr ovoids (or submicrocr acks) play a dominant role in the micromechanics of fracture
of polymers. They measured the microvoid distribution in the direction of the crack
grow th as shownin Fig. 1 by the small angle X-ray scattering. They also compared the
scattering curves during the initial stage of fracture long before rupture, to scattering
before rupture and found the significant changes in the sizes of microvoids. The
enelarged microvoids are r egarded as the coalescence of the primary microvoids.

In the experiment of the dynamic fracture, Ravi-Chander and Knauss found that
crack propagation occurs by the linking up of many microveids{or microcracks). The
number of growing microvoids that are activated is a function of the stress intensity
factor and the distr ibution of voids in the material itself. Thefractured surface depth d
is measured along the crack path and it's variation is shown as a function of the
measured stress intensity factor. They established a quantitative correlation between the
stress intensity factor and the surface roughness as shown in Fig. 2. We find the
following relation from Fig. 2

_d _(Kiyia
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where Ki isthe stressintensity factor and Ko isa constant.
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The diameters of the microvoids measured in the static case range from 0.009 to 0.3
# m for different polymers/3/. When the applied stress is sufficiently small, the radius
1o of the microvoid is determined by the thermal equilibrium condtion. In the dynamic
case, the size of the microvoids incr eases by various different mechanisms as the stress
intensity factor increases. Finally the microvoid grow: to be a small micr ocrack whose
lengthreaches to the range of milimeter. We assume that the characteristic length of the
miicr ovoids does not exist in these growth processes. In such situations, the microvoids
grow in the self-similar manner statistically /4 / and the radius r of the microvoids can
be assumed as

r=ro (t%)“, @

where 1o is a characteristic time for generation of microvoids in thermal equilibrium.
The growth rate of the microvoid is determined by the number @. As the crack
propagates, the microvoids near the tip of the crack is activated. Suppose that the
microvoids start to grow when the distance between the crack and the microvoids
becomes R. In this case, the following relation holds

Ky _
R 3
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where the quantity Cc is the average critical stress for the growth of the microvoids.
Since the crack propagates by the constant velocity & /17, the interaction time Tint
betw een the crack and the microvoids can be obtained by

2
=R _Ki
Tint & 202 d C))
The maximum radius I'm of the micr ovoids in the fractured surface can be expressed as
2
—- R ya_ Ki a (5)
I =T ()% =19 (——L7— :
m=0 A 0 2m0? Qto')

The interaction time Tint between the crack and the microvoids changes due to the
shielding effect associated with the inhomogenuity of the specimen and other reasons
which is not discussed here. Thus the microvoids with various different radius are
produced. We assume the density distribution function of the microvoidsas

n=ny(rp /1) b 6)
wher e Do is the density of microvoids in thermal equilibr ium.
The average radius < r > of the micr ovoids in the fractured surface can be defined as
m m

<r>=f rn(r)dr/f n(r) dr (D
T 10

The average radius <{r) of the microvoids is regarded as the quantity which is
proportional to the surface roughness G/dmax defined by Eq. (1), The Ki dependence
of the averageradius <r, can befound in the following

- 2
(ry=tP 1P KL for 1)6)0
2- ﬁ 2-[3 21 64040
K3 =55 ®
2
(r)— r(rm)w P-1 KL yac2-p for 2)B)1
2-p  2modGto
K”S sa(2-B)=55 )

where rO/rm« lis used. Inthe latter case, wefind @ ) 5.5 from the condition 2> 8 )
1. If 8 =1or B =2, theaverageradius <{r) dependson In { Im/1o), which is not
observed in the experiment. Inthecase B ) 2, wefind <(r)> =(B-1)T0/(B -1)
which is independent of X1. Thus we have dlsregarded these cases. The average density
(0} defi nedrBy .

<n>=f n(r)dr/f dr (10)
o To '

plays an important role in considering the behavior of the m1cr0V01ds In D dimensional
space the aver age distance between microvoids is given by <n> P When the average
radius {r)> of the microvoids reaches the distance ¢(n) ''", microvoids coalesce with
each other. In Table 1, we show the values of the quantities (n)/moand{n}<r)®/(mo)

- Tablel.
B2 B =2 27 By 1 B=1 1>850
To To 1 Toyp
{(n}/ng B - Dry r{% B - Dy Iy ( ) 1- ﬁ(r'“)
. - Im
(n)(r)D G l)D To (B-1)P1 0\ D(B-2)+1 (_Q)D'l (1-p)> TmnD -
o (B2, LlnImp o) . Ingn c-pp
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We find from Table 1 that the average number {0 of the microvoid decreases as the
microvoids grow due to the coalescence among them. The value of (n)<r)® decr eases
for B =22, while it could increase if B < 2. These conditions are closely related with
the branching and will be discussed in the next section.

111. The dynamic crack propagation and the branching.

When the stress intensity factor is not so large in compared with XKic and the crack
velocity is relatively small, say = 240 m/s, the energy balance equation of Griffith can
be applied

(1-2)G=2y (11

where Cr isthe velocity of the Rayleigh wave and G the “static” ener gyreleaserate. In
this case the quasi-static condition is satisfied and the effect of the term ( )} inL.H.S. of
Eq. (11) is observed 1/, /5/. The fractured surface is smooth and is characterized as the
“mirror” state. As the stress intensity factor increases the fractured surface changes
from “mirror” to the “mist” or “hackle” state. In this case, the additional ener gy which is
absorbed by the microvoids should be added inEq. (11),

(1-2) dwda=2vo wda + 1Y, AS; (12)
i

The quantity AS;i represents the increased area of the microvoid during the period of t
and t+dt. ASi can be written as ASi=a®@i- D % gy , wWhere I and D; are the radius and
the spacial dimension of the i-th microvoid, respectively. The quantity w is the width
of the specimen. Making use of E q. (2), we find

=%T0 (ryi-Q1/
dr= o (rf,) /o g (13)

Eq. (13) is used in calculatirii the averaged quantities of ASi. The microvoid is
generated in the small volume 8 V=wR (r , and the average number of the microvoids
can be writtenas 1AV Thus thesecond term inR.H.S. of Eq. (12) can be written as
1/x
WY ASi=vo(n)AVER—(D-1)c(rDn 160 dt (14)
i

where ¢ is a constant and P the/ average spacial dimension of the microvoids. In
calculating the quantity (eD-1-@/m) , we have to divide it into numerous different
cases. If the condition 1) B ) 0 issatisfied, Eq. (12) can be written as

(1-2)G"- 23
] az(l-ﬁ)(D-l)c
-8 {a@-p)-1
_$yD-1 % (p.-
S i Y as
1-B)P-2{a @-p)-1
Substituting the numbers @ = 5.5 and 8=0.7, we find

R.H.S. of Eq. (15) / (n )¢ r3)D =630y, forD=3,c=4m and =40y, for D=2,¢c=2m,
The condition (n/)(r) 1 yields Tiae/to~ (25/m01) 2 £or the former and
Tint/to= (5.6/001¢) ' 7% for the latter case. Thus the surface roughness can be
qualitatively analyzed from the ener gy balance equation if one measuresthe parameters
such asD and B besides the measurement shown inFig. 2. Since the numerical factor in
R.H.S. of Eq: (15) is rather large in compar ed withi 2Y0, the branching condition will be
%iven b?z the numerical value of {n){r)” and it probably lies within the inequqlitities

07 Tin/to 71 This condition can be expressed by the stress intensity factor using Eq.
(4). Since the condition {z){s)"= 1 will not be satisfied for B = 2 provided norP Ly we
disr egard these cases. The energy balance equationfor 2 ) 8 ) 1 is

no 1 (24) @
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oaZc(D-1)@2-B)P-Yn)(r)° Tint
(
@ - )P-4a (-p)- 1]

_‘SubStitu'ting the numbers o =7 and /A = 1.3 asan example we find

s X
(1-&)G -2} =¥ =O-DOD i aD-F)1 (16)

'{(1 )G 2VO}/(n)(r) HlSOyQ(T‘“‘)“ forD=3,c=4m and # 55y, forD=2,c=2n (17)

The condltlon2 (n)(r) #1 yields Tint/to~ (4/007) ' "or the former and
Tint/to = (2/1016) 128601 the latter case. These numerical examples lead to the similar
conclusion to thecase 1 > B8 ) 0.

m)

IV. The dynamic crack initiation.
Ravi-Chander and Knauss /1/ found the
time dependence of the critical stress
intensity factor Kic for crack initiation as
shown in Fig. 3. In the quasi-static
condition, the crack start to propagate if the
condition Kic = K¢ is satisfied. This
condition is equivalent, to the energy
balance equation =2%0 . The
experimental observation Kic oc t2 for t
S50 us indicates that the additional
condition for the dynamic crack initiation is
required, which is different from the quasi- 0.0 ) ,
static ener gy balance equation. In order to "o 100 200
explain the dynamic crack initiation shown. Fig. 3 Vg’gi;gi‘:ggcrgqg t(l};;) stress
in Fig. 3, we postulate the following inténsity factor required for

condistlgnsC for the crack initiation. (18) initiation with time to fradture/l/
wher e S is the surface area fractured at the tip of the crack and Sc is the critical surface
area for the crack initiation. The surface area S increases in time.and it’s time

dependence is assumed to be
S(t)=8; (Et—)as for t<t (19)
1

{Mpa:

1.0+

0.5 oo

CRITICAL STRESS INTENSITY FACTOR

where Si=WwRic and 1 =50US from Fig., 3 and Gs is the number. The quantities
Ric and Rc=Sc/w are defined as

I(IC KC .
= ’ =0 20
nRyc oc 12nRc c. (20)

Suppose that the crack start to grow with t { 50 us. In this case we find the
following equation

Sy (Etl—)“5=WRc RIC=RC(%)GS (21)

Eq. (21) canbe written as
Kic=Kg (L)%, (22)

which determines the effective surface energy 2Y(t) such that the energy balance
equation G= 2Y(t) holds. Comparing Eq. (22) with Fig. 3, we find &s = 4 . Note
here that the quasi-static initiation of the crack is included in Eq. (22) if one sefs
=ty and Y=Yo. in the ener gy balance equation.

Fig. 4 shows the stress intensity factor and the crack extension history /1/. They
observe that the arrival of the wave reflected from the boundaries at about 150  us
causes the stress intensity factor to increase as in Fig. 4 (solid line) and the crack
velocity changes from 240 m/s to 350 my/s. They conclude from these observations that
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crack travling at a low velocities, typically below 300 m/s, can change their velocity of
propagation upon encounter ing str ess waves.

According to the postulate showninEgs. (18)
and (19), the crack starts to propagate at ® =>C
and the crack velocity is determined by the
f ollowing equation

Ols 2 dec
=w Cq +=2 38 (23)

Ys=sc = (7= Ko d

The crack velocity is de termmed by the initiation
condition of the crack which consist of the two

£

E

X
terms of ( ) in R.H.S. of Eq. {23). The former § E
shows the characteristic time of the growth of S(t) 2 5
, while the latter is associated with the dynamic ¢ z
behavior of the stress intensity factor at the 2 ;
initiation. Once the crack starts to propagate, we & i
do not have to restrict these two terms at the @ &
initiation. Thus we can replace Kic(t) by Ki(t) ¢ g
in Eq. (23). Numerical evaluation of the two © 5.0/ ‘ 0°
terms in R.H.S. of Eq. (23) indicates that the first o 100 200

term is always larger than the second term except TIME, {jss)

at encountering the stress wave. When the crack Fig. 4 Stress intensity

encounters with the stress wave att = 150 us factor and crack
(solid line of Fig. 4), we find extension history/l/
14K 5 as
Ky d ¢t (24)

When the crack encounters with the stress wave, the experimental observation indicates
that the characteristic time of the growth of S(t) changes and remains unchanged there
after. In order to clarify the theoretical r easons for it, one has to look into the the
atomic motion of the mater ial which is beyond the scope of this work.

V. Conclusion.

We have assumed that the fracture proceeds in the self similar manner stat1st1cally
Based on this assumption we have estimated the surface roughness associated with the
microvoid growth and compared with the experiment s1/. Qualitative agreement
between our analysis and the experimental observation shown in Eq. (1) demonstrates
the importance of the parameters @ , 8 and D which could be determined by the
experiment.

We have also postulated the initiation condition of the crack grow th which deter mines
the effective surface energy 2Y® so that the ener gy balance equation also holds.
Making use of this postulate we could explain the experimental obser vation of Kic o t-2,
Extending this postulate to the propagation stage and evaluating the characteristic time t
and time derivative of X1(1) from Fig. 4, we could explain the dynamic behavior of the
crack velocity when it encounters with the stress wave.
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