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QUALITATIVE ANALYSIS OF THE DYNAMIC CRACK INITIATION AND PROPAGATION 

M. WATANABE 

Kirikl University, Faculty of Engineering, Umenobe, Takaya, 
Higashi-Hiroshima 729-17, Japan 

résumé: Des résultats expérimentaux de fissuration rapide sont analysés à partire de l'équation de 
conservation de l'énergie prenant en compte l'effet de microcavités générées au sommet de la 
fissure. Le rayon moyen des microcavités est supposé croître selon une loi de puissance ta et le 
volume des microcavitésest défini par rD et leur densité de distribution par r"P. les valeurs de a 
sont estimées en fonction de celles de p. La rugosité de surface peut être analysée qualitativement 
à partir de la détermination expérimentale des paramètres D et p. La condition postulée 
d'incitation de la fissure est étendue à la phase de propagation. Les résultats sont en accord 
qualitatif avec les expériences. 

Abst rac t -Exper imenta l results of the fast fracture of the crack is analyzed 
based on the extended energy balance equation in which the effect of 
microvoids generated at the tip of the crack is taken into account. We assume 
that the average radius r of microvoids grow in time as r oc t a , i.e., 
microvoids grow in the self-similar manner, statistically. I t 's volume is 
defined as r D and the density distribution function n(r) of the microvoids is 
assumed to be noc r"P, where D and /3 are numbers. The surface roughness 
<r> defined as the average radius of microvoids is compared with the 

experiment. Thus we can estimate the numbers a and /3 a s a ^ 5.5 for 1 > 
/3 ) 0 and a ) 5.5 for 2 ) /3 ) 1, respectively. We have shown that the 
surface roughness which is called as "mirror" , "mist" and "hackle" can be 
qualitatively analyzed from the energy balance equation if the parameters D 
and /3 are measured experimentally. Fur thermore , we have postulated the 
initiation condition of the dynamically loaded crack and extended it to the 
propagation stage. This postulate and it 's extension show the qualitative 
agreement with the experimental observations. 

I. Introduct ion . 
We analyze the results of the series of the experiments on the fast fr actute perfor med 

by Ravi-Chandar and Knauss l\l. The specimen material used in their experiment is 
Homalite 100 and it 's size is chosen such that the reflected waves do not interact with the 
crack tip for the duration of the experiment and thus a literally unbounded (plate) 
medium is simulated. They applied the tensile stress using the electromagnetic loading 
device and measured the stress intensity factor history by the method of caustics. 
Investigating various different aspects of the dynamic fracture, they found that crack 
propagation occurs by the linking up of many microvoids(or microcracks). Our 
analysis is based on this observation and the assumption that microvoids grow in the 
self-similar manner statistically. 
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II .The g r o w t h  law a n d  the  density of the microvo ids. 
The micr omechanics of rupture of polymers under tensile stress was thoroughly 

investigated /2/. For example, physical mechanism of the generation of microvoids is 
clar ified in the frame work of ther ma1 activation theory of f r  acture of solids. Z hur kov 
and Kuksenko /3/  propposed the hypothesis that the formation and development of 
microvoids (or submicrocracks) play a dominant role in the micromechanics of fracture 
of polymers. They measured the microvoid distribution in the direction of the crack 
growth as shown in Fig. 1 by the small angle X-ray scattering. They also compared the 
scattering curves during the initial stage of fracture long before rupture, to scattering 
before rupture and found the significant changes in the sizes of rnicrovoids. The 
enelarged microvoids are r egarded as the coalescence of the primary microvoids. 

In the experiment of the dynamic fracture, Ravi-Chander and Knauss found that 
crack propagation occurs by the linking up of many microvoids(or microcracks). The 
number of growing microvoids that are activated is a function of the stress intensity 
factor and the distr ibution of voids in the material itself. The fractured surface depth d 
is measured along the crack path and it's variation is shown as a function of the 
measured stress intensity factor. They established a quantitative correlation between the 
stress intensity factor and the surface roughness as shown in Fig. 2. We find the 
following r elation from Fig. 2 

where KI is the stress intensity factor and KO is a constant, 
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The diameters of the microvoids measured i n  the static case range from 0.009 to 0.3 
,u m for different polymers /3/. When the applied stress is sufficiently small, the radius 
ro of the microvoid is determined by the thermal equilibrium condtion. I n  the dynamic 
case, the size of the m icr ovoids incr eases by various different mechanisms as the stress 
intensity factor increases. Finally the micr ovoid grow to be a small micr ocrack whose 
length reaches to the range of milimeter . We assume that the characteristic length of the 
microvoids does not exist in these growth processes. In such situations, the microvoids 
grow in the self -similar manner statistically /4 / and the radius r of the microvo ids can 
be assumed as 

r=ro (2) 

3g.L 
- 

Mlcrovoid 
distribution 
in the 
direction the crack of 

growth /3/. , 

where b is a characteristic time for generation of microvoids in thermal equilibrium. 
The growth rate of the microvoid is determined by the number a .  As the crack 
propagates, the microvoids near the tip of the crack is activated. Suppose that the 
rnicrovoids start to grow when the distance between the crack and the microvoids 
becomes R. In this case, the following relation holds 

- 0.5 1 
t, rnrn 

z :- 
ldS 



where the quantity GC is the average critical stress for ;he growth of the microvoids. 
Since the crack propagates by the constant velocity a /I/, the interaction time Tint 
between the crack and the microvoids can be obtained by 

2 
.Tint = g= KI 

'a- 2no: 6 (4) 

The maximum radius rm of the micr ovoids in  the fractured surface can be expressed as 

The interaction time Tint bebv een the crack and the microvoids changes due to the 
shielding effect associated with the inhom ogenuity of the specimen and other reasons 
which is not discussed here. Thus the microvoids with various different radius are 
produced. We assume the density distribution function of the microvoids as 

n = no (ro I r) P (6) 
w her e no is tlie density of microvoids in ther ma1 equilibr ium. 

The average radius ( r ) of the micr ovoids in the fractured surface can be defined as 

(r)=[rrn(r)&/$'  n(r)dr (7) 

The aver age radius ( r ) of the microvoids is regarded as the quantity which i s  
proportional to the surface roughness d 1 dmax defined by E q. (I), The KI dependence 
of the aver age radius ( r ) can be found in the following 

for 1)P)O 

(8) 

p - 1  rm 2 - 9  , p - l r o (  K: ) a ( 2 - ~ )  < r ) = - r ~ ( ~ )  for 2 ) p )  1 
2 - P  2 - p  2no&3& 

CCK;'.~ :. a ( 2 - 1 ) )- 5.5 (9) 
where '0 Irm(( is used. In the latter case, we find a ) 5.5 from the condition 2 ) 8 ) 
1. If /3 = 1 or /3 = 2, the average radius ( r  ) depends on In ( rm Iro), which is not 
observed in the experiment. In the case /3 ) 2, we find { r ) = ( /3 - 1 ) ro / ( 8 - 1 1) 
which is independent of KI. Thus we have disregarded these cases. The average density 
(")  definedby 

( n ) = l r  n ( r )h / l r  (10) 

plays an important role in considering the behavior of the mic rov~ , i i .  In D dimensional 
space the aver age distance between microvoids is given by ( n )' . When the average 
radius ( r ) of the microvoids reaches the distance < n )- 'ID, micr ovoids coalesce with 
eachother. InTable  1 ,weshow thevaluesof thequantities (n)~noand<n)(r)~l(norB) 

Table 1. 
8 ) 2  8 = 2  2 )  / 3 )  1 B = I  1 )  8 )  0 
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We find from Table 1 that the average number ( ) of the microvoid decreases as  the 
micr ovoids grow due to the coalescence among them. The value of ( n  ) ( r P  decreases 
for B 1 2, while it could increase if S < 2. These conditions are closely related with 
the branching and will be discussed in the next section. 
111. T h e  d y n a m i c  cr ack p r  opagation and  the br anching. 

When the stress intensity factor is not so large in compar ed with KIC and the crack 
velocity is relatively small, say = 24 0 m/s, the energy balance equation of Griff ith can 
be applieq 

JC 
( I - $  ) G = 2 y o  (1 1) 

where CR is the velocity of the Rayleigh wave and @the "static" energy release rate. In 
this case the quasi-static condition is satisfied and the effect of the term ( ) in L .H.S. of 
Eq. (1 1) is observed /I/,  /5 / .  The fractured surface is smooth and is characterized as the 
"mirror" state. As the stress intensity factor increases the fractured supface changes 
from "mirror'! to the "mist" or "hackle" state. In this case, the additional ener gy which is 
absorbed by the microvoids should be added in Eq. (ll), 

(1 - &) &G dda= 2 yo w d a  + Y o z  ASi (12) 
1 

The quantity ASi represents the increased area of the microvoid during the period of t 
and t+dt. ASi can be written as ASi=ci@i - l)?-*dri,  where ri and Di are the radius and 
the spacial dimension of the i-th microvoid, respectively. The\quantity w is the width 
of the specimen. Making use of E q. (2), we find 

d r , ~ ( ~ ) l - ( l l a )  dt 
4, ro (13) 

Eq. (13) ii used in calculatin the avera ed quantities of A Si. The microvoid is 
generated in the small volume % v = w 7, and the average number of the microvo ids 
can be written as (") A V .  Thus the second term inR.H. S. of Eq. (12) can be written as 

a rol la  YO^ A S i = y o ( n ) A V -  (D- 1) c ( r D - l - ( l l a ) ) d t  
1 to 

where c is a constant and D the average spacial dimension of the microvoids. In 
calculating the quantity (rD- 1 -(1  l a ) )  , we have to divide i t  into numerous different 
cases. If the condition 1 ) f i  ) 0 is satisfied, E q. ( 12 )  can be written as 

Substituting the numbers CY = 5 . 5  and B = 0.7, we find 

R.H.S. of Eq. (15) I  (n ) ( 5)D = 630 00 for D = 3, c  = 4rr and = 4 0  yo for D = 2, e = 2n, 
The condition (: )!:) = 1 q n t  1  b (25 In0 $1 ' l3 for the former and 
q , t  I to s (5.6 1 no ro) for the latter case. Thus the surface roughness can be 
qualitatively analyzed from the ener gy balance equation if one measures the parameters 
such as D and P besides the measurement shown in Fig. 2. Since the numerical factor in 
R.H. S. of Eq. (15 )  is rather large in comgared with 2yo, the branching condition will be 

iven b the numerical value of ( n ) ( r )  and it probably lies within the inequqliti ties 
O )  i t  ) This condition can be expressed by the stress intensity factor using Eq. 
(4). Since t h e ~ o n d i t i o n ( ~ ) ( r ) ~ ~ ~ w i l i n o t b e s a t i s f i e d f o r  52prov ided  nod'(($ we 
disr egar d these cases. The energy balance equation for 2 ) P ) 1 i s  



Substituting the numbers a = 7 and = 1.3 as an example we find 
% 

{ ( I - $ ) G  - 2 y o ) / ( n ) ( r ) D = 1 8 0 y o ( ~ ) 2 - 1  forD=3,c=4rrand-55yo forD=2,c=2rr (17) 
, to 

3 1 / 7.7 
The Eonditio% ( n )  (r)Dz 1 yields T i n t l b  (41% ro) for the former and 
' h t l  " (2 I no '0) ' '2.8for the latter case. These numerical examples lead to the similar 
conclusion to the case 1 ) B ) 0 . - 
IV. The dynamic  c r a c k  init iat ion.  a 

Ravi -Chander and Knauss /I/ found the 
-. 

time dependence of the critical stress 
intensity factor KIC for crack initiation as g 
shown in Fig. 3.  In the quasi-static 8 
condition, the crack start to propagate if the 
condition KIC = Kc is satisfied. 

balance equation 
condition is 

experimental observation KIC t-2 for t 
50 ,us  indicates that the additional 

condition for the dynamic crack initiation is 
required, which is differ en t from the quasi - 8 o.o 
static energy balance equation. In order to 

I 
0 100 200 

TlME TO FRACTLRE I P S  explain the dynamic crack initiation shown Fig. 3 .  Variation of the stress 
in Fig. 3, we postulate the following intensity factor required for 
condition for the crack initiation. i n i t i a t i o n  with time t o  f r ac tu re / l /  

S =  sc (18) 
where S is the surface area fractured at the tip of the crack and SC is the critical surface 
area for the crack initiation. The surface area S increases in  time and it's time 
dependence is assumed to b e  

S ( t ) = S l  (:)as for t l tl (19) 

where SI = w RIC and tl = 50 PS from Fig., 3 and a s  is the number. The quantities 
RIC and RC = Sc 1 w are defined as 

- - 
Suppose that the crack start to grow with t ( 5 0 ,U s. In this case we find the 

following equation 
S1 (-f_)as = w RC :. Rlc = Rc ( 

t 1 
(21) 

Eq. (21) can be written as 
K2 - K2 tl as 

1c- c(,)  9 

which determines the effective surface energy y ( ) such that the energy balance 
equation 8= 2 y  ( t )  holds. Comparing Eq. (22) with Fig. 3, we find as  = 4 . Note 
here that the quasi-static initiation of the crack is included in  Eq. (22) if one sets 
t=t l  and y = Yo. in the energy balance equation. 

Fig. 4 shows the stress intensity factor and the crack extension history /I/. They 
observe that the arrival of the wave reflected from the boundaries a t  about 150 , u s  
causes the stress intensity factor to increase as in Fig. 4 (solid line) and the crack 
velocity changes from 240 m/s to 3 50 m/s. They conclude from these observations that 
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crack travling at a low velocities, typically below 300 m/s, can change their velocity of 
propagation upon encounter ing sh. ess waves. 

According to the postulate shown in  Eqs. (18) 
and ( 1 9), the crack starts to pro pagate at = Sc 
and the crack velocity is determined by the I .c . -  ,--# I 

V. Conclusion.  
We have assumed that the fracture proceeds in  the self similar manner statistically. 

Based on this assumption we have estimated the surface roughness associated with the 
micr ovoid growth and compared with the experiment /I/. Qualitative agreement 
between our analysis and the experimental observation shown in Eq. ( 1) demonstrates 
the importance of the parameters a , /I and D which could be determined by the 
experiment. 

We have also postulated the initiation condition of the crack grow th which deter mines 
the effective surface energy ~ ( ~ 1  so that the energy balance equation also holds. 
Making use of this postulate we could explain the experimental observation of KIC t-2. 
Extending this postulate to the propagation stage and evaluating the characteristic time t 
and time derivative of K l (  t )  from Fig. 4, we could explain the dynamic behavior of the 
crack velocity when it encounters with the stress wave. 

, " 
following equation - 

1 dS dK1c)Sc (23) E 
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a =,(- dt >s=s, =(?+- 3 a 1 K, / -, 6 0  

I / I 

The crack velocity is determined by the initiation 
condition of the crack which consist of the two 
terms of ( ) in R.H.S. of Eq. (23). The former 
shows the characteristic time of the growth of S(t) 
, while the latter is associated with the dynamic g 
behavior of the stress intensity factor at the 2 0 .5  

initiation. Once the crack starts to propagate, we f 
do not have to restrict these two terms at the 2 
initiation. Thus we can replace KIC ( t ) by KI ( t ) 
in Eq. (23). Numerical evaluation of the two " 
terms in R.H.S. of E q. (23) indicates that the first o 100 200 

term i s  always larger than the second term except TIME, (ps) 

at encountering the stress wave. When the crack Fig. 4 stress intensity 
encounters with the stress wave at t = 150 f l  s factor and crack 
(solid line of Fig. 4), we find extension history/l/ 

l d K I > a s  - - 
KI dt t (24) 

When the crack encounters with the stress wave, the experimental observation indicates 
that the characteristic time of the growth of S(t) changes and remains unchanged there 
after. In order to clarify the theoretical reasons for it, one has to look into the the 
atomic motion of the material which is beyond the scope of this work. 


