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h i g h l i g h t s

� We study the batch to continuous

transposition for process based on

liquid–liquid dispersion.

� Liquid–liquid dispersion in a

continuous oscillatory baffled reactor

is thoroughly studied.

� Oscillation is the main parameters

responsible for droplet breakage.

� Net flow Reynolds number does not

affect the mean droplet size but

allows the control of the residence

time.

� Vinyl acetate suspension

polymerization can be carried out

continuously, including the sticky

step, in continuous oscillatory baffled

reactor.

g r a p h i c a l a b s t r a c t

Suitable to perform liquid-

liquid dispersion of 

controlled mean droplet 

size

Use as con!nuous reactor

Example of suspension polymeriza�on
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a b s t r a c t

Reducing energy costs, improving safety, minimizing waste are the current aims of chemical engineering.

Process intensification in fine chemistry has been extensively studied but less work refers to

heterogeneous reactions involving two liquid phases. This paper focuses on batch to continuous suspen-

sion polymerization transposition and especially on the liquid–liquid dispersion step. The main features

of suspension polymerization reaction are based on (i) the initial liquid–liquid dispersion requiring a

controlled size and narrow distribution and (ii) on the control of the final particle size during the agglom-

eration step by avoiding fouling which is a bottleneck for continuous flow. For the continuous transpo-

sition, liquid–liquid dispersion and reaction studies are carried out in continuous oscillatory baffled

reactor (COBR) which is a multipurpose reactor. Its suitability to overcome the bottlenecks is demon-

strated through the investigation of the oscillating and flow conditions or the dispersed phase holdup.

A controlled droplet size distribution can be achieved. Oscillation is the main parameter responsible

for droplet breakage. The suitable conditions to obtain stable dispersion are determined. For one of the

first times, COBR is used for suspension polymerization.

1. Introduction

Liquid–liquid dispersions involve the droplets generation of con-

trolled droplet size and distribution. They are implied within
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different processes including liquid–liquid extraction [1], crystalli-

zation [2–4] or polymerization to control final particle or latex prop-

erties [5,6]. For such separation techniques or reactions, it is crucial

to control accurately the dispersion because it is directly related to

efficiency of processes. Among the process intensification route,

homogeneous reactions have been deeply investigated as well as

nonpolymer reactions [7]. Batch to continuous transposition is often

reported to increase the product yield and quality, decrease the use

of reactants (catalysts), solvent or other materials, improve safety

and allow the work at extreme operating conditions. Few studies

focus on batch to continuous transposition of liquid–liquid reac-

tions and especially on two-phase polymerization reactions [8,9].

Consequently, in this paper, suspension polymerization is consid-

ered. Traditionally performed by thermally initiated radical poly-

merization in batch stirred tank reactors, the continuous

transposition is based on the final product properties and kinetics

observation. The initial properties of the liquid–liquid dispersion

will strongly impact the properties of the final polymer beads or

pearls [10]. Suspension polymerization can then be divided into

three different steps [11,12]: (i) a liquid–liquid dispersion step, (ii)

the reaction steps inwhich the polymerizing droplets can agglomer-

ate leading to the final polymer particle size and (iii) a step enabling

to reach a conversion between 80% and 90% without change in the

polymer particle size. Fig. 1 sums up the steps and underlines the

limitations of the suspension polymerization reaction.

The first bottleneck in the continuous transposition remains in

the droplets production. The initial dispersion requires controlled

mean droplet diameter and droplet size distribution. It has to be

stable enough to prevent from coalescence and destabilization in

course of polymerization. Different continuous processes are avail-

able to create liquid–liquid dispersion including membrane [13],

rotor–stator [14], static mixer [15–17], colloid mills [14,18], high

pressure homogenizer [19], mixer-settler [20] and pulsed column

[21,22]. A remarkable feature of continuous liquid–liquid

dispersion processes are their ability to create quickly droplet of

controlled size. Whereas in batch stirred tank reactors, the emulsi-

fication time, defined as the time needed to reach stabilized mean

droplets sizes, is typically about 15–30 min [17,23–26], this time

can be a limiting step when it comes to continuous process owning

residence time ranging from microsecond, to millisecond, to sec-

ond [15–19].

Table 1 provides some examples of mean droplet size correla-

tion including their range of applications depending on the chem-

ical parameters (viscosity, densities, and interfacial tension),

equipment parameters (porosity, pore diameter, pipe diameter,

stirrer dimension. . .) and the operating conditions (flow rate, shear

rate, pulsation. . .). Their limitations are underlined. Balances

between hydrodynamic conditions and physico-chemical parame-

ters are different from batch in continuous processes because

breakage, coalescence phenomenon and interface stabilization

act on different time scales. It is important to understand the

mechanisms which display the droplet size in this type of contin-

uous liquid–liquid contactors. These different contactors can thus

be used to generate droplets and be associated with different

Nomenclature

A amplitude [m]
CD standard orifice coefficient
Dax axial dispersion coefficient [m2 sÿ1]
Do annular opening diameter [m]
d32 mean Sauter diameter [m]
D internal column diameter [m]
Dh hydraulic diameter [m]
f frequency [sÿ1]
h baffle spacing [m]
L reactor length [m]
N number of baffles per unit length [mÿ1]
Ntot total number of baffles in the column
U,u global velocity [m sÿ1]
U0 net flow velocity [m sÿ1]
Up pulsation velocity [m sÿ1]
Qc continuous phase flow rate
DP pressure drop [Pa]
T transparency factor [dimensionless]
Qd dispersed phase flow rate [m3 sÿ1]
t time [s]

Greek symbols
e mean energy dissipation rate due to oscillatory flow

[W kgÿ1]
en mean energy dissipation rate due to net flow [W kgÿ1]
qc continuous phase density [kg mÿ3]
qd dispersed phase density [kg mÿ3]
r interfacial tension [N mÿ1]
t kinematic viscosity [m2 sÿ3]
U holdup

Dimensionless numbers
Pe Peclet number
Ren net flow Reynolds number
Reo oscillatory Reynolds number
Reoh hydrodynamic oscillatory Reynolds number
Weh hydrodynamic Weber number

Liquid-liquid 
dispersion

Polymerization
Sticky stage 
5%<X<30%

Polymerization
suspension 
transport 

up to X? 80-90%

•
•
•

•

Fig. 1. Steps and limitation for continuous suspension polymerization.



reactors to carry out the reaction in a continuous pathway. To sat-

isfy the requirements expected in suspension polymerization, all

the droplets must experience narrow range of shear rates or energy

dissipation rate. Moreover, the equipment must respond to indus-

trial constraints, ensuring compatibility and flexibility. Considering

the initial liquid–liquid dispersion static mixers or pulsed column

are potential candidates.

In the two reactive steps, the main bottleneck is the reactor

plugging due to an uncontrolled droplets agglomeration or induced

by the wall interaction. For the batch to continuous transposition,

plug-flow reactor can be considered. The open literature is rela-

tively poor on the continuous suspension polymerization. Some

anecdotic cases are reported about continuous stirred tank reactors

and tubular reactors [32]. More works report on continuous emul-

sion polymerization in pulsed column [9,33]. Authors highlight the

efficiency of pulsation to prevent fouling. At lab scale, batch oscil-

latory baffled reactors have been used to carry out suspension

polymerization [6,34,35]. These reactors are available in a continu-

ous configuration, named continuous oscillatory baffled reactor

COBR. The present study is an attempt to study liquid–liquid dis-

persion and perform suspension polymerization in COBR.

The batch configurations have been extensively described in lit-

erature [6,34–41]. Table 2 lists the different parameters affecting

droplet size and the correspondent correlations for oscillatory

baffled reactor in batch. Pulsation seems to be relevant to control

droplet size and to obtain narrow droplet size distribution. How-

ever, to our knowledge only the work of Ni and co-workers

[29,30,42,43] refer to liquid–liquid dispersion in continuous

oscillatory baffled reactor in which a classical water/oil system is

studied without surfactant. COBR are used to carried out continu-

ous-flow heterogeneous reactions such as heterogeneous catalysis

reaction [44], biodiesel production [45] or crystallization [46].

Their use as polymerization reactor is mentioned [35] but never

described in literature.

In this work, a focus is made on the liquid–liquid dispersion

in continuous oscillatory baffled reactor. The different process

parameters (flow rate, oscillation conditions) and the effect of

the dispersed phase hold-up are reviewed. A correlation is pro-

posed to estimate the mean droplet size. The required reactor

length to obtain the liquid–liquid dispersion is then defined. A

brief perspective of its use as suspension polymerization reactor

is finally described to produce poly(vinyl acetate) PVAc. It is

used to produce PVA (polyvinyl alcohol, vinyl acetate polymer

partially hydrolyzed) by saponification. It is mainly used as wood

glue and provides some medicine applications for tumour embo-

lization [47,48].

Table 1

Droplet size correlations for different liquid–liquid contactors, d32 is the mean Sauter diameter, Dh the hydraulic diameter, Do is the pore diameter, lc is the continuous phase

viscosity, qc and qd are the continuous and dispersed phase density, qe is the mixture density, V0 is the flow velocity, e is the porosity, r is the interfacial tension and c the

continuous phase shear rate.

Literature Contactor type Residence

time

Limitations Correlations

[15] Static mixer SMV 0.04–0.08 s � High flow rate

� Pressure drop

d32
Dh

¼ KWeÿ0:6
h Re0:1h

Weh ¼
qcV0Dh

r Reh ¼
qeV0Dh

el

r: 3–7 mNmÿ1, qd/qc: 0.77–0.87, ld/lc: 0.28–0.94, U: 10–60%

vol

[27] Membrane � Few industrial applications

� Low flow rate

D
D0

¼ aþ bWe1=2
� �

Caÿ1=2

We ¼
qDQ

2
D

D3
0r

Ca ¼
lc

_cD0

r

r: 8–9.5 mNmÿ1, qd/qc: 0.82–1.33, ld/lc: 10.5–13.8

[28] Batch reactor 30 min � Emulsification time Summary of different correlation in the mentioned study

d32 ¼ 1:72:10ÿ2Reÿ0:91
o Reÿ0:42

n

[21,29,30] Co-current pulsed

column

Several

minutes

� Low viscosity Vertical COBR

Riser
d32
D ¼ 0:40 �54%ð ÞReÿ0:57 �17:72%ð Þ

o Re0:31 �12:25%ð Þ
n

Downcomer
d32
D ¼ 1:24 �41:9%ð ÞReÿ0:66 �10:9%ð Þ

o Re0:27 �15:65%ð Þ
n

Horizontal COBR
d32
D ¼ 107Reÿ0:9

o Re0:13n

r: 20.5 mNmÿ1, qd/qc: 0.92, ld/lc: 5, U: 5–20% vol.

Disc and doughnut pulsed column

d32/D = 5Reo
ÿ0.85Weÿ0.26

r: 3.5 mN mÿ1, qd/qc: 0.87, ld/lc: 0.59, U: 25–40% vol.

[19,31] Rotor–stator 0.1–1 s � Optimal range of viscosity 20–

5000 mPa
d32
D ¼ 0:201 ld

lc

� �0:066
Weÿ0:6

r: 8.9–12.7 mNmÿ1, qd/qc: 0.93–0.97, ld/lc: 9.7–969, U: 5–50%

vol.

[19] High pressure 0.1–3 ms � Optimal range of viscosity 1–200 mPa –

Table 2

Liquid–liquid dispersion in batch oscillatory baffled reactor.

Studied effect Consequences

[38] Batch OBR Oscillation d32 � x0fð Þ
ÿ1:2

[38,41] Surfactant concentration – No effect on the stabilization time

– Narrow DSD and d32 at lower interfacial tension

[41] Dispersed phase holdup 10–70%

No mention of droplet size

Same oscillation conditions for complete dispersion

[36,38,41] Baffle thickness and species – Thickness of 3 mm is optimum for dispersion stabilization

– Decrease of the transparency factor T, decrease of d32



PVAc is mainly produced by emulsion polymerization but few

publications deal with VAM (vinyl acetate monomer) suspension

polymerization [49–51].

2. Experimental section

2.1. Chemicals

Technical grade of toluene (95% of purity) and vinyl acetate

monomer (VAM) inhibited by 10–23 ppm of hydroquinone were

respectively purchased from Gaches Chimie and Sigma Aldrich

and used without further purification. The stabilizer used in this

study was the poly(vinyl acetate) partially hydrolyzed (88%)

provided by Nippon Gohsei company. The thermal initiator

involved in the suspension polymerization was the Peroxan

BCC (bis(4tert-butyl-cyclohexyl)-peroxidicarbonate)) supplied by

Pergan. Distilled water was used.

2.2. Liquid–liquid dispersion system

For the study of liquid–liquid dispersion in the continuous oscil-

latory baffled rector (COBR), the water/surfactant/system used was

the water/PVA/toluene system. The different component charac-

teristics are described in Table 3.

The interfacial tension was measured by the pendant drop

method (Krüss DSA 100).

The viscosity measurement was determined by using a AR 2000

rheometer (TA instrument).

2.3. Suspension polymerization recipe

The initiator concentration was set to 0.1% molar based on the

VAM concentration. The surfactant concentration was fixed at

2000 ppm. The initiator consisted of white powder non soluble in

water. A premix was prepared composed by demineralized water,

PVA suspending agent and the initiator. A rotor–stator enabled the

homogenization of the mixture. For these experiments, the dis-

persed phase concentration of the initial VAM dispersion was of

16% wt. in order to prevent from additional difficulties related to

concentrated systems, and especially the clogging of the reactor.

The different phases were degassed by using nitrogen flux to

avoid oxygen introduction which acts as polymerization inhibitor.

In order to scavenge the radicals and to prevent polymerization,

hydroquinone from Sigma Aldrich was purchased to inhibit the

polymerization of the collected samples.

2.4. Experimental rig

The different experimental set-ups are described in Fig. 2. The

oscillatory baffled reactor was made of borosilicate glass tubes.

The straight section was 700 mm long and 15 mm of internal

diameter, D. The glass baffles were spaced from 26 mm (plus or

minus 1 mm) and left an annular opening Do of 8 mm. There were

23 baffles per section. Every four straight sections, a U-shape sec-

tion was connected. This U-shape section was 250 mm long and

the glass baffled spacing was of 31 mm. The transparency factor

T, defined expression 1, was then equal to 28%.

T ¼
Do

D

� �2

ð1Þ

On the right size, the U sections were on the same plane

whereas on the left side, the U tubes were perpendicular to the

horizontal plane and then the flow is upward. The sections were

jacketed except the U-tube. Consequently, the flow is largely in

the horizontal direction with an ascendant movement due to the

tubes connections (Fig. 2).

Two configurations were used and described in this paper. In the

mainpart of the paper devoted to the liquid–liquid dispersion study,

a length of 5.15 mwas used as reactor. Fig. 2a describes the different

inlets of the reactors. The temperature was set between 20 and

23 °C. The inlets of the aqueous and organic phases were ensured

by two gear pumps with flow rate ranging from 15 to 150 g minÿ1.

The pumpswere equippedwith check valves to avoid the backward

of the flow. The pulsation was performed by using a piston con-

nected at the basis of the first section. The oscillation amplitudes

ranged from 10 to 70 mm and the pulsation frequency from 0.35

to 1.4 Hz. The regulation was made thanks to the command panel.

On each feeding lines, a temperature sensor, a flow meter and a

densimeter were implemented in order to register their temporal

evolution. The set-point flow rate was entered and a PID regulator

controlled the valve opening for regulating the flow rate. Due to

the oscillation, the flow rate fluctuated with an error inferior to 2%.

For the liquid–liquid dispersion study, sampling valves were

installed at different sections of the reactor in order to measure

the droplet size distribution and the mean droplet size along the

reactor. At the COBR outlet, the on-line TurbiscanÒ measurement

cell was set to follow the steady-state flow and to measure the

mean Sauter diameter.

For the polymerization study, Fig. 2b describes the introduction

of the three phases (water, premix and vinyl acetate monomer)

and the different operating sections of the reactors respectively

devoted to the phases introduction, the liquid–liquid dispersion

creation and the reaction step. To prevent thermal runaway of

the reaction, additional sensors were set to control the tempera-

ture. The different placements of the sensors (PT100) and sampling

valves for conversion and particle analysis are depicted on the

Fig. 2b. Table 4 sums up their locations as well as the length

devoted to each step.

The premix was fed by a piston HPLC pump (ARMEN) and was

maintained under continuous stirring and nitrogen. The vinyl ace-

tate was surrounded by a nitrogen blanket.

For the polymerization tests, the total flow rate was equal to

145.5 g minÿ1, corresponding to a total residence time of about

45 min, including 30 min for the polymerization reaction. The pul-

sation conditions had been set according to the liquid–liquid study.

Let’s underline that the COBR was also equipped with a pressure

sensor for safety reason and as soon as 5 bar were reached, the

pulsation stopped. So the operating conditions must not exceed

4 bar.

2.5. Analytical aspects

2.5.1. Droplet and particle size

Two analysis apparatus were used to determine the droplet

size: an off-line measurement and an on-line measurement.

The off-line measurement (Mastersizer 2000, Malvern) pro-

vided mean droplet size and droplet size distribution through laser

diffraction. A large range of measurement is covered: from 0.02 to

2000 lm. Measurement of the droplet size distribution is based on

the Mie diffraction theory. Some characteristic diameters can be

Table 3

Physicochemical properties of the liquid–liquid system.

Water/PVA/toluene

qc (kg mÿ3) 997

qd (kg mÿ3) 870

lc (Pa s) 0.0059

ld (Pa s) 0.001

Surfactant concentration 0.07% mass/kg toluene

re (mN mÿ1) 3.5



calculated from this measurement. For future discussion, it is rele-

vant to define the mean Sauter diameters d32 (2) and the span

which quantifies the width of the distribution (3).

d32 ¼

X

n

i¼1

nid
3
i

X

n

i¼1

nid
2
i

ð2Þ

where ni is the number of droplets which sizes range from di to di + 1.

span ¼
d90 ÿ d10

d50

ð3Þ

The d90, d10 represent respectively the highest diameter of 90%

in volume of the dispersed phase and the highest diameter of 10%

in volume of the dispersed phase, while d50 is the median diameter

of the distribution i.e. the highest diameter of 50% in volume of the

dispersed phase. These characteristic diameters are directly

derived from the laser diffraction analyses.

Fig. 2. Experimental set-up of the column (a) for the liquid–liquid dispersion study (b) for the polymerization tests with FI corresponding to flow controller and TI to the

PT100 probe for temperature.



The on-line measurement was provided by the on-line Turbi-

scan (Formulaction) and gave access to the Sauter mean diameter

d32 without dilution. It is based on the light backscattering theory

for which principle is described in literature [52,53].

Liquid–liquid dispersions were analyzed by optical microscopy

(Zeiss AXIO Observer A1m) after dilution of the sample.

For the particles observation, scanning electron microscopy

(SEM Hitachi TM 3000) was used. The SEM technique gives access

to the surface and the shape of the poly(vinyl acetate) particles

obtained.

2.5.2. Conversion measurement

Conversion was deduced from gravimetric analysis. It consists

in weighting the sample prior and after the vacuum drying. Know-

ing the initial monomer loading, the conversion can be calculated.

3. Liquid–liquid dispersion in a continuous oscillatory baffled

reactor (COBR)

3.1. Background

The instantaneous velocity of liquid in a pulsatile flow contains

two components: a permanent flow velocity U0 characterizing the

flow rate and a pulsed one due to pulsation Up (t).

UðtÞ ¼ U0 þ UpðtÞ ð4Þ

The pulsation velocity created by a piston mechanical device

can be expressed by (5):

UpðtÞ ¼ pAf cosð2pftÞ ð5Þ

where A is the oscillation amplitude which characterize the fluid

displacement inside the column and f is the oscillation frequency.

The mean flow velocity is then defined as:

Um ¼ U0 þ Upm ð6Þ

where the mean oscillation velocity Upm is expressed by

Upm ¼
1

T

Z T

0

Up tð Þdt ¼ 2Af ð7Þ

Consequently, two different Reynolds numbers are usually

defined to characterize the flow in such pulsed column:

– the net flow Reynolds number which is related to the net flow

velocity

Ren ¼
U0D

t
ð8Þ

– the oscillatory Reynolds number which is defined in accordance

with the pulsatile component of the flow

Re0 ¼
2AfD

m
ð9Þ

m is the kinematic viscosity and Dc is a characteristic diameter of

the column.

In pulsed flow, an inversion of the flow occurs at every half per-

iod because Upm/U0 is superior to 1 [40]. According to the operating

conditions (Table 5), it ranges from 1.7 to 8.3.

3.2. Operating conditions

Table 5 covers the different parameters investigated in this sec-

tion: throughput, pulsation conditions (amplitude, frequency) and

dispersed phase hold-up.

The holdup U is defined by:

U ¼
Qd

Qd þ Q c

ð10Þ

It assumes that there is no slip velocity. The studied flow rates

were chosen to avoid particles sedimentation in course of polymer-

ization reaction. The calculation is based on a 150 lm particles for

40% vol. of dispersed phase holdup U. The range of pulsation

conditions is set by the pilot. The repeatability has been checked

(see ESI, Fig. S1).

3.3. Evolution of the mean droplet size and droplet size distribution

along the COBR

In multi steps reactor like the COBR, the length of the reactor

devoted to each step must be optimized to reduce the space

requirement. Concerning liquid–liquid dispersion step, the opti-

mum length is defined as the required length to reach and stabilize

the droplet size. As a consequence, the droplet size distribution and

the mean droplet size evolution at different axial positions of the

column were measured in different process conditions (flow rate

and oscillation conditions).

Different behaviors of the liquid–liquid dispersion were

observed depending on the pulsation conditions. Three cases can

be distinguished and are depicted in Fig. 3. Oscillation conditions

affect strongly the droplet size distribution stabilization. In

Fig. 3a, the droplet size distributions are shifted to the larger size

along the reactor leading to an increase of the mean droplet size

along the column. On the contrary, in Fig. 3b, the droplet size dis-

tributions are almost superimposed and the mean droplet size is

maintained for all the axial position sampling. Besides, it seems

that the droplet size distribution becomes narrower along the

column. A halfway case can be noticed. In Fig. 3c, the droplet size

distributions are first become narrower and provide smaller sizes

from 3.05 m length.

From the different oscillation conditions tested (Table 5), a

mapping of the stability efficiency along the column was drawn.

Fig. 4 describes the conditions suitable for stable liquid–liquid

dispersion.

Fig. 4 is interesting for the future polymerization tests pre-

sented in the Section 4. For the further results, the mean droplet

size evolution and modeling will be performed while considering

the value of the droplet size at 4.45 m.

Fig. 5 highlights the previous results by confirming mean drop-

let size tendency depending on the pulsation conditions. The sam-

Table 4

Sample and measurement in course of polymerization – H = 0 m corresponds to the three phases (water, premix and oil) contact level.

Position of the PT100 Location of the sampling Total length (m)

Phases introduction

Liquid–liquid dispersion Section 6, H = 10.8 m P1: section 4, H = 4.7 m 9.15

Reaction – heating Section 10, H = 23 m P2: section 7, H = 15.25 m 12.2

Reaction Section 11, H = 27.45 m P3: section 10, H = 23 m 9.15

Reaction – cooling Section 13, H = 32, 15 m P4: section 11, H = 27.45 m 3.75

P5: outlet, H = 34.25 m



ple corresponding to H = 5.15 m is obtained by on-line Turbiscan

measurement set at the COBR outlet.

The effect of the operating conditions and hold-up are indepen-

dently studied.

3.4. Effect of the operating conditions

3.4.1. Effect of the total net flowrate in the COBR

Here the presented results concern a dispersed phase concen-

tration U of 40% vol. The same oscillation conditions were tested

in three total flow rate conditions corresponding to three, four

and five times the terminal velocity for a polymer particle of

150 lm. Indeed, as described in Fig. 1, initial emulsion of 30–

50 lm of mean droplet size lead to polymer beads or pearls of

150 lm mean particle size.

The effect of the flow rate is expressed as net flow Reynolds

number Ren expressed in Eq. (8) and the pulsation conditions are

defined by the dimensionless Reo (expression (9)). Whatever the

pulsation conditions, it appears that the mean Sauter diameter is

insensitive to the net flow rate in the tested operating conditions

and considering the measurement uncertainties (Fig. 6). This result

is consistent with the literature results [54–57] for different pulsed

columns but is not in accordance with previous COBR studies

[29,30] (Table 1). In these studies [29,30], no surfactant was added

to the aqueous phase. Moreover the net flow Reynolds number

played a significant role in vertical column described in Pereira

a b

c

Fig. 3. Droplet size distribution all along the column for different operating conditions for different axial positions (a) Qtot = 10.1 L hÿ1, x0 = 20 mm, f = 0.75 Hz, U = 25%, (b)

Qtot = 10.3 L hÿ1, x0 = 35 mm, f = 1 Hz, U = 25% and (c) Qtot = 10.35 L hÿ1, x0 = 25 mm, f = 1.4 Hz, U = 25%. Blue solid line: H = 0.70 m, green solid line: H = 1.40 m, red solid line:

H = 3.05 m, pink solid line: H = 3.75 m and orange solid line: H = 4.45 m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Table 5

Operating conditions in the continuous oscillatory baffled reactor.

U

(%vol.)

Qtot

(L hÿ1)

Qtoluene (g minÿ1) Qaqueous phase (g minÿ1) x0f

(mm sÿ1)

x0 (mm) f (Hz)

25 7.63 27.70 ± 0.40 g minÿ1

(±1.43%)

95.10 ± 0.54 g minÿ1 (±0.6%) 14–50 10–20–30–40-50 0.35–0.50–0.75–1.00–1.25–

1.40

10.18 39.90 ± 0.70 g minÿ1

(±1.90%)

126.90 ± 1.48 g minÿ1

(±1.17%)

14–50 10–15–20–25–30–35–40–

50

0.50–0.75–1.00–1.25–1.40

40 7.63 44.30 ± 0.26 g minÿ1

(±0.60%)

76.30 ± 0.60 g minÿ1 (±078%) 10–50 10–15–20–25–30–35–40–

50

0.35–0.75–1.00–1.25–1.40

10.18 59.04 ± 0.50 g minÿ1

(±085%)

101.50 ± 1.01 g minÿ1

(±0.99%)

10–50 10–15–20–25–30–35–40–

50

0.35–0.50–0.75–1.00–1.25–

1.40

12.69 73.60 ± 0.30 g minÿ1

(±0.41%)

126.50 ± 1.37 g minÿ1

(±1.09%)

15–37.5 15–20–25–30–35–40 0.75–1.00–1.25–1.40
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and Ni [30] with a power law exponent around 0.3. In horizontal

COBR, the dependence is considered to be negligible with an expo-

nent equal to 0.13.

Moreover, on the opposite, the Sauter diameter is affected by

the oscillation conditions. Indeed, at same Ren, the Sauter mean

diameter obtained decreases whereas the oscillatory Reynolds

number Reo increases.

3.4.2. Effect of the oscillating conditions

Both effects of the amplitude and of frequency have been eval-

uated independently.

3.4.2.1. Effect of the amplitude. The amplitude effect on the mean

Sauter diameter and droplet size distribution (DSD) is investigated

at a constant net flow Reynolds number (Ren = 241) and for differ-

ent frequencies.

An increase of the oscillation amplitude A reduces the mean

Sauter diameter value d32 as depicted in Fig. 7a. This result is in

accordance with previous work [29] which suggests a ÿ0.76 expo-

nent. This tendency was expected since the amplitude is related to

the mean energy dissipation rate and consequently to the turbu-

lent intensity involved in the breakage mechanism.

3.4.2.2. Effect of the frequency. The second component of the oscil-

lation conditions is the frequency f. In the same way, increasing the

frequency enables the decrease of the mean Sauter diameter d32
(Fig. 8). The mean droplet size is proportional to the frequency

with a power law exponent of ÿ0.92. This result matches with

the Pereira [29]observations for horizontal continuous oscillatory

baffled reactor which reported an exponent value of ÿ0.85.

3.4.2.3. Effect of the oscillating conditions: the oscillatory Reynolds

number Reo. The results are finally correlated thanks to the oscilla-

tory Reynolds number Reo (9). Given the net flow Reynolds number

Ren has no effect (Section 3.3.1.), the change in mean Sauter diam-

eter according to Reo is presented in Fig. 9 for the two net Reynolds

numbers Ren tested and for a dispersed phase holdup U of 25% vol.

The mean Sauter diameter follows a decreasing power law with

the Reo according to expression (11).

d32

D
¼ 2:2Reÿ0:9

O ð11Þ

The fitting is in agreement with the model proposed by Pereira

[29] provided Table 1. The characteristic dimension of both COBR,

used in this study and in Pereira’s study are depicted Table 6.

3.4. Effect of the dispersed phase holdup

Two dispersed phase holdups have been tested, respectively

equal to 25% and 40% in volume. The other operating conditions

(total net flow rate and oscillation conditions) are maintained con-

stant. No significant effect of the holdup is noticed in the investi-

gated range of the operating conditions. At same Ren and

oscillation parameters (A, f), the droplet size distributions are

totally superimposed whatever the dispersed phase holdup

(Fig. 10a). In the same way, the mean Sauter diameter droplet pre-

sents a similar pattern: the holdup has no significant effect on the

d32= 706A-0.80

R2 = 0.81

d32 = 981A-0.84

R2 = 0.94

10
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Fig. 7. Effect of the amplitude on the mean droplet size Ren = 241 U = 25% (N:

f = 1 Hz and s: f = 0.75 Hz).
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Fig. 6. Mean Sauter diameter dependence to the net flow Reynolds number Ren at

different pulsation conditions (� Reo = 1797, Reo = 2096, 4 Reo = 2989) for a

dispersed phase holdup U = 40%.

Fig. 5. Evolution of the mean Sauter diameter in different operating conditions all

along the column (oscillation velocities: d: 15 mm sÿ1 + : 30 mm sÿ1, :

37.5 mm sÿ1), Qtot = 7.62 L hÿ1, U = 25%.
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d32 whatever the axial position in the tested conditions. (see

Fig. 10b)

3.5. Axial dispersion

Some correlations are available in literature for axial dispersion

in oscillatory baffled reactor of larger size [43]. Table 6 reminds the

geometrical characteristics of the reactors of this study and in the

Pereira’s study.

Ni et al. [37] compared the axial dispersion coefficient for

different pulsed devices (close-fit, loose-fit baffle, Karr plate and

multiperforated plate of various scales). They demonstrated that

the axial dispersion coefficient is proportional to the mean energy

dissipation rate and to the geometrical characteristics of the

system, as follows:

Dax / L4=3e1=3 / ðAf ÞD
h

D

� �1=3
1ÿ T2

T2

 !1=3

ð12Þ

Dax is the axial dispersion in m2 sÿ1, D is the internal diameter of

the column (m), h is the baffle spacing (m) and T the transparency

factor (see expression (1)). The authors investigated the correlation

(12) with different pulsed columns and the proportionality coeffi-

cient between the two terms of the equation was found equal to

1.1.

This correlation enables us to have an insight of the axial dis-

persion in the COBR. The Peclet number (or Bodenstein number),

defined by the expression (13), characterizes the residence time

distribution in a tubular reactor. It is defined as the ratio between

total transfer and axial diffusion transfer.

Pe ¼
uL

Dax

ð13Þ

L is the reactor length and u the flow velocity.

In the investigated conditions, the corresponding Peclet num-

bers range from 30 to 100. The plug flow conditions can be ensured

from a Peclet number value of 40. The Peclet lower values (ie,

higher axial mixing coefficients) are obtained for the higher

amplitudes.

3.6. Modeling

3.6.1. Mean energy dissipation rate

The results can be expressed in terms of mean energy dissipa-

tion rate. Given the hydrodynamic in oscillatory baffled reactor,

two components can be considered due to the net flow en and

the oscillatory flow e.
The first term is the mean energy dissipation due to flow and

baffles. The pressure drop in a baffled tube due to the net flow is

defined by (14):

DP ¼ Ntot
qu2

2CD

1

T2
ÿ 1

� �

ð14Þ

With DP the pressure drop in Pa, u the flow velocity (m sÿ1), q

the density of the flow, Ntot the total number of baffle in the

column and T the fractional open area. CD is the standard orifice

coefficient, usually taken at 0.6.

The mean energy dissipation due to the net flow in the column

can then be expressed as:

en ¼
DPu

qL
ð15Þ

The second term is the mean energy dissipation rate due to the

oscillations for which different correlations are provided [21].

According to the investigated conditions, the correlation of Jealous

and Johnson [58] has been used to calculate this term expressed

by:

e ¼
P

qV
¼

16p2N

3C2
D

1ÿ T2
� �

T2
Afð Þ

3
ð16Þ

where N is the number of baffled cells per unit length (mÿ1), T

fractional free area defined as D0

D

ÿ �2
where D0 and D are the orifice

Reo
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Fig. 9. Mean Sauter diameter in function of the oscillatory Reynolds number Reo,

U = 25% for the two different Ren (N: 180 and : 241).
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Fig. 10. (a) Droplet size distributions obtained at Ren = 240, A = 50 mm, f = 0.75 Hz

at the final axial position sampling at a dispersed phase holdup equal to 25% (solid

line) and 40% (dotted line). (b) Evolution of the mean Sauter diameter with the axial

position for different dispersed phase fraction, under two different oscillation

conditions, Ren = 180 (20 mm, 1.4 Hz, : 25% D: 40% and 20 mm, 0.75 Hz, h: 25%,

s: 40%).

Table 6

Comparison of the Pereira (2002) [23] COBR and the COBR of this study.

COBR of this study COBR Pereira (2002)

Column diameter D (mm) 15 40

Baffle hole (mm) Do 8 18

Baffle spacing H (mm) 26 72

Baffle free area % 28% 21%



and tube diameter (m) respectively and CD the orifice coefficient for

the flow through the baffle hole and is assumed to be 0.6 for fully

developed conditions.

The calculated net mean energy dissipation en is negligible com-

pared to the mean energy dissipation induced by the oscillatory

component of the flow (several hundred orders of magnitude).

Therefore, the net mean energy dissipation is not taken into

account in the following part.

The mean droplet size evolution follows a decreasing power law

with the mean energy dissipation with an exponent of ÿ0.29

(Fig. 11). The Kolmogorov’s theory which suggests a ÿ0.40 expo-

nent is not checked. The discrepancy is presumably due to the

non-perfect homogeneous and isotropic turbulence and to the role

played by the inserts on the breakage phenomenon.

3.6.2. Mean droplet size

In the different publications concerning the COBR, the mean

droplet size is classically expressed as a power law of the oscilla-

tory Reynolds number and of the net flow Reynolds number. Given

that no effect of the net flow Reynolds number was pointed out,

the mean Sauter diameter is expressed as a function of the oscilla-

tory Reynolds number only. Oscillations are the main parameters

responsible for breakage as noticed by Mignard et al. [42].The

mean Sauter diameter follows a decreasing power law with a

ÿ0.88 exponent.

Such correlations do not take into account the fluid properties

involving in the dimensionless Weber number. It is usual to

express the mean Sauter diameter as a function of the dimension-

less Weber number. It represents the ratio between the inertial

forces and the interfacial forces. It depends on the continuous

phase physical properties and on the interfacial tension. To extend

this correlation for different systems, the dimensionless Weber

number is defined with the hydraulic diameter:

Weh ¼
qc Afð Þ

2
Dh

r
ð17Þ

As a consequence, the oscillatory Reynolds number is defined

thanks to the hydraulic diameter Dh. The corresponding hydraulic

diameter is in fact the orifice baffle diameter D0. Correlation

(Fig. 12) was obtained considering our data and the silicon/water

system studied by Pereira [29,30].

Finally, the correlation obtained is expressed by:

d32

Dh

¼ 2:99Reÿ0:89
oh Weÿ0:08

h ð18Þ

Some additional experiments with different systems will be

useful to precise the exponent of the hydraulic Weber number

and confirm the tendency.

The goal of this work was to check whether it was possible to

control the liquid–liquid dispersion step in the polymerization

process thanks to a pulsed flow. The results are very encouraging

and a suspension polymerization study can now be considered to

prove the versatility of this reactor.

4. Suspension polymerization of vinyl acetate monomer

The PVAc is soluble in VAM [59]. The monomer dissolves its

polymer and the monomer droplets exhibit a viscous syrup step

to finally leading to solid clear little spheres called beads.

The goal of this suspension polymerization in continuous oscil-

latory baffled reactor is to demonstrate the feasibility of COBR as

potential polymerization reactor.
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Fig. 12. Correlation of the mean Sauter diameter as function of dimensionless

numbers (s: experimental data, bold solid line: model, solid lines: error ±20%).
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Table 7

Operating conditions for vinyl acetate monomer suspension polymerization.

Test 1 Test 2

QVAM g minÿ1 21.97 22.31

Qdemi water g minÿ1 111.24 111.56

Qprémix g minÿ1 5.77 10.66

Initiator/VAM %mol 0.06 0.11

PVAI/VAM ppm 1220 2250

Jacketed temperature section3–5 (°C) 22 22

Jacketed temperature section 6–9 (°C) 61 61

Jacketed temperature section 10–12 (°C) 56 56

Jacketed temperature section13 (°C) 10 10

Amplitude (mm) 30 30

Frequency (Hz) 1 1
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Fig. 13. Conversion X-time plot obtained by gravimetric measurement of the

reactor outlet (s Test 1, Test 2).



4.1. Operating conditions

The polymerization conditions are described in Table 7. The

oscillation conditions have been defined in accordance with the

previous tests to ensure stable liquid–liquid dispersion before

polymerization and to minimize the pressure drop.

The vinyl acetate monomer polymerization is carried out by

thermal radical suspension polymerization. The reaction kinetics

depends on both temperature and initiator concentration. Temper-

ature sensors were set at different axial positions (Table 4) and the

temperature value of the reactive mixture was then recorded

during the reaction. The temperature in the heating and polymer-

ization sections was between 43 and 45 °C during the experiments.

So the heat loss was not negligible considering the double jacket

temperature range between 61 °C and 55 °C in these sections of

the COBR.

During a test, the reactor was filled of demineralized water.

Then the vinyl acetate was introduced.

During the first 45 min no reaction occurred. After temperature

and flow rate stabilization, the premix was introduced in the

reactor.

The COBR was glass-made which leads to easy observation of

the reactive media in course of polymerization the liquid–liquid

dispersion and the polymerizing mixture were both opaque. No

coating was applied on the glass wall contrary to batch stirred tank

reactors in enamel or stainless steel usually used.
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Fig. 14. Vinyl acetate monomer suspension polymerization conversion profile in

the COBR (s Test 1, Test 2).

Fig. 15. Test 1 Microscopic pictures of the different samples: dispersion or polymerizing droplet at the different axial position of the column.



4.2. Steady-state regime

The time required to reach the stationary flow was evaluated.

Samplings were collected at the COBR outlet to measure conver-

sion. The conversion–time plot shows that the stationary regime

was reached after 3 h (Fig. 13). Generally, after each sampling,

the flowwas disturbed and a degassing was observed from the Sec-

tion 8.

Conversion X is higher in the second test because of the higher

amount of initiators (Table 7).

4.3. Conversion along the reactor

Once the permanent regime reached, the conversion profile

depending on the axial position was evaluated by sampling at

the different positions (Fig. 2b, Table 4). The conversion profiles

obtained for the two tests are reported on Fig. 14.

Maximal conversions in the range 20–30% are reached. The

reaction is partial but well-advanced to be in the agglomeration

step where the particles exhibit a sticky behavior. So the COBR is

efficient and effective to succeed in suspension polymerization.

The different samples were analyzed by SEM (Figs. 15 and 16).

The particle evolution can be compared all along the column as

well as the difference between the two tests. In test 1, the

liquid–liquid dispersion obtained seems to be multimodal: large

drops are observed (100 lm) on the left picture and very small

droplets on the right picture. These larger droplets were not

observed in the liquid–liquid dispersion of test 2. Less suspending

agent (PVA) responsible for droplet stabilization were introduced

in the Test 1 than in the Test 2. As a consequence, larger particles

were also observed.

Concerning the second sample P2 located 12.2 m length after

the contact of the three phases (Table 4), in both Figs. 15 and 16,

the conversion is very low and dissymmetric particles were

Fig. 16. Test 2 Microscopic pictures of the different samples: dispersion or polymerizing droplet at the different axial position of the column.



observed corresponding to initiator particles as confirmed by the

analysis of a dried sample of liquid–liquid dispersion (see ESI,

Fig. S2).

In course of polymerization, small particles were progressively

created (samples P3 and P4, see Table 4, from Figs. 15 and 16). A

film was observed which surrounded the particles as suggested

by Fig. 17. From P3 to P5 (see Table 4 and Fig. 2b), the particle size

did not evolve for a given test. In both cases, the polymerizing

grains obtained were well spherical and mainly presenting a con-

tinuous and smooth aspect. As large droplets were created, large

solid particles were also observed (Fig. 16). Additional pictures

can be seen in the ESI (Fig. S3).

These first polymerization tests present very promising results

for suspension polymerization of vinyl acetate.

5. Conclusion

The continuous oscillatory baffled reactor was selected to

perform suspension polymerization. First, its ability to create con-

trolled mean droplet size of narrow droplet size distribution was

demonstrated. Liquid–liquid dispersion in COBR was thoroughly

studied. The main parameter responsible for breakage is the

oscillation velocity characterized by its oscillation amplitude and

frequency product Af. Besides, at same pulsation conditions, the

residence time can vary without effect on the dispersion proper-

ties. Both operating parameters can be adjusted independently to

respectively control the residence time and the liquid–liquid dis-

persion characteristics which are the two key parameters of the

process. Indeed in suspension polymerization, they fix the reaction

time and the product characteristics. These sets of experiments

enable the identification of the proper conditions for the polymer-

ization tests. The feasibility tests were carried out with the vinyl

acetate monomer and were very conclusive. The polymerization

reached 30% of mass conversion. Some encrusting was observed

on the reactor wall due to degassing in course of polymerization.

The different operating parameters can now be investigated more

deeply, in particular the temperature range, the suspending agent

concentration or the initiator amount in order to optimize the sus-

pension polymerization conversion and the pulsation conditions to

identify the effect on particle size distribution. These preliminary

tests provide however some encouraging results for the batch to

continuous transposition of the suspension polymerization.
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