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A new shallow approximation for
tridimensional non-isothermal viscoplastic

lava flows

Noé Bernabeu†,‡, Pierre Saramito†,∗ and Claude Smutek‡

Abstract – A new shallow reduced model for the non-isothermal tridimen-
sional viscoplastic fluid flowing on a general topography is presented in this
paper. Both the consistency and yield stress are supposed temperature-
dependent. An asymptotic analysis leads to reduce the 3D problem to a
2D surface one with depth-averaged equations. These equations are numer-
ical approximated by an autoadaptive finite element method, based on the
Rheolef C++ library, allowing to track accurately the front position. The
proposed approach is first evaluated by comparing numerical prediction with
non-isothermal experimental measurements for a silicone oil dome. Next,
the December 2010 eruption of Piton de la Fournaise (La Réunion island) is
numerically reproduced and compared with available data.

The risk assessments for volcanic lava flow pose a difficult challenge to numerical methods.
Indeed, these flows with free surface couple the fluid dynamic equations (Navier-Stokes
like) with thermal effects, as diffusion-convection in lava, radiation and convection in air,
diffusion in the substrate while the fluid rheology is complex and temperature-dependent.
In order to overcome these complexities, some authors proposed a probabilistic approach
based on the topography: the flow path is determined by the maximum slope direction.
See the DOWNFLOW [28] or the ELFM [9] codes. Such codes require few computational
time and few input data, which is a definitive advantage. However, these approaches do
not permit to predict the evolution of the lava, its thickness and its arrested state. The
deterministic approaches adopt more complete descriptions of the phenomena. Harris et
al. [14] proposed a kinematic one-dimensional thermo-rheological model of a lava flow in a
confined channel (the FLOWGO code). In [16], a three-dimensional model for Newtonian
fluids, including the energy conservation, solidification and free surface is presented. A
variant of the deterministic approach is the cellular automata method for 2D computation
systems, based on a spacial partition into cells whose state evolves according to that of
their neighbours and a transition function which describes the exchanges of lava and heat:
see the MAGFLOW code [29] that evaluates the lava exchange from the steady state
solution of the Bingham fluid equations on an inclined plane, or the SCIARA code [27]
that bases on a minimization rule of the difference in height between neighbouring cells
while the lava cooling takes into account the radiation at the free surface and the heat
exchanges due to lava mixing.

The lava flow extends over several kilometres while its thickness remains relatively small.
An asymptotic analysis based on this aspect ratio allows to reduce rigorously the three-
dimensional set of conservation laws and constitutive equations to a surface bidimensional
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system of equations. For inertia dominated flows, we obtain the classical Saint-Venant
shallow water model [3], where viscous terms are neglected. Gerbeau and Perthame [13]
proposed a modified Saint-Venant system where viscous effects are maintained thought a
wall friction term. Costa and Macedomio [8] extended this viscous variant by including
non-isothermal and viscous heating effects for volcanic lava flows. Notice that free sur-
face viscoplastic lava flows are highly viscous and these inertia dominated models could
be improved. Huppert [17] investigated Newtonian viscous dominated flows. For more
complex non-Newtonian rheologies, shallow approximations of the horizontal dam break
problem were first studied for a viscoplastic fluid by Lui and Mei [18] and revisited by
Balmforth and Craster [1]. Computations for some specific tridimensional topographies
was next performed by using a specific axisymmetric coordinate systems: a curved chan-
nel [20] and a conical surface [31]. Recently, an extension for an arbitrarily topography
is presented by the present authors in [5]. Tacking into account thermal effects is more
complex with the asymptotic analysis approach: the problem does not reduce to a sur-
face bidimensional one, it remains fully three-dimensional. In order to overcome this
difficulty, different approaches based on a depth-average version of the heat equation
was investigated by Bercovici and Lin [4] for a Newtonian fluid to model the cooling
of mantle plume heads with temperature-dependent buoyancy and viscosity. Balmforth
and Craster applied this approach to the evolution of a lava dome [2] for viscoplastic
fluid with temperature-dependent consistency and yield stress.

The aim of this paper is to bring a new robust and efficient numerical method based
on the asymptotic analysis approach for the resolution of the shallow approximation
of tridimensional non-isothermal viscoplastic flow problem with temperature-dependent
consistency and yield stress on a general topography. The first section presents the tridi-
mensional problem, its surface bidimensional reduction and the numerical resolution of
the set of equations. The second section validates our approach based on comparisons of
numerical simulations with experimental measurements performed on a non-isothermal
silicone oil dome laboratory experiment. The last section develops in details some com-
parison of numerical predictions with data available for a real volcanic lava flow, the
December 2010 Piton de la Fournaise lava one.

1 Problem statement and numerical method

1.1 Tridimensional formulation

The viscoplastic Herschel-Bulkley constitutive equation [15] expresses the deviatoric part
τ of the stress tensor versus the rate of deformation tensor γ̇ = ∇u+∇uT as:

{

τ = K(θ)|γ̇|n−1γ̇ + τy(θ)
γ̇
|γ̇| when γ̇ 6= 0,

|τ | ≤ τy. otherwise.
(1a)

where u is the velocity field, θ is the temperature, K(θ) > 0 the temperature-dependent
consistency, n > 0 is the power-law index and τy(θ) is the temperature-dependent yield
stress. The consistency and the yield stress are in general decreasing with the temper-

ature. Here |τ | =
(

(1/2)
∑3

i,j=1 τ
2
ij

)1/2

denotes the conventional norm of a symmetric

tensor τ in mechanics. The total Cauchy stress tensor is σ = −p.I + τ where p is the
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pressure and I the identity tensor. When τy = 0 and n = 1, the fluid is Newtonian and
K is the viscosity. When τy = 0 and n > 0 the fluid is a quasi-Newtonian power-law one.
When τy > 0 and n = 1, the model reduces to the Bingham one [6]. The constitutive
equation (1a) should be completed by the mass, momentum and energy conservation
laws:

div u = 0, (1b)

ρ (∂tu+ u.∇u)− div(−p.I + τ) = ρg, (1c)

ρCp (∂tθ + u.∇θ)− div(k∇θ)−
τ : γ̇

2
= 0. (1d)

where ρ is the constant density, Cp the constant specific heat, k the thermal conduc-
tivity and g the gravity vector. Notice that there are four equations (1a)-(1d) and four
unknowns τ , u = (ux, uy, uz), p and θ. The corresponding problem is closed by defining
the boundary and initial conditions.

Figure 1: Eruption flow on a variable topography with cooling.

The flow over a variable topography is considered with cooling and mass eruption from
a vent (see Fig. 1). For any time t > 0, the flow domain is represented by:

Q(t) = {(x, y, z) ∈ Ω× R; f(x, y) < z < f(x, y) + h(t, x, y)}

where Ω is an open and bounded subset R2. The function f denotes the topography and
h is the flow height. Notice that, since h is a function, h is mono-valued, which excludes
the small front cusp often observed on real flows. The eruption zone is described by
an open subset Ωe of Ω (see Fig. 1) and Ωs = Ω\Ωe denotes its complementary. The
boundary ∂Q(t) of the flowing lava volume Q(t) splits in four parts: the bottom relief
in the eruption zone Γe, the bottom relief out of the eruption zone Γs and the top free
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surface Γf (t):

Γe = {(x, y, z) ∈ Ωe × R; z = f(x, y)},

Γs = {(x, y, z) ∈ Ωs × R; z = f(x, y)},

Γf (t) = {(x, y, z) ∈ Ω× R; z = f(x, y) + h(t, x, y)}.

Also, S = {(x, y, z) ∈ Ωs × R; z < f(x, y)} denotes the substratum. For any t > 0, the
boundary conditions are a non-slip (Dirichlet) condition on the bottom for the velocity
field and natural (Neumann) one on the free surface:

ux = uy = 0 and uz = we on Γe ∪ Γs, (1e)

σ.νf = 0 on Γf (t). (1f)

where νf denotes the unit outward vector of ∂Q(t) on Γf (t). Here, we is the lava eruption
velocity, defined on ]0,+∞[×Γe, and satisfying we 6= 0 on Γe and we = 0 on Γs. Notice
that, from the Dirichlet condition, we have u = 0 on Γs and a vertical profile on the
eruption zone Γe. For the temperature, a Dirichlet condition in the eruption zone, a
conduction flux on the bottom with the substratum (out of eruption zone) and radiative
and convection fluxes with air on the free surface are considered:

θ = θe on Γe, (1g)

kνs.∇θ = ksνs.∇θs on Γs, (1h)

kνf .∇θ + ǫσSB

(

θ4 − θ4a
)

+ λ(θ − θa) = 0 on Γf (t). (1i)

where θe is the initial eruption temperature, θs is the temperature in the substratum,
θa is the temperature in the air, ks is the thermal conductivity of the substratum, νs is
the unit outward vector of ∂Q(t) on Γs, ǫ is the emissivity, σSB is the Stefan-Boltzmann
constant and λ is the convective heat transfer coefficient. Here, the term ksνs.∇θs
represents the heat flux from the substratum: it will be estimated in the forthcoming
paragraph 1.2. It remains to describe the evolution of the free surface. It is convenient
to introduce the level set function ϕ that is defined for all t > 0 and (x, y, z) ∈ Ω×R by:

ϕ(t, x, y, z) = z − f(x, y)− h(t, x, y).

Notice that the zero level, where ϕ(t, x, y, z) = 0, coincides with the free surface
Γf (t). Let us write that the level set function is transported by the u velocity field:
∂tϕ+ u.∇ϕ = 0. On Γf (t), where z = f + h, this relation becomes:

∂th+ ux∂x(f + h) + ∂y(f + h) = uz in ]0,+∞[×Ω (1j)

This is a first-order transport equation for the height h that should be completed by an
initial condition:

h(t=0, x, y) = hinit, ∀(x, y) ∈ Ω, (1k)

where hinit is given. It should also be completed by an inflow boundary condition for h:

h = hext on ]0,+∞[×∂Ω− where ∂Ω− = {(x, y) ∈ ∂Ω | uxνw,x + uyνw,y < 0}.

We assume that the domain Ω is sufficiently large that the flow never reaches the bound-
aries of Ω. Then, on ∂Ω, ux = uy = 0 for any time and Ω− = ∅ and thus this last
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boundary condition is here empty. The set of equation is finally completed by an initial
condition for the velocity u and for the temperature θ:

u(t = 0) = uinit and θ(t = 0) = θinit in Q(0). (1l)

Finally, the tridimensional problem expresses: find h, τ , u, p and θ satisfying (1a)-(1l).
For applications to lava flows, the finite element of finite difference discretisations of this
problem lead to huge nonlinear and time-dependent set of equations. The next paragraph
present a reduction to a bidimensional problem.

1.2 Reduction to a bidimensional problem

The asymptotic analysis approach developped here was initiated by Lui and Meil [18] and
then revisited by Balmforth and Craster [1] for an isothermal bidimensional viscoplastic
flow on a constant slope. Balmforth and Craster then extended this analysis to the
non-isothermal case for an axisymmetric geometry and presented applications to a lava
dome [2]. In [5], the present authors extended this asymptotic analysis to the case of an
isothermal tridimensional viscoplastic flow on an arbitrarily topography. In the present
paper, this analysis is extended to the case of a non-isothermal flow: the consistency and
the yield stress are supposed temperature-dependent.

For any function g of ]0,+∞[×Q(t), let us denote g its vertical-averaged value, defined
for all (t, x, y) ∈]0,+∞[×Ω by

g(t, x, y) =











1

h

∫ f+h

f

g(t, x, y, z) dz when h 6= 0,

0 otherwise.

For simplicity, assume that the consistency and the yield stress depend only of the
vertical-averaged temperature: K(θ) = K(θ) and τy(θ) = τy(θ). It means that the effects
of vertical variation of temperature on the consistency and the yield stress are here ne-
glected, while their effects in the horizontal directions x and y is still taken into account.
The problem is reformulated with dimensionless quantities and unknowns, denoted with
tildes. The temperature is expressed as θ = θa + (θe − θa)θ̃. The temperature-dependent
consistency and yield stress are rescaled as K(θ) = KeK̃(θ̃) and τy(θ) = τy,eτ̃y(θ̃) where

Ke = K(θe) and τy,e = τy(θe). Remark that K̃(1) = 1 and τ̃y(1) = 1. Let H be a charac-
teristic flow height and L be a characteristic horizontal length of the bidimensional flow
domain Ω. Let us introduce the dimensionless aspect ratio:

ε = H/L.

Let U = ρgH3/(ηL) a characteristic flow velocity in the horizontal plane, where
η = K0(U/H)n−1 is a characteristic viscosity and g = |g| denotes the norm of gravity
vector. The characteristic velocity expands as

U =

(

ρgH2

K0L

)

1
n

H.

Let W = εU be a characteristic velocity in the vertical direction, T = L/U be a charac-
teristic time and P = ρgH a characteristic pressure. We consider the following change
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of variables:

x = Lx̃, y = Lỹ, z = Hz̃, t = T t̃, p = P p̃, h = Hh̃,

ux = Uũx, uy = Uũy, uz = Wũz.

Remark the non-isotropic scaling procedure for the vertical coordinate z and the vertical
vector component uz of the velocity vector. In the rest of this paper, only the dimension-
less problem is considered: for simplicity and since there is no ambiguity, the tilde are
omitted on the dimensionless variables. After the change of variable and an asymptotic
analysis (see [5] details for isothermal case) the problem reduces to:

(P ): find h and θ satisfying:

∂th+ div||

(

hu||

)

= we in ]0,+∞[×Ω (2a)

h(t = 0) = hinit in Q(0), (2b)

∂(f + h)

∂n
= 0 in ]0,+∞[×∂Ω, (2c)

∂tθ + ux∂xθ + uy∂yθ + uz∂zθ −
1

Pe
∂zzθ = 0 in ]0,+∞[×Q(t), (2d)

θ(t = 0) = θinit in Q(0), (2e)

∂θ

∂z
+Rpµ(θ)θ +Nuθ = 0 on ]0,+∞[×Γf (t), (2f)

−
∂θ

∂z
+

ks
k

(

Pes
πt

)
1
2

θ = 0 on ]0,+∞[×Γs, (2g)

θ = 1 on ]0,+∞[×Γe. (2h)

The problem involves six dimensionless numbers:

Bi =
τy,eH

ηU
the Bingham,

P e =
ρCpUL

k
the Péclet number,

P es =
ρsCp,sUL

ks
the Péclet number in the substrate,

Nu =
λH

k
the Nüsselt number,

R =
HǫσSB(θe − θa)

3

k
a radiation number,

µ =
θa

θe − θa
a temperature ratio number, for radiation.

Also, pµ(θ) = θ3 + 4µθ2 + 6µ2θ + 4µ3 for any θ ≥ 0. Remark that problem (P ) involves
only h and θ: the velocity components u|| = (ux, uy) and uz admits then explicit expres-

sions involving h and θ:

u|| =























n
n+1 |∇||(f + h)|

1
ndir(∇||(f + h))K−1(θ)

[

(f + hc(θ)− z)
n+1

n − h
n+1

n

c

]

when z ∈ [f, f + hc(θ)],

− n
n+1 |∇||(f + h)|

1
ndir(∇||(f + h))K−1(θ)h

n+1

n

c

when z ∈]f + hc(θ), f + h],
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and

uz(t, x, y, z) = we −

∫ z

f

div||(u||) dz

where hc(t, x, y) = max

(

0, h−
Bi τy(θ)

|∇||(f + h)|

)

. For convenience, we also denote as

dir(v||) = v||/|v||| the direction of any nonzero plane vector. In (2g), the heat flux
from the substratum has been estimated as in [11, p. 6], thanks to an autosimilar so-
lution for the temperature in the substratum θs(t, z) given in [7, p. 53]. This approach
leads to an explicitly expression of θs versus θ and then we obtain a Robin boundary
condition in terms of θ only.

1.3 Reduction of the heat equation

Notice that the reduced problem still remain tridimensional, as (2d) is still defined on
the tridimensional flow domain Q(t). It remains to integrate this equation in the ver-
tical direction and express the problem in terms of the averaged temperature θ. For
any t > 0 and (x, y) ∈ Ω, the heat equation (2d) is integrated from z = f(t, x, y) to
z = f(t, x, y) + h(t, x, y). Then, using (2a) and divu = 0 leads to:

h∂tθ + div
(

h θu||

)

− div
(

hu||

)

θ − we

(

1− θ
)

−
1

Pe
[∂zθ]

f+h
f = 0. (3)

In order to obtain a well-posed problem in term of θ instead of θ, an additional relation
should be introduced: the so-called closure relation, that expresses θ versus θ. A verti-
cal profile θ is chosen according to θ as θ(t, x, y, z) = ϕ(t, x, y, z) θ(t, x, y) where ϕ is a
unknown function satisfying ϕ = 1 and the boundary conditions in the vertical direction:

∂zϕ+Rpµ(θϕ)ϕ+Nuϕ = 0 on Γf (t),

− ∂zϕ+
ks
k

(

Pes
πt

)
1
2

ϕ = 0 on Γs and θϕ = 1 on Γe.

With these notations, (3) becomes:

h
(

∂tθ + ϕu||.∇θ
)

+ div
(

h(ϕu|| − u||)
)

θ − we

(

1− θ
)

−
1

Pe
[∂zϕ]

f+h
f θ = 0. (4)

Notice that ϕu|| interprets as a weighted averaged velocity. The closure equation (4) was
first introduced by Bercovici and Lin [4] in the context of the cooling mantle plume heads:
these authors showed that, restricting ϕ(t, x, y, z) to be a second degree polynomial in z
for any fixed (t, x, y), leads to a well-posed reduced problem when replacing (2d) by (4) in
problem (P ). Moreover, the computation of the ϕ polynomial coefficient at any (t, x, y)
was easy and explicit. However, this second order polynomial approximation in z do
not permit to eliminate the term div

(

h(ϕu|| − u||)
)

θ from equation (3). There is also
no evidence that its always positive: it can thus generate an exponential growth of
the averaging temperature and this possible behavior is difficult to handle in numerical
simulation. Finally, the physical meaning of this therm is unclear and Bercovici and Lin
neglected div

(

h(ϕu|| − u||)
)

θ in the previous equation. These authors showed that a
real numerical error is committed with this hypothesis: its order of error is of about 10%
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for their specific problem [4, p. 3307]. Notice that 10% of errors is acceptable for some
applications ; nevertheless, from a mathematical point of view, all convergence properties
versus ε are definitively lost.

In the present paper, we propose a variant of this approach that conserve the convergence
properties versus ε: we choose ϕ as a third degree polynomial in z. This choice allows one
additional degree of freedom at each (t, x, y) and we choose to impose exactly ϕu|| = u|| at
any (t, x, y) as an additional constraint. Let (t, x, y) be fixed and ϕ(z) = az3+bz2+cz+d:
the four unknown coefficients a, b, c and d are the only solution of the following four
equations;

ϕ = 1, (5a)

ϕu|| − u|| = 0, (5b)

∂ϕ

∂z
+ (Rpµ(θϕ) +Nu)ϕ = 0 on z = f + h, (5c)

−
∂ϕ

∂z
+

ks
k

(

Pes
πt

)
1
2

ϕ = 0 on Γs and θϕ = 1 on Γe, on z = f (5d)

The reduced problem is then obtained from (P ) by replacing (2d) by

h
(

∂tθ + u||.∇θ
)

− we(1− θ).−

(

3ah2 + 2bh

Pe

)

θ = 0. (6a)

and the initial and boundary conditions (2e)-(2h) by

θ(t = 0) = θinit on Ω, (6b)

∂θ

∂n
= 0 on ]0,+∞[×∂Ω. (6c)

1.4 Numerical resolution

The nonlinear reduced problem in h and θ is first discretized versus time by an implicit
second order variable step finite difference scheme (see [5]). It leads to a sequence of
nonlinear subproblems that depends only of the horizontal coordinates (x, y) ∈ Ω. An
under-relaxed fixed point algorithm is used for solving these nonlinear subproblem: it
allows to decouple the parabolic evolution equation evolution, in terms of h, and the
averaged heat equation, in term of θ. Then, these equations are discretized by an au-
toadaptive finite element method: the practical implementation bases on the Rheolef
finite element library [24]. Such autoadaptive mesh method was first introduced in [25]
for viscoplastic flows and then extended in [22], and we refer to theses articles for the
implementation details. The procedure bases on a mesh adaptation loop at each time
step: your goal is to catch accurately the front evolution, were h = 0 (see Fig. 2). At the
front, both the h and θ gradients are sharp.
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Figure 2: Uniform (a) and dynamic (b) auto-adaptive meshes. Zoom near the front (c).
This mesh was automatically generated for the volcanic lava flow simulation presented
in the forthcoming section 3.
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2 Comparison with a silicone oil dome experiment

2.1 Experimental setup and physical parameters

Physical quantities symbol value unit
euption flow rate Q 2.2× 10−8 m−3.s−1

initial temperature of the eruption fluid θe 315.15 K
initial temperature of air and polystyrene θa 293.151 K
fluid density ρ 954 kg.m−3

air density ρa 1.2 kg.m−3

fluid viscosity at θe temperature Ke 3.4 Pa.s
fluid emissivity ǫ 0.96 -
thermal conductivity of the fluid k 0.15 W.m−1.K−1

fluid specific heat Cp 1500 J.m−1.K−1

convective heat transfer coefficient with air λ 1 − 3 W.m−2.K−1

thermal conductivity of the polystyrene ks 0.03 W.m−1.K−1

thermal diffusivity of the polystyrene κs 6× 10−7 m2.s−1

vent radius re 2 − 4 mm
constant in Arrhenius law α 0.00808044 K−1

constant in Huppert [17] formula a 0.715 dimensionless

Table 1: Physical parameters for the laboratory experiment [10,12].

1

10

15 20 25 30 35 40 45 50 55 60

θ in ˚C

K(θ) in Pa.s

Figure 3: Evolution of the silicon oil viscosity (in Pa.s) vs temperature (in ◦C).

The evolution of lava dome was numerical studied by Balmforth and Craster using yield
stress fluids [2]. In 2012, Garel presented [12] a laboratory experiment that reproduce
analogously the lava dome growth with silicon oil (Newtonian fluid) and allowed accurate
temperature measurements. The fluid is injected through a vertical vent in an horizontal
polystyrene plane at constant flow rate Q. The fluid is initially heated at θe above
the ambient temperature θa and a system of optical and infrared cameras are used to
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follow the dome growth and the surface temperature. Table 1 groups the relevant physical
parameters for this experiment. The fluid viscosity was measured for the full experimental
temperature range (see Fig. 3). Data was first presented in [10, pp. 60–62]. Observe
that the viscosity can be approximated by an Arrhenius law K(θ) = Kee

α(θe−θ) where
α = 0.00808044 K−1 was obtained by a linear regression. The flow thought the vent is
supposed to be a steady Poiseuille flow. As the vent is a circular hole with radius re,
the vertical velocity we is a second order polynomial versus the radius. Then we(r) =
c max(0, r2e − r2) where c > 0 is such that

∫ re
0

we(r) r dr = Q i.e. c = 2Q/(πr4e).

2.2 Comparison between experiments and simulations
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Figure 4: Comparison between the present simulations and a laboratory experiment
from [12]: surface temperature vs radius. (a) influence of some model variants (with
λ = 2); (b) influence of the λ convection parameter.

Fig. 4.a shows the computed surface temperature as obtained by numerical simulations
for different variants of our shallow model. These simulations are also compared with
experimental measurements, from [12]. Observe the good correspondence between all
simulations and the experimental data. The label P2 is associated to a constant viscosity
model similar to those of by Bercovici and Lin [4]: the temperature profile θ = ϕθ is
approximated with a second order polynomial ϕ in the vertical direction and the term
div

(

h(ϕu|| − u||)
)

θ is neglected. The label P3 denotes a constant viscosity model where
ϕ is approximated by a third order polynomial that satisfies ϕu|| = u||. Finally, the label

K(θ)-P3 denotes a non-constant viscosity model based on the Arrhenius’s law. For this
silicone oil dome problem, the results of the simulations are very close for all these model
variants ; the comparison is presented at time t = 7480 s but this observation is still
valid for other times. The change from a P2 to a P3 model has few effects on numerical
computations, despite this change is more satisfactory from a mathematical point of view.
The change from a P3 to a K(θ)-P3 model has also few effects: the difference between
the two curves is imperceptible on Fig. 4.a. Remark that in the present experiment,
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Figure 5: Comparison between the present simulations and a laboratory experiment
from [12]: surface temperature vs radius (λ = 2 and K(θ)-P3 model). Time evolution
for t = 160s, 600s, 1200s, 3000s and 7480s.
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the viscosity varies about a factor two in the temperature range from 20◦C to 60◦C
(see Fig. 3). Based on an autosimilar solution for the lava dome problem, Huppert [17]
proposed an explicit formula of the reference height href and dome front radius rf (t) for
the isothermal case:

href = a

(

(ρ− ρa)gQ
3

3K

)1/4

and rf (t) = a2/3
(

3KQ

(ρ− ρa)g

)1/8

t1/2, (7)

where a is a constant and ρa is the air density. Observe that the viscosity K appears with
some 1/4 and 1/8 exponents: as a consequence, the dependence upon the temperature
is finally negligible for the present silicone oil dome evolution experience. This situation
will dramatically change for real lava flows, as presented in the next section.

The experimental estimate of the coefficient of convective heat transfer λ ranges from 1
to 3 W.m−2.K−1. Fig. 4.b plots the computed surface temperature for the two extreme
values of λ. Observe that the corresponding numerical results are close. Moreover, the
two curves wrap completely the experimental data. In the rest of this paragraph, the
median value λ = 2 is used for all the simulations.

Fig. 5, present the surface temperature evolution versus time for the K(θ)-P3 model. All
these simulations appear in good concordance with experimental data for times larger
than t = 600 s. At t = 160 s, we observe some discrepancy between the experimental
data and the theoretical model. Following [12, p. 7], "we interpret the faster experimental

cooling as due to lateral heat conduction in the substrate that initially widens the size of

the thermal anomaly. This effect decreases as the temperature decreases at the front of

the current, and becomes negligible for t > 320 s, when the experimental observations are

well reproduced by theory."

3 Comparison with a real volcanic lava flow

3.1 The December 2010 Piton de la Fournaise lava flow

Figure 6: The Piton de la Fournaise 2010 lava flow (credit N. Bernabeu, May 2014).

Piton de la Fournaise, a volcano from La Réunion island, is among the most active
volcanoes in the world. A lava flow occurred in December 2010 on the north flank of
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Physical quantities symbol value unit
average eruption flow rate Q 9.7 m−3.s−1

eruption duration de 15 : 15 h:min
initial temperature of the fluid θe 1423 K
initial temperature of air and substrate θa 303 K
lava density ρ 2200 kg.m−3

air density ρa 1.2 kg.m−3

lava viscosity at θe temperature Ke 104 Pa.s
lava yield stress at θe temperature τy,e 102 Pa.s
lava emissivity ǫ 0.95 -
lava thermal conductivity k 2 W.m−1.K−1

lava specific heat Cp 1225 J.m−1.K−1

convective heat transfer coefficient with air λ 80 W.m−2.K−1

flow characteristic thickness H 1 m
flow characteristic length L 1000 m
constant in viscosity Arrhenius law α 0.016447 K−1

constant in yield stress Arrhenius law β 0.016447 K−1

Table 2: Physical parameters for the lava flow. See [19, 21, 26, 30] and [23] for the 2010
eruption data.

volcano. It was a basalt flow lasted few hours which outcome of a fissure on the volcano
surface. Fig. 6 shows the flow at arrested state in 2014. See [23] for more information
about the 2010 lava flow. Table 2 groups all the relevant physical quantities suitable
for the simulation. The fluid is represented by a Bingham viscoplastic rheological model
(the power law index is n = 1). The substrate and the lava present similar properties,
such as density and thermal conductivity, since the substrate is composed by old cooled
lava. The consistency and the yield stress depend strongly upon the temperature and
vary on a large range of magnitude. More precisely, we suppose that the viscosity and
the yield stress follow some Arrhenius laws: K(θ) = Kee

α(θe−θ) and τy(θ) = τy,ee
β(θe−θ)

where α = β = 0.016447 K−1.

3.2 Digital elevation model and flow conditions

Volcano observatory from La Réunion and the laboratory of geosciences at La Réunion
provided us a tridimensional digital elevation model (DEM) of the Piton de la Fournaise
with a 5 meter horizontal resolution (see Fig. 7), covering the zone of deposit. This
topographic survey being older than 2010, it can be used to define the relief function f
in our model. The volcano observatory also provided us the detailed contours of the final
lava flow at arrested state (see Fig. 7 right): this data will be used for comparison with
numerical simulations. The average lava flow rate Q during the eruption is also known
(see table 2). An expedition was necessary to complete some missing data and localize
accurately the different vents (see Fig. 8.a). Observe on Fig. 8.b that the 2010 volcanic
flow is splited in two disjoint zones, denoted as A and B, where vents are numbered from
1 to 6. The flow rates of these two disjoint flows are estimated as proportional to their
relative areas, i.e. QA = κQ and QB = (1 − κ)Q, where κ = |A|/(|A| + |B|) and |A|
and |B| denote the areas of the A and B zones, respectively. Notice that these areas are
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Figure 7: Digital elevation model of the Piton de la Fournaise volcano in 2008, with a 5
meter horizontal resolution (left). Zoom with the observed arrested flow contours (right).

known from the detailed contours of the lava flow at arrested state. On the A zone, we
suppose that the vent 1 is a circular cone with a radius of 20 meters and is active during
the full eruption time. On the B zone, we suppose that the vents from 2 to 6 are active
one after the other and that they are circular. Let us denote by de the eruption duration.
We suppose that the vent 2 is active from t=0 to de/5 with a radius of 10 meters and
the vent i, 3 ≤ i ≤ 6, is active from t= (i − 2)de/5 to (i − 1)de/5 with a radius of 20
meters.

Figure 8: (a) View of the aligned cones along the fault line associated to different vents
at arrested state (credit N. Bernabeu, 2014). (b) Schematic view of the different vent
positions and the two separated zones of the observed arrested state.

3.3 Numerical simulations

Numerical simulations are performed for this volcanic lava flow: the arrested state is
reached at t=25 h and is represented on Fig. 9 over the DEM. Observe that the predicted
arrested state is relatively closed to that of the observed one, represented by a thin white
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Figure 9: Simulation of the volcanic lava flow: prediceted arrested state represented
over the DEM with a colormap showing the flow height h. The contour of the observed
arrested state is represented by a thin white line.

line. Some discrepancies remain between the simulation and the observation. The final
deposit is overestimated in different places. Also, the widths of the different flow branches
are not always well predicted and some flow bifurcations do not appear in the simulation.
There are many explanations to understand these discrepancies. The main problem for
the simulation is the lack of data concerning the 2010 lava flow, especially concerning the
vent positions and their corresponding flow rates during the time. These missing data was
here estimated and we observed that different choices slightly influence the final result.
A second source of error is the accuracy of the present DEM: its 5 meter horizontal
resolution should be reported to the characteristic flow height that is of about 1 meter.
At this scale, a lot of ground details are lost and a single block of rock or a little relief with
a size of 2 or 3 meters is able to generate a bifurcation while it is invisible on the present
DEM. In 2012, a new DEM of the Piton de la Fournaise has been realized with a one meter
spatial resolution: it can very interesting to test it for future eruptions. A third source
of errors could be due to the model itself: the vertical variation of the temperature is
here neglected in the viscosity and the yield stress temperature dependent functions, since
only a vertical averaged value of the temperature is used. A future research direction will
be to reconsider this vertical variation. Nevertheless, considering theses lack of physical
data and our simplified shallow viscoplastic flow model, the numerical simulations are in
relatively good agreement with observations. Finally, Figs. 10 and 11 shows the evolution
of the volcanic lava flow simulation for various times until the arrested state.
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Figure 10: Simulation of the volcanic lava flow at t = 5 h and 10 h (left) height h ; (right)
vertical-averaged temperature θ. The contour of the real covered zone is represented by
a thin black line.
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Figure 11: Simulation of the volcanic lava flow at 15 h and 25 h: (left) height h ; (right)
vertical-averaged temperature θ. The contour of the real covered zone is represented by
a thin black line.
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Conclusion

A new reduced model for the non-isothermal free-surface tridimensional viscoplastic fluid
for shallow flows on a general topography has been presented in this paper. Both the
consistency and the yield stress are supposed temperature-dependent. The governing
equations was numerical approximated by an autoadaptive finite element method, al-
lowing to track accurately the front position. The proposed approach was evaluated by
comparing numerical predictions with available data for both a laboratory experiment
with a non-isothermal silicon oil flow and a real volcanic lava flow. These two tests
showed that the numerical simulations are relatively in good agreement with observa-
tions. Future works will consider a new 1 meter resolution DEM of the Piton de la
Fournaise volcano for more accurate simulations and also to explore lava flow simulation
for others volcanoes. Another research direction is to improve our model, by tacking
into account the vertical dependence of the temperature in the viscosity and yield stress
functions.
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