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Abstract

This paper attempts to provide a state-of-the-art of sound source localization in Robotics.
Noticeably, this context raises original constraints—e.g. embeddability, real time, broad-
band environments, noise and reverberation—which are seldom simultaneously taken
into account in Acoustics or Signal Processing. A comprehensive review is proposed of
recent robotics achievements, be they binaural or rooted in Array Processing techniques.
The connections are highlighted with the underlying theory as well as with elements of
physiology and neurology of human hearing.

Keywords: Robot audition, source localization, binaural audition, array processing

1. Introduction

“Blindness separate us from things but deafness from people” said Helen Keller, a
famous American author who was the first deafblind person to obtain a Bachelor in Arts,
in 1904. Indeed, hearing is a prominent sense for communication and socialization. In
contrast to vision, our perception of sound is nearly omnidirectional and independent of
the lighting conditions. Similarly, we are able to process sounds issued from a nearby
room without any visual information on their origin. But human capabilities are not
limited to sound localization. We can also extract, within a group of speakers talking
simultaneously, the utterance emitted by the person we wish to focus on. Known as the
term Cocktail Party Effect [1], this separation capacity enables us to process efficiently
and selectively the whole acoustic data coming from our daily environment. Sensitive to
the slightest tone and level variations of an audio message, we have developed a faculty
to recognize its origin (ringtone, voice of a colleague, etc.) and to interpret its contents.
All these properties of localization, extraction, recognition and interpretation allow us
to operate in dynamic environments, where it would be difficult to do without auditory
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information. All the above impressive Human capabilities have stimulated developments
in the area of Robot Audition. Likewise, the recent research topic of Human-Robot Inter-
action may have constituted an additional motivation to investigate this new field, with
the aim to artificially reproduce the aforementioned localization, extraction, recognition
and interpretation capabilities. Nevertheless, contrarily to Computer Vision, robot au-
dition has been identified as a scientific topic of its own only since about 15 years. Since
then, numerous works have been proposed by a growing community, with contributions
ranging from sound source localization and separations in realistic reverberant condi-
tions to speech or speaker recognition in the presence of noise. But as outlined in [2],
the robotics context raises several unexpected constraints, seldomly taken into account
in Signal Processing or Acoustics. Among them, one can cite:

Geometry constraint: Though the aim is to design an artificial auditory system endowed
with performances inspired by human hearing, there is no need to restrict the study to a
biomimetic sensor endowed with just two microphones. Indeed, bringing redundant in-
formation delivered by multiple transducers can improve the analysis and its robustness
to noise. Straight connections thus appear with the field of Array Processing. Yet, the
robotics context imposes an embeddability constraint. While Array Processing can con-
sider large arrays of microphones—e.g. several meters long—, robotics implies a tradeoff
between the size of the whole sensor and its performances, so that it can be mounted
on a mobile platform. Furthermore, applications in humanoid robotics strongly promote
the use of only two microphones.

Real Time constraint: Many existing methods to sound analysis rely on heavy computa-
tions. For instance, a processing time extending over several tens of seconds is admitted
to perform the acoustic analysis of a passenger compartment. Contrarily, localization
primitives involved in low-level reflex robotics functions—e.g. sensor-based control or
auditive/visioauditive tracking—must be made available within a guaranteed short time
interval. So, the algorithms computational complexity is a fundamental concern. This
may imply the design of dedicated devices or computational architectures.

Frequency constraint: Most sound signals valuable to Robotics are broadband, i.e. spread
over a wide bandwidth w.r.t. their central frequency. This is the case of voice signals,
which show significant energy on the bandwidth [300Hz–3300Hz] used for telephony.
Consequently, narrowband approaches developed elsewhere do not straightly apply in
such broadband contexts. Noticeably, this may imply a higher computational demand.

Environmental constraint: Robotics environments are fundamentally dynamic and un-
predictable. Contrarily to acoustically fully controlled areas, unexpected noise and re-
verberations are likely to occur, which depend on the room characteristics —dimensions,
walls, type of the building materials, etc.—and may singularly deteriorate the analysis
performance. The robot itself participates to these perturbations, because of its self-
induced noise, e.g. from fans, motors, and other moving parts. A challenge is to endow
embedded sound analysis systems with robustness and/or adaptivity capabilities, able
to cope with barge-in situations where both the robot and a human are possibly both
speaking together.

Generally, most of embedded auditory systems in robotics follow the following clas-
sical bottom-up framework: as a first step, the sensed signals are analyzed to estimate
sound sources positions; next the locations are used to separate sound of interests from
the sensed mixture in order to provide clean noise or speech signals ; finally, speaker

2



and speech recognition systems are fed with these extracted signals. Of course, other
alternatives have also been proposed [3], but this approach remains by far the most used
framework in robot audition. Nevertheless, it exhibits the importance of sound localiza-
tion in the overall analysis process. It has been indeed the most widely covered topic
in the community, and a lot of efforts have been made to provide efficient sound local-
ization algorithms suited to the robotics context. Since, in our opinion, Robot Audition
has reached an undeniable level of scientific maturity, we feel that the time has come
to summarize and organize the main publications of the literature. This paper then
attempts to review the most notable contributions specific to sound source localization.
Another intent is to underline their connections with theoretical foundations of the field,
including with basics of human physiology and neuroscience.

The paper is organized into two parts. First, binaural methods to sound source local-
ization are reviewed in Section 2, under the angle of performances and human operation.
Next, Array processing approaches are expounded in Section 3, with a focus on the
specificities raised by the robotics constraints. Finally, a conclusion ends the paper.

2. Binaural Approaches to Sound Source Localization in Robotics

This section describes a first set of methods which try to mimic diverse aspects of
the human auditory system, thus defining the topic of binaural robot audition. The com-
mon point to all the following works is the use of only two acoustical sensors, generally
positioned inside a human-like pinna. There is an obvious practical interest to develop
biomimetic auditory sensors containing a small number of microphones: the size is min-
imal and the embedded electronics is simplified. Significant advances in understanding
the biological processes which enable the handling of acoustic data by humans have been
obtained up to the 80s [4]. They constitute the natural basis of binaural developments in
robotics. Having this in mind, the successive steps of the sound localization process can
be described by following the sound propagation, from the source to the binaural sensor:

• As a first step, a sound wave generated by an external source is modified by the
presence of the robotic torso, head and pinnae prior to interact with the ears. The
induced scattering and spectral changes must me modeled so as to precisely capture
the time-space relationship linking the sound source to the binaural signals. From
a engineering point of view, this relationship is captured by the so-called Head
Related Transfer Function (HRTF), which will be studied in the first subsection.

• Next, human localization capabilities mainly rely on some acoustic features ex-
tracted by our ears and integrated by our brain. Those features have been exten-
sively studied; among them, one can cite Interaural Cues for horizontal localization,
or spectral notches for vertical localization [4]. A lot of them have also been used
in robotics. These will be reviewed in the second subsection.

• Finally, on the basis of these features, sound localization itself is performed. Nu-
merous approaches have been proposed so far, and the most prominent one in
robotics are outlined in the third subsection.

In all the following, the left and right microphone signals will be referred to as l(t) and
r(t) respectively, with t the time (in s). Their frequency counterparts, obtained through a
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Fourier Transform, will be denoted by L(f) and R(f) respectively, with f the frequency
(in Hz). Sound source position is expressed in terms of horizontal azimuth angle θ,
elevation angle ϕ in the median plane, and distance r, all of them being expressed w.r.t.
an origin located at the robot’s head center. In the remaining of the paper, the position
(θ, ϕ) = (0◦, 0◦) corresponds to a sound source in front of the head (i.e. at boresight).

2.1. The Head Related Transfer Function

2.1.1. Definition

The HRTF captures the relationships between the signal s(t) originating from a sound
source and captured at a certain arbitrary reference position in space and the two signals
perceived by the two ears. These relationships can be written in the form

{
L(f) = HL(rs, θs, ϕs, f)S(f),

R(f) = HR(rs, θs, ϕs, f)S(f),
(1)

where HL(.) and HR(.) represent the left and right HRTFs respectively, (rs, θs, ϕs) is the
actual sound source position w.r.t. the chosen reference position, and S(f) the Fourier
transform of s(t). Importantly, the HRTFs account for all the modifications brought by
the body of the listener, including torso, head and pinnas effects, to the incident sound
wave. So it varies significantly from a human listener to another as its reflects his/her
own morphology. The same applies in robotics, where all the possible acoustic scatters
impact on the sensed signals, and are thus captured by the corresponding HRTFs. But it
is fundamental to understand that the HRTF strictly corresponds to a propagation in free
field and does not include room reflections nor reverberations. Consequently, the HRTF
can be obtained in two ways. The first solution is to accurately model the body and head
effects. If the robot shapes are simple, then basic acoustic equations can be sufficient to
account for the acoustic effect on the signals. In the case of a more realistic robot, with
complex body, shoulders, nose, pinnae, etc., an acoustic simulation software might be
necessary to solve the problem through finite-element methods [5]. The second solution
consists in identifying the HRTF through real measurements, which must be performed
in an anechoic room. This solution may not be so practical for every robotic platform,
for it requires specific hardware/software. Hopefully, various databases are proposed in
the literature. One can cite, among others, the celebrated CIPIC database [6], pub-
lished by the CIPIC Interface Laboratory from the University of California Davis, and
accessible from the URL http://interface.cipic.ucdavis.edu/, or the recent HRTF
database proposed by the Deutsche Telekom Laboratories (TU-Berlin) [7], located at
https://dev.qu.tu-berlin.de/projects/measurements/wiki

Typical HRTFs extracted from the CIPIC database is shown on Fig. 1, for the azimuth
θ = 35◦ and elevation φ = 20◦. Its time counterpart Head Related Impulse Response
(HRIR) is also represented. This figure highlights the famous shadowing effect of the
head: depending on the source position, the left and right signals differ in terms of
time of arrival (cf. the delay between the left and right HRIR), but also in terms of
spectral content (cf. the amplitude difference between the two HRTFs and the spectral
notches positions). These last cues will often serve as the basis to infer localization (see
§2.2). Readers interested in a more complete tutorial on HRTF can refer to [8], where
experimental and theoretical data are compared.
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Figure 1: HRIR and HRTF data for a subject of the CIPIC database [6]. Interaural (ITD/ILD) and
monaural (spectral notches) cues are also reported.

2.1.2. HRTF models in Robotics

As already outlined, the complex structure of most robotic platforms prevents the
access (through simulations or identifications) to the exact robot HRTFs at the two
ears. Consequently, some simple head models have been proposed by the robot audition
community, with the aim to capture the robot head effect on the binaural signals up to
some extent.. The three most classical models are depicted on Fig. 2. They consist in
considering the left and right microphones in the free field —Auditory Epipolar Geometry
(AEG) [9]—, placed at the surface of a disk —Revised Epipolar Geometry (RAEG) [10]—
, or at the surface of a sphere —Scattering Theory (ST) [11]—. AEG and RAEG are the
most elementary model. Provided that θ and f stand for the azimuth and frequency of

a farfield source, the (R)AEG approximations of the left and right HRTFs H
(R)AEG
L (.)

and H
(R)AEG
R (.) write as

{
H

(R)AEG
L (θ, f) = 1,

H
(R)AEG
R (θ, f) = e−jφ(θ) = e−j2πfτ(R)AEG(θ),

(2)

highlighting the fact that the two binaural signals only differ by a delay τ(R)AEG(θ)
which is a function of the source angle (note that the left channel has been arbitrarily
considered here as the reference). The third ST (spherical) model is more involved. Let
β be the so-called incidence angle, i.e. the angle between the line from the center of
the sphere approximating the head to the source position (rs, θs), and the line from the
center of the same head to a measurement point at which the HRTF must be computed.
Considering a perfect rigid spherical head, the expression of the diffracted sound pressure
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Figure 2: The three classical head models: auditory epipolar geometry (AEG, left), revised auditory
epipolar geometry (RAEG, middle), and scattering theory (ST, right).

wave received at the measurement point allows to write [12]:

HST(r, β, f) =
rce−jr2πf/c

ja22πf

∞∑

m=0

(2m+ 1)Pm [cos(β)]
hm(r2πf/c)

h′m(a2πf/c)
, (3)

where HST(r, β, f) is the transfer function linking the sound pressure received at the
measurement point and the free-field pressure existing at the head center, with c the
speed of sound and a the head radius. Pm(.) and hm(.) are the Legendre polynomial of
degree m and the mth-order spherical Hankel functions respectively, while h′m(.) denotes
the derivative of the function hm(.). Assuming that the two microphones are antipodaly
placed on the surface of the sphere, the left and right HRTFs, respectively denoted by
HST

L s(r, θ, f) and HST
R (r, θ, f), are then given by, for a sound source located at (r, θ),





HST
L (r, θ, f) = HST

(
r,−π

2
− θ, f

)
,

HST
R (r, θ, f) = HST

(
r,
π

2
− θ, f

)
.

(4)

2.2. Binaural and monaural cues for localization

Once the link between the sound source signal to be localized and the two resulting
binaural signals has been modeled, it is necessary to focus on the binaural features which
can be extracted from these signals to infer localization. These features are first recalled
through a short review on sound source localization in humans. Then, the way how these
cues can be coupled with the aforementioned HRTFs is investigated.

2.2.1. Sound source localization in humans

About 100 years ago, Rayleigh proposed the duplex theory [13], which explains that
horizontal localization is mainly performed through two primary auditory cues, namely
the Interaural Level Difference (ILD) and the Interaural Time Difference (ITD). The
ILD relates to the difference between the intensity of signals perceived by the right and
left ears, due to the head frequency-dependent scattering. Noticeably, if a source emits at
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a frequency higher than about 750Hz, then the head and any small-sized element of the
face induce scattering, which significantly modifies the perceived acoustic levels, so that
the ILD can exceed 30 dB. On the contrary, the ILD is close to 0 dB at low frequencies, as
fields whose wavelengths are greater than the head diameter undergo no scattering. This
property can clearly been deduced from Fig. 1, where the left and right HRTF amplitudes
only significantly differ for frequencies greater than about 800Hz. The second auditory
cue is known as the Interaural Phase Difference (IPD)—or its time-counterpart termed
Interaural Time Difference (ITD). The ITD is justified by the path difference to be
traveled by the wave to reach the ears. It appears on Fig. 1 as a delay between the two
HRIR onsets. Note however that the maximum value involved in localization is around
700µs—i.e. one period of a 1400Hz sound— due to the ambiguity of IPD values greater
than 2π. So, two frequency domains can be exhibited in human horizontal localization,
each one involving a distinct acoustic cue. Frequencies under ∼ 1 kHz are azimuthally
localized by means of the IPD, while frequencies above ∼ 3 kHz exploit the ILD.

It can be straightly inferred that a source emitting from the vertical symmetry plane
of the head produces no interaural difference. However, Humans are still able to perform
a localization in such conditions. Indeed, obstacles—including shoulders, head, outer
ear, etc.—play the role of scatterers which modify the frequency components of acoustic
waves. This filtering effect is essential in our ability to determine the elevation of a sound
source. Indeed, the sum of all the reflections occurring around the head induces notches
into the perceived spectrum, the positions of which are significantly affected by the source
elevation [14], see Fig. 1. The acoustic feature for vertical localization is thus a spectral
cue, termed ”monaural” as it involves no comparison between the signals perceived at
the two ears. Consequently, these notch positions are likely to be used by the brain to
infer the elevation.

While the directional aspects of localization have been widely studied, distance per-
ception has received substantially less attention. Generally, it is admitted that like
angular estimations, sound source distance can also be inferred from various acoustical
properties of the sounds reaching the two ears. Known distance dependent acoustical
cues include sound intensity, which unfortunately also depends on the intrinsic source
energy, as well as on interaural differences, on the spectral shape and on the Direct-to-
Reverberant sound energy Ratio (DRR). So, one can see that nearly all the aforemen-
tionned cues, which are used to estimate the angular position of a sound source, are also
directly linked to the distance parameter. Actually, human most likely combine these
distant-dependent cues together with a priori information on the surrounding space so
as to get the sensation of a stable distance. The reader interested in this topic will find
a comprehensive review in [15]. But one has to keep in mind that Human performances
in distance discrimination are quite poor: listening tests have proven that humans use to
significantly overestimate the distance to sources closer than 1m, while we underestimate
distances greater than 1m [15].

2.2.2. Auditory models in Robotics

As shown in the previous paragraph, the head effect on the perceived sounds is fre-
quency dependent. Such a frequency decomposition of the signals is often implemented
with a FFT, while other authors proposed the use of classical bandpass filters, see [16].
Nevertheless, how efficient they may be, these methods do not perform a frequency
decomposition similar to the human inner ear. Gammatone filters, modeling the vibra-
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Figure 3: Typical Gammatone filters frequency responses.

tion of the basilar membrane inside the cochlea, have proven well suited to describe the
cochlear impulse response in the cat’s cochlea [17]. They also constitute a good approx-
imation of human spectral analysis at moderate sound levels [18]. Typical gammatone
filters frequency responses are reported in Fig. 3. It can be seen that their bandwidths
increase with frequency, in such a way that they represent around 15% of the center
frequencies. This is one of the main features of the human auditory system, which con-
firms our better ability to discriminate low frequencies [19]. As a consequence of this
decomposition, the representation of any sound signal information is more likely close
to the human perception of sounds. As it will be shown in the following, this gamma-
tone frequency decomposition is now very commonly used. Readers interested in more
involved auditory models can refer to the Auditory Modeling Toolbox [20], available at
http://amtoolbox.sourceforge.net

2.2.3. Binaural cues for horizontal localization in Robotics

Among all the acoustic features that can be extracted with two microphones, binaural
cues are the most often used in robotics. The IPD and/or ILD can indeed lead, with just
two microphones and simple computations, to a localization in azimuth. Let IPDexp(f)
and ILDexp(f) term the experimental IPD and ILD extracted from the two signals. There
exist numerous way to estimate these IPD and ILD values: computations in the time
or frequency domain, bioinspired models, etc. Readers interested in a review of these
approaches can consult [16]. Whatever the approach, from these experimental values,
the problem is then to determine the position of the emitting sources. This involves a
model, expressed either in a mathematical closed-form or as experimental relationships
uniting the source attributes (position, frequencies,. . . ) and the induced auditory cues.

Considering the AEG or RAEG model represented by Eq. (2), the delay τ(R)AEG(θ)
represents the ITD, and its phase counterpart, i.e. the IPD, then verifies [10]





IPDAEG(θ, f) = 2πfτAEG(θ) =
2πfa

c
cos θ,

IPDRAEG(θ, f) = 2πfτRAEG(θ) =
πfa

c

((π
2
− θ

)
+ cos θ

)
.

(5a)

(5b)

The main advantage of the first AEG formulation is that the azimuth θ can straightly be
8
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frequency. (Right) ILD values for the ST model.

approximated by inverting (5a), assimilating IPDAEG(θ, f) to the experimental IPDexp.
However, as already outlined, it cannot describe the effect of a head located between the
two microphones, inducing scattering of the sound wave. To better take into account
its presence, the RAEG model can be used (note that RAEG is analog to the classical
Woodworth-Schlosberg formalization [21]). Indeed, results from [10] show that simu-
lations obtained from this model fit experimental measurements in an anechoic room
within the frequency band [500Hz–800Hz]. But the RAEG model, while being more
realistic than AEG, does not fully account for the head waveguide effect. Additionally,
both do not provide any meaningful value for the ILD cue, which is accounted for in the
theoretical spherical model. Indeed, one has for this ST model





IPDST (r, θ, f) = arg
(
HST

L (r, θ, f)
)
− arg

(
HST

R (r, θ, f)
)
,

ILDST (r, θ, f) = 20 log10
|HST

L (r, θ, f)|
|HST

R (r, θ, f)| .

(6a)

(6b)

Compared to epipolar geometries, the scattering theory exhibits more reliable theoretical
expressions of both IPD and ILD as functions of the azimuth θ and distance r, and can
thus lead to more reliable identification schemes for localization. It is however important
to notice that the accuracy of the approach still depends on the capacity to cope with
the room acoustics, which is not always possible in practice. Indeed, if the binaural
cues are obtained inside in a real robotics environment including noisy sound sources
and reverberation, the results may get very bad: since the models do not capture the
distortion due to the room acoustics, the theoretical binaural cues and the measured one
cannot fit with each. Nevertheless, the ST formalism was exploited in [11] and [22] to
express the pressure field perceived by two microphones symmetrically laid over a sphere,
and experimentally tested by Handzel et al. [23] on a spherical plastic head. But whatever
the model, and as outlined in Human audition, the observed inappropriateness of IPD
(resp. ILD) for high (resp. low) frequencies extends outside the scope of AEG, RAEG
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and ST strategies, as can be seen in Fig. 4. As mentioned in §2.2.1, frequencies above
about 1400Hz lead to IPD values greater than 2π and becomes ambiguous. Noticeably,
the human auditory system then relies on the ILD at these frequencies. Indeed Fig. 4
exhibits high ILD values, reaching up to 25dB for this frequency domain, in the ST
model.

2.3. Exploitation in Robotics

Historically, most initial contributions to robot audition were rooted into the binaural
paradigm. However, as shown in the following, the results remained mixed when facing
real-life environments, involving noises and reverberations together with wideband non-
stationary sources.

2.3.1. Horizontal localization

In the early 2000s, the use of interaural difference functions for azimuth localization
was deeply studied in the framework of the SIG project [9, 24]. As the robot cover cannot
be perfectly isolated from internal sounds, an adaptive filter exploiting the data provided
by inner microphones was used to eliminate the motor noises (e.g. ego-noise mentioned
in section 1) from the audio signal perceived by the external pair of microphones. This
active auditory system thus allowed to perform measurement during motion [9], and
constituted an interesting improvement over former methods—for instance [25] on the
COG humanoid, or [26]—based on the stop-perceive-act principle. On this basis, an
“Active Direction Pass Filter” (ADPF) grounded on the ST model was proposed in [27]
to determine the origin of a sound source and extract it out of a mixture of surrounding
sounds. This model-matching approach has since been used in a lot of contributions. For
a fixed distance rs, for all frequencies under (resp. above) fth = 1500Hz, and for each
θ, the system computes the theoretical IPDST (rs, θ, f) (resp. ILDST (rs, θ, f)) through
(6). Then a cost function dIPD (resp. dILD) is defined to measure the distance between
the measured ITDexp(f) (resp. ILDexp(f)) interaural differences and theoretical ones.
The two distances dIPD and dILD are then integrated into a belief factor PIPD+ILD(θ).

The angle θ̂s = argmaxθ PIPD+ILD(θ) is then regarded as the sound source azimuth.
The sound source separation performances were also evaluated and compared in [28],
depending on the model (RAEG vs ST) that relates the source azimuth and the interaural
cues. Clearly, the scattering theory provided the best results. So far, these contributions
have been among the rare complete binaural audition systems, integrating localization,
source separation and recognition. Nevertheless, since HRTFs do not capture the acoustic
response of the room where the robot operates, their applicability is generally limited
to well-identified environments. One solution could consist in learning the head effect in
realistic conditions. Such an idea was successfully assessed in [29] through a dedicated
neural network able to generalize learning to new acoustic conditions. One can also
cite [30], or [31], where the iCub humanoid robot’s head was endowed with two pinnae.
The localization is performed by mapping the aforementioned sound features to the
corresponding location of the source through a learning method. Another approach
is proposed in [32]. Auditory events corresponding to relevant ITD values are gathered
into histograms, which are then approximated by Gaussian models whose parameters are
identified through the EM method. Peaks in the resulting histogram are then regarded
as potential sound azimuths. This allows to cope with the multisource case, where
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Figure 5: Some artificial pinnas from the literature. Pictures extracted from (left to right) : [37], [35],
[39], [40]. They all share the fundamental asymmetry property.

multiple sound sources are likely active at the same time. Finally, an implementation
of the celebrated biology-inpired Jeffress model is proposed in [33] on a simple robot
head endowed with two microphones and stereovision. Interestingly, the ILD pathway
is also modeled with a 2D spiking map. The merging of the two interaural maps is also
addressed, so as to obtain an efficient sound localization system. The proposed method is
shown to share some common well-known properties of the human auditive system, like
the ITD maximal efficiency reached when the sound source is in front of the observer.
But whatever the approach, ITDs and ILDs can be extracted from the binaural signals
in numerous ways: through correlation [34], zero-crossing times comparison [35], or in
the spectral domain [36]. A systematic study of binaural cues, and an analysis of their
robustness w.r.t. reverberations is proposed in [16]. Results show that binaural cues
extracted from gammatone filters outperforms other techniques.

2.3.2. Vertical localization: spectral cues

As indicated in §2.2.1, the elevation of a sound source is mainly related to the positions
of notches in the spectra of the perceived signals, which stem from acoustic reflections due
to the head and the outer ear. In robotics, quite few authors have developed techniques
based on spectral cues. Most of them are based on the scattering induced by an artificial
pinnae in charge of collecting the acoustic pressure information and of driving it to
microphones. For humans, the specific shape of the pinnae enables a selective spatial
amplification of acoustic pressure variations, with a quality factor reaching up to 20 dB.
Reproducing such capabilities in Robotics is a difficult problem due to the lack of a model
of the pinnae shapes which lead to elevation dependent notches. Yet, as a rule of thumb,
these shapes must be irregular or asymmetric, and artificial pinnae were proposed in
[37], [38], [31], [35], or [39]. Fig. 5 shows some of them. A simplified model, inspired by
[41] and based on the superposition of the incident wave with a single wave reflected
by the pinnae, enables the prediction of the elevation from the position of notches.
Noticeably, these notches, which appear or disappear depending on the elevation, may
be hard to detect or may even be blurred by spurious notches induced by destructive
interferences coming from acoustic reflections on obstacles. To solve this problem, [31]
introduces the interaural spectral difference as the ratio between the left and right channel
spectra. While notches may be indistinct in the complex spectra of the two signals,
the interaural spectral difference, when interpolated with a 12-degree polynomial, can
enable the extraction of their frequency positions. Another solution is proposed in [35].
It consists in computing the difference of the left and right energies coming from 100
frequency channels, ranging from 100Hz to 20kHz. Strictly speaking, this approach does
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not involve monaural cues anymore, but allows to obtain spectral cues which are said less
sensitive to the source signal frequency content. Concerning the design of the pinnae, a
model including a more extensive description of the reflected and diffracted sound waves is
proposed in [42]. Though it leads to new theoretical expressions of the spectra, it remains
hardly valuable for the design of artificial outer ears. Reference [39] also exhibits four
different pinnae together with their induced frequency responses for an original work on
sound localization from a single microphone. On the other hand, inspired by animals
that are able to change the configuration of their pinnae, [40] proposed an active ear,
which is able to modify its shape to encode elevation (and azimuth).

2.3.3. Distance localization

In the topic of robot audition, distance estimation has been so far based on the tri-
angulation idea. For instance, on the basis of the estimation θ̂1 and θ̂2 of the azimuth at
two distinct positions, triangulation allows to estimate the distance between the robot
and the sound source, together with the source azimuth. Generally, this is only possible
if the sound source is static in the environment. Some recent works [43, 44] proposed
a filtering strategy to cope with a possibly moving source. The algorithm mainly relies
on ITD to provide an estimation of the source position (r, θ) during the movement of a
binaural sensor. Distance estimation is also investigated in [45]. Several auditory cues,
like interaural differences, sound amplitude and spectral characteristics are compared.
Convincing results are shown, exhibiting an estimation error lower than 1m for a 6m-far
sound source. But the author outlines that its study doesnot capture the full variabil-
ity of natural environments. Recent contributions also propose to estimate the DRR.
Indeed, it has been shown that distance estimation by humans are more accurate in a
reverberant space than in an anechoic one. This estimation is not straightforward: [46]
proposes a binaural equalization-cancellation technique, while [47] hypotheses the use of
the frequency dependent magnitude squared coherence between the left and right signals.

2.4. Conclusion

Using very few microphones, interesting developments have been proposed by the
Robotics community to provide the robots with a first ability to localize sound sources in
their environment. The results are however contrasted. Reproducing the auditory faculty
of the human ear is a very difficult problem. First, the exploitation of interaural cues
requires a very precise modeling of the perturbations induced by the presence of the head.
Second,binaural cues are still very hard to exploit. In any case, an accurate model of the
propagation turns out to be essential to finely describe the evolution of auditory cues.
Furthermore, all these techniques appear to be very sensitive to variations of the acoustic
environment. Most models have been experimentally validated in an anechoic room but
cannot be used to accurately localize sounds in real conditions, unless a precise description
of the robot’s environment is given. But recent active variations of the existing algorithms
have recently benefited from the additional information brought by the robot motion,
thus renewing the interest in binaural approaches to sound localization. Nevertheless,
all these difficulties have motivated the Robotics community to also envisage localization
methods based on an higher number of microphones, possibly benefiting from existing
signal processing advances. An overview of these techniques is presented in the next
section.
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3. Array processing approaches to localization in Robot Audition

This section deals with the second paradigm mainly used in robot audition: micro-
phone arrays. Contrarily to binaural approaches, where only two sensors are used, array
processing relies on multiple microphones, spatially organized along various geometries
(such as a line, a circle, a sphere, or the vertices of a cube). Thanks to te redundancy
in the signals from the various channels, the acoustic analysis performance and/or ro-
bustness can be improved [48]. Multiple contributions have been proposed in a robotics
context, generally concerning source detection and localization, source separation, and
speaker/speech recognition. Again, this section is entirely devoted to sound source lo-
calization, by focusing only on methods used in robotics.

After having introduced some notations, the celebrated signal processing method
MUSIC (MUltiple SIgnal Classification) is hereafter presented. This method, though very
powerful, exemplifies the limits imposed by the real time constraint. Next, approaches
relying on the temporal delays due to the wave propagation between the microphones are
overviewed. They illustrate how information redundancy can enhance the localization
accuracy and robustness. The section ends with beamforming-based methods. Their
simplicity and ease of implementation makes them ideal candidates for an application in
robotics.

3.1. Theoretical aspects of array processing in Robotics

3.1.1. Notations and definitions

Consider S pointwise sound sources emitting at locations referenced by rss = (rs, θs, ϕs),
s = 1, . . . , S, in a spherical coordinates system. In the following, any monochromatic
space-time signal reads as y(r, t) = Y (r, k)ejkct, with k = 2πf/c the wavenumber. In ad-
dition, let a microphone array be composed of N identical omnidirectional microphones
placed at locations rmn , n = 1, . . . , N . Then, the sound signal mn(t) issued by the S
sources and perceived by the nth transducer can be written as

mn(t) =

S∑

s=1

‖rss‖
‖rmn − rss‖

s0s

(
t− ‖rmn − rss‖

c
+

‖rss‖
c

)
+ bn(t), (7)

where s0s(t) terms the fictitious signal perceived at r = 0 and stemming from the single
sth source, and the additive noise bn(t) accounts for parasitic sources in the environment
as well as electronic noise in the microphones outputs. So, the Fourier transformsMn(k),
S0
s (k), Bn(k) of mn(t), s

0
s(t), bn(t) satisfy

Mn(k) =

S∑

s=1

Vn(r
s
s, k)S

0
s (k) +Bn(k), (8)

with

Vn(r, k) = ‖r‖ ejk‖r‖ e−jk‖rmn −r‖

‖rmn − r‖ (9)

the nth entry of the array—or steering—vector V(r, k) ,
(
V1(r, k), . . . , VN (r, k)

)T
.

Defining the source, observation and noise vectors by S0(k) , (S0
1(k), . . . , S

0
S(k))

T ,
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M(k) ,
(
M1(k), . . . ,MN (k)

)T
and B(k) , (B1(k), . . . , BN (k))T respectively, (8) can

be turned into the matrix form

M(k) = V(rs1, . . . , rsS , k)S0(k) +B(k), (10)

with V(rs1, . . . , rsS , k) ,
(
V(rs1, k)| . . . |V(rsS , k)

)
the array matrix. Note that (9) can

significantly be simplified when the distance to the sources tends to infinity, as the
wavefronts become planar. This simplification defines the “farfield hypothesis”. In the
following, quantities related to farfield will be superscripted by the symbol ∞, so that

the farfield array vector writes as V∞(θ, ϕ, k) ,
(
V∞
1 (θ, ϕ, k), . . . , V∞

N (θ, ϕ, k)
)T

, with

V∞
n (θ, ϕ, k) = V∞

n (r, k) , limr→∞ Vn(r, k).
From now on, lets consider a linear microphone array, constituted of N microphones

located at z1, . . . , zN along the Z-axis. Consequently, because of the rotational symmetry
of the problem, all characteristics are invariant w.r.t. the elevation ϕ, so that the location
vector r = (r, θ, ϕ) reduces to r = (r, θ). In addition, the nth entry (9) of the array vector
becomes

Vn(r, k) = Vn(r, θ, k) =
r ejkre−jk

√
r2+z2

n−2rzn cos θ

√
r2 + z2n − 2rzn cos θ

. (11)

In the farfield, (11) particularizes into the well-known expression
V∞
n (θ, k) = e−jkzn cos θ.

3.1.2. The MUSIC method

The MUSIC (MUltiple SIgnal Classification) method, initially proposed in [49], be-
longs to the so-called “high resolution” approaches because of the sharpness of the conclu-
sions it provides. It is so far one of the most used algorithm in Robotics. The pointwise
sound sources to be localized are assumed independent, zero-mean stationary, of single
frequency k0, and in number S < N . In equation (10), the additive noise is assumed
zero-mean, stationary, temporally and spatially white, of known equal power on each
microphone, and independent of the sources. So, denoting by I and O the identity and
zero matrices, and E[.] the expectation operator, it is supposed that

ΓB = E[BBH ] = σ2
NIN×N and E[S0BH ] = OS×N . (12)

As has just been done, the dependencies of variables upon the single involved wavenum-
ber k0 will be temporarily omitted. MUSIC determines the sources number S to-
gether with their ranges and azimuths from the eigendecomposition of the covariance—or
interspectral—N ×N matrix ΓM = E[MMH ] relative to the signals perceived at the ar-
ray.

ΓM=( US | UN )




λ1+σ2
N O |

. . . | O

λS+σ2
N |

O | σ2
NIN−S


( US | UN )

H
,

(13)

where the real λ1, . . . , λS are sorted increasingly λ1 ≥ λ2 ≥ . . . ≥ λS > 0,
US = (U1 | ... | US ) ∈ C

N×S and UN = (US+1 | ... | UN ) ∈ C
N×(N−S). The right eigen-

vectors U1, . . . ,US related to the S greatest eigenvalues λ1 + σ2
N , . . . , λS + σ2

N of ΓM
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can be shown to span the range of V(rs1, . . . , rsS), i.e. the S-dimensional subspace S
of CN generated by the steering vector evaluated at the sources locations, henceforth
termed signal space. In the same way, the range of the matrix UN of the N − S remain-
ing eigenvectors—associated to the eigenvalues σ2

N— is henceforth termed the noise
space N . Noticeably, the full eigenvectors matrix ( US | UN ) can be selected as orthogo-

nal, i.e. ( US | UN )
H
( US | UN ) = IN . Consequently, under the aforementioned statistical

hypotheses, (13) enables the recovery, from the covariance matrix ΓM, of the number
of sources —which is N minus the number of repetitions of σ2

N— and of their locations
—for their associated steering vectors are orthogonal to UN—. But in practice, ΓM is
not known, as only one time record of m(t) , (m1(t), . . . ,mN (t))

T
is available. One

common strategy consists in computing an approximation of this quantity on W time
snapshots, e.g. by defining

Γ̂M =
1

W

W−1∑

w=0

M̂w(k)M̂
H
w (k), (14)

where M̂w(k) denotes an approximation of M(k) from a L-point Discrete Fourier Trans-
form (DFT) on the wth time snapshot. Finally, the locations of the sound sources are
established by isolating the maximum values of the pseudo-spectrum

h(r, θ) =
1

VH(r, θ)Π̂NV(r, θ)
, (15)

where Π̂N = ÛN ÛH
N is called the projector onto the noise space and is estimated through

the eigendecomposition of Γ̂M. All these developments have been obtained for a single
frequency k0. Since most sources of interest in robotics are not narrowband, broadband
extensions must be proposed to cope with realistic scenarios. These will be mentioned
in §3.2.1.

3.1.3. Localization through correlation

In the same way as a sound reaching our two ears is delayed due to propagation, the
spatial sampling performed by a microphone array induces temporal delays, also termed
Time Delay(s) of Arrival, or TDOAs. The approaches outlined in this section aim at es-
timating the delay ∆Tij between a pair i, j of microphones constituting the array through
the computation of a correlation function Rmimj

. Noticeably, the notions of TDOA and
of ITD/IPD—see §2.2.1—are fairly similar. Despite ITDs/IPDs are generally devoted
to binaural approaches, both quantities account for the same physical reality, and can
then be estimated in the same way. Furthermore, some biological models claim that the
ITD/IPD interaural cue is determined by the brain through a correlation involving dedi-
cated neuronal delay lines [50], sometimes called coincidence detectors [51]. Nevertheless,
as the forthcoming TDOA computations as well as their exploitation significantly differ
from the functioning of the brain, they have been classified into the array processing
approaches.

In all this subsection, the link between the two signals measured on the ith and jth

microphone of the array (with i 6= j in all the following) is modeled along
{
mi(t) = s(t) + ni(t)

mj(t) = (s ∗ hr)(t) + nj(t),
(16)

15



with ∗ the convolution operator, s(t) the signal received on the ith arbitrarily chosen
microphone and originating from the source to be localized, and hr(t) the deterministic
impulse response between the two considered signals. s(t), ni(t) and nj(t) are also
hypothesized as zero-mean stationary signals. If the signal s(t) propagates from the
source to the array in the free field, and without any scatters placed in the vicinity of
the microphones, the impulse response hr(t) only captures the TDOA ∆Tij between the
two receivers, i.e. hr(t) = δ(t+∆Tij) = δ−∆Tij

. Importantly, ∆Tij can then be directly
related to a source azimuth θ thanks to a relation of the form lij/c cos θ, with lij the
interspace between the two considered microphones, when working in the farfield. If
the two noise signals ni(t) and nj(t) are independent of s(t), then the cross-correlation
function Rmimj

comes as

Rmimj
(τ) = E[mi(t)mj(t− τ)] = (Rss ∗ hr) (−τ) +Rninj

(τ), (17)

with Rss the source autocorrelation function. Since hr(t) = δ−∆Tij
, and if the two signals

ni(t) and nj(t) are independent, then one has

Rmimj
(τ) =

(
Rss ∗ δ−∆Tij

)
(−τ) = Rss(τ −∆Tij), (18)

bringing to the fore that Rmimj
is a temporally shifted version of Rss. Since ∀τ,Rss(τ) ≤

Rss(0), then Rmimj
exhibits a maximum at τ = ∆Tij . But in practice, as is the case for

the MUSIC approach, the cross-correlation Rmimj
is not known since only one realization

of the random signals mi and mj is available. The idea is then to build an estimation

R̂mimj
of the cross-correlation, leading to the definition of the estimated TDOA

∆̂T ij = argτ max
(
R̂mimj

(τ)
)
. (19)

Many cross-correlation estimators exist in the literature. One of the most used solution
in Robotics consists in estimating the cross-correlation of filtered versions of the two
signals mi(t) and mj(t). This is obtained by introducing a function Ψ(f) weighting the
frequency contributions of the two signals, the result being brought back in the time
demain with an inverse Fourier transform, i.e.

R̂mimj
(τ) =

∫ +∞

−∞

Ψ(f)Ŝmimj
(f)ej2πftdf, (20)

where Ŝmimj
(f) denotes the estimate of the cross-power spectral density function of the

two signals mi(t) and mj(t). Such estimators are known as generalized cross-correlation
(GCC) techniques in the literature. Various different frequency weights have been pro-
posed, most of them being listed and studied in [52]. Among them, one can cite the Roth
[53], the Smoothed Coherent Transform (SCoT) [54], the Hannan-Thomson (HT) [55],
or the Phase Transform (PhaT) processors. This last weighting is by far the most widely
used in robotics, and is defined as

ΨPhaT(f) =
1

|Ŝmimj
(f)|

. (21)

From this definition, R̂mimj
(τ) then comes as R̂mimj

(τ) =
∫ +∞

−∞ ejφ̂(f)ej2πftdf , with

φ̂(f) the phase of Ŝmimj
(f). In the ideal case when φ̂(f) ≈ −2πf∆Tij , then one gets

16



R̂mimj
(τ) ≈ δ(t−∆Tij), i.e. the cross-correlation is different from zero only for τ = ∆Tij ,

thus proving a very sharp estimation of the TDOA. Nevertheless, since the PhaT opera-
tion gives the same importance to all frequencies, it should not be used on narrowband
signals, unless if some a priori on the frequency bandwidth of interest can be integrated.
Such considerations will be discussed in §3.2.2.

All the aforementioned approaches mainly rely on a free field model, i.e. the ith and
jth signals only differ in a delay ∆Tij . But as expected, the performances of this de-
lay estimation highly degrade in the presence of reverberations, e.g. when working in a
real robotic environment. This appears in the form of estimation outliers, which are all
the more frequent as the reverberation time increases [56]. Additionally, the estimation
strategy (19) leads in practice to a TDOA which is a multiple of the sampling frequency
Ts, thus limiting the reachable angular resolution. For instance, for two microphones in
the freefield spaced 16cm apart, and a sampling frequency fs = 44.1kHz, this resolution
spans from 3◦ (for a source facing the robot) to about 18◦ (for a sound at the left or right
of the robot). Some interpolation strategies can nevertheless improve the resolution: in-
terpolation with a parabola or an exponential function [57], or even interpolation of the
whole cross-correlation function though sinc functions. Finally, as outlined for instance
in (21), the correlation processor Ψ(f) must be estimated itself on the basis on an esti-
mation of the cross-power spectral density function Smimj

(f). This can be achieved for
instance by averaging short-term cross-periodograms (known as Welchs’ method [58]),
for which the bias and variance have been studied with respect to the overlapping rate
or the number of time window used for the estimation [59]. Similarly, it has been ac-
knowledged that the duration of these windows has a critical effect on the accuracy of
the TDOAs ∆Tij extracted from the cross-correlation peaks [60].

3.1.4. Beamforming based approaches

Among all the methods rooted in Signal Processing, those based on beamforming
are probably the most used in Robotics. Their simplicity and low computational cost
make them a priori well suited to this context. Yet, as will be shown, their performances
strongly depend on the array characteristics, especially on its extent and number of mi-
crophones. This subsection then recalls some definitions and generalities on beamforming
strategies used in robotics.

The term “beamforming” covers techniques to the combination of the signals coming
from an array of discrete sensors, generally in order to focalize it to a specific direction of
space r0. Typically, the signals mn(t) spatially sampled at the N microphones locations
n = 1, . . . , N , are processed by separate linear filters of impulse responses wn(r0, t).
These filters are designed in such a way that the sum yr0(t) of their outputs is the result
of the spatial filtering described above. This principle is summarized in Fig. 6. On the
basis on (8), the time relationship yr0(t) =

∑N
n=1 wn(r0, t) ∗mn(t) can be turned into

Yr0(k) =

S∑

s=1

Dr0
(rss, k)S

0
s (k) +

N∑

n=1

Wn(r0, k)Bn(k), (22)

with S0
s (k) the frequency contribution at an arbitrary reference point 0 and due to

the sth source, with Wn(r0, k) the frequency response of the filter attached to the nth
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Figure 6: Basics of beamforming.

microphone, and

Dr0
(r, k) =

N∑

n=1

Wn(r0, k)Vn(r, k). (23)

This last function of space and time variables is termed array pattern, or beampattern. It
can be assimilated to a transfer function between the signal s0s(t) at the arbitrary reference
position and caused by the sth source emitting from position r, to the beamformer output
y(t), and accounts for the amplification or attenuation of spatial areas. As (23) depends
on Vn(r, k), this definition of the beampattern is valid both in the nearfield and in the
farfield. Similarly to (11), the limiting expression D∞(θ, ψ, k) = limr→∞Dr0

(r, k) can
be exhibited when the wavefronts are assumed planar. On this basis, an energy map of
the environment E(r, t) is then computed on a time window of length T along

E(r, t) =

∫ t

t−T

|yr(τ)|2dτ, (24)

the sound sources positions being estimated by detecting the maximum of E(r, t). Prac-
tically, (24) is evaluated on a finite set of potential directions r, see §3.2.2.

As already done in (11), and for the sake of simplicity, lets now consider a linear array,
made up with N microphones aligned along the Z-axis and having the same interspace d,
and whose abscissae zn verify zn = (n− N+1

2 )d. Consequently, the array length L =
(N − 1)d. Such an array can be polarized towards a predefined azimuth r0 = θ0 as soon
as the filters wn(r0, t) shown in Fig. 6 compensate the delays due to propagation so as
to rephase the waves incoming from the DOA r0 = θ0 prior to their summation. Under
the planar wavefronts assumption, the transfer functions Wn(r0, k) = Wn(θ0, k) can be
selected as Wn(θ0, k) = ejkzn cos θ0 , so that the farfield beampattern writes

D∞
θ0 (θ) =

sin
(

πf
c Nd

(
cos θ0 − cos θ

))

sin
(

πf
c d

(
cosθ0 − cos θ

)) . (25)
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(a) Influence of the microphones number N of
an array of fixed length L (f = 1kHz, L =
0.7m).

(b) Influence of the array length L for a fixed
number N of microphones (f = 1kHz, N = 5).

(c) Normalized beampattern as a function of θ and
f (N = 5, L = 0.7m).

(d) Illustration of the spatial
aliasing.

Figure 7: Different beampatterns of a linear array. (a)&(b): Normalized beampatterns for various values
of N and L. – (c)&(d): Influence of frequency of a beampattern, for fixed N and L.

This so-called conventional delay and sum beamforming (DS-BF) strategy is by far the
most used in robotics. For instance, Fig. 7(a) shows the module of (25) when considering
θ0 = 90◦, f = 1kHz and L = 0.7m. Several comments useful to Robotics can be deduced
from this farfield array pattern expression in the following configurations:

1. variation of the microphones number N , for a fixed array length L and frequency
k (or f);

2. change in the length L, for fixed N and k;

3. modification of the frequency k for fixed N and L.

Such a study is fairly classical, see [61] [62], and is hereafter summarized for θ0 = 90◦.
Increasing the number of microphones within a fixed-size array (scenario 1) leads to
lower side lobes, see Fig. 7(a). The beampattern corresponding to scenario 2 is shown
on Fig. 7(b). The main lobe noticeably gets thinner as the array length increases. As
a consequence, it may be necessary to mount a very large array on a robot in order
to get a sharp focus towards a given direction of space. Embeddability constraints of
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course prevent this, and thus limit the resolution of the whole acoustic sensor. Last,
the third scenario is presented on Fig. 7(c). Keeping constant the microphones number
and interspace, the main lobe width noticeably varies with the frequency f . The spatial
resolution at low-frequency is poor, for high-wavelength waves are spatially oversampled
by the array. A second phenomenon occurs at high frequencies: these are subject to
aliasing, so that multiple replications of the main lobe appear. The spatial sampling of
the wave must indeed obey a Shannon spatial sampling theorem, in that the maximal
microphones interspace d must satisfy d < dmax = λmin

2 = c
2fmax

, with fmax the maximal

frequency in the wavefield. Fig. 7(d) illustrates the aliasing for an antenna made up with
N = 5 microphones spaced by d = 17.5 cm, whose total length is then L = 0.7m.

This short overview of DS-BF performances demonstrate that being able to precisely
focalize in a given direction requires a large array endowed with a lot of microphones,
what may not be possible in a Robotics context. But even if it were, the resulting
beampattern would be still a function of the source frequency, exhibiting a dramatical
loss of resolution of the low frequencies. One solution could consist in ignoring such
problematic frequency components, by filtering them out. But then it would be difficult
to localize any speech signals, where most of the energy spreads from about 300Hz to
3.3kHz. Nevertheless, the computational cost of such approaches remains very low, with
only N parallel filters running together, making them one of the most used localization
techniques in Robotics.

3.2. Exploitation in Robotics

Now that the theoretical aspects have been overviewed, their applications to robotics
are summarized. Following the lines of the above subsections, MUSIC, correlation and
beamforming approaches are successively discussed.

3.2.1. MUSIC

As shown in §3.1.2, MUSIC consists in computing –for only one frequency k0– the so-
called pseudo-spectrum h(r, θ) defined in (15), from which the source position is extracted
by isolating its maxima. Since the sources of interest in Robotics are mainly broadband,
the approach needs to be extended to cope with multiple frequencies.

One of the first use of the MUSIC algorithm in robotics is [63]. Therein, an ar-
ray of N = 8 microphones, distributed on the periphery of the robot Jijo-2, enables
the localization of vocal sources through an extension of the narrowband method to
broadband signals. This extension, named SEVD-MUSIC (for Standard Eigen Value
Decomposition-MUSIC), can be seen as “naive”, in that it closely follows the lines of
the narrowband algorithm. First, the whole frequency range [kL–kH ] of interest is parti-
tioned into narrow frequency intervals, or “bins”, each one centered on kb, b = 1, . . . , B.
The approximation of the covariance matrices ΓM(k1), . . . ,ΓM(kB) are then computed,
following a scheme similar to (14). From the subsequent eigendecomposition of each

Γ̂M(kb), separate pseudo-spectra hb(r, θ) are determined, b = 1, . . . , B. The localization
consists in isolating the maxima of the average pseudo-spectrum hAv(.)

hAv(r, θ) =
1

B

B∑

b=1

hb(r, θ). (26)
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Such a broadband extension is still in use in recent works [64, 65].
More recently, MUSIC received more attention from roboticists in order to deal with

realistic scenarios possibly involving loud noise sources. In such a case, it can be difficult
to easily identify the noise and signal spaces from the eigenvalue decomposition of the
array cross-correlation matrix ΓM . For this reason, the GEVD-MUSIC (Generalized
Eigen Value Decomposition-MUSIC) is proposed [66]. It consists in defining an additional
freely-tunable correlation matrix ΓN for the frequency k0, and solving the new GEVD
problem

ΓMUn = λnΓNUn, (27)

where Un and λn depict the generalized eigenvectors and eigenvalues of the (ΓM ,ΓN )
matrix pencil respectively. The rest of the algorithm remains identical, since solving (27)
allows to determine the noise and signal spaces, and then the computation of the pseudo-
spectrum. Again, this operation is conducted along all frequency bins, to get an average
pseudo-spectrum, along (26). The choice of the correlation matrix ΓN is free, but select-
ing ΓN = ΓB = E[BBH ] is a common choice which whitens the noise-related eigenvalues,
and thus significantly eases the definition of the noise and signal spaces in the presence
of loud noise sources. Interestingly, an extended, adaptive, version of GEVD-MUSIC has
been proposed recently in [67]. Called iGEVD-MUSIC (for incremental GEVD-MUSIC),
it consists in incrementally estimating the correlation matrix ΓN = E[BBH ] as a func-
tion of the current time frame. It then allows the use of the MUSIC algorithm in outdoor
applications with drones, for which the level of the involved noises (ego-noise of the drone
itself, and wind sound) is significative and especially dynamic [68]. But SEVD, GEVD or
iGEVD approaches all suffer from the same problem: they are computationally expensive,
with a high calculation cost for subspaces decomposition and for the pseudo-spectrum
determination, both being generally performed on a frame-by-frame basis for real-time
operations.

As a solution, the GSVD-MUSIC (Generalized Singular Value Decomposition-MUSIC)
is proposed in [69]. As indicated by its name, it mainly relies on a generalized singular
value decomposition, which consists in determining the left and right singular vectors Ul

and Ur respectively, together with Λ = diag(λ1, . . . , λN ) such that

Γ−1
N ΓM = UlΛU

H
r . (28)

Once this decomposition is performed, the algorithm remains identical, with the left
singular vectors and their corresponding singular values being used for the separation
between the signal and noise spaces [69]. At the end, GSVD is shown to be computed
almost 3 times quicker than GEVD, which is a critical improvement for real-time appli-
cations. But again, such a decomposition has te be performed for each frequency bin of
interest. The contribution [70] exploits the idea of alignment as per [71], thus constituting
a Coherent Broadband source localization algorithm (CB-MUSIC). Basically, the idea is
to make the noise and signal spaces identical along all frequency bins through so-called
focalization matrices T (r, kb) verifying T (r, kb)V(r, k) = V(r, k0), with k0 an arbitrary
reference frequency. This way, the array vector at any frequency k is transformed into
its value at frequency k0. Thanks to this property, a unique correlation matrix gathering
all the information along all frequency bins can be defined. Its generalized eigenvalue
decomposition then allows the identification of the signal and noise spaces, and thus of
the MUSIC pseudo-spectrum. In comparison with the other aforementioned approaches,
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Figure 8: Typical MUSIC pseudo-spectrum, for two sources in the nearfield of a linear array.

only one generalized eigenvalue decomposition is necessary, thus limiting the computation
cost of the method. Its implementation in a coherent beamspace paradigm is proposed
along the lines of [72] and an original constructive method is proposed to the synthesis
of focalization matrices, in a convex optimization setup. Besides, the approach is able
to deal with reverberant robotics environments, since the statistical independence of the
sources together with their mutual independence w.r.t. the noise can be relaxed.

All the approaches result in the computation of a pseudo-spectrum function. Such
a function is depicted in Fig. 8, for a linear array and two independent sources placed
respectively at (r, θ) = (2m, 60◦) and (1m, 120◦). As expected, the two very sharp peaks
can be seen at the exact sources positions. But computing the pseudo-spectrum at
each candidate source position can result in a high computational costs. A hierarchical
strategy with a coarse-to-fine approach is proposed in [69] to solve this issue. Another
hidden point concerns the source number, which must be known before identifying the
noise and signal spaces, and thus before determining the broadband pseudo-spectrum.
An information-theoretic approach, grounded on statistical identication —namely the
Minimum Akaike Information Criterion Estimate (MAICE) defined in [73]— and rely-
ing on [71, 74] has been proposed in [75]. In addition to its sound theoretical bases,
it has a very low computational cost and requires no prior threshold definition. Inter-
estingly, the whole coherent beamspace MUSIC+MAICE detection and estimation has
been implemented on a system-on-a-programmable-chip architecture [76].

3.2.2. Correlation-based approaches

TDOA estimation. The application to Robotics of correlation-based techniques pre-
sented in §3.1.3 is common since the beginning of Robot Audition. While the very
first approaches were very naive, i.e. estimation of the TDOA by detecting the zero
crossing points in the signals [36], the standard cross-correlation Rmimj

defined in (17)
has been used in a lot of works. In [77], the intercorrelation is computed in order to infer
the TDOAs between four microphones disposed on the vertices of a tetrahedron. The
originality comes from the selection of the observation window: rather than computing
the intercorrelation on the whole duration of the signals, a plain thresholding enables the
detection of echoes-free temporal zones, onto which the TDOAs are determined. One can
also cite [78], where a 4 microphones array is used to track a sounding docking station
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outside the field of view of the robot. A slightly different application of the standard
cross-correlation is proposed in [79], were the sound emitted by loudspeakers placed on
the surface of a snake robot is used to estimate its posture using TDOA. Another tra-
ditional use of the standard cross-correlation consists in estimating the TDOA at the
output of a filterbank [16]. Such an idea has been extensively used in a binaural context,
where the filterbank is made of gammatone filters (see §2.2.2). This results in a TDOA
function of the frequency, which is in essence analog to the IPD cue [34].

As already mentioned in 3.1.3, other strategies to cross-correlation computation exist.
Among them, GCC techniques with the PhaT weighting function (GCC-PhaT) is by far
the most used in a Robotics context. Its high temporal resolution in TDOA estimation
justifies this choice, while it is known that this processor is highly sensitive to the length
of the time windows used to estimate the cross-power spectral density function involved
in (21). One can cite for instance [80], or [81] where the PhaT processor is exploited
on a 24 evenly spaced microphones array fitted on the 3.2m-long walls of a room which
is visited by a tour-guide robot. More recent use of the PhaT approach can be cited:
[82] where a triangular 3-microphone array is used to infer source location from short
time observations so as to cope with the movement of the sound source or the robot; [83]
presents an evaluation of various real-time sound localization approaches from a cubical
8-microphone array in which GCC-PhaT is compared with beamforming techniques; [84]
proposes a robust approach to the acoustic perception of the presence of people from a
pair of microphones. But GCC-PhaT only takes into account the phase of the perceived
signals in the intercorrelation computation, giving the same importance to each frequency.
As such a weighting does not differentiate the source and noise frequencies, the overall
sensitivity of the method to noise is increased and voice localization becomes harder. As
a solution, [85] defines an alternative processor which penalizes the frequencies at which
the signal-to-noise ratio is low. This Reliability-Weighted Phase Transform (RWPhaT)
strategy results in a new adaptive frequency weight Ψ(f). This GCC strategy is still
used in [86], on a 8-microphone array embedded on the Spartacus robot, to show the
efficiency of a complete artificial audition system for speech recognition and dialogue
management. Different adaptations of the PhaT processor have also been proposed.
In [87], an eigenstructure-based GCC is outlined, based on the eigenvalue decomposition
of the microphones auto-correlation matrix. Results show that the proposed processor
exhibits less outliers than the traditional GCC-PhaT. In [88, 89], the GCC-PhaT-ργ is
proposed to deal with small SNR and large reverberation situations. Results demonstrate
improvements w.r.t. the PhaT approach in terms of angular localization error, be the
robot at rest or moving.

From TDOA to localization. Once the TDOAs have been computed by one of the above
methods, the problem of localizing the source from their values must be addressed. For
instance, consider a dipole in the farfield, made up with two microphones separated by a
distance dij . In this planar wavefront case, the most direct approach to the determination

of the azimuth θs consists in inverting the formula ∆Tij =
dij

c cos θs. This basic geometric
rule is used in [90], the computed azimuths being involved into a neural network based
sound source tracker. The same strategy is used in [78], or [84]. Following the same
lines, one can deduce the cartesian coordinates rs = (u, v, w) of a source from the known
positions rmn = (xn, yn, zn), n = 1, . . . , N , of the microphones constituting an array. If the
propagation occurs in free space, the wavefronts impinging on the microphones are nested
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spheres centered on the source. Under the assumption that each wavefront supports only
one microphone and that the distance d from the source to the first receptor is related
to the TDOAs ∆T1n between the 1st and every nth microphone, the following holds:

∀n ∈ [1, . . . , N ], (xn − u)2 + (yn − v)2 + (zn − w)2 = (d+ c∆T1n)
2. (29)

After some manipulations, a matrix equation follows which leads to the unknowns (u, v, w, d).
This method is proposed in [91] to measure the time of flight of ultrasonic waves. Note
that the antenna must hold at least 4 microphones in the planar case, 5 in the 3D case,
otherwise the system is underdetermined. Unfortunately, the involved matrices may be
ill-conditioned, so that very close TDOA values may lead to significantly different po-
sition estimates. This is why [92] proposes a simpler model, analogous to the one used
in [77] and assuming planar waves. Noticing that the unit vector ν = (u′, v′, w′) point-
ing to the source—assumed to be at infinite distance— and the vector rij = rmj − rmi
connecting the ith microphone to the jth one satisfy

∀n ∈ [1, . . . , N ], νT rn1 = c∆Tn1, (30)

u′, v′, w′ can be obtained through the resolution of a least square problem. In this
approach, the matrix to be inverted depends solely on the microphones positions, and can
therefore be tuned so as to improve its conditioning. Moreover, once the sensor geometry
is fixed, the inverse matrix is constant and can thus be put in memory to reduce the
necessary computations for localization. Nevertheless, the underlying propagation model
assumes that planar wavefronts impinge on the antenna. As a solution, [87] recently
proposed a generic extension of (30) to deal with the nearfield case, thus being able to
estimate the distance to the source. Finally, a novel geometric formulation of the sound
localization problem through TDOA is proposed in the very recent contribution [93],
where an algebraic analysis and a global optimization solver are proposed for arbitrarily-
shaped non-coplanar microphone arrays.

3.2.3. Beamforming

Among all the aforementioned strategies to sound source localization, beamforming
remains probably the most exploited one in Robotics. As recalled in §3.1.4, beamformers
are mainly designed to electronically polarize an array towards some specific DOA, and
then to scan several directions of interest. An acoustic energy map can then be com-
puted along (24), which is expected to be maximum at the actual sources DOAs. This
strategy has been mainly coupled with Delay-And-Sum Beamformers (DS-BF) in a lot
of contributions. Interestingly, the computational cost of DS-BF has been adressed in
[94, 95] in two ways: first, the energy map is computed in the frequency domain through
cross-correlations; next, the needed successive polarizations are performed towards di-
rections defined by a recursive uniform icosahedron grid laid on a sphere. Other DOAs
discretizations can be envisaged, depending upon the sensor shape and the number of
test points, which lead to a tradeoff between the necessary computing power and the
targeted resolution. But this conventional DS-BF strategy suffers from a lack of resolu-
tion in the polarization of low frequencies, together with the need of a high number of
microphones, as demonstrated in §3.1.4. An example of such a DS-BF energy map for a
short-length linear microphone array is shown in Fig. 9 (top-left) when trying to localize
two speakers uttering from the azimuth 60◦ and 120◦. Large main lobes regularly appear
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Figure 9: Acoustic energy maps of the environment (one curve per time snapshot) when using con-
ventional beamformer (top left) or farfield frequency-invariant beamformer (top right and bottom left),
see [96]. When used in the nearfield, a farfield frequency-invariant beamformer conducts to distorted
energy maps (bottom right).

in the energy map, the two sound sources being then hardly spatially separable. Such a
problem is often mentioned in the literature: in [97], where an array of 128 microphones
spreaded into a room is used, the authors proposed to filter out all the frequencies be-
low 500Hz; the reference [98] gets close conclusions when simulating the 8-microphone
antenna implemented on the small mobile platform EvBoy II: while the beampattern
main lobe is thin enough for frequencies over 1 kHz, frequencies below 800Hz cannot be
exploited for localization; even with a three-ring 32-microphone array. [99] shows that
the bad array directivity at low frequencies and the aliasing effect at low wavelengths
conducts the localization to be performed only for frequencies between 1 and 2 kHz. More
recent works still highlight this frequency limitation. For instance, [100] stated that if
two sound sources are close to each other, false positive detections appear in the proposed
system because of the wide directivity of DS-BF.

Different solutions have been proposed so far to deal with the low frequencies bad
directivity of DS-BF approaches. In [100], an additional tracking step is introduced to
reject the false detections. In [94], a probabilistic post-filtering of the acoustic energy
map is performed, based on two simple short-term and mean-term estimators. Because
of the temporal smoothing of the localization, a satisfactory robustness is achieved w.r.t.
the actuators noise together with a reasonable computational complexity. An other
solution consists in optimizing the array geometry so as to improve the consecutive
beampattern. For instance, an evaluation index –relying on beampattern mainlobe width
and sidelobes level measurements– is defined in [101, 102] so as to optimize the placement
of 64 microphones over a 350-mm-diameter sphere. A valuable alternative may also
consist in the synthesis of frequency-invariant broadband beamformers, as argued in [96].
Simulations of realistic scenarios entailing a 8-microphone linear array conclude to a
significant improvement in the consequent acoustic maps, so that sources with close
DOAs can be distinguished (see Fig. 9). Importantly, it is also established that the
localization of sources emitting in the nearfield—e.g. at proximal human-robot interaction
distance—is distorted if it entails a frequency-invariant beamformer designed under the
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farfield assumption. An original nearfield frequency-invariant array pattern synthesis
method is thus proposed, under the knowledge of the source range.

4. Conclusion

Sound source localization methods developed in the Robotics community for the past
15 years have been reviewed in this paper. They can be partitioned into two classes.
On the one hand, binaural techniques aim at reproducing artificially the human audi-
tory system. The difficulty to exploit elementary acoustic cues has been underlined,
together with the fundamental role of the head in the localization process. Though sev-
eral propagation models have been proposed in the literature, the most basic of them are
not sufficient to explain experimental measurements in an anechoic room. On the other
hand, array processing techniques involving a larger number of microphones turn out
to be intrinsically more accurate and robust. Different approaches were presented and
their relevancy to Robotics was discussed. The extension of the high-resolution MUSIC
method to broadband signals requires special care to cope with computational resources
and the presence of noise in the environment. Correlation approaches to localization lead
to accurate conclusions, yet they mainly assume planar wavefronts in order to limit the
algorithmic complexity. Last, due to their versatility and low cost, beamforming based
strategies are the most often used. However, the focalization of conventional beamformers
is limited at low frequencies, so that alternative beamforming methods may be needed,
and extreme care must be taken when dealing with nearfield sources. Importantly, a lot
of the aforementioned contributions have been integrated within open software frame-
works and hardware, making the most advanced approaches accessible to non-experts in
the field. The most advanced solutions are the HARK (HRI-JP audition for robots with
Kyoto University) software [103], the ManyEars framework [104], or the EAR (Embedded
Audition for Robotics) system [105, 76].

Most of the cited works in this paper have only focused on the auditory scene anal-
ysis from a static view of the world. This idealized situation greatly eases the problem,
while it is clear that speech and hearing takes place in a world where none of the static
assumptions hold [106]. This is exactly what makes Robot Audition a Robotics prob-
lem on its own: the intrinsic mobility of modern robotics platform can be exploited to
help in the environment analysis process. Actually, the Robotics Community has not
extensively addressed this active audition topic, while it may constitue one of the most
promising progress in embodied audition. Indeed, recent contributions in this field clearly
demonstrate how the motion can be exploited together with the induced changes in the
auditory perception to better the analysis, especially in the binaural framework. In this
vein, [107] proposed a binaural sound localization system relying on the intersection of
successive “cones of confusion” related to ITD measurements during a head movement.
[108] also proposed to exploit the motion to dynamically reconfigure an array made of
multiple microphones embedded on mobile robots to improve the sound localization. One
can also mention [109] —who proposed a motion planning system whose objective is to
maximize the effectiveness of a speech recognition module—, or [110, 111] —where the
sound localization problem is rewritten in terms of a sensorimotor approach, with exper-
iments made on the famous Psikharpax rat robot from the European FP7-ICT-IP ICEA
(Integrating Cognition Emotion and Autonomy) project—. Stochastic filtering has also
emerged as an ideal tool for sound localization and tracking during robot movement [112].
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Recent contributions have proven the effectiveness of the approach in an active binaural
experimental context, with the ability to cope with intermittent moving sources in the
presence of false measurements [44, 43].

Providing robots with efficient and robust auditory functions will keep on being an
exciting challenge during the forecoming years. Many problems which are considered as
solved elsewhere have been renewed by the difficulties raised by the robotics context.
The growing number of international projects dedicated to embodied audition clearly
demonstrates the interest in this topic. Among them, one can cite the BINAAHR project
(BINaural Active Audition for Humanoid Robots - French/Japan project funded by ANR
and RSJ, ended in 2013), or the two just starting FP7 European projects EARS (Embod-
ied Audition for RobotS) and TWO!EARS (Reading the world with TWO!EARS). All
these forthcoming developments will be a source of stimulating discussions between the
scientific communities of Acoustics, Signal Processing, Robotics, but also Physiology and
Psychoacoustics. We then hope that this survey of existing approaches to the “low-level”
stage of sound source localization will motivate new researchers to join the fertile field of
Robot Audition.
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