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Abstract In this paper, we introduce a goal-oriented
procedure for the updating of mechanical models. It is

based as usual on information coming from measure-

ment data, but these data are post-processed in a con-

venient way in order to firstly update model parameters

which are the most influent for the prediction of a given
quantity of interest. The objective is thus to perform a

partial model calibration that enables to obtain an ap-

proximate value of the quantity of interest with suffi-

cient accuracy and minimal model identification effort.
The updating method uses the constitutive relation er-

ror framework as well as duality and adjoint techniques.

It leads to a convenient strategy, mainly based on sen-

sitivity analysis, that selects the relevant parameter set

to be updated and also provides for useful quantitative
tools in order to define optimal experiments. Perfor-

mances of the approach are analyzed on examples in-

volving linear elasticity and transient thermal models.
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Constitutive relation error · Sensitivity analysis
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1 Introduction

Mathematical models are fundamental in science and

engineering activities, particularly due to the fact that

L. Chamoin · P. Ladevèze
LMT-Cachan (ENS Cachan / CNRS / Paris 6 University),
61 Avenue du Président Wilson, 94235 Cachan Cedex, France
E-mail: {chamoin,ladeveze}@lmt.ens-cachan.fr

J. Waeytens
Paris-Est University, IFSTTAR,
14-20 Bd Newton 77447 Marne-La-Vallée Cedex 2, France
E-mail: julien.waeytens@ifsttar.fr

they are the basic ingredient of numerical simulations
that enable to reproduce physical phenomena and make

predictions. However, a major concern is the capability

of these models to represent a faithful abstraction of the

real world. To address this issue and control the error

between physical and mathematical models, model val-
idation methods have been used for a long time [34,33,

32]. In such methods, model parameters are identified or

updated in order to minimize the discrepancy between

numerical predictions and experimental measurements.
The process leads to inverse problems [8] which are

usually ill-posed and require special care and specific

techniques, such as regularization techniques proposed

in [38], in order to ensure solvability. Getting missing

information of the model from measurements is a pro-
cedure that is now commonly used in many scientific

fields such as geophysics where soil characteristics (den-

sity, permeability) are studied, non-destructive testing

to identify defects [3], or imaging where we can obtain
images from a noised version using deconvolution [9] or

detect damaged tissues using tomography [4,16].

We focus here on Computational Mechanics models, in

which a major component is the constitutive equation

that describes the local behavior of the material. It is
characterized by a set of material parameters whose

values may highly influence results given by numeri-

cal simulations. In order to reduce modeling errors, it

is thus important to address the issue of constitutive
models calibration. For complex models, it is difficult

to design experiments where observed model responses

depend explicitly on model parameters. We rather use

in practice experimental data that depend implicitly on

these parameters, and the calibration is then viewed as
an optimization problem in which parameter values are

searched such that optimal agreement between experi-
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mental and simulated responses is achieved [12].

When a large number of experimental data is avail-

able, as it is the case with full-field kinematic measure-

ments performed by means of imaging techniques (DIC
for instance [22,36]), many calibrations methods can be

applied for inverse analysis and identification of mate-

rial properties [5]. Among all of them, we can mention

the Equilibrium Gap Method (EGM) which is based
on the discretization of equilibrium equations and min-

imization of equilibrium residuals, the FEMU method

(balance method FEMU-F or displacement method FEMU-

U) which is an intuitive approach that consists in per-

forming iteratively finite element computations to find
constitutive parameters that achieve the best match be-

tween computed and actual measurements, or the Con-

stitutive Equation Gap Method (CEGM) which was ini-

tially developed for updating finite element models from
vibrational data and assessing quality of finite element

meshes.

We consider in this paper the case where only few lo-

calized measurements are available. Again, several pro-

cedures exist in this framework to identify parameters,
such as minimization of cost functions associated with

regularization techniques [8], or the Bayesian inference

approach that formulates parameter identification in a

stochastic setting [37,35]. Using the concept of Con-
stitutive Relation Error (CRE) defines another model

calibration method on which we focus here. First in-

troduced in [26,7,13,27,14] for dynamics models, this

method was latter successfully used in many calibra-

tion applications including defects [11], uncertain mea-
surements and behaviors [29,17], or corrupted measure-

ments [1]. Recent applications of the method dealt with

the updating of models used in bolted assemblies [19], or

association with PGD reduced models to deal with real-
time calibration in machining processes [10]. The use of

the CRE presents interesting advantages; it has excel-

lent capacities to localize structural defects spatially,

it is very robust with respect to noisy measurements,

and it has good convexity properties. In this method,
reliable theoretical and experimental information (equi-

librium, sensor position) are favored compared to other

information (material behavior, sensor measures). Fur-

thermore, the employed hierarchical updating (only most
erroneous zones are corrected) is a strategy that directly

leads to a regularization process, required for ill-posed

problems.

In this paper, we deal with mechanical models on
large structures which are used both for the model cal-

ibration procedure and for prediction using numerical

simulation. We consider that the prediction target is

only the value of a given output of the model, denoted

quantity of interest in the following, that implicitly de-

pends on model parameters. Therefore, if the quan-

tity of interest is not very sensitive with respect to

some parameters, there is probably no need to estimate
these parameters with high accuracy. This goal-oriented

model updating approach is motivated by the fact that

the objective of numerical simulations is usually not

the global response of the model, but only specific fea-
tures which are relevant for design (such as local stress,

maximal displacement or temperature, etc.). It aims at

performing a partial calibration of the model so as to

ensure the quality of predicted quantities of interest

with a minimal calibration effort.
Several works have already addressed this scientific is-

sue. In [6,24], an optimization problem coupled with a

dual method was introduced to assess, in a goal quan-

tity, the sensitivity with respect to the observed data
(uncertainty or noise), as well as discretization error

affecting the computed value of parameters. The a pos-

teriori discretization error estimator was also used in

an adaptive algorithm to construct economic meshes.

In [25], the goal-oriented a posteriori error estimation
for identification problems was extended to accommo-

date the combined identification and subsequent sim-

ulation problems which may be governed by different

state equations (and only coupled via model parame-
ters). For a given tolerance in a quantity of interest,

depending on the solution of the simulation problem,

three sources of errors were controlled: modeling error,

discretization error polluting the identification prob-

lem, and discretization error in the simulation.
Here, we wish to go one step further and define a goal-

oriented version of updating methods performed using

the CRE. We assume that the discretization error is

negligible compared to the modeling error, and focus
on the sensitivity of the considered quantity of inter-

est with respect to parameters and measurements. On

the one hand, we introduce new dedicated cost func-

tions that lead to a convenient goal-oriented updating

process, selecting automatically the relevant model pa-
rameters that need to be updated for the prediction of

the quantity of interest. On the other hand, we define

quantitative sensitivity tools that enable to set up op-

timal experiments and measurements (sensor location,
type of measure) with respect to the output of interest

to predict. For the sake of simplicity, we present the

new method and tools in the framework of linear elas-

ticity models, whereas numerical experiments will also

involve time-dependent problems.

The paper is organized as follows: after this intro-

duction, Section 2 presents the reference mathematical
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model which is considered throughout the paper as well

as the classical setting for model calibration based on

the minimization of cost functions; Section 3 focuses

on model calibration performed using the concept of

CRE; Section 4 introduces the goal-oriented framework
that enables to update a model, still using the CRE,

but with respect to a quantity of interest; a sensitivity

analysis is presented in Section 5 in order to set up an

optimal experimental procedure for the goal-oriented
calibration; eventually, numerical experiments are con-

ducted in Section 6, before drawing concluding remarks

and prospects in Section 7.

2 Mathematical model and general updating

strategy

2.1 The reference mathematical model

We consider a linear elastic body whose undeformed

configuration occupies domain Ω ⊂ R
d, with boundary

∂Ω (Figure 1). It is subjected to a given displacement

field ud on ∂1Ω ⊂ ∂Ω, whereas a body force field fd
and a traction force field Fd are imposed in Ω and on

∂2Ω, respectively, with ∂1Ω ∪ ∂2Ω = ∂Ω and ∂1Ω ∩
∂2Ω = ∅. The corresponding model is governed by three

sets of equations, namely the kinematic compatibility

equations:"(u) = 1

2
(∇u +∇Tu) in Ω ; u = ud on ∂1Ω (1)

the equilibrium equations:

div� + fd = 0 in Ω ; �n = Fd on ∂2Ω (2)

and the constitutive equation:� = K"(u) in Ω (3)

u is the displacement vector, " the linearized strain ten-
sor, � the Cauchy stress tensor, and n the outward unit

normal vector. K denotes the Hooke tensor, possibly

heterogeneous, and we suppose it is described by a set

p of np scalar parameters that belong to a bounded
space P ⊂ Rnp . For instance, if the elastic properties

are isotropic, K is described (at each point) in terms

of two independent scalar moduli.

Fig. 1 The structure and its environment.

We introduce classical sets U and S of kinematically

admissible displacement fields and statically admissible

stress fields, respectively. U is defined as the set of vec-
tor fields v ∈ [H1(Ω)]d verifying (1), whereas S is de-

fined as the set of symmetric second-order tensor fields� ∈ [L2(Ω)]d(d+1)/2 verifying (2).

Equations (1–3) constitute a direct problem that

can be recast in the following weak form:

Find u(p) ∈ U such that

A(p,u,v) = a(p,u,v)− l(v) = 0 ∀v ∈ U0

(4)

where U0 denotes the vectorial space associated with U ,
and forms a and l are defined as:

a(p,u,v) =

∫

Ω

K(p)"(u) : "(v)dΩ
l(v) =

∫

Ω

fd · vdΩ +

∫

∂2Ω

Fd · vdS

(5)

This problem is well-posed in the Hadamard sense i.e.

the solution exists, is unique and stable with respect to
data.

2.2 General updating strategy

We assume in the following that the value of p is

not known and needs to be updated using additional in-

formation i.e. given experimental data. These data are
represented by a set of observable quantities sobs mea-

sured from the response of the body on selected points

xi (i = 1, . . . , nobs) located outside ∂1Ω. The updating

process then requires to solve an inverse problem which
is usually ill-posed.

The inversion technique is often formulated as a mini-

mization of a cost function F , so as to ensure existence



4 Ludovic Chamoin et al.

of a solution psol in P :

psol = argmin
p∈P

F(p) (6)

Remark 1 As regards uniqueness of psol, considering a

strictly convex cost function F is a sufficient condition.

Generally, a least-square minimization is used i.e. F is

constructed by means of the Euclidean norm involving
solution u(p) and experimental data sobs:

F(p,u(p)) =
1

2
||s[u(p)]− sobs||

2

=
1

2

nobs∑

i=1

ci||s[u(p)](xi)− sobs(xi)||
2

(7)

s being the extraction operator associated with obser-

vations, and ci some scalar parameters. The minimiza-
tion, under the constraint that u satisfies state equation

(4), is usually performed by means of first order steep-

est descent methods. In this context, a convenient and

widely used method to evaluate the gradient ∇pF is
the adjoint state method; introducing the Lagrangian

L(p,u,λ) = F(p,u) −A(p,u,λ) and searching for its

stationary point z ≡ (p,u,λ), it leads to the system:

L′
p(z; δp) = F ′

p(p,u; δp)−A′
p(p,u,λ; δp) = 0

L′
u(z; δu) = F ′

u(p,u; δu)−A(p, δu,λ) = 0

L′
λ(z; δλ) = A(p,u, δλ) = 0

(8)

for all (δp, δu, δλ) ∈ P0 × U0 × U0.

The second equation is the co-state equation also called
adjoint equation. For a couple (u,p) that verifies the

state equation (4), we get L(p,u, ,λ) = F(p,u). Fur-

thermore, if z satisfies state and co-state equations,

then:

dpF(p,u(p); δp) = L′
p(z; δp) (9)

A priori information on p (bounds on parameter
values, regularity conditions) can be inserted in the for-

mulation to stabilize the inversion process and reduce

sensitivity; these are regularization methods. A well-

known regularization method is the one of Tikhonov
[38] in which the cost function takes the form:

G(p) = F(p) +
∑

j

αjRj(pj) (10)

where αj are scalar regularization parameters and Rj

is a penalization functional for parameter pj . Classi-
cal examples are L2 penalization functional Rj(pj) =
1
2 |pj − p0j |

2 and H1 penalization functional Rj(pj) =
1
2 ||∇pj ||2L2 .

3 Calibration method based on the constitutive

relation error

3.1 Basic ideas

The concept of constitutive relation error (CRE),

which has strong mechanical foundations, has been used

for decades for a posteriori discretization error control

in finite element computations [28]. It defines an energy
measure, denoted E , of the distance between a given

stress field � and another stress field obtained from a

given displacement field v using (3):

E2(p,v,�)
=

1

2

∫

Ω

[� −K(p)"(v)] : K−1(p) [� −K(p)"(v)] dΩ
(11)

Remark 2 A more general definition of E , in particular
for nonlinear constitutive models, can be set up using

convex potentials associated with standard generalized

materials [20].

Its usefulness is explained by the fact that the solution

(u,�) of the well-posed direct problem (1–3) is charac-
terized by:

(u,�) = argmin
(v,�)∈U×S

E(p,v,�) ; E(p,u,�) = 0 (12)

Furthermore, for any (v,�) ∈ U×S, the measure E(p,v,�)
can be split into two terms:

E2(p,v,�) = Wp(p,v) +Wc(p,�) (13)

where Wp and Wc are potential and complementary en-

ergy, respectively.

In model calibration formulations using the CRE,

the cost function F is constructed from E ; it was shown

that this choice presents convenient properties for inver-
sion [18]. In first applications, experimental data used

to be involved as boundary conditions in admissibility

spaces, defining new spaces U and S and leading (ex-

cept for special cases) to:

min
(v,�)∈U×S

E(p,v,�) 6= 0 (14)

even though the solution realizing the minimum of E(p,v,�)
over U × S is unique (to a given displacement of rigid

body belonging to U0) and a decomposition similar to

(13) is still possible.
The inverse problem was thus defined as:

psol = argmin
p∈P

F(p) ; F(p) = min
(v,�)∈U×S

E2(p,v,�)
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(15)

However, problem (15) is not well-posed in general and
requires additional information on K(p), in particular

for noisy measurements.

In more recent applications, boundary conditions
coming from experimental data have been relaxed; they

are not involved in admissibility spaces any more (we

thus keep U and S) but are imposed by penalization

in a new definition of the constitutive relation error

called modified constitutive relation error [26,7,13] and
denoted Em:

E2
m(p,v,�) = E2(p,v,�) + 1

2

r

1− r
||s[v]− sobs||

2
L2 (16)

The two terms composing Em can be respectively seen

as measures of modeling error and measurement error.

r is a scalar parameter that enables to modulate the
influence of these terms. The philosophy of the modi-

fied constitutive relation error is thus to favor reliable

theoretical and experimental information (equilibrium,

sensor location) compared to other information (consti-
tutive relation, sensor measurement).

Remark 3 The choice of r should generally be made in
regards of the a priori reliability on both model and

measurements; for instance, Morozov principle or L-

Curve method [21] may be used to define r with re-

spect to the data noise. However, the influence of r on

the quality of the updating performed using CRE was
deeply analyzed in several works, particularly in [15]. It

was shown that the value r = 0.5 gave the best insensi-

tivity of the cost function with respect to measurement

uncertainties. Consequently, we will choose this value
throughout the paper.

The new inverse problem is defined as:

psol = argmin
p∈P

F(p) ; F(p) = min
(v,�)∈U×S

E2
m(p,v,�)

(17)

It leads to an iterative method, each iteration consisting

of two partial minimizations steps which are detailed in

the next section.

3.2 Technical details on the minimization strategy

As we do not consider discretization error in this

paper, we explain the minimization strategy associated

with (17) directly from discretized equations. The dis-

cretized modified CRE, denoted Eh
m, reads:

Eh2
m (p,U,V) =

1

2
(U − V)TK(p)(U − V)

+
1

2

r

1− r
(U − Uobs)

T
Gu(U − Uobs)

(18)

U ∈ Uh is kinematically admissible in the sense that

it verifies discretized kinematic equations, whereas V ∈
Uh
S

is statically admissible in the sense that it verifies
equilibrium equations in a finite element sense K(p)V =

F, with K(p) the stiffness matrix of the complete dis-

cretized structure. Consequently, U contains prescribed

dofs contrary to V. Gu is a scaling matrix which is in

practice chosen so that both terms of Eh
m can be com-

pared.

The first minimization step involved in (17), i.e. the

computation of Fh(p) such that:

Fh(p) = min
(U,V)∈Uh×Uh

S

Eh2
m (p,U,V) (19)

is called the localization step. This is a constrained mini-

mization problem, and we thus introduce the Lagrangian:

L(U,V,Λ) = Eh2
m (p,U,V)−ΛT (K(p)V − F) (20)

Finding its stationary point leads to the system:

K̃(p)(U − V) +
r

1− r
G̃u(U − Uobs) = 0

K(p)(U − V) +K(p)Λ = 0

K(p)V − F = 0

(21)

so that we obtain:

(K̃(p) +
r

1− r
G̃u)U =

r

1− r
G̃uUobs + F̃

⇐⇒ KU = F
(22)

and can compute Fh(p). Quantities K̃, G̃u and F̃ are

restrictions of K, Gu and F in which lines correspond-

ing to prescribed dofs for U have been removed.

Spatially slitting the modeling error term of Fh(p) into

contributions of each element pi of p enables to local-
ize and select the set of parameters that contribute the

most to the error. Moreover, contributions of the mea-

surement error enable to detect erroneous sensors.

The second minimization step involved in (17), i.e.

the computation of psol such that:

psol = argmin
p∈P

Fh(p) (23)
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is called the correction step. In practice, Fh(p) is mini-

mized with respect to parameters pi chosen in the pre-

vious step. This is a nonlinear process that uses an

optimization algorithm, such as the gradient method

with optimal path. This last method iterates such that
p(k+1) = p(k)+α(k)g(k); g(k) is chosen equal to −∇Fh(p(k))

and α(k) corresponds to the minimum of Fh(p(k) +

xg(k)) for x > 0.

The gradient of Fh(p) with respect to pi can be

computed explicitly with low computational effort. In-

deed, for the couple (U,V) solution of the constrained

minimization problem (19) and with Λ = V − U, we

have:

dpF
h(p; δp) = L′

p(p,U,V,Λ; δp)

=
1

2
(U − V)TdpK(p; δp)(U + V)

(24)

Remark 4 As expected, we observe that the gradient

vanishes when U = V.

The iterative process with localization and correc-
tion steps is in practice stopped when the cost function

Fh(p) reaches a given tolerance value, without waiting

for convergence. Furthermore, only parameters which

are selected in the localization step are updated during

the correction step (hierarchical updating). This natu-
rally regularizes the inverse formulation.

4 Goal-oriented updating with the constitutive
relation error

In the previous section, the model was updated glob-

ally with respect to experiments as a global (modified)

constitutive relation error, defined on the whole domain

Ω and with the whole parameter set p, was used as a

cost function. Furthermore, parameters to be updated
first were selected using contributions of this global er-

ror.

Here, we aim at modifying the formulation to obtain an

updating process which is dedicated to the prediction
of given outputs of the model. Consequently, the identi-

fied set p is not expected to accurately model the actual

structure; it is rather used to obtain an improved eval-

uation of outputs of interest from the a priori knowl-

edge of the model and available data. We consider a
quantity of interest Q which is supposed to be the goal

of the computation. Performing an optimal calibration

process with respect to Q means: (i) updating relevant

parameters only, i.e. those that affect Q; (ii) setting up
relevant measurements, i.e. some for which Q is sensi-

tive.

A first approach to select relevant parameters with

respect to the quantity of interest Q would consist in

obtaining the sensitivity of Q with respect to p, i.e.

the gradient ∇pQ. The relation between Q and p de-

pends on the mathematical model only; the updating
process is not involved here. The quantity of interest

thus reads Q(u(p)), and optimal control tools can be

used by defining the Lagrangian:

L(p,u,λ) = Q(u)−A(p,u,λ) (25)

Finding the saddle-point leads to a system similar to

(8) (replacing F by Q) and we directly get:

dpQ(u(p); δp) = L′
p(p,u,λ; δp) = −A′

p(p,u,λ; δp)

(26)

where u(p) verifies the state equation (4) and λ(p) ver-

ifies the following co-state (or adjoint) equation:

Q′
u(u; δu)− a(p, δu,λ) = 0 ∀δu ∈ U0 (27)

Remark 5 If Q is linear with respect to u, the first term

of the adjoint problem reads Q(δu).

Remark 6 The adjoint solution (27), valid for any load-

ing of the direct problem but for a given set of parame-

ters p, also enables to address goal-oriented discretiza-

tion error estimation in the prediction problem. This
gives information to define an optimal finite element

mesh for the prediction of the quantity of interest.

Normalized terms wQ,i = pi
∂Q
∂pi

could be used as

weighting factors in the localization step, in order to
give weight to parameters with are influent for Q. How-

ever, this strategy is debatable as information coming

from gradient values may not be optimal and reliable to

choose parameters to update and to define a stopping

criterion in the minimization process.

In the following, we rather choose to define an auto-

matic process in which new cost functions related to the

constitutive relation error and dedicated to the quan-
tity of interest Q are minimized.

4.1 Goal-oriented cost function when the quantity of

interest is not measured

We assume here that the spatial region in which Q

is defined is not a measurement point. Keeping the phi-

losophy and flexibility of the modified CRE, composed
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of modeling and measurements error terms, we intro-

duce a new cost function, denoted FQ(p), associated

with the considered quantity of interest. It reads:

FQ(p) = min
q∈R

[
1

2
|q −Qmod(p)|

2 +
1

2

r

1− r
|q −Qobs(p)|

2

]

(28)

The modeling error term 1
2 |q − Qmod(p)|

2 involves a
value Qmod of the quantity of interest defined from the

model only, i.e. by means of state equation (4):

Qmod(p) = Q(u1(p)) ; A(p,u1,v) = 0 ∀v ∈ U0

(29)

After discretization, u1 is thus obtained by finding U1 ∈
Uh solution of the system:

K̃(p)U1 = F̃ (30)

The measurement error term 1
2 |q −Qobs(p)|2 involves

a value Qobs of the quantity of interest defined from an

interpolation of measurements sobs, i.e.:

Qobs(p) = Q(u2(p)) ; (u2,�2) = argmin
(v,�)∈U×S

E2
m(p,v,�)

(31)

The definition of u2 thus involves sobs and leads to a
system K(p)U2 = F after discretization (cf. (22)).

Remark 7 If several experiments are performed, with

several loadings for instance, the cost function may be
defined from a sum of individual components, each in-

volving modeling and measurement terms and associ-

ated with a given experiment.

Remark 8 In cases where measurements of Q are avail-

able, these should be directly used as Qobs in (28) so

that the regularization process brought by Em is no

more used in FQ. This specific case will be studied in

the following section.

The computation of FQ(p) (or its discretized ver-

sion Fh
Q(p)) is trivial and we obtain:

q = (1− r)Q(U1) + rQ(U2)

Fh
Q(p) =

1

2
r[Q(U1)−Q(U2)]

2
(32)

with U1 (resp. U2) verifying (30) (resp. (22)). The

gradient of Fh
Q(p) is computed using the adjoint state

method; we introduce for that the discrete Lagrangian:

LQ(p,U1,U2,Λ1,Λ2) =
1

2
r[Q(U1)−Q(U2)]

2

−ΛT
1 (K̃(p)U1 − F̃)

−ΛT
2 (K(p)U2 − F)

(33)

Finding the saddle-point of LQ leads to verify, in addi-

tion to conditions from (29) (resp. (31)) for U1 (resp.

U2), and for all (δU1, δU2) ∈ Uh
0 × Uh

0 :

ΛT
1 K̃(p)δU1 = β Q′(U1; δU1) ∀δU1 ∈ Uh

0

ΛT
2 K(p)δU2 = −β Q′(U2; δU2) ∀δU2 ∈ Uh

0

(34)

with β = r[Q(U1)−Q(U2)].

The gradient of Fh
Q(p) can then be computed using the

adjoint solutions Λ1 and Λ2:

dpF
h
Q(p; δp) = L′

Q,p(p,U1,U2,Λ1,Λ2; δp)

= −ΛT
1 dpK̃(p; δp)U1 −ΛT

2 dpK(p; δp)U2

(35)

Elements of p associated with high components for the

gradient of Fh
Q(p) are then selected to drive the nonlin-

ear hierarchical minimization, and iterations are stopped

when the value of Fh
Q reaches a given tolerance value.

Consequently, this method enables to drive the updat-

ing process in an optimal and natural manner with re-

spect to the quantity of interest.

4.2 Goal-oriented cost function when the quantity of

interest is measured

In this specific case, there is no interpolation of the
data and therefore the regularization term involved in

the previous cost function is missing. We propose a new

cost function based on a local version of the modified

CRE, i.e. a measure at point (or in the area) where
the quantity of interest is defined. We denote by Q∗

the dual quantity of Q (in the energy sense), and we

write the local constitutive relation between Q∗ and Q

under the form Q∗ = k(p)Q. The new cost function

thus reads:

FQ(p) = min
(v,�) ∈ U×S

E2
m,loc(p,v,�) (36)

with

E2
m,loc(p,v,�) = 1

2
|Q∗(�)− k(p)Q(v)|2

+
1

2

r

1− r
|Q(v)−Qobs|

2
(37)
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The two terms in E2
m,loc correspond to local modeling

and measurement errors, respectively. Following a pro-

cedure similar to the one detailed in Section 3.2, we

write the discrete version of (37):

Eh2
m,loc(p,U,V) =

1

2
|Q∗(V)− k(p)Q(U)|2

+
1

2

r

1− r
|Q(U)−Qobs|

2
(38)

with K(p)V = F (equilibrium), and the computation

of Fh
Q(p) is performed by searching the saddle-point of

the following lagrangian:

LQ(p,U,V,Λ) = Eh2
m,loc(p,U,V)−ΛT (K(p)V − F)

(39)

This leads to the system, for all δV ∈ Uh
S
:

−k(p) (Q∗(V)− k(p)Q(U)) +
r

1− r
(Q(U)−Qobs) = 0

Q∗
′

u (V; δV) (Q∗(V)− k(p)Q(U))−ΛT
K(p)δV = 0

K(p)V − F = 0

(40)

The second equation (40) is the discretized version of

an adjoint problem; combining the other two provides

for the system that U should verify.

The evaluation of the gradient of Fh
Q(p) is then di-

rect with the adjoint state method:

dpF
h(p; δp) = L′

p(p,U,V,Λ; δp) (41)

with (U,V,Λ) solution of (40). Here again, elements

of p associated with high components of the gradient

are selected in order to minimize Fh
Q(p) with respect to

these parameters only. Iterations of the updating pro-

cess are continued until a tolerance value is reached.

4.3 Remarks on the regularization process

In the goal-oriented updating method involving cost

functions FQ introduced in Sections 4.1 or 4.2, it is

important to notice that an iterative two-step (local-

ization, correction) strategy is conserved. However, the

localization step is no more based on a splitting of the
modeling error term and comparison between parame-

ter contributions (FQ is local in space) as used in Sec-

tion 3.2, but on the selection of parameters that bring

highest components to the gradient of FQ(p). In prac-
tice, at each iteration of the method, the parameter (or

the set of parameters) that brings the highest gradient

component is corrected first. If this correction is not

associated with a significant decrease of the cost func-

tion value, the parameter (or the set of parameters)

that brings the second highest gradient component is

corrected, and the process is stopped when a signifi-

cant decrease of FQ(p) is observed. This hierarchical
strategy naturally regularizes the goal-oriented inverse

formulation.

5 Sensitivity with respect to measurements

We now wish to obtain the sensitivity of Q with

respect to measurements, i.e. the relation between a

change in observed values sobs and the output quantity
Q, in order to get useful information for setting up op-

timal measurements. The updating process is involved

here, as a change in sobs affects the value of p. The cal-

ibration process (17) using the modified CRE can be

seen as a constrained minimization problem (with fixed
measurements sobs), its solution being the saddle-point

of the following Lagrangian:

L(q,v,�,µ) = E2
m(q,v,�)

−

[∫

Ω

� : "(µ)dΩ −

∫

Ω

fd · µdΩ −

∫

∂2Ω

Fd · µdS

]

(42)

L explicitly depends on measurements sobs which are
involved in the definition of Em, so that we can also

write L(q,v,�,µ, sobs).
As regards the quantity of interest, it reads Q(z(sobs))

with z = (p,u,�,λ) solution of the calibration prob-
lem, i.e. realizing the saddle-point of L:

L′
z(z, sobs; δz) = 0 ∀δz (43)

In order to compute the gradient of Q with respect to

sobs, we use again optimal control tools and introduce

the Lagrangian H defined as:

H(z, sobs,y) = Q(z)− L′
z(z, sobs;y) (44)

Finding the solution y of the adjoint problem:

L′′
zz(z, sobs;y, δz) = Q′

z(z; δz) ∀δz (45)

enables to obtain the following sensitivity result:

dsobsQ(z(sobs); δsobs) = H′
sobs

(z, sobs,y; δsobs)

= −L′′
zsobs

(z, sobs;y, δsobs)
(46)

with z verifying (43).
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Remark 9 This same adjoint solution y, with fixed mea-

surements sobs, also enables to address sensitivity with

respect to the finite element mesh used for calibration

that may have influence on the solution of the opti-

mization problem and identified parameters p (see [6]).
Denoting by zh the approximate solution of z obtained

with the finite element method, the discretization error

on an output of interest reads Q(z)−Q(zh) = R(zh;y),

with R the residual functional, and an error estimate
can be computed with a higher order approximation of

the adjoint solution y.

Remark 10 Choosing Q = pi in the sensitivity analysis

enables to measure the effect of uncertainty on observed
values on calibrated parameter values.

Considering a discrete version of the Lagrangian L
shows that the computational effort to obtain dsobsQ is

reasonable. The discretized version of (42) is similar to
(62), and searching its saddle-point leads to:

B(p,Uobs; δp) ≡
1

2
(U − V)TdpK(p; δp)(U + V)

= 0 ∀δp ∈ P0

(47)

with U and V given by (21) and depending on p.

After introducing the discrete Lagrangian:

H(p,Uobs,q) = Q(U(p))−B(p,Uobs;q) (48)

and solving the associated adjoint problem:

B′
p(p,Uobs;q, δp) = Q′

p(U(p); δp) ∀δp ∈ P0 (49)

we get:

dUobs
Q(U(p,Uobs); δUobs) = H′

Uobs
(p,Uobs,q, δUobs)

= −B′
Uobs

(p,Uobs;q, δUobs)

(50)

with U (resp. q) verifying (22) (resp. (49)).

The gradient dUobs
Q can be computed at each itera-

tion of the updating process from available information

and after solving (49). The optimization of the experi-

mental protocol thus consists in finding sensor positions

and measurements that provide for maximal values of
|s

(i)
obsds

(i)
obs

Q| or |U
(i)
obsdU

(i)
obs

Q| (i = 1, . . . , nobs).

6 Numerical results

6.1 Trussed structure

We first illustrate the method on a simple trussed
structure with lattice beams represented in Figure 2. It

is composed of 10 beams for which respective Young’s

moduli Ei are parameters that need to be updated. The

loading, perfectly known, consists of a pointwise vertical
force applied at point P . We assume that the quantity

of interest in the study of this structure is the vertical

displacement of point P (Q(u) = uy(P )).

1 2

3

1098 76

54

P

F

E1 1,0 E6 1,2
E2 1,2 E7 1,0
E3 1,0 E8 0,8
E4 0,8 E9 1,0
E5 1,0 E10 1,2

Fig. 2 Considered trussed structure (left) and reference val-
ues for the material parameters (right).

Measurements consist of nodal displacements (eight

scalar data) over the whole structure; their value is sim-

ulated considering a reference model in which stiffness

parameters Ei are set to the value indicated in Figure 2
(no noise). The initial model to be updated is defined

by a 50% perturbation of parameters, i.e. E∗
i = 1, 5×Ei

(i = 1, . . . , 10). The updating process is conducted us-

ing a gradient method, with constant path, on a func-

tional FQ which is a combination of the one proposed
in Section 4.2 (related to measurement at node P ) and

the one proposed in Section 4.1 (related to other mea-

surements). The minimization is performed on one pa-

rameter only at each iteration.

Figure 3 shows values of Q which are predicted by

the model after each updating iteration, with both clas-

sical updating (global constitutive relation error) and

updating dedicated to Q and with the same experimen-
tal data. We observe that the new updating strategy

provides, after a few iterations only, for a good quality

model as regards the prediction of Q.

We show on Figure 4 the ratio E∗
i /Ei (updated pa-

rameter over reference parameter) after 10 updating it-

erations, both for classical updating and updating ded-

icated to Q. We clearly observe that in the second case,
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0 2 4 6 8 10 12
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

iteration

Q

 

 
cost fct F
cost fct F

Q

Fig. 3 Comparison of values of Q predicted by the model
after each updating iteration.

the updating strategy favors a subset of parameters

which have a large influence on the predicted value of Q.

This illustrates the fact that, compared to the classical

one, the goal-oriented updating method analyzes in a
different manner the amount of available experimental

information.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

~ 
E  /Ei i

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

~ 
E  /Ei i

i

i

Fig. 4 Ratio E∗

i /Ei after iteration 10 in the updating pro-
cess, for classical updating (left) and updating dedicated to
Q (right).

6.2 Two-dimensional beam structure

We now consider a 2D concrete beam with a steel

bar Γ (see Figure 5). In civil engineering applications,

concrete Young modulus Ec may decrease due to dam-

age, the steel bar cross-section Sb may be reduced due

to corrosion effects, and the rigidity k of the supports
may not be well-known. We divide the steel bar Γ (resp.

the lower concrete part Ωc) into five subdomains Γj

(resp. Ωcj ), j ∈ {1, .., 5} (see Figure 5) and consider

piecewise constant steel bar cross-section and concrete
Young’s modulus. We denote by Sbj the steel bar cross-

section in Γj , Ecj the concrete Young modulus in Ωcj ,

and k1 (resp. k2) the rigidity of support 1 (resp. support

2). We take L = 30 m and H = 1 m.

F
d

 !
i1

 !
i2

 !
f

H/4

H

L

Fig. 5 2D concrete beam with a horizontal steel bar, with
domains of interest ω1, ω2 and ω3.

To update beam parameters ({Sbj}, {Ecj}, k1, k2), a

static loading Fd is applied and the longitudinal strain
component ǫxx is measured at 14 points (see Figure 6).

The displacement field u ∈ U0 = {u∗ ∈ H1(Ω)\u∗ ·x =

0 on ∂Ωi1} satisfies the following direct problem:

∫

Ω

"(u) : Kc"(u∗)dΩ +

∫

Γ

EbSb
∂ux

∂x

∂u∗
x

∂x
dΓ

+

∫

Ωi1

k1uyu
∗
ydΓ +

∫

Ωi2

k2uyu
∗
ydΓ −

∫

∂Ωf

Fd · u
∗∂Ω

= 0, ∀u∗ ∈ U0

(51)

where Kc represents Hooke tensor depending on con-
crete Young’s moduli Ecj (j ∈ {1, .., 5}).

The sensor outputs are simulated numerically con-

sidering the reference beam parameters defined below

and direct model (51). In the reference model, let us no-
tice that a loss of stiffness is considered in subdomain

Ωc3 .




Eref
c1 = Eref

c2 = Eref
c4 = Eref

c5 = 40.109 Pa

Eref
c3 = 30.109 Pa

Sref
b1

= Sref
b2

= Sref
b3

= Sref
b4

= Sref
b5

= 0.04 m

kref1 = kref2 = 5.107 N/m3

(52)
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In the initial model to be updated, we take the un-

damaged standard value of the concrete Young mod-

uli (Ecj = 40.109 Pa, j ∈ {1, .., 5}), the value of the

uncorroded steel bar cross-section (Sbj = 0.04 m, j ∈
{1, .., 5}) and the standard value of the rigidity (k1 =
k2 = 5.107 N/m3). The only difference between the ref-

erence and the initial models is the value of the concrete

Young modulus in subdomain Ωc3 .

F
d

 !
i1

 !
i2

 !
f

"
H/4

H

L

strain sensor

Fig. 6 Instrumentation of the beam with 14 strain sensors.

The goal-oriented updating procedure is applied to

three quantities of interest:

Q1 =

∫

ω1

ǫxxdΩ ; Q2 =

∫

ω2

uydΩ ; Q3 =

∫

ω3

uydΩ

(53)

The associated zones of interest ω1, ω2 and ω3 are rep-

resented in Figure 5.

Regarding the updating strategy, the highest com-

ponent of the functional gradient is searched at each it-

eration and the associated parameter is updated. When

the value of the functional does not decrease after up-

dating the parameter, the initial parameter value is kept
and the parameter having the second highest functional

gradient is updated, and so on . . . When the value of the

quantity of interest remains unchanged (variation less

than 0.1%) between two successive iterations, the up-
dating algorithm is stopped.

For each iteration of the goal-oriented technique, the

updated parameter values and associated predicted val-

ues of the quantity of interest are represented in Fig-

ures 7 and 8. Several observations can be made:

– initially, we observe that the error between the

quantity of interest and the reference quantity of
interest is the highest for Q1; it is about 15%;

– as regards quantities of interest Q1 and Q2, two

iterations are sufficient to get an error less than

1% on the determination of the concrete Young
modulus Ec3 . We can remark that only parame-

ter Ec3 has been updated using the goal-oriented

approach.;

– as regards quantity Q3, the updating procedure

suggests a 20% reduction of the concrete Young

modulus Ec2 at iteration 1. The modification of

this parameter leading to a variation of the quan-

tity of interest less than 0.1%, we do not take into
account the modification of Ec2 and the updating

algorithm is stopped;

– quantity Q3 being not sensitive to Ec3 , this pa-

rameter is not updated using the goal-oriented
approach. Indeed, we see in Figure 8 that the ra-

tio of the non-updated and the reference value of

quantity Q3 is almost 1. Parameter updating is

thus useless regarding quantity of interest Q3.

Updated parameters - Q1 Updated parameters - Q2

Updated parameters - Q3

Fig. 7 Updated beam parameters at each iteration of the
updating goal-oriented approach for quantities of interest Q1,
Q2, and Q3.

Normalized quantity of interest

Number of iterations

Fig. 8 Ratio between the updated and the reference values
of the quantity of interest at each iteration of the updating
goal-oriented approach for Q1, Q2 and Q3.
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6.3 2D thermal problem in a building

In thermal building applications, multizone models

are commonly used [23]. In such models, a building is

decomposed into zones and envelopes. The temperature

in each zone is supposed homogeneous and verifies an

ODE in time; the temperature in each envelope satisfies
a one-dimensional PDE. An inverse modeling technique

has been proposed in [30] to identify envelope parame-

ters and the thermal loading. Herein, we deal with an-

other kind of inverse modeling technique based on the
constitutive relation error framework.

We consider a thermal building problem, represented

in Figure 9, with two zones A and B separated by a

wall W (envelope). The temperature in zones A and B
(resp. in the wall W) are denoted TA(t) and TB(t) (resp.

TW (x, t)). As for the mechanical problem presented in

Section 2.1, the unsteady thermal problem can be writ-

ten using the constitutive relation error formalism:

• initial conditions

TA(t = 0) = T 0
A

TW (x, t = 0) = T 0
W (x), x ∈ [0, L]

TB(t = 0) = T 0
B

(54)

• balance equations

cA
dTA

dt
− qA = wA, t ∈ [0, T ]

cW
∂TW

∂t
+

∂q

∂x
= 0, x ∈ [0, L], t ∈ [0, T ]

cB
dTB

dt
− qB = wB, t ∈ [0, T ]

q + qA = 0, x = 0, t ∈ [0, T ]

−q + qB = 0, x = L, t ∈ [0, T ]

(55)

• constitutive equations

q = −dW
∂TW

∂x
, x ∈ [0, L], t ∈ [0, T ]

qA = αA(TW (x = 0)− TA), x = 0, t ∈ [0, T ]

qB = αB(TW (x = L)− TB), x = L, t ∈ [0, T ]

(56)

where cA (resp. cB) (J.K−1) represents the overall heat

capacity of zone A (resp. zone B), cW (J.K−1.m−1)
represents the overall heat capacity per meter of the

wall, αA (resp. αB) (W.K−1) is the product of the sur-

face envelope and the convective exchange coefficient

between the wall and zone A (resp. zone B), wA (resp.
wB) (W ) is the heating in zone A (resp. zone B), and

dW (W.m.K−1) represents the overall conductivity per

meter of the wall. We take L = 0.2m and T = 43200s

(half a day) in the following.

We are interested in identifying the thermal model

parameters p = {cA, αA, cW , dW , αB , cB}. To achieve
this purpose, two strategies are employed and com-

pared: the first one is the classical calibration method

based on the constitutive relation error; the second one

is the goal-oriented updating introduced in Section 4.
A detailed review of the extension of both strategies to

the unsteady case is given in Appendix A.

In the goal-oriented approach, we consider the quantity

of interest defined by:

Q = 〈TW (x = 0, t)〉∆T ; ∆T = [
11

12
T , T ] (57)

where 〈•〉∆T denotes the time average over ∆T . Let us

note that Q is a non-measured quantity of interest.

ZONE A ZONE BWALL

0 L
x

L

8

QI

S2

L

4

7L

 8

S3

S5

S4

3L

 4

S1 S6

__ _ _

Fig. 9 Geometry of the unsteady thermal problem with two
zones and one wall. Si denotes the ith temperature sensor
and QI the quantity of interest.

Data consist in temperature values measured at 6

points spread along the longitudinal axis of the struc-

ture (Figure 9). To simulate the sensor outputs numer-
ically, we solve equations (54-56) (using a classical fi-

nite element code) with reference parameters crefA =

crefB = 62500J.K−1, crefW = 2.107J.K−1.m−1, drefW =

20W.m.K−1 αref
A = αref

B = 83W.K−1 and we extract

the solution at the sensor nodes. For the heating in

zones A and B, we consider wA = 500W and wB = 0W
on the time interval [0, T ]. As regards the initial condi-

tions, we take T 0
A = T 0

B = T 0
W (x) = 10oC. The refer-

ence solution is noted T ref and the reference value of

the quantity of interest is Qref = 16.50. In the follow-
ing updating studies, we consider a 50% initial relative

error on all parameters.
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6.3.1 Calibration method based on the constitutive

relation error

The modified constitutive relation error associated

to the unsteady thermal building model is given by

E2
m =

1

2

∫ T

0

∫ L

0

dW

(
∂uW

∂x
−

∂vW
∂x

)2

dxdt

+
1

2

∫ T

0

αA (uW (0)− vW (0)− uA + vA)
2
dt

+
1

2

∫ T

0

αB (uW (L)− vW (L)− uB + vB)
2
dt

+
1

2

r

1− r

ns∑

i=1

∫ T

0

gi(T (xi)− Tobs)
2dt

(58)

where u (resp. v) denotes the kinematically admissible

temperature (resp. the statically admissible tempera-

ture) and ns the number of sensors. In practice, we
take r = 0.5 and gi = 1W.K−1. The measure E2

m given

in (58) is made of a data misfit term and three errors

in the constitutive law associated to the wall, zone A

and zone B.
The classical calibration method based on the consti-

tutive relation error is applied to the thermal building

problem; technical details on its specificities for time-

dependent problems are given in Appendix A. Numeri-

cal results are reported in Figure 10. We notice that the
modified constitutive relation error reaches a plateau

after about 200 iterations. As a consequence, the cal-

ibration should be stopped. At iteration 200, one has

E2
m ≈ 1W.K.s which corresponds to a data misfit less

than 0.1% and all parameters (except zone B param-

eters) are exactly determined. Most of the parameters

being well-determined, it is not surprising to find that

the updated quantity of interest is almost equal to the

reference quantity of interest. Nevertheless, the main
drawback of the classical calibration method is the com-

putational cost. Indeed, this method updates most of

the model parameters, that may lead to a large num-

ber of iterations.

6.3.2 Goal-oriented updating with the constitutive

relation error

Considering the quantity of interest defined in (57),

we now apply goal-oriented approach for model updat-

ing presented in Appendix A. We first study the case of

non-corrupted sensor outputs. In Figure 12, we observe
that the wall parameters cW and dW are correctly de-

termined after 3 iterations only. The value of the goal-

oriented functional, given in Figure 11, is divided by 20

Number of iterations

Numerical value of the CRE functional

Number of iterations

Normalized parameters

Number of iterations

Normalized quantity of interest

Fig. 10 Modified constitutive relation error, normalized pa-
rameters and ratio between the updated quantity of interest
and the reference quantity of interest at each iteration - Case
of non-corrupted sensor outputs.

between iteration 0 and iteration 3. In this case, three
iterations are sufficient to get an error on the quantity

of interest less than 1% (see Figure 12). If we keep iter-

ating, we see that the exchange coefficient αA between

the wall and zone A is exactly determined. The goal-
oriented being less sensitive to the other parameters,

these are not updated.
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Fig. 11 Goal-oriented functional at each iteration.
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Fig. 12 Ratio of the updated quantity of interest and the
reference quantity of interest at each iteration, obtained with
the goal-oriented calibration technique.

To study the robustness of the goal-oriented cal-
ibration method, the temperature sensor outputs are

now corrupted with random errors from a normal dis-

tribution N (0, σ2). The corrupted sensor outputs are

represented in Figure 14. Even though it is difficult to
distinguish the temporal evolution of the sensor out-

puts S4, S5 and S6 when σ = 0.1, the parameters cW
and dW are still well-determined by the goal-oriented

approach. In Figure 12, we observe that a 1% error on

the quantity of interest can still be obtained after a few
iterations when considering corrupted outputs.

At each iteration of the goal-oriented technique, we re-

call that two unsteady problems and N+2 forward/backward

problems have to be solved (see Appendix A). Nev-
ertheless, in this numerical example, 10 iterations are

sufficient to update the parameters, so that the goal-

oriented updating technique remains about 20 times

C_A adim

C_W adim

d_W adim

alpha_A adim

alpha_B adim

C_B adim

Normalized parameters

Number of iterations

Fig. 13 Updated parameters p with the goal-oriented cali-
bration technique - Case of non-corrupted sensor outputs.

faster than the classical CRE calibration (the compu-
tation time of the unsteady problem is negligible com-

pared to that of the forward/backward coupled prob-

lem).
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Fig. 14 Corrupted sensor outputs.
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Normalized parameters

Number of iterations

CORRUPTED SENSOR OUTPUTS

Normalized parameters

Number of iterations

CORRUPTED SENSOR OUTPUTS

Fig. 15 Parameters p updated with the goal-oriented
method - Case of corrupted sensor outputs.

7 Conclusions and prospects

We defined and analyzed a new updating strategy

dedicated to the prediction of quantities of interest.

Based on the modified CRE framework, it uses dedi-

cated cost functions and leads, compared to classical
updating methods and with the same amount of exper-

imental data, to a partial updated model in which only

relevant parameters with respect to the quantity of in-

terest are corrected. Therefore, the obtained model may

be scientifically invalid but remains valid for the objec-
tive of the simulation. We focused on linear elasticity

models but now wish to extend the method to more

complex mechanical models (dynamics, visco-elasticity,

plasticity,...) for which the concept of constitutive rela-
tion error still applies. Actually, CRE functionals can

be formulated for all generalized standard materials in

terms of local free energy and dissipation potential to-

gether with their Legendre-conjugate dual potentials.

Furthermore, the capability to lead sensibility analysis

of quantities of interest with respect to measurements

opens new research topics related to the optimization of

experimental protocoles (sensors location, applied load-
ings, geometry of the sample); this will be the subject

of future works.

A Parameter updating in the unsteady case

We consider the updating of parameters p associated with
the following semi-discrete equation:

C̃(p)
∂U

∂t
+ K̃(p)U = F̃(p), U(t = 0) = T

0 (59)

Equations (54-56) can be written under this form.

A.1 Classical updating with the constitutive relation

error

For the unsteady problem (59), the discretized modified
CRE reads:

E
h2
m (p,U,V) =

1

2

∫
T

0

(U − V)TK(U − V)dt

+
1

2

∫
T

0

r

1− r
(U − Uobs)

T
Gu(U − Uobs)dt

(60)

where U is a kinematically admissible temperature which is
equal to T

0 at the initial time, and V is a statically admissible
temperature. The pair (U,V) should satisfy the discretized
equilibrium equation:

C
∂U

∂t
+ KV = F (61)

To determine the pair (U,V) in the localization step, we
introduce the Lagrangian:

L(U,V,Λ) = E
h2
m (p,U,V)−

∫
T

0

ΛT

(
C
∂U

∂t
+ KV− F

)
dt

(62)

Finding its stationary point leads to the system:

C̃
∂Λ

∂t
+ K̃(U − V) +

r

1− r
G̃u(U − Uobs) = 0

K(U − V) + KΛ = 0

C
∂U

∂t
+ KV = F

U(t = 0) = T
0

Λ(t = T ) = 0

(63)

The adjoint solution verifies Λ = V−U and has null final con-
ditions. From (63), we obtain the following forward/backward
coupled system:

[
C O

O C̃

]
.

(
∂U

∂t
∂Λ

∂t

)
+

[
K K

r
1−r

G̃u −K̃

]
.

(
U
Λ

)
=

(
F

r
1−r

G̃uUobs

)
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(64)

with U(t = 0) = T
0 and Λ(t = T ) = 0. A similar system was

obtained in elastodynamics model updating using the consti-
tutive relation error [2].

Then, in the correction step, parameters associated to
the highest contributions to the modeling error are updated.
We underline the fact that, at each iteration of the updating
procedure, the coupled system (64) of forward/backward so-
lutions has to be solved (N+1) times (one solution during the
localization step and N solutions during the correction step).

A.2 Goal-oriented updating with the constitutive

relation error

In the goal-oriented approach, we search for control pa-
rameters minimizing the error on the quantity of interest de-
fined by:

F
h
Q(p) =

1

2
r [Q(U1(p))−Q(U2(p))]

2 (65)

where:
– Q(U1(p)) represents the quantity of interest defined

from the model only. In this case, U1 verifies the un-
steady equation (59);

– Q(U2(p)) corresponds to the quantity of interest de-
fined from an interpolation of measurements based on
the constitutive relation error. In the unsteady case,
the kinematically admissible field U2 and the adjoint
field Λ2 verify the forward-backward system (64). The
adjoint field Λ2 has a null final condition and the kine-
matically admissible temperature U2 at the initial time
is equal to T

0. The statically admissible field can be
deduced as Λ2 = V2 − U2.

We introduce the semi-discrete Lagrangian LQ defined
as:

LQ(p,U1,U2,V2,Λ1,Λ2,Υ 2) =
1

2
r [Q(U1(p))−Q(U2(p))]

2

−

∫
T

0

ΛT
1

(
C̃
∂U1

∂t
+ K̃U1 − F̃

)
dt

−

∫
T

0

ΛT
2

(
C
∂U2

∂t
+ KV2 − F

)
dt

−

∫
T

0

ΥT
2

{
C̃

(
∂V2

∂t
−

∂U2

∂t

)
+

r

1− r
G̃uU2

−K̃(V2 − U2)−
r

1− r
G̃uUobs

}
dt

(66)

To find the saddle-point of LQ, U1 (resp. (U2,V2)) has
to satisfy (59) (resp. (64)), Λ1 should verify the additional
adjoint equation:

Ĉ
∂Λ1

∂t
− K̂Λ1 = −BQ, Λ1(t = T ) = 0 (67)

and (Λ2,Υ 2) should verify the additional coupled forward/backward
system:

[
C̃ −Ĉ

O C̃

]
.

( ∂Λ2

∂t
∂Υ 2

∂t

)
+

[
O −

r

1−r
Ĝu − K̂

−K K̃

]
.

(
Λ2

Υ 2

)
=

(
BQ

0

)

(68)

with Λ2(t = 0) = 0 and Υ 2(t = T ) = 0. Square matrices

Ĉ, K̂ and Ĝu are obtained from C, K and Gu by removing
lines and columns corresponding to prescribed dofs for U1

and U2. The vector of nodal forces BQ is associated to the
term βQ′(U; δU) with β = r[Q(U1(p))−Q(U2(p))].

In order to evaluate the gradient of Fh
Q, the solutions of

two unsteady problems (59) and (67), and two forward/backward
problems (64) and (68) are required. Then, as in the steady
case (see Section 4.1), we update parameters associated with
high components to the gradient of Fh

Q. During this mini-

mization step, N solutions of the forward/backward coupled
problem are required. To summarize, at each iteration of the
goal-oriented approach, two unsteady problems and (N+2)
forward/backward coupled problems have to be solved. It is
more expensive than one iteration of CRE-based calibration.
Nevertheless, we observe in the thermal building application
presented in Section 6.3 that the number of iterations is about
twenty times smaller in the goal-oriented calibration tech-
nique.
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